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Abstract

Recent work by Fisher and Shapiro has used Gomory's
group theoretic methods together with Lagrange multipliers
to obtain bounds for the optimal value of integer programs.
Here it is shown how an extension of the associated abelian
group to a supergroup can improve the bound without the
artificiality of adding a cut. It is proved that there
exists a finite group for which the dual ascent procedure
of Fisher and Shapiro converges to the optimal integer
solution. Constructive methods are given for finding this
group. A worked example is included.

A primal-dual ascent algorithm of Fisher and Shapiro [3]
uses Lagrange multipliers with Gomory's group problems [5] to
give bounds on the optimal value of integer programs. If the
ascent procedure does not discover the optimal solution, a
cut is available to add to the original I.P. problem after
which the whole process of forming the group problem and
applying the ascent procedure may be repeated. This paper
gives a method of improving the bound without the need of
adding & cut by extending the group to a supergroup. It is
proved that a finite supergroup exists for which the ascent
procedure gives the optimal solution, and a constructive

method for finding this group is given.

The first section outlines the basic ideas of the primal-

dual ascent method of Fisher and Shapiro.

»

This research was part of a doctoral thesis supervised
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1. The Primal-Dual Ascent Algorithm

The general linear integer programming problem is

min ¢ w
Av = b (1)

w > O integer ,

which may be rewritten in terms of a dual feasible L.P. basis

B as

z*% = min cx
s.t Nx < b (2)
Nx = b

x > 0 integer ,

where A = (B,N), w = (xB,x), b = B-lg, N = B-li and ¢ > 0 is

the modified cost vector. The symbol 'S' will represent equal-

ity with respect to addition modulo 1 unless indicated otherwise.

Define
L{u,x) = cx + u(Nx - b)
for non-negative vectors u, and call

L(u) = min L(u,x)
XX (3)

the Lagrangian for problem (2), where
¥ = {x > ol¥x = b, x integrall} .

Problem (3) is a shortest route problem and is easily solved

[6]. The following set definitions will be useful.
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X(u) = {xex|L(u,x) = L{u)}

T(u) {teT|xt€X(u)} ,

where T is an index set for X.

The following properties of the Lagrangian are well
known [l, 3].

Lemma 1. For u > 0, ¢ + uN > 0, the Lagrangian is continuous,

concave, and a lower bound for the optimal I.P, value.

Since L{u) is a lower bound for the I.P. the best of

these bounds is evidently given by the dual problem

L = max L(u) ,
i (4)

To solve (L) consider the following reformulation

L{u,x) xeX (5)

(2]
(24
£
A

or, equivalently,
L = min % X (ecx?)

L A (nx® - b) <o (6)

™~

>
I

—

A, 20 .

This problem is straightforward to solve using column
generation but this approach has been found to be slow and so
an ascent procedure for L(u) was devised which gives monotoni-
cally increasing lower bounds. The idea is to generate, from

any given vector u a new vector u*, for which L(u*) > L(u).




It can be shown [;, 3] that if s* > O the optimal value
of v,v* say, in the linear progrem (7), gives a direction of

ascent from u, that is, for some k > O,

L(u + kv*) > L(u)

and if s* = 0 then u is optimal,
s* = max s
s <1
s < v(Nx - b) xeX{u)
vy o2 0 ieT(u)
vas 2 0 jed(u)

where I(u) = {i|ui = 0}, J(u) = {j|cj + ua; = 0} and s has

been arbitrarily bounded above by 1.
If s* > 0 the new vector u®* is chosen by setting
u* = u + k®v* where k® is the meximum value such that

L(u + k°v*) = L(3) + k%s*

When the optimal value L = L(u*) has been found, if the
optimal solution, A*, to (6) is integral, that is X: = 0 for
all but one x€X, then that x must be the optimal solution.

If A* is not integral then the cut

L{u*,x) > L(u*) = L

(1)

may be added to (1) and the whole procedure repeated, starting

from & dual feasible L.P. basis for the new problem.

The aim here is to provide a means of improving the bound

L without the necessity of adding a cut.



2. The Method

The I.P. problem (2) may be written as

x > 0 integral ,

where Xy are the basic variables.

Define variables y, y by the relation

Xp = A; +y »

vhere A= § o] is a diagonal matrix of

positive integers and O < y < §. Since the condition
xg 2 O is implied by the two conditions y, y > 0, (8) may

be written equivalently as

min cx

s.t. y + Nx b

1A

b (mod §)

y + Nx
Y,x > 0 integer
Relaxing the conditions y > 0 leaves the following problem
in terms of y, x,
min cx

y + Ex = b (moa 9)

y,x > 0 integer.

(8)

(9)

(10)
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Note that Gomory's asymptotic problem is just (10) with
§. =1, i=1,...,m. Once again (10) is a shortest route

i
problem and is easily solved.

Let G be the abelian group in the original formulation

and G* that generated in (10).
Theorem 2. G* =2 G & Zl @ = * @ Zm H
that is, G* is isomorphic to the direct sum of G with m

cyclic groups, where Zi has order éi.
Proof. Consider the set
m
S={s : s =g+ I p.e. 0 <u<iéd, ra

0 <g<1} .

m
The order of S is |G| N §., for if
1=1
1 le - 2 2e
g"’zuii 8+Zuii »
then
gl = 32 (mod 1)
so that
u% = u? (mod 8.) for all i
i i i
and hence
1 2 1 2
g =T & , U =y

It remains to show that S and G* are identical.

C* is generated by {el,...,em,al,...,an} so let

x
*
"
™
>
[
+
it a8
=
(0]
B
[«
[=7
O

with p, A both integral.




Now
n
£ X.a, = g for some geG
je1 9 9
hence n .
I A.a, = g+ Luy.e.
j=1 i3 i~i
so that o .
* = .
g g + iEl(uiwi)el
Hence if
u* = p o+ (mod §) ,
then
m
* =
g <%+ I ute
1=1
and g*eS. Thus
Gh e S .
If seS and
m
s = g+ I p.e .
i=1 > 1
where
n
= L A.a. mod 1
g I A% ( )
J
or
n __ m
g = L A.a. + I p.e. ,
j=1 39 =1 R
then
n m __
§ = T A.8. + I (p.+p.le,
j=1 99 4ap P2
and

s(mod §)eG* .

But 0 < 5 < §, hence seG* and thus § ¢

3

G*,




Corollary - |G*| = |G|.|det A .

Proof . It follows directly from the theorem. It may easily
be seen that |[G#*| divides |det B|.|det A| since G* is generated
in the ordinary manner by taking ; as the basis for the group

problem in the L.P.

min c¢x

BAy + By + Nx = b (11)

Y ¥, x >0

and therefore (see [10]) |G*| divides |det BA|. |

The derivation of the Smith Normal Form of BA which is required
for the simplification of the group equations [T] does not
seem to be made easier by knowing the corresponding form for

B but for a certain case it is possible.

Theorem 3 . If Q;» ce»q, Bre the elementary divisors of B,

and det B, § ) are each mutually coprime then the

10 s S
elementary divisors of BA are ql""’qr-l’ |det Alqr.

Proof . Consider the matrix B1 which is B with the first column
multiplied by 61. It is sufficient to show that ;1 is un-
altered. But q,.) represents the greatest common divisor of
the (m-1) x (m~-1) minors of B, (see [8]). Now there are m

such minors which are left constant in B~, that is they contain
no elements of column 1. But |det B} is a linear combination
of these m minors thus if they have a common factor it must
divide |det B|. But §, and |det B| are coprime thus q__, is

unchanged. By repetition with § Gm the theorem

pret
is proved. ||

The purpose of this new formulation is to increase further

the lower bound L obtained by the primal-dual ascent method.
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Let X* = {(y,x) > O|y + Nx ¥ b (mod &), y, x integrall
with index set T¥.
Lemma 5, The index sets T, T® are equivalent.

~ Nx (mod §

"
o

Proof, 1If xeX then Nx - b is integral so that y

is integrsl. llence
(y.x)ex* .

If (y,x)eX®* then
y b - Nx (mod §) ,
and since y is integral, so is
b - Nx.
Hence xeX. |

Thys T* may be considered to be precisely T and further
reference to it as a distinct set will not be necessary.

Recall that A* is the optimal solution to
. t
L = min T oA lex”)
teT
t
s.t. L Xt(Nx -bv) <0
teT (12)

teT

with optimal dual vector u®.

The Lagrangian associated with problem (10) is

L*(u) = min {cx + u(y + Xx - b))}
(y,x)ex#

yielding a corresponding primal problem
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teT
s.t I A (Nxt + yt - b) <0
teT
N (13)
I A =
teT t
A > 0

The following theorem establishes some properties of (13).

Theorem 6 . i) L < L¥* < z¥%

ii) AX* is infeasible if X;(u*yt) # 0 for some t

> 0 for all teT(u%*).

111) L < L* if u%*y
Proof . i) Since yt > 0 for all teT any feasible solution
of (13) is feasible in (12). Hence L < L¥*. 1If xk is the
optimal integral solution, then Ak = 1 is feasible in (13)

since ka + yk < b, so that L¥* < 2%,

ii) T Xt*(Nixt + yit - ;)
teT
= 5 At'(Nixt - b))+ 1 At*yit
teT teT

L At*yit if ui* >0
teT

If At*(u*yt) # 0 then

A *y.t > 0 for some u.* > 0O
t 1 1
teT

so that A* is infeasible in (13).
iii) It is sufficient to show that
L*(u*) > L(u*)

If xeX(u*) then
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(c + u*N)x + u*y - u*b > L(u#*)

since u*y > 0 by assumption.

If xgX(u*) then it is easily shown by induction that u*

is rationel and hence so is (¢ + u*N)x and thus

0 < int (c + u*N)x - u*p .
xeX-X(u#*)

Hence

L*(u*) > L(u*)

as required.

The algorithmic question is thus, in knowing the solution,

A% to problem (6), how should the value of &§ be chosen?

For some i¢I(u*) let d; be the greatest common divisor

of Nixt - b for those t for which At* > 0.

Corollary 6.1. A* is infeasible in (13) if éi does not divide

d. .
1

Proof. If &§.1d. then N x®
_— iti i

. t
At > 0 so that the corresponding ¥y > 0. Hence Xtu*yg > 0

and by the theorem, A* is infeasible.

Note that the corollary includes the case Gi > di'
Corollary 6.2, If Gi does not‘divide Nixt - b for all
teT(u*) for some i¢I(u*) then

L < L* .

Proof . In this case, u'yg > 0 for all teT(u#*).

For illustrative purposes consider the case when the

cannot be improved, that is, when L = z¥%*,

7 bi(mod Gi) for some t for which

bound L
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i) A* is integral. 1In this case A: > 0 only for
the optimal feasible solution x¥*., If u: > 0
then Nix* = bi so that all values of Gi divide

N.x* - b,
1 1

Hence the conditions of the corol-

laries cannot be met.

ii) A* is not integral.

Then

z% = cx* > cx* + u*(Nx* - b) = L({u*,x*) > L(u*)

Therefore x*cX{u*) and so the conditions of the

second corollary cannot be met.

These sufficient conditiens on A such that the bound

may be improved are
chosen so that ldet
of tradeoff between
1eI{u*) it might as

Gi piLays no part in

The quantities Nixt

not very stringent and A might often be
Al

is not large, but this 1s a matter

efficiency and gain. Note that if

well be that Gi = 1 since in this case

the conditions.

- b.
1

are available in the optimal

basis matrix Q of problem (13). This does.not furnish all

of X{(u®*) but is probably sufficient to choose A in practice.

Corollary 6.3. If p is the smmllest prime not dividing det Q
igI{u*), Gi

then if, fer some

A* 1s infeasible.

Proof . In this case Gi does not divide di since di divides

det Q.

3. An Example

= p, Gj =1, j # i, then

Consider the Integer Program

min bx
s.ta 3x
-12x

v,

+

X,

y

y + 9w =
Ty + 3z =
Yy, 2 20

11
11

integer

L
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The optimal basic variables are (w,z' A 1 the prima.-dua!
ascent algorithm gives L = 3, I{(u*) = {1}. The active

2 3, 2), x3 = (2, 5),
1

elements of X are xl = (0, 2), x

the primel-dual solution being A%

le - b = (-i) ’ Nx2

| f
o TN~
-
[} -
N
1 D—‘l
[eNe) |-
[ -
SN—
o
SN’

so that dl = d2 = 1 and there are no restrictions on the
choice of A. Since uI =0, 61 will be assigned the value
1.

The following table gives values of L* for increasing

values of 62. The optimal solution to the problem is x3,

hence z* = 13,

5, A L*
1 3. 0 3
2 2, .0 4
3 3, .0 5
4 %, %, 0 6
5 %, % ) 6
6 %, %— 0 8
7 g, 30 6
8 3 3.0 8
9 %, 2,0 10

10 %, % ) 8

11 -;- % ) 8

12 0, 0,1 13

at which point the gap is closed.
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L. Convergence

The example had the pleasing property that for some value
of &, namely (1, 12), the primal-dual ascent method gave the

optimal I.P. solution.

Theorem 7. If the L.P. feasible region of the problem is
bounded, then there exists a finite vector 8§ for which the
modified ascent method gives the optimal integral solution,

or shows that there is none.

Proof. Since the L.P. region is bounded, there exists some

finite ¢,B > 0 such that

Let

and define

max(Nix-b.) —min(Nix-bi)}
xeY > xeY

D. = max {
i
and since Di is finite, let Gi be the smallest finite integer
strictly greater than Di’ for all i = 1,...,m. Note then
that for all xVeX(Y if

then Nx  +y - b =0 (mod &)
t . t
- b. = . < b,
N.x + yi b1 0 1f le < bl,
N.xb o+ y? - b. = 6. if N.x' > b, .
i i i i i i
So if
xtEXrWY
then
t t
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Consider the solution to

min T At(cxt)
teT
At 4yt - m) <o
teT
I A, =1
teT
>
Xt >0
Let
TO = {tsT|Nxt +yt - b 0}
T = {tE’I‘|Nxt +y =-1bj 0}
and A* be the solution to (1bL).
Thus
RIS FAR R AREIE SIESNE IR Y 16 PA AR
teT® teT©
hence
t
I_Af(Nx" - p) €0
teT®
If
I_ A >0 ,
teTO
consider the point
1 t
* = . *
TN e
teTO
Since x* > 0, Nx* < b, then ax* < B. But x* is a convex

combination of vectors satisfying ax > B (since all f% xny

nave teT®) which is a contradiction. Hence

A* = 0 for all tcfo,

»
t

so that X: > 0 implies teT° and (14) forces

so that xt

is feasible and thus optimal.

(14)
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Problem (14) can have no feasible solution if and only

if there is no feasible I.P. solution.

Although the theorem only deals with bounded linear
programs, clearly any unbounded L.P. with & known I.P. upper

bound can be converted.

>+  Summary

A number of conditions were given concerning a suitable
choice of 8§, depending on the optimal solution A* gnd the
corresponding active elements of X. It 1s certainly not
necessary to await optimality before choosing a value of §
and, of course, 6 may be increased repeatedly as desired.
Thus at any time there is available a choice of adding the

cut

L{u,x) > L(u)

and restarting or choosing a higher value of 8. A third
method, not discussed here, is to choose an _.alternative basis
to problem (1), other than B, on which to apply the ascent
algorithm (see Bell and Fisher [2]).

Preliminary computation with the ascent algorithm appears
promising. This extension provides a simple constructive

method for resolving any duality gap.
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