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Simple Equations in Quadriform Variables

Wm. Orchard-Hays

Polynomials of First and Second Degree

The general noncommutativity of quadriforms forces one to

change his interpretation of roots of a polynomial. Both a

linear and a quadratic equation make this clear. For example,

one must distinguish between

ax = b

and

xa = b

If lal 2
> 0, then the solutions to these are

-1x = a b

and

-1
x = ba

respectively.

Turning to a quadratic,

siderably more complicated.

tion to

2ax + bx + c = 0

the situation quickly becomes con­

The familiar formula for the solu-

depends heavily on commutativity, in particular, that

Hence it does not carryover to general quadriforms.

let us get rid of the leading coefficient and confine

tention to the simplified form

2x + bx + c = 0

bx = xb.

First,

our at-

We expect, in general, two roots, say u and v. Then the equa­

tion may be written

(x-u) (x-v) = 0

Expanding this, we get
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2x - (ux + xv) + uv = 0

Thus it appears that one is a "left root" and the other a "right

root" which doesn't make much sense since how would either one

satisfy the equation alone.

Suppose we interpret the linear term in simplified form as

i (bx + xb)

If we do this, then the usual quadratic formula is valid since

one can "complete the square". Note that

1 2 2 1 1 2
(x + '2) = x + '2 (bx + xb) + '4 b

Using this,

2 1
x + '2 (bx + xb) + c = 0

becomes

(x + i b) = ~ b
2

- c

or

Substituting this back in the quadratic will prove its validity.

Using the x derived:
2 1 2 2 - ,-~---'- r'2----

x = q (b + b - LI c + (b Ib - 4c + v'b - 4c b))

~ bx = ~(_b2 ± blb2 - 4c)

112 r2--
'2 xb = 4" (- b ± v'b· - 4c b)

Adding

211
x + 2(bx + xb) = 4(-4c) = -c

which verifies the formula for either choice of sign. Neither

need be considered right or left. However, c is not their

product but i the sum of their products both ways.
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An example may clarify the situation. Let

b = ( 3 , 1 , 0, 1) = \-4 1]

G 2

I 1 2 1c 1
2Then b = 7, = 1 and

2b -4c =
9

2

1
5
0J

= (7,2,-4,6)

Let w = 1~2_4c. Then w; = ;(7+5) = 6, which is allowable.

(Note that Ib2-4c1 2 = 25). Then

1
Iwl

2 = 5w = =(6,1,-2,3)
16

In matrix form,

[i :]w =I: _1

= ~~~4
-1 7

:])x ± 1.
-1 -2 16 1

Let x 1 be the value with + and x 2 the value with - Then

12--
16

1

2-1+-
16-

1

16
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2+_1 2-1--
/6 16

x 2x 1 =

1 +_1

16
and

1 + x 2x 1 )'1(x 1x 2 = c

For either value

2 ~(b2 + 2 + (bw + wb»x = ...,

13 4"2
1 + wb)= + 4(bw

52 '1

1 ~(_b2 ± bw)2bx =

17 3
IT "2

± 1
= 3 5 4 bw

2" -"4

1 ~(_b2 ± wb)2xb =

17 j'
if -~

-~ ± 1= 3 Lfwb
-2

Hence

[2
:J

2 1 + xb)x + 2,(bx = = - c

-1

Therefore, at least for this example,



How shall we compute b?

mula for x,
1 .

w)x 1 = 2(-b +
1 - w)x 2 = 2{-b
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We developed the outer members algebraically as well as arith­

metically. (In fact, we had already done so previously). How

does it happen that c is also a half-sum of transposed products?

One can see this from the quadratic formula. We have

1 w) 1 w)x 1 = 2"(-b + , x 2 = 2(-b -
so,

1 (b2 + bw - wb
2

x 1x 2 = - w )4"
l(b2 bw wb 2x 2x 1 = - + - w )4

1 + x 2x 1 ) l(b2 2
2(x1x 2 = - w )Ll

= .l(b2 - b 2 + 4c) = c4

Now suppose we have two roots x 1 ' x 2 and wish to construct

the standard quadratic form. We already know that

1
c = 2(x1x 2 + x 2x 1 )

Again referring to the quadratic for-

so

To verify,

2 1
x + 2(bx + xb) + c

Letting x = x 1 or x = x 2 clearly reduces this to zero. There­

fore, b is computed just as with straight real or complex

numbers, since it is a sum, but is interpreted differently; c

is computed differently but reduces to a straight product if

x 1 and x 2 commute. Since, of course, it is still true that

2
(x - x 1 ) (x - x 2 ) = x - (x1x + xx 2) + x 1x 2 = 0 ,

this form is valid but there are two linear coefficients. The

following is also true:
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The standard form derived before is simply half the sum of these

two. Hence

It is clear that these half sums of products in opposite order

need a name; hence the following definition.

The Arithmetic Mean Product, or AMP, of two quadriform

numbers x and y is denoted by x § y and has the value

1
x § y = 2(xy + yx)

One may still ask whether the equation

x 2 + bx + C = 0

has roots. The only answer one can give is that it certainly

may but it is a very tedious job to find them. To clearly

distinguish cases, we will consider the standard form of quad-'

ratic to be

x 2 + b § x + C = 0

However, given the more general form with a coefficient of x 2 ,

further analysis is required. To begin with, if x 2 has a co­

efficient, say a, there is no more reason for a and x 2 to

commute than for band x. Hence, logically, the equation should

have the form

a § x 2 + b § x + C = 0

However, with this definition, there is no way to keep terms in

x segregated into right and left products, that is, x becomes

trapped. This is avoided with the definition

2a § x + a § (b § x) + a § c = 0

or, setting

f(x) = x 2 + b § x + C

then the above becomes

a § f (x) = 0

(1 )

Unfortunately, this seems unnatural and is not the way coeffi­

cents usually arise. still, it is compatible with pure complex

or real numbers, for which the above form reduces to

2
ax + abx + ac = 0

or, setting b = ab, c = ac
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2 - -ax + bx + C = 0

from which a can be factored out. Before declaring (1) the

standard, general form of a quadratic equation, we need to check

the expansion in terms of roots x 1 and x 2 " We can begin by

ignoring a and using AMP for the factors instead of straight

multiplication. The following expansions then occur:

(x - x 1) § (x - x 2 ) 1 - x 1)(x- x ') (x - x 2 ) (x - x 1 ))= 2( (x +2

1 2 + x 1x 2 ) 2 x 2x + x 2x
1
)]= -[(x-xx - x x + (x - xX 1 -2 . 2 1

2 1 + x 2 )x + x(x1 + x 2 )) 1 + x 2x 1 )= x 2( (x 1 + 2(x 1x 2

Now setting b = -(x 1 + x 2 ), c = x 1 § x 2 ' the next to last line

above becomes

x 2 + ~(bx + xb) + c = 0

Taking the AMP of this with a,

a § x 2 + ~[i(a(bx + xb) + (bx + xb)a)] + a § c = 0

It is clear that, if all numbers commute, this reduces to

ax2 + abx + ac = 0

Therefore, we take (1) to be the standard general form and the

following to be the factor form:

(2)

Notice that (2) is entirely analogous to familiar factor forms

with AMP replacing multiplication.

We may now also define an AMP form of linear equation, as

follows:

a § x = b

or

1
2(ax + xa) = b

Incredible as it seems, this is not solvable with any simple
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operations. In fact, one must solve a 4 x 4 system of linear

equations. Since this operation is generally needed, we

proceed to define and describe it.

In [1], the products u v and v u were compared. Setting

u = a and v = x and taking half the sum, one gets; for compo­

nents of b:

aoxo + a 1x 1 - a 2x 2 + a 3x 3 = bo

a 1x O + a Ox 1 = b 1

a 2x
O + a Ox 2 = b 2

a 3x O + a Ox 3 = b 3

Putting this in matrix-vector form (in real numbers) :

{XC x 1 x 2

a O a 1 -a2

a 1 a O

a 2 a O

a 3

=

The determinant is a~ • lal 2 • Hence, for a solution, a must be

allowable, nonsingular, and here a nonzero leading component.

If these conditions are met, we can multiply the last three rows

by a 1/aO' -a2/aO' a 3/aO' respectively, and subtract them from

the top row. This gives:

{xc x 1
-
~ 0

a o
a 1 a O

a 2

a 3

o o

=
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where

He can now read off the values of x:

aObO a*bx =

~
=

~
0

(see below)

x, =

tve call this operation the extraction of b by a and denote it by

x = b/a

It is the analogue of division corresponding to M1P. We never

use this notation for multiplication by a reciprocal which is

either a- 1b or ba- 1 •

It should be noted that, if a § b = c, then c/a = b may be

possible while c/b is not defined.

It is also useful to have a name for the quantity aobo
above. We call this the cross value and denote it by

Hence,

a * a = lal
2

.

In the complex subset, this is equivalent to multiplication of

a complex number by its conjugate. We may also write the linear

AMP equation in terms of its root, say x
1

• Then

a § (x - x 1 ) = 0

or

a § x = a § x
1

= b
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To illustrate the solution x = b/a to the equation a § x = b,

let

-4

Ja = (3,1,0,1) =

1

8

-:]b = (4,4,3,1) =

4

Then

lal 2 = 7 a * b = 7

Hence

a*b 1xo =
~=

4-1 1x 1 = -3- =

3-0 1x
2

= -3- =

1-1 0x 3 = -3- =

or
2 -1

x = (1,1,1,0) =

1 0-
Then, to verify,

r: -41ax =
-1

-7

]xa =
4-

1
2(ax + xa) =

4
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Cubic Equations

Suppose we have a cubic equation in factor form with lead­

ing coefficient of unity. Taking a clue from quadratics, we

tentatively write this as

(x - x 1 ) § (x - x 2 ) § (x - x
3

) = 0

We first need to ascertain the meaning of two ~1Ps which are not

nested. Let a,b,c be any three quadriforms. Then, one inter­

pretation is:

1a § b § c = 2(ab + ba)§ c

1
= 4(abc + bac + cab + cba)

If we multiply the last pair first,

a § b § c = a § ~(bC + cb)

1
= 4(abc + acb + bca + cba)

These are not the same since, of the six permutations of a,b,c

only abc and cba appear in both. In other words AHPs are not

associative. On the other hand if we attempt to nest the AMPs,

then we must give some preference to the numbers. None of these

situations is satisfactory.

If we write the general equation in fully nested form, we get

3 2x + b § (x + C § (x + d)) = 0

or

x 3 + b § (x 2 + c § x + C § d) = 0

which looks like x 3 followed by a full quadratic, that is,

factoring the quadratic for two roots, x 1 and x
2

'

x 3 + b § [(x - x 1 ) § (x - x 2 )] = 0

or

Then

or

, c § d = x 1 § x,.,
<..
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However, there are two troubles with this. First, we have

selected two roots for special treatment; second, the x 3 term

seems unconnected and, in any event, we would have to arbi­

trarily assign an order of multiplication of the roots.

If we use straight multiplication of the factors, we get

a form which satisfies each root. Thus, after expanding and

collecting terms,

becomes

3 2 2
x -(x 1x + xx 2x + x x 3 ) + (x 1x 2x + x 1xx3 + XX 2X3 ) - x 1x 2x

3
=0

It is readily seen that x 1 ' x 2 and x 3 all satisfy this equation.

But it is also obvious that the roots have received arbitrary

treatment. Hence we conclude that there is no practical and

viable form for general polynomials of degree higher than the

second.

Cubic and Higher, and Fractional, Roots

Even though there seems no way to handle cubic and higher

order equations, it is desirable to have some method for finding

cube roots and roots of higher order, and also fractional roots.

In r~al arithmetic, the use of logorithms is the most practical

way. In [1], it was shown that logorithms (i.e., the inverse

of a generalization of exponentiation) are not additive in

general. The difficulty essentially reduces to the following

observation. Any generalization of In z will involve, in some

manner, sinh- 1x which is not periodic as is sin- 1x. In fact,

powers of sinh x involve expressions in binomial coefficients

as shown below. (Fractions are not reduced so the binomial co­

efficients stand out) •
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(sinh x)n =:

2 : 1 cosh 2x - 2
n =

~ 4"
3 : 1 sinh 3x - 3 sinh4" 4" x

4 : 1 cosh 4x 4 cosh 2x + 6
"8 - "8 16

5: 1 cosh 5x 5 sinh 3x + 10 sinhTb - 16 lb x

6 : 1 cosh 6x 6 cosh 4x + 15 cosh 2x 20
TI - TI TI - 64

7: 1 sinh 7x 7 sinh 5x +~ sinh 3x 35 sinhb4 - 64 -64 x64

8: 1 8x 8 cosh 6x + 28 cosh 56
128 cosh - ----r28 128 4x - 128

cosh 2x 70
+ 256

Clearly, this is intractable for a basic computational tool.

We first note that there are some special numbers which

have very simple powers. For example, if

then

2 (1 , 2v1 , 2v2 , 2v3 )v =
3 ( 1 , 3v1 , 3v2~ 3v3 )v =

Examples are:

(1,3,5,4)
2 (1,6,10,8)

3 (1,9,15,12) , ..•v = v = v =

(1,5,13,12) 2 (1,10,26,24) 3 (1,15,39,36), ••.v = v = v =

In fact, more generally, if 2 2 2 o and vo t- 0, thenv 2 - v 1 - v =3
n n-1 nv 3 )v = vo (vo , nv1 , nv2 ,

(Note that signs alternate by n if Vo < 0).

includes the case of
n 2 2

w = v and w2 - w1
even. Then,

pure reals but not pure
2

w3 = 0, with wo t- 0 and

Curiously, this

complex. Suppose

positive if n is

2
- w3

Hence
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and

p = 1,2,3.v =p

wp
n-1

Vo n

Notice that only real n-th roots of Wo may be used for the

general case. Complex roots can be given a valid representation

if w is pure real, but otherwise non-commutative factors occur.

For example, the three cube roots of -1 are:

(-1,0,0,0) 1 1 ,r.;"
('2,0, 2l'3, 0)

1 1;<-(2' 0 , -2 3, 0 )

The three cube roots of unity are formed by changing the sign

of the first component of the above. These are all allowable

numbers: unallowable roots are in addition to these.

If w is pure real or pure complex, then real or complex

logs and exponentials can be used and the results written in

quadriform format. Hence let us assume that not both w1 and w3222are zero and that w2 - w1 - w3 ~ 0 since the opposite situation

was covered above. Now if w has a square root and is not singu­

lar, i. e. ,

then one of its square

both. If v = {w, then

1
Vo = - Iw +

12 0

v p =
wp
2vO

roots has a square root but not necessarily

Iwi

p = 1,2,3

Hence,

and

> 0

Thus for the positive choice for vo ' V o + Ivl > 0, but not

necessarily for the negative choice. Hence w has at least two

fourth rootS. Then it also has at least two eighth roots, and



-15-

so on.

We will now restrict our attention to cube roots. Suppose
3w as above and v = w. If one cubes a general v, the following

formulas are obtained:

2 3 2 2
vo(vo + 3v1 - 3v2 + 3v3 ) = Wo

2 2 2 2
v 1 (3vo + v 1 - v 2 + v

3
) = w1

2 2 2 2v 2 (3vO + v 1 - v 2 + v
3

) = w2

2 2 2 2
v 3 (3vo + v 1 - v + v 3 ) = w32

2 2 2 2
The following two lemmas are useful.Let D = 3v + v 1 - v 2 + v 3 ·0

Lemma 1: For a~ least one root v,

v 1 = v 2 = v 3 = 0 ~w1 = w2 = w3 = 0

Proof: If w1 = w2 = w3 = 0, w is real and, for at least one root,

3v = (~, 0, 0, 0)

If v 1 = v 2 = v 3 = 0, clearly w1 = w2 = w3 = 0 from the above

formulas.

Lemma 2: D = 0 for any root~ w is real.

Proof: Suppose D = 0 for any root. Then w1 = w2 = w3 = O.

Therefore, if w is not real, D ~ 0 and
w

v p = ri p = 1,2,3

In other words, the last three components of the root are

directly proportional to the corresponding components of w.

We also have

so Wo ~ o~vo ~ 0, Wo = 0 ~either V o = 0 or

23D = 8vO

Let us take these by cases. We assume Iwl2 > O.

W
o

= 0, V
o

= 0 Then D = -'Ivl 2 or -D = Iwi 2/3.

We can thus compute vp from wp .
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The above case gives only one root for Wo = O. The other two

corresponding roots are given by the next case.

Hence, since wo = 0 and vo ~ 0,

2 31 12/ 3 > 0vo = "4 w

Then

and we can compute v p from wp for p ~ O. Note that there are

two values for Vo but only one each for v p ' p ~ O. This gives

the other two roots corresponding to the first case.

Wo ~ 0 Then Vo ~ 0 but

4v6 - 31w1
2

/
3

Vo - Wo = 0

Let a = _.~ Iw 1
2/ 3 , b = -~wO. Then we have the reduced cubic

equation

3
vo + avO + b = 0

The discriminant for this is

Thus we have the following three subcases for the third case:

(a) w; > Iw1 2 • There is only one real root for Vo and hence

only one root for w. It never occurs for a pure complex

number.

(b) w; = Iw1 2 • There are three real roots but at least two
222

are equal. Note that this is the case w2 - w
1

- w3 = O.

It never occurs for a pure complex (nonreal) number.

(c) w; < Iw1
2

• There are three unequal real roots.

The following example illustrates subcase (a).

w = (5,3,7,8)

\0,; = 25 > Iwl 2
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Let

a =

and we must solve

3 3
va - rrva

The discriminant is

1 5
b = -qWa = -rr

5
rr = a

25 1 3
64-64=a

The real root is A+B where

d= .61238

A
3 = 1.23738 B

3 = .01262

A = 1.0736 B = .23282

va = 1.3064

Now

D
2 1\'1/ 2

/ 3 6.827181988-1 5.827181988-- 4va = =

and

v 1 = 3 = .5148285215.8267

7 = 1.201266549v 2 = 5.8267

8 1.372876056v 3 = 5.8267 =

Subcase (b) is best handled by the method discussed previously,
2 2 2 example:based on w2 - w - w3 = a. For1

5 -jw = ( 1 , l~ , 5, 3 ) =
8 -3

2
Iwl

2 1w
a = =
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a =
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[: -2J(1 , 4 5 1) 1
v = 3' 3' = 3"

-1

[35 -54] = w
v 3 1= 27

216 -81

Thus V is the value of one of the roots. It would seem there

should be two other equal roots, and, if they have to be found,

the method of subcase (a) should be applied. Note that these

two equal roots would correspond to complex values for which

the imaginary part vanishes since A = B. To try to find the

other root(s) here we can proceed as follows. Let

3 1
-'4' b = -1f

B =~ = ~

Then A+B corresponds to the root already found. The other has

A+B
va = - -2-

Then

o = 4(v )2 -1 = 0o

Since this violates Lemma 2, it cannot correspond to roots of w.

The difficulty arises from our evaluation of Iwl 2/3 which has

complex roots. However, they cannot be used in a meaningful

way and hence there is only one valid root of w if the discrim­

inant is nonnegative.

For subcase (c), the usual trigonometric solution for va

can be applied. Consider, for instance, the following~

w = (3,4,5,1)

Let

a = -i 3m
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Then

b 2 3 9 17 1a
4+ 27- 64- 64= 8"

We must find </> so that

cos

Hence

</> = ~~/ (_ a
3

) =~ 9 /1 7 = _3_ = •727606875
~. 27 64 64 117

then

also,

</> = 43.31385668 0

</>1 = !</> cos </>1 = .9684182193

</>2 = </>1 + 120 0 cos </>2 = -.700136446

</>3 = </>1 + 240 0 cos </>3 = -.268281771

; - 6-
2 -~ = ¥1 7 = 1. 603521 621

3

Then the three values of va are

vJ1) = r cos </>1 = 1.552879552

vJ2) = r cos </>2 = -1.122683929

vJ3) = r cos </>3 = -.430195621

The corresponding values of 0 = 4v~ - Iw1 2/ 3 are:

D(1) = 7.074458022

D(2) = 2.470395226

0(3) = 1.831008502

Hence we have the three roots:

v(1) = (1.552879552, .565414338, .706767923, .141353585)

v(2) = (-1.122683929, 1.619174113, 2.023967642, .404793528)

v(3) = (-.430195621, -2.184588436, -2.730735543, -.546147109)
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Computer calculated cubes, using single prec1s10n floating point,

returned w to five decimal places exactly for all three roots.

Hence, if one uses enough precision, almost any fractional

power can be computed using products of repeated square and

cube roots. Fortunately, commutativity holds among roots.

Although algebraic analysis is intractable, this has been inves­

tigated empirically with computer routines. For example, if

u 2 = wand v 3 = w, then uv = wS/ 6 . A number of examples are in

the appendix.

Straight Power Series

One can, of course, take the formal definitions of straight

power series without parameters and apply them to quadriform

variables. For example, sin x, cos x, eX and other such series

can be evaluated. The algebra becomes exceedingly hard to follow.

The first five powers of a quadriform x can be derived from x 2

as follows.

x = x

x
2

= 2xOx - Ixl
2

to

2 2 2 2 2= 2xOx - x Ix I to = (4xo - Ix I )x - 2xo Ix I to

4 22 22 12 4x = (x) = 4xox - 4xO xl x + Ixl to

3 2 2 2 4= 8xOx - 4xolxl to - 4xolxl x + Ixl to

= (8X~ - 4xolxl2)x - (4x~lxI2 - Ix1
4

)

4 4 3 12 2 2= x x = 16xox - 8xolx to - 8xolxl x

- 4x~lxl2x + Ixl
4

x

= (16x6 - 12x~lxl + Ixl 4
)x - (8x~lxI2 - 4xolx\4) to

The rule of formation for the coefficient of to is evident:

f n 't' th ff" t f ' n-1 l' I' d b I 12or x 1 1S e coe 1C1en 0 x 1n x mu t1P 1e y - x •

The coefficient of x is more complicated. The first term is
n-1 n-12 Xo . The others are related to the coefficient of to in
n-1x , where its first term is multiplied by n-2 and there is a

sign alteration.

The functions sin x, cos x, and eX have been programmed
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taking 6 terms for sin and cos and 10 for eX. Some typical

cases are shown in the Appendix. It is interesting to compare

eX by power series with the functions E(v) and R(v) in [1].

It is evident that if Ixl < 1, the series converge fairly

quickly but are affected by the value of xO• The rules of

formation indicated above give a vivid picture of the infra­

structure of quadriform, and hence complex, functions with a

power series expansion. The continued weaving of coefficients

back and forth forms an extremely "hard cloth".

Binomial expansions and most parameterized series are not

tractable due to noncommutativity. This does not affect straight

power series since all multiplications are of a number either

by itself or by a scalar.

The function In x has also been programmed for quadriforms.

Results are shown in the Appendix. Three reductions of the

argument are used which amount to use of real parameters.

Simultaneous Linear Equations

It seems possible to have two styles of simultaneous linear

equations: one using straight multiplication, the other with

AMPs. Let us consider two equations in two unknowns in each

style, first with straight multiplication.

a 11 x 1 + a 12x 2 = b 1

a 21 x 1 + a 22 x 2 = b 2

Then, performing obvious quadriform arithmetic:

-1 -1 2
x 1 + a 11 a 12x 2 = a 11 b 1 ( Ia 11 I > 0)

-1 -1
(a22 - a21a11a12)x2 = b 2 - a21a11b1

Now if the latter coefficient of x2 is nonsingular, we can solve

for x 2 ' and then for x 1 in the upper equation. It will be help­

ful to calculate the determinant of the quadriform matrix.

Since the coefficients are themselves matrices, we can write

the whole thing as a 4 x 4 matrix.
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+ a 111

To simplify notation, we rewrite this temporarily as:

Now the determinant of each 2 x 2 is the square of the absolute

value of a coefficient; for example,

2
c 11 c 22 - c 12c 21 = l a 11 1

Unfortunately, this has nothing to do with the determinant of

the entire matrix, as is evident from expansion by minors. On

the other hand, treating the quadriform system as a matrix product

is valid. Let A be the first matrix above and define X and B as

follows:

x01 + x 11 -x21 + x 31 b 01 + b 11 -b21 + b 31

x 21 + x 31 x 01 - x 11 b 21 + b 31 b01 - b 11
X = B =

x 02 + x 12 -x22 + x 32 b02 + b 12 -b22 + b 31

x 22 + x 32 x 02 - x 12 b 22 + b 32 b02 - b 12
>-
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Then the real matrix product

AX = B

is the same as the quadriform matrix product

since the latter can be regarded as a partitioning of the

former. Hence it must also be true that

provided A- 1 exists. Therefore a solution depends on the real

determinant, not the quadriform determinant. Hence by writing

A in the (c .. ) form, and similar forms for X and B, any n x n
1J

system of quadriforms can be treated as a (2n) x (2n) system

of reals. Only one precaution is needed in applying matrix

algebra: a quadriform row is not the matrix transpose of a

quadriform column. That is,

(X1 , X2 ) ~ Xl

Instead, the individual 2 x 2 blocks must be used intact, for

example:

The same principle applies, of course, to A.

Note that noncommutativity is not a consideration except

in the case of transposition discussed above. The reason is.

obviously, that matrix multiplication is noncommutative anyway,

so it is just more of the same.

Now consider a system with AMPs.
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Expanding,

Clearly, this does not lead to a 4 x 4 system in reals. Instead,

one must proceed with extraction operations, from the quadriform

system.

x, + (a'2 § x 2 )/a" = b,/a"

x, + (a 22 § x 2 )/a2 , = b 2/a2 ,

In order to subtract the first from the second, we would now

have to develop a complete set of algebraic operations with

AMP and extraction. Obviously, this would get complicated and

we will not pursue it. It seems clear that quadriforms lend

themselves much more to simultaneous linear systems than to

polynomials. The N1P and extraction operations arose from a

need to overcome noncommutativity. This is not necessary with

a linear system and straight multiplication.

Further investigations along the lines of this paper appear

to have diminishing value for the effort. The next paper in

this series will turn attention to functions of a quadriform

variable to see if some analytic theory can be developed.
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APPENDIX

Numerical Examples

..
examples of u*v cmd u (amp) v

input values in locations to 7
I 1.00000 2.00000 4. COOOO 2.00000
2 2.00000 I. 00000 3. 00000 3. 00000
3 I .00000 I. 00000 I. 00000 I. 00000
4 4. 00000 3. 00000 2. 00000 1. roooo
5 1.00000 2. 00000 3. 00000 4.00000
6 4.00000 -3.00(00 2.00000 -1.00000
7 I. 00000 0.00000 I. 00000 O. 00000

n sq(ahs.val) abs.value modulus hvnermodulu~ M;:lg"i tUr:I~

I 4.00000 2.00000 4.12311 3.60555 5.47723
2 3. CCOOO 1.73205 3. 60~55 3.16228 .1.7958.1
3 ' 0.0 (,000 0.00000 1.41421 1.41421 2. COO00
4 10. 00000 3.16228 4.47214 3.1622R 5.47723
5 -10.00000 3.1622R 4.47214 5.47723
{- 10. 00000 3.16228 4.47214 3.16228 5.47723
7 2.00000 J .41421 1.41421 O. 00000 1.41421

star product of and 2 =
3. 00000

star product of 3 anr:f 3 =
0.00000

star product of 4 ann 5 =
0.00000,

star product of 4 and 6 =
30.00000

star product of 7 ann 7 =
2. 00000

amp = (uv+vu)/2 of land 2stored Ln II =
I. 00000 5.00(,00 II.OOCIOO 9. 00000

amp = (uv+vu)/2 of 3and 3stored in 12
2. 00000 2. 00000 2.00000 2'. 00000

amp = (uv+vu)/2 of 4and 5stored in 13 =
8.00000 11. onooo 14. 00000 17. 00000

amp = (uv+VlJ)/2 of 4end 6stored in 14 =
2.00000 O. on 000 16. 00000 O. 00000

amp = (uv+vu)/2 of 7and 7stored in 15 =
O. 00000 0.00000 2. 00000 0.00000

n sq (ahs. val) ahs.vCllup. modulu~ hyoerModlllus magniturjp
11 16.00000 4. 00000 11.04536 10.29563 15.09967
12 O. 00000 0.00000 2.82843 2.82843 4. COO 00
13 -150.00000 16. 12452 20.24846 25.P843t'
14 2 t'O. 0(000 16.12452 16.12452 O. 00000 16.12452
15 4.00000 2. 00000 2. 00000 0.00000 2. COOOO

command
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run I

above product~ with n~dinary multiplication in both orders

product of I and 2 stored in 21 =
1.00000 2.00000 8.00000 7.00000

product of 2 and I storp.d in 22 =
1.00000 8. COOOO 14.00000 11.00000

product of 3 and 3 stored in 23 =
2.00000 2.00000 2.00000 2.00000

product of 4 and 5 stored in 24 =
8.0DOOO 6.00000 4;00000 12.00000

product of 5 and 4 stored in 25 =
8.00000 16.00000 24.00000 22.00000

product of 4 and 6 stored in 26 =
2.00000 4.00COO 16.00000 -12.00000

product of f: and 4 stored in 27 =
2.00000 -4. COOOO 16.00000 12.00000

n ~q (abs. Vi'll> ahs.value modulus hynermodulus magnitude
21 ,j 12.00000 3.46410 8.06226 7.280 I1 10.86278
22 12.00000 3.46410 14.03')67 13.60147 19.54482
23 0.00000 0.00000 2.82843 2.82843 4. COOOO
24 -100.00000 8.94427 13.41641 16.12452
25 -100.00000 25.29822 27.20294 37.14835
26 100.00000 10.00000 16.12452 12. l'49 II 20.49390
27 100.00000 10.00000 16.12452 12.N911 20.49390

'ex~mple of non-cnmmutative extraction

magni tude
1.42127
I. "803
1.53379

0.10000
O. COOOO
0.00000

hyoermodulus
0.14142
0.50000 .
0.50000

3 =
0.00000

1.00000
-1.00000
-1.00000

modulus
1.41421
1.00000
1.45000

4 =

n
I
2
3

division of
-D. 00000

vector
command I

input in locations I and 2
amp = (uv+vu)/2 of . land 2stored in

1.05000 0.50000 -I • .(JOOOO
I I • 00 000 ~ O. I 0000
2 0.00000 0.50000
3 1.05000 0.50000

sq(abs.val) abs.value
1.98000 1.40712
0.75000 0.86603
1.85250 1.36107

3 by I stored in
0.50000 -1.00000 0.00000

2 is unallowable for diVision

set I
<
quad

, \ .



-27-

examples of gener~l Quadratic~

p(x):a$(x**2
a =
b :
c =

xl=
0.41421

+ b~x + c) = a
1.00000
2. 00000

-I. 00000

0.00000

0.00000
0.00000
o. 00000

o. 00000

O. 00000
o. CCOOo
0.00000

o. COOOO

O. 00 COO
o. 00000
O. 00000

0.70711 0.00000
O. 00000 0.00000
O. 00000 0.0 0000

a•aGOOO a •00 000
0.00000 0.00000
0.00000 0.00000

x2:
-2.41421

p(xl) =
p(x2) =

p!x)=a$(x**2
a :
b :
c =

xl=
-I. 00000

x2=
. ·-1. 00000

p (x I) :
p(x2) =

p(x)=a$(x**2
a =
b :
c :

xl=
-0.29289

x2=
-1.70711

p(x J) =
p(x2) :

0.00000
~. 00000
o. 00000

+ bSx + c) = a
I. 00000
2. 00000
I. 00000

0.00000

0.00000
o. oooon
o. 00000

+ bSx + c) = a
J. 00000
2. 00000
1.00000

0.00000

O. 00000
0.00000
o. 00000

O. 00000
o. 00000
o. 00000

O. 00000

o. 00000
o. 00000
O. 00000

O. 00000
O. 00000
o. 00000

-0.70711

O. acooo
O.OCOOO
0.00000

0.00000

o. 00000
0.00000
O. 00000

O. 00000
0.00000
1. 00000

O. 00000

o. roooo
O. COOOO

0.00000
o. rocoo
o. ooe'oo

O. coooo
o.oeooo

0.00000
O.OOCOO
0.00000

O. 00000
O. COoOo

0.00000
0.00000

0.10000
0.00000
0.00000 .

I. 00000
O. 00000
I. acooo

0.15461

1.54636 -0 .05360
o. 00000 o. 00000_.
O. 00000 0.00000

-0.536260.15461

-0.05360
0.00000
0.00000

p(x)=a$(x**2 + bSx + c) = o·
a = 1.00000 0.10000
b = 2.00000 0.00000
c : I. 000 00 O. a0000

x-I =
-0.26494

x2=
-0.74516

p(xl) =
p(x2) =

equation

o. I
0.0

-0.5

quadratic
= a

1.0
-1.0

1'.0

there is no solution of
p(x)=a$(x**2 + bSx + c)

a= 1.0 0.1
b = 0.0 0.5
c : 0.0 0.0
determinant is neg~tive

+ bS:< + c) : a
1.00000
O. 00000
0.00000

-0.34977

-0.20'::2t
·0.00000
0.00000

I .66267 -I .02837
0.00000 0.00000
0.00000 ~.OOOOO

p(x)=a$ (x*''t2
a =
b =
c =

xl:
0.55934

x2=
-0.02904

p(xl) =
p(x2) =

command I
int I 3
integer
command I

set I
<
roots

1= .3

0.10000
0.50000
o. 00000

-1.19297

I. (-0000
-1.00000

2.00900

0.97534

0.10000
o. 00000

-0.50000

0.00000
0.. 00000
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examplp.s of cube roots
in each Ci'lse thp. arnument is in location I •

thp. 3 cube roots are in locs. 2, 3, 4.
(i f 3, 4 are zero, only one allowahle root exists)

the results of cubing the roots are in lacs 5, 6, 7.
cube roots of minus unity

I -1.00000 0.00000 O. 00000 0.00000
2 -I. (\COOO 0.00000 0.00000 0.00000
3 a .liOOOO 0.00000 0.86603 0.·00000
4, 0.50000 o. 00000 -0.86603 0.00000
5 -1. CCOOO 0.00000 0.00000 0.00000
6 -I. noooo 0 ..00000 -0.00000 0.00000
7 -1.00000 0.00000 0.00000 o. 00000

n. sq(ahs.val> abs.value modulus hypermodulus magnitude
1 I.OOCOO 1. COOOO 1.00000 0.00000 1• 00000
2 I. 00000 1.00000 1.00000 O. COOOO I.ooa3 1.00000 1.00000 J • 00000 0.00000 1• CO
4 I. CCOOO 1.00000 1.00000 0.00000 1.000

cube roots of complp.x unit L
.I

1 o. OCOOO 0.00000 \.00000 0.00000
2 0.00000 0.00000 -I. 00000 0.00000
3 0.R6603 0.00000 0.50000 0.00000
4 -0. ~(603 0.00000 0.50000 0.00000
5 O. 00000 0.00000 1.00000 O. 00000
6 o. 00000 0.00000 I. 00000 O. 00000
7 0.00000 O.OOCOO 1.00000 0.00000

- \

n !'q(abs.val) abs.value modulus hypermodulus magnitude
1 1.00000 1. 00000 1.00000 0.00000 1. COOOO
2 I. COOOO 1. 00000 1.00000 0.00000 1.00000
3 ·1.0COOO 1. OOCOO 1.00000 0.00000 1.00000
4 1.00000 I. 00 COO 1. COOOO O. COOOO 1.00000

·cube roots of ( 1 +1>

1 1. 00000 O. 00000 1. 00000 O. 00000
2 1.08422 0.00000 0.29051 0.00000
3 -0.79370 0.00000 0.79370 0.00000
4 -0.29051 0.00000 -1.08422 0.00000
5 1 .00000 O.OOCOO 1.00000 0.00000
6 1.00000 0.00000 i . 00000 0.00000
7 1. COOOO 0.00000 1.00000 0.00000

n sq(ahs.val) abs.value modulus hypermodulus magnitude
1 2.00000 1.41421 1.41421 0.00000 1.41421
2 1.25992 1.12246 1 .12246 0.00000 1 • 12246
3 1.25992 1• 12246 1.12246 O. COOOO 1 • 12246
4 . 1.25992 1.12246 1.12246 0.00000 1.12246

command I



-29-

..
"\..In 1

general quadriforms with only one allowable root

1 1.00000 0.90000 I. 00000 -0.90000
'. 2 0.90521 0.35248 0.39164 -0.35248

3·'- 0.00000 0.00000 0.00000 O. 00000
4r~ .. _ ().OOOOO 0.00000 0.00000 0.00000
5 I.OCOOO 0.90000 1.00000 -0.90000
6 O. 00000 0.00000 0.00000 O. COOOO
7 O. 00000 O. 00000 0.00000 0.00000

n sq(ahs.v~l) abs. value modulus hypermodulus magnitude
1 0.38000 0.61644 1.41421 1.27279 1.90263
2 0.72432 0.85107 0.98631 0.49848 1.10512
3 o. 00000 0.00000 0.00000 o. COOOO 0.00000
4 0.00000 O. 00000 0.00000 0.00000 O. mooo

I 27.00000 8.00000 8.00000 -8.00000
2 2.96973 0.30133 0.30133 -0.30 133
3 O. COOOO 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 o. COOOO
5 27. 00000 8.00000 8.00000 -8. 00000
6 0.00000 .0. 00000 O. 00000 o. 00000
7 0.00000 0.00000 0.00000 O. COOOO

n 5q( abs. val) abs.value modulus hypermodulus magnitude
I 665.00000 25.78759 28.1602t 11.31371 30.34798
2 8.72852 2.95441 2.98498 0.42615 3.01525
3 0.00000 0.00000 0.00000 O. 00000- O. 00000
4 O. 00000 O.OOCOO 0.00000 O. (10000' 0.00000

general quadriform cube roots

I 27 .00000 8.00000 9.00000 -3.00000
2 3.003(4 0.29570 0.33266 -0. 11089
3 -1.59236 7.20955 8.11074 -2.70358
4 -1.41128 -7.50525 -8.44341 2.81447
5 27.0COOO 8.00000 9.00000 -3.00000
6 27.00004 7.99995 8.99994 -2.99998
7 27.00004 8.00005 9.00007 -3.00004,

n sq(abs.val) abs. value modulus hypermodulus magnitude
1 737. 00000 27.14775 28.46050 8.54400 29.71532
2 9.03280 3.00546 3.02201 0.315AO 3.03846
3 9.03281 3.'00546 8.26558 7. t9980 11.29631
4 9.03282 3.00546 8.56054 8.01561 11.72744

I 0.00000 0.90000 2.00000 -0.90000
2 O.OCOOO -0.67409 -1.49797 O. t7409
3 1 .0006A 0.33704 0.74899 -0.33704
4 -1.000t8 I 0.33704 0.74899 -0.33704
5 0.00000 0.90000 2. 00000 -0.90000
6 -0.00000 0.90000 2.00000 -0.90000
7 0.00000 0.90000 2.,00000 -0,90000

n sq (abs. val) abs.value modulus hypermodulus magnitude
1 2.38000 1.54272 2.00000 1.27279 2.37065
2 1.33514 1.15548 1.49797 0.95331 1.77559
3 1.33514 1.15548 1.24993 0.47665 1.33773
4 \ \ . 1.33514 1.15548 1.24993 0.47665 1.33773

command I

\ ...
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examples of commutativity of roots

u and 3 cube
I
2
3
4

n
1
2
3
4

roots of u
I. (\0000
1.15819

-0.92478
-0.23341

sq (ahs. Vi'll)
3.38000
1.50074
1.50074
1.~0074

0.90000
0.23287
0.46871

-0.70158
abs."alw~

1• 83848
1• 22505
1• 22505
1 • 22505

2.00000
0.5174R
1.04159

-1.55907
modulus
2.23607
1.2t854
, .39288
1.57644

-0.90000
-0.23287
-0.46871
0.70158

hvpermodulus
,- 1.27279

0.32932
0.(6286
0.99218

maqnitude
2:57294
1.31059
1.54257
1.86269

posi t1 ve square
5
6

n
5
6

root and fourth
1.19122
1.12854

sq(ahs.val)
1 • 8384f3
1.35590

root of u
0.37773
0.16735

abs.value
1.35590
1.16443

0.83941
0.37190
moduluc;
1.45734
1.18«24

-0.37773
-0.16735

hvnermodulus
- 0.53419

0.23667

magnitude
1.55216
1.21158

fi rs t cube root
7
8

n
7
8

time!' fourth
1.19256
1.19256

~q(ahs.val)

2.0348(,
2.03486

root ann Vice
0.45663
0.45663

abs.value
1.42t49
1.42649

versa, = 7/12
1.01473
1.01473
modulus
1.56585
J .56585

root
-0.45663
-0.45663

hypermodulus
O. t4577
0.64577

magnitude
1.69378
1• ~9378

reciprocals
9

10

"12
n
9

10

"12

of c"be and fourth
0.77175
0.83232
0.58607
0.58607

sq(abs.vAl)
0.66634
0.73751
0.49143
0.49143

roots, products
-0.1551'7
-0.12343
-0.22440
-0.22440
abs. valw~
0.81630
0.85879

-0.70102
0.70102

both ways,
-0.34482
-0.27428
-0~49867

-0.49867
modulus
0.84528
0.87635
0.76951
0.7t951

= -7/12 root
0.15517
0.12343
0.22440
0.22440

hypermodulus
0.21944
0.17455
0.31735
0.31735

magnitude
0.87330
0.89356
0.83238
0 ..832~8

7/12 root times -7/12 root
13 1.00000

command I

6.00000 O. 00000 0.00000
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examp]~s of sin v anrl cos v

v. sin v. cos v. (sin v> **2. (cos v>**2. sum of squares

I I.OCOOO 0.50000 0.40000 0.30000
2 0.76687 0.26212 0.20970 0.15727
3 0.49240 -0.40823 -0.32658 -0.24494

'4 0.('\3756 0.40202 0032162 0.24121
5 0.36241) -0.40202 -0.32162 -0.24121
6 I. COOOO 0.00000 -0.00000 -0.00000-. n ~q(ahs.val) abs.valUl~ modulus hynermodulus magnitude

I 0.82000 0.90554 1.07703 0.58310 I .22474
2 0.53862 0.73391 0.79502 0.30568 b.85176
3 0.12247 0.34996 0.59086 0.47607 0.75879
4 0.29011 0.538(2 0.71408 0.46883 0.85424 "
5 0.01500 0.12247 0.48457 0.46883 0.67425
6 1.00000 1.00000 1.00000 0.00000 1.00000

same as above with sinClular v
I 0'.70710 0.70710 0.70710. 0.70710
2 0.493f8 0.49388 0.49388 0.49388
3 0.1i7798 -0.42202 -0.42202 -0.42202
4 0.48784 0.48784 0.48784 0.48784
5 0.1i121f -0.48784 -0.48784 -0.48784
6 1.00000 -0.00000 -o~OOoOO -0.00000

n sq(ahs.val) abs.valup- modulus hyoermodulus magnitude
I 0.00000 O.OOCOO 0.99999 O. S:9999 1.41420
2 0.00000 0.00000 0.69R45 0.69845 0.98776
3 0.15596 0.39491 0.71~61) 0.59683 0.93186
4 0.0COOO 0.00000 0.68991 0.68991 0.97568'
5 0.02432 0.1559t 0.70732 0.68991 0.98806
6 1.00000 1.00000 J .00000 o. COOOO I. 00000

complex projecti~n of v is on lower dil"lgt)nal ,
I 0."10000 0.30('00 -0.50000 0.30000 "

2 0.4963fJ 0.26636 -0.44393 0.26636
3 0.90848 -0.14551 0.24252 -0.14551
4 0.19114 0.26439 -0.44065 0.26439
5 0.PORE6 -0.26439 0.44065 -0.26439
6 1.00000 -o.ooeoo O. (10000 -0.00000

n sq(a,",s.val) ahs.value moculus hypermodulus magnitude
I 0.32000 0.56569 0.70711 0.42426 0.82462
2 0.30150 0.54909 0.66588 0.37669 0.76504
3 0.84180 0.91750 0.94029 0.20578 0.96255
4 0.09090 0.30150 0.48032 0.37390 0.(0869
5 0.7080 0.84180 0.92110 0.37390 0.99410
6 1.00000 1. cacao 1.00000 0.00000 I. (10000

command I
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examples of e**v and In v

u, v, e**lJ, e**v
I 0.50000 0.40000 0.30000 O. 2ooCJl)'
2 0.40000 0.10000 0.60000 0.30000
3 1.74024 0.67165 0.5'0373 0.33582
4 1.30205 0.14280 0.85681 0.42840

u+v, e**CII+v) , e**u * e**v, e**v * e**u
5 0.90000 . 0.50000 0.90000 0.50000
6 2.08811 1.16724 2. 10103 1.16724
7 2.0740t 1.19496 1.90716 0.t7925
8 2.07406 1.05109 2.38672 I. t-8632

Ce**u * e**v)**1/2, Ce**v * e**u)**1/2
9 1.50560 0.39684 0.63335 0.22557

10 I .~05t·0 0.34906 0.79261 0.56002

n sqCabs.val> abs.value modulus h'lpermodulus magnitude
I 0.14000 0.3741 T 0.58310 0.44721 0.73485
2 0.42000 0.64807 0.72111 0.31623 0.78740
3 2.7182A 1.64872 1.8116A 0.75092 1.96114
4 2.22554 1.49182 1.55867 0.451~8 1.62277
5 1.12000 1.05830 1.27279 0.70711 1.45602
6 6.049t5 2. 459{>0 2.96219 1.65073 3.39108
7 . 6.04965 2.45960 2.81762 I .37452 3.13501
8 6.04965- 2.45960 3.16198 1.98708 3.73451
9 2.45960 1.56831 1.63339 0.45647 1.69598

10 2.459t:O 1.56831 1.70149 O. t-5990 .1.82497

(e**lJ * e**v)**1/2 * (e**v * e**u)**1/2
II 2.0290 0.94713 2.00344 1.08932

10q e**u = 11, loq e**v = v, log e**Cu+v) = u+v
12 0.50000 0.40000 0.30000 0.20000
13 0.40000 0.10000 0.60000 0.30000
14 0.90000 0.50000 0.90000 0.50000

log (e**u * P.**v) , 100 Ce**v * e**lJ)
15 0.90000 0.51293 0.81863 0.29156
16 0.90000 0.45117 1.02448 0.72384

loq ((e**u * e**v) **1/2), loq (Ce**v * e**u)*1/2)
17 0.45000 0.25t46 0.40932 0.14578
18 0.45000 0.22559 0.51224 0.36192

10q(Ce**u * e**v)**I/2 * Ce**v * e**u)**1/2)
19 0.90000 0.40921 0.86559 0.47064

n sq (abs. va 1> abs.value modulus hypermodulus magnitude
I I 6.04965 2.45960 2.85190 1.44350 3.19641.
12 0.14000 0.37417 0.58310 0.44721 0.73485
13 0.42000 0.64807 0.72111 9.·31623 0.78740
I·t 1.12000 1.05830 1.27279 '0.70711 1.45602
15 1.13206 1.06398 1.21·662 . 0.59000 •• 35213
16 1.13206 1.06398 I .36366 0.85294 1.60843
17 ~. 0.28301 0.53199 0.60831 0.29500 0.67607
18 0.28301 0.53199 0.(,8183 0.42647 0.80422
19 1.17028 1.08180 1.24A69 0.62366 1.39578
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