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Simple Equations in Quadriform Variables

Wm. Orchard-Hays

Polynomials of First and Second Degree

The géneral noncommutativity of quadriforms forces one to
change his interpretation of roots of a polynomial. Both a
linear and a quadratic equation make this clear. For example,

one must distinguish between

ax = b
and
xa = b
If |a|2 > 0, then the solutions to these are
%= a—1b
and
X = ba—'1
respectively.

Turning to a quadratic, the situation quickly becomes con-
siderably more complicated. The familiar formula for the solu-

tion to
2 _
ax” + bx + ¢ =20

depends heavily on commutativity, in particular, that bx = xb.
Hence it does not carry over to general quadriforms. First,
let us get rid of the leading coefficient and confine our at-

tention to the simplified form
2
X" +bx +c=0

We expect, in general, two roots, say u and v. Then the equa-

tion may be written
(x—u)(x—v) =0

Expanding this, we get



x2 - (ux + xv) + uwv =0 .

Thus it appears that one is a "left root"” and the other a "right
root" which doesn't make much sense since how would either one
satisfy the equation alone.

Suppose we interpret the linear term in simplified form as

1
E—(bx + xb) .
If we do this, then the usual quadratic formula is valid since
one can "complete the square". Note that
1,2 _ .2 1 1,2
(x + 7) = x" + 7(bx + xb) + Ek) .

Using this,

x2 +-%(bx + xb) + c¢c =0
becomes ,
1 1.2
(X+7’b) =Eb - C
or

x = % (-b + /b2 - 4e)

Substituting this back in the quadratic will prove its validity.
Using the x derived:

2 1,2

2 - 4e ¥ (bvb? - e + /b® - 8c b))

;—bx = -JT(—bz t bvYb® - AUc¢)

;_—xb = %(—b2 s /b2~ 4e by .
Adding

x% + %(bx + xb) = %(—Llc) = ¢

which verifies the formula for either choice of sign. Neither
need be considered right or left. However, c is not their

product but % the sum of their products both ways.



An example may clarify the situation. Let

b'—' (3111011) =
2
2 -1
c = (1,1,1,0) =
1 0
Then |b|2 = 7, |c|2 = 1 and
17 6 9 10
2 _ 12 _ _
h® = ' h¥=lc = = (7,2,-4,6) .
_6 5] , 2 5

Let w = /gz—uc. Then wg = %(7+5) = 6, which is allowable.

(Note that |b?-4c|? = 25). Then

w=21(6,1,-2,3) , |w]®=s5
V6
In matrix form,
75
1
W = —
11 s
4 -1 7 5
x:%- il
-1 -2 a 1 5.
Let X4 be the value with + and X, the value with -. Then
21 142
| Ve /6

1

1 -

/e



2+—é -1-—%
_ 13 V6
1 +—;
L V6|
and
%‘x1x2 t xyxq) = ¢
For either wvalue
x2 = ilr(b2 + w2 ¥ (bw + wb))
13
- 4
= ¥ %(bw + wb)
5 5
2
Ibx = F(-b% £ bw)
17 _3
T 2
1
=1 3 5| tgb¥
v i
1 _ 1 2
'Z—Xb = E‘(-b + Wb)
17 _3
T 3
_ 1
= __:i -5 + h—Wb
2
Hence —9 1
x2 + %(bx + xb) = = - C
-1 0

-

Therefore, at least for this example,

2 1 __1
x° + 7(bx + xb) = 2(x1x2 + x2x1)



We developed the outer members algebraically as well as arith-
metically. (In fact, we had already done so previously). How
does it happen that c is also a half-sum of transposed products?

One can see this from the quadratic formula. We have

1 1
X, = 7(-b + w) |, X, = 5(—b - W) .
_1,,2 _ _ 2
4%y = ?(b + bw whb w )
XoXq = %(b2 - bw + wb - w2)
1 _ 1.2 2
7(x1x2 + x2x1) = H(b w')
= %(b2 - b2 + b4c) = c¢

Now suppose we have two roots Xqr X9 and wish to construct

the standard quadratic form. We already know that
_ 1
How shall we compute b? Again referring to the quadratic for-

rnula for x,
Xy = %k—b + W)
X, = %(-b - w)
so
b = -(x1 + x2)

To verify,

2 2
X -+%4bx + xb) +c = x -%%(x1 + x2)x+x(x1 + xzn +—%(x1x2 + x2x1)

Letting x = X, or x = X, clearly reduces this to zero. There-

fore, b is computed just as with straight real or complex

numbers, since it is a sum, but is interpreted differently; c

is computed differently but reduces to a straight product if

X4 and X, commute. Since, of course, it is still true that
(x - x1)(x - x2) = x2 - (x1x + xxz) + XX, = o .

this form is valid but there are two linear coefficients. The

following is also true:

{x -~ xz)(x - x1) = x2 - (x2x + xx1) + XyXy = o .



The standard form derived before is simply half the sum of these
two. Hence

xz-F%(bx + xb)-+c==%((x - X)) (x = oxy) +(x - x,) (x = xq)) .
It is clear that these half sums of products in opposite order
need a name; hence the following definition.

The Arithmetic Mean Product, or AMP, of two quadriform

numbers x and y is denoted by x § y and has the value
X §y = %(xy + yx) .

One may still ask whether the equation

x2 + bx +¢c =0

has roots. The only answer one can give is that it certainly
may but it is a very tedious job to find them. To clearly
distinguish cases, we will consider the standard form of quad-
ratic to be

x2 + b §x+c=0 .

However, given the more general form with a coefficient of x2,

further analysis is required. To begin with, if x2 has a co-
efficient, say a, there is no more reason for a and x2 to
commute than for b and x. Hence, logically, the equation should
have the form

a § x2 +b §x +c =0 .

However, with this definition, there is no way to keep terms in
X segregated into right and left products, that is, x becomes
trapped. This is avoided with the definition

a§x%+as (b §x) +ad§c=0 (1)
or, setting

f(x) = x2 +b§x+c ,
then the above becomes

as§ f(x) =0 .

Unfortunately, this seems unnatural and is not the way coeffi-
cents usually arise. Still, it is compatible with pure complex

or real numbers, for which the above form reduces to
ax2 + abx + ac = O

or, setting b = ab, ¢ = ac ,



ax> + Bx + c =0
from which a can be factored out. Before declaring (1) the
standard, general form of a quadratic equation, we need to check
the expansion in terms of roots X4 and X,. We can begin by
ignoring a and using AMP for the factors instead of straight

multiplication. The following expansions then occur:

(x = %) 8(x = x5) = 20(x = %) (x = ;) + (x = xp) (x = %))

%[(xz- XX, = X4X + x1x2) + (xz- XXq = X X + x2x1)]

2 1 1
= x° - 7((x1 + xz)x + x(x1 + xz)) + §(x1x2 + x2x1)
I _
= x° - (x1 + x2)§x + X4 § Xy = 0
Now setting b = —(x1 + xz), c = x, § Xy the next to last line

above becomes

x2+17(bx+xb)+c=0 )

Taking the AMP of this with a,

a s x2 + %[%(a(bx + xb) + (bx + xbl)a)] + a § ¢c =0 .

It is clear that, if all numbers commute, this reduces to
ax2 + abx + ac = 0 .

Therefore, we take (1) to be the standard general form and the
following to be the factor form:

as [(x - x1) § (x - x,)]1 =0 . (2)

Notice that (2) is entirely analogous to familiar factor forms
with AMP replacing multiplication.
We may now also define an AMP form of linear equation, as

follows:

or
1—(ax + xa) = Db
2

Incredible as it seems, this is not solwvable with any simple



operations. In fact, one must solve a 4 x 4 system of linear
equations. Since this operation is generally needed, we
proceed to define and describe it.

In [1], the products u v and v u were compared. Setting
u =a and v = x and taking half the sum, one gets; for compo-

nents of b:

anO + a1x1 -~ a2x2 + a3x3 = bO

a1x0 + aox1 = b1
a2xO + aox2 = b2
a3xO + aox3 = b3

{xq X4 X, x3}

s ] by
a4 ag b1
a, ag ) b2
23 30| 3]

The determinant is ag . |a|2. Hence, for a solution, a must be
allowable, nonsingulér, and here a nonzero leading component.

If these conditions are met, we can multiply the last three rows
by a1/ao, -az/ao, a3/ao, respectively, and subtract them from
the top row. This gives:

{xo X, X, x3}
a 2 (0] 0 0] T BO
a
0]
a1 aO _ b1
a, ag b,
_a3 aq P3_




where

- - -
bO = E—(aobO a1b1 + a2b2 a3b3)

o)

We can now read off the values of x:

b

a
_ 0 _ a¥*b
Xg = > = 5 (see below)
EY la]
b1-a1xO
(0]
. = D27%2%0
2 ag
_ bymazx,
X3 7 a
(0]

We call this operation the extraction of b by a and denote it by

x = b/a

It is the analogue of division corresponding to AMP. We never
use this notation for multiplication by a reciprocal which is
either a~ b or ba"!. '

It should be noted that, if a § b = ¢, then c/a = b may be
possible while c¢/b is not defined.

It is also useful to have a name for the quantity aOBO

above. We call this the cross value and denote it by

b, + a,b a,b

by - aiby 2Py = agbs .

a * b = ag,

Hence,
a*a-= |a|2

In the complex subset, this is equivalent to multiplication of
a complex number by its conjugate. We may also write the linear

AMP equation in terms of its root, say Xq. Then
a g (x - x1) =0

or
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To illustrate the solution x = b/a to the equation a § x = b,

let

= .
a = (3I1IOI1) =
12
g8 -2
b = (4,“,3,1) =
Then
la]?=7 , a*b=17 .
Hence
X, = a*b =1
_ 41 _
¥ =3 =1
_ 3-0 _
¥X=73 =1
I
X3 =3~ =0
or - y
x=(1,1,1,0) =
Then, to verify,
S 4]
ax =
4 -1
- o
Xa =
8 -2
%(ax + xa) = =b .
4 0
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Cubic Equations

Suppose we have a cubic equation in factor form with lead-
ing coefficient of unity. Taking a clue from gquadratics, we

tentatively write this as
(x - x1) § (x - x2) § (x - x3) =0 .

We first need to ascertain the meaning of two AMPs which are not
nested. Let a,b,c be any three quadriforms. Then, one inter-

pretation is:

a§bs c %(ab+ba)§c

= %(abc + bac + cab + cba) .
If we multiply the last pair first,
as5bsc=as s(bc+ ch)

%(abc + acb + bca + cba)

These are not the same since, of the six permutations of a,b,c
only abc and cba appear in both. In other words AMPs are not
associative. On the other hand if we attempt to nest the AMPs,
then we must give some preference to the numbers. None of these
situations is satisfactory. , .

If we write the general equation in fully nested form, we get

x> +b§ (x> +c§ (x+4d)) =0

or

x3 + b § (x2 +c §x+c§d) =0

3 followed by a full gquadratic, that is,

which looks like x
factoring the quadratic for two roots, X and x2,

3

X" + b § [(x - x1) § (x - x2)] = 0
or
x3 + b § {xz - (x, + x,) § x +x, § x,] =0
1 2 1 24 7 .
Then
c = —(x1 + x2) ’ c §d = X4 § X

or
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d = (x1 § x2)/c .

However, there are two troubles with this. First, we have
selected two roots for special treatment; second, the x3 term
seems unconnected and, in any event, we would have to arbi-~-
trarily assign an order of multiplication of the roots.

If we use straight multiplication of the factors, we get

a form which satisfies each root. Thus, after expanding and
collecting terms,

(x - x1)(x - x2)(x - x3) = Q
becomes

x3 -(x.lx2 + XX x + x2x3) + (x1x2x + XqXx5 + xx2x3) = X XyX3 = 0
It is readily seen that Xqs X, and xq all satisfy this equation.
But it is also obvious that the roots have received arbitrary
treatment. Hence we conclude that there is no practical and

viable form for general polynomials of degree higher than the
second.

Cubic and Higher, and Fractional, Roots

Even though there seems no way to handle cubic and higﬁer
order equations, it is desirable to have some method for finding
cube roots and roots of higher order, and also fractional roots.
In real arithmetic, the use of logorithms is the most practical
way. In [1], it was shown that logorithms (i.e., the inverse
of a generalization of exponentiation) are not additive in
general. The difficulty essentially reduces to the following
observation. Any generalization of ln z will involve, in some
manner, sinh-1x which is not periodic as is sin_1x. In fact,
powers of sinh x involve expressions in binomial coefficients

as shown below. (Fractions are not reduced so the binomial co-

efficients stand out). e
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(sinh x)" =:

n = 2: % cosh 2x - %
. l . _ 3 .
3: m sinh 3x T sinh x
.1 _ b 6
. 3 cosh 4x 3 cosh 2x + 16
5: 1 cosh 5x - 2 sinh 3x + 10 sinh x
* 76 16 16
. 1 . 6 15 _ 20
6: 37 cosh 6x 37 cosh U4x + 37 cosh 2x 3y
7: 3%-sinh 7x - é%—sinh 5% + é% sinh 3x - %% sinh x
. 1 _ 8 28 _ 56
8: 128 cosh 8x 378 cosh 6x + 128 cosh Ux 138
70

cosh 2x + 358

Clearly, this is intractable for a basic computational tool.
We first note that there are some special numbers which

have very simple powers. For example, if

2 2 2
Vg = 1, Vy =V - Vg = o ,
then
2 _
ve = (1, 2v1, 2v2, 2v3)
v3 = (1, 3v1, 3v2¢ 3v3)

Examples are:

3
v = (1,3,5,4) v? = (1,6,10,8) , v° = (1,9,15,12),...

(1,5,13,12) , v% = (1,10,26,24) , v3> = (1,15,39,36),...

In fact, more generally, if v% - v? - vg = 0 and Vo # 0, then

v

n n-
v =v
0]

(Note that signs alternate by n if Vg < 0). Curiously, this

1(v nv nv nv,)
o’ 1’ 27 3 °

includes the case of pure reals but not pure complex. Suppose
w = v and wg - w? - wg = 0, with Wy # 0 and positive if n is
even. Then,

2 _ 22 202 2 20
W2 W1 W3 = n V2 V1 V3 = .

Hence
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(0] (0]
and
“p
Vp=—71:1_ ’ p= 1,2,3-
Vo D

Notice that only real n-th roots of Wy may be used for the
general case. Complex roots can be given a valid representation
if w is pure real, but otherwise non-commutative factors occur.

For example, the three cube roots of -1 are:
1 1 = 1 1 =
("1r OI O, O) ’ (fr or 5/3, O) ’ (-2-, 0, "-2-/3, O) .

The three cube roots of unity are formed by changing the sign
of the first component of the above. These are all allowable
numbers; unallowable roots are in addition to these.

If w is pure real or pure complex, then real or complex
logs and exponentials can be used and the results written in
quadriform format. Hence let us assume that not both W, and w,
are zero and that wg - wf - wg # O since the opposite situation
was covered above. Now if w has a square root and is not singu-

lar, i.e.,

wy + |w| >0

then one of its square roots has a square root but not necessarily

both. If v = vYw, then

1 — .
VA = — /W, + |w
o = 73 ™o * IV
W
vp=§-5—5, p=1,2,3 .
Hence,
2 1 1 2 2 2
|v|© = 5wy + |w|) + wo? (-wi + w, - w3)
v
0]
and
2 2 2
w2lvi? = 2|2 + wolwl) = 2[wl g + W >0 .

Thus for the positive choice for v,, v, + |v| > 0, but not
necessarily for the negative choice. Hence w has at least two
fourth roots. Then it also has at least two eighth roots, and
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so on.
We will now restrict our attention to cube roots. Suppose
w as above and v3 = w. If one cubes a general v, the following

formulas are obtained:
3 2 2

2 —
vo(vO + 3vy - 3v2 + 3v3) = Vg
2 2 2 2 _
v1(3vO + vy - v, + v3) = v,
2 2 2 2 _
v2(3vO + vy - v, 4 v3) = W,
2 2 2 2 _
v3(3vO + v, vy + v3) = w3 .
2 2 2 2 .
Let D = 3vO + Vi TV, + vy The following two lemmas are useful.
Lemma 1: For at least one root v,

v1=v2=v3=0%>w1=w2=w3=0 .

Proof: 1If Wi = Wy, = Wy = 0, w is real and, for at least one root,

v = (3/€,—O-I o, O, 0)

If Vy =V, = Vg o= 0, clearly Wi o= Wy = Wy = O from the above

formulas.
Lemma 2: D = O for any root —»w is real.

Proof: Suppose D = O for any root. Then Wy = W, = Wg o= 0.

Therefore, if w is not real, D # O and

vp=—DB , p=1,2,3 .
In other words, the last three components of the root are
directly proportional to the corresponding components of w.

We also have

2

o) =¥

v0(3D - 8v 0

SO W, # O~=%>vo # 0, wy =0 =3 either Vo = 0 or

3D = SVS .
Let us take these by cases. We assume |w|2 > 0.
Wo = 0, vy = O Then D = --'|v]2 or -D = |w|2/3.

We can thus compute v from wp.
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The above case gives only one root for Wy = O. The other two

corresponding roots are given by the next case.

Wy = 0, Vg # O Then vo(uvg - 3|V|2) = wg. But |v|

2 2/3
0 = |w| /

Hence, since Wo = O and Vo # 0,

vg = -L:%|w|2/3 > 0

Then

2 2
D = tvg - |v]

and we can compute vp from wp for p # 0. Note that there are

= 2|w] > 0

two values for v, but only one each for Vpr P # O. This gives
the other two roots corresponding to the first case.
Yo # O Then Vo # O but

3

bvg - 2/3

3|w|
3 2/3

Let a = -f|w] /3, b = -

equation

3 _
Vo + avy + b=0 .

The discriminant for this is

2 3
b a> _ 1 2 .2
T+t 27 = g5 (o ~IwlD) .

Thus we have the following three subcases for the third case:

(a) wg > |w|2. There is only one real root for Vo and hence
only one root for w. It never occurs for a pure complex
number.

(b) wg = |w|2. There are three real roots bgt atzleasg two

are equal. Note that this is the case W, = Wy = w3 = O.

It never occurs for a pure complex (nonreal) number.

(c) wé < |w|2. There are three unequal real roots.
The following example illustrates subcase (a).
2 2
w= (5,3,7,8) , lwi? = [w| = [w|?/3=1 .

wg =25 > |w|? .
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Let -

and we must solve

3 3 5 _
Vo " Vo ~ T =0

The discriminant is

25 1 3
64 ~ &4 38
The real root is A+B where
ﬁ_mmw;:_ 3 __
_ 45 3 _v5 _ /3
A=\g+73 B =V5 ,/% )
3 _
J% = .61238
ad = 1.23738 , B3 = .01262
A = 1.0736 , B = .23282
Vo = 1.3064
Now
D = uvg - |w|2/3 = 6.827181988-1 = 5.827181988
and
— 3 -
vy = 578367 .514828521
_ 7 -
_ _ 8 _
V3 = m = 1.372876056

Subcase (b) is best handled by the method discussed previously,

based on wg - wf - w§ = 0. For example:

w= (1,4,5,3) =
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7 -2
5 1
v=(1l%l:3)-l 1)=§
8 -1
135 =54
3 _ 1 =
\'4 —ﬁ = Ww
216 -81

Thus v is the value of one of the roots. It would seem there
should be two other equal roots, and, if they have to be found,
the method of subcase (a) should be applied. Note that these
two equal roots would correspond to complex values for which
the imaginary part vanishes since A = B. To try to find the
other root(s) here we can proceed as follows. Let

_ _3 =1
a=-g » b=-g

A:B:ﬁ:;—
8

Then A+B corresponds to the root already found. The other has

_A+B _ _1
Vo < 2 "7 -
Then
o—u(vo)2 -1=o0 .

Since this violates Lemma 2, it cannot correspond to roots of w.
The difficulty arises from our evaluation of |w|2/3 which has
complex roots. However, they cannot be used in a meaningful
way and hence there is only one valid root of w if the discrim-
inant is nonnegative.

For subcase (c), the usual trigonometric solution for Vo

can be applied. Consider, for instance, the following.

(3,4,5,1) , w2 =17 .

w

Let
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Then

We must find ¢ so that

cos ¢ = 9;/ (— %;) = ‘J%/;—Z— = /—?_— = .727606875
7

Hence

¢ = 43.31385668°
then

¢4 = %¢ ' cos ¢, = .968418219

¢, = ¢, + 120° cos ¢, = -.700136446

o5 = ¢4 + 200° cos ¢, = -.268281771
also,

2/1§ = %7 = 1.603521621

Then the three values of vy are

vé1) = r cos §; = 1.552879552

v {2} = ¢ cos ¢, = -1.122683929

0] 2 °

(3) _ = -
Vo = r Cos ¢3 = -.430195621
. 2 2/3

The corresponding values of D = 4vo | w| are

p{1) = 7.074458022

p{2) = 2.470395226

p{3) = 1.831008502
Hence we have the three roots:

v = (1.552879552, .565414338, .706767923, .141353585)
(2)

v (-1.122683929, 1.619174113, 2.023967642, .404793528)

v(3) = (-.430195621, -2.184588436, -2.730735543, -.546147109)
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Computer calculated cubes, using single precision floating point,

returned w to five decimal places exactly for all three roots.
Hence, if one uses enough precision, almost any fractional

power can be computed using products of repeated square and

cube roots. Fortunately, commutativity holds among roots.

Although algebraic analysis is intractable, this has been inves-

tigated empirically with computer routines. For example, if

u2 = w and v3 = w, then uv = w5/6. A number of examples are in

the appendix.

Straight Power Series

One can, of course, take the formal definitions of straight
power series without parameters and apply them to quadriform
variables. For example, sin X, cos Xx, e® and other such series
can be evaluated. The algebra becomes exceedingly hard to follow.
The first five powers of a quadriform x can be derived from x

as follows.

X = x
2 2
x% = 2xgx - |x|7 tg
3 2 2 2 2 2
X7 = 2x,x° - x|x| ty = xg - [x|%)x = 2x [x|" tg
4 2,2 2.2 2 4
x = (x7)% = Bxox® - bxg|x|“x + |x| t,
3 2 2 2 i
= 8xgx - Uxg|x|7 tg - Gx lx|%x + |x|7 tg
3 2 2 2 4y
= (8xg = 4xg|x|%)x - (xg|x[® - [x]|7) tg
5 4 4 3 2 2 2 )
x~ = x'x = 16xox - 8xg|x|” tg - 8xg[x|"x + 4x |x|" tg
- uxglxlzx + |x|ux
4y 2 L 3 2 4
= (16xgy - 12xg|x| + [x[7)x - (8xg[x|” - bx |x|") tg

The rule of formation for the coefficient of tO is evident:

for x™ it is the coefficient of x in ¥ | multiplied by —|x|2.

The coefficient of x is more complicated. The first term is
n-1_n-1
2 X

o L]
%" 1, where its first term is multiplied by n-2 and there is a

The others are related to the coefficient of tO in

sign alteration.
. . X .
The functions sin x, cos x, and e° have been programmed
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taking 6 terms for sin and cos and 10 for eX. Some typical
cases are shown in the Appendix. It is interesting to compare
eX by power series with the functions E(v) and H(v) in [1].

It is evident that if |x| < 1, the series converge fairly
quickly but are affected by the value of Xy The rules of
formation indicated above give a vivid picture of the infra-
structure of quadriform, and hence complex, functions with a
power series expansion. The continued weaving of coefficients
back and forth forms an extremely "hard cloth”.

Binomial expansions and most parameterized series are not
tractable due to noncommutativity. This does not affect straight
power series since all multiplications are of a number either
by itself or by a scalar.

The function 1ln x has also been programmed for quadriforms.
Results are shown in the Appendix. Three reductions of the

argument are used which amount to use of real parameters.

Simultaneous Linear Equations

It seems possible to have two styles of simultaneous linear
equations: one using straight multiplication, the other with
AMPs. Let us consider two equations in two unknowns in each

style, first with straight multiplication.
311Xy * a9%; = by
3y1%X1 ¥ 2% = by
Then, performing obvious quadriform arithmetic:
1

-1 _ - 2
X) + a8 4935%) = 34by (lagq 1% > 0)

Ty

= b, - azja;4by

-1
(333 = 3313171212)%;
Now if the latter coefficient of X, is nonsingular, we can solve
for Xy, and then for X in the upper equation. It will be help-
ful to calculate the determinant of the quadriform matrix.
Since the coefficients are themselves matrices, we can write

the whole thing as a 4 x 4 matrix.
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3511 * 2911 “a11 * 2314 4012 * 3112 "az12 * 2392
a11 * 2311 4011 T 111 a212 * 2312 4012 T 112
2021 T 2121 ~a321 t 2329 2022 * 2122 "az22 t 232
221 * 2321 2021 T @121 @222 T 2322 2022 T 2122]

To simplify notation, we rewrite this temporarily as:

€11 €12 €13 C1y
€21 €22 €23 €24
€31 €32 €33 C3y
S €42 43 4y

Now the determinant of each 2 x 2 is the square of the absolute
value of a coefficient; for example,

€11%22 7 ©12°21 T |a11|2
Unfortunately, this has nothing to do with the determinant of
the entire matrix, as is evident from expansion by minors. On
the other hand, treating the quadriform system as a matrix product
is valid. Let A be the first matrix above and define X and B as

follows:
Xo1 * X971 "X * X3y boy * Pqq1 -~byq + byy
X1 + X379 X1 T Xqy byy + by by - byy
X = , B =
Xop * X9 Xy * X5, boy + byy by, + by
Xgp * X35 Xy T *12, byy *+ b3y by - by,
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Then the real matrix product
AX = B

is the same as the quadriform matrix product

aq1q agz| %1 b,

821 822 [*2 i

since the latter can be regarded as a partitioning of the

former. Hence it must also be true that

X = A7 B
provided Am1 exists. Therefore a solution depends on the real
determinant, not the quadriform determinant. Hence by writing
A in the (cij) form, and similar forms for X and B, any n x n
system of quadriforms can be treated as a (2n) x (2n) system
of reals. Only one precaution is needed in applying matrix
algebra: a quadriform row is not the matrix transpose of a

quadriform column. That is,
]
(Xq, X,) # X' .
Instead, the individual 2 x 2 blocks must be used intact, for
example:

X + X

01 T X1 X1 t X371 Xgy * Xy "Xy 32
(X1 1X2)

X219 T %31 o1 T ¥q1 X2 * X33 Xgp T Xqp| -
The same principle applies, of course, to A.

Note that noncommutativity is not a consideration except

in the case of transposition discussed above. The reason is,
obviously, that matrix multiplication is noncommutative anyway,

so it is just more of the same.

Now consider a system with AMPs.
aq1 § Xy + aq, § X, = by

asq § X4 + a,, § X, = b2 .
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Expanding,

a19%q + Xqa49 + agox, + X3, = 2by

3p1%q * Xq35q t 85Xy + X35, = 2by
Clearly, this does not lead to a 4 x 4 system in reals. Instead,
one must proceed with extraction operations, from the quadriform

system.

xq + (aq, § x53)/aq4 = by/ayy,
Xy + (a5, § x5)/a,1 = by/ay,

In order to subtract the first from the second, we would now
have to develop a complete set of algebraic operations with
AMP and extraction. Obviously, this would get complicated and
we will not pursue it. It seems clear that quadriforms lend
themselves much more to simultaneous linear systems than to
polynomials. The AMP and extraction operations arose from a
need to overcome noncommutativity. This is not necessary with
a linear system and straight multiplication.

" Further investigations along the lines of this paper appear
to have diminishing value for the effort. The next paper in
this series will turn attention to functions of a quadriform

variable to see if some analytic theory can be developed.
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APPENDIX
Numerical Examples
examples of u*v and u (amp) v
input values in locations | to 7
| 1.00000 2.00000 4, CO000
2 2.00000 1. 00000 3. 00000
3 1. 0C000 1. 00COO 1. 00000
4 4,00000 3. 00000 2.00000
5 1. 0CO00 2. 00000 3.00000
¢ 4,00000 -3.00C00 2. 00000
7 1.00000 0. 00000 1. 00000
n sq(abs,.val) abs.value modulus
| 4,00000 2. 00000 4.12311
2 3. CCO00 1.73205 3. 0555
3 © 0.00000 0. COC00 1.41421
4 10 . 00000 3.16228 4.,47214
5 -10,00000 3.16228
¢ 10. 00000 3.16228 4,47214
7 2.0C000 1.41421 1.41421
star product of 1 and 2 =
3. 00000
star product of 3 and 3=
0. CO00D
star product of 4 and 5 =
‘ 0.00000 '
" star product of 4 and 6 =
30. 00000
star product of 7 and 7 =
' 2. 00000
amp = (uv+vu)/2 of land 2stored in 11 =
1. 00000 5. COCO0 11,00C00 9.00000
amp = (uv+vu)/2 of 3and 3stored in 12 =
2.00000 2. 00C00 2. 00000 2. 00000
amp = (uv+vu)/2 of 4and 5stored in 13 =
&8. 00000 11.00000 14. 60000 17. CO000
amp = (uv+vu)/2 of 4and 6stored in 14 =
2.00000 0.0nC00 16.00000 0.00000
amp = (uv+vu)/2 of 7and Tstored in 15 =
0. 00000 0.00000 2.00000 0.C0000
n sq(ahs.val) abs.value modulus
1 16.00000 4. 00C00 11.04536
12 0.00000 0.00€00 2.82843
13 -150. 00000 16.12452
14 260, CC000 1€.12452 16,12452
15 2. 00C00 2. 00000

4, 0CO00
command 3 .

2. 6000
2.00002
1.00C00
1, C0CO0
4, 00000
-1.C0000
0.00000

hvnermodulus
2,60555
3.16228
1.41421
2.16228
4,47214
2.16228
0.00000

hyoermodulus
10.29563
2.82843
20,24846
0. 00000
0.00000

magnitude
5.47723

4,79583

2. 000N

5.47723

5.47722

5.47722

1.41421

magnitude
15.09967
4,.C0000
25.8843¢
16.12452
2. C0000
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XL,

above products with ordinary multiplication in both orders

product of
1.00000
product of
1. 00000
product of
2.00000
product of
8. 00000
product of

8.00000

product of
2., 00000
product of
2.00000

cjn B

‘example of non-commutative extraction

input in locations | and 2

1.05000

i
2
3
n
|
2
3
division of

! and 2 stored in 21
2. 00000 8. 00000 7.0C000
2 and | stored in 22
8. COC00 14.00000 11, 00000
3 and 3 stored in 23
2. 00000 2. 00000 2.00000
4 and . 5 stored in 24
6.00C00 4,00000 12.00000
5 and 4 stored in 25
1 6. 00000 24.00000 22. 00000
4 and 6 stored 1In 26
4. 00C00 16. 00000 -12.,00000
¢ and 4 stored in 1 27
-4, COCO0 16.,00000 12.00000
sq(abs.val) abs.value modulus
12.00000 3.46410 8.0622¢
12. 00000 3.46410 14,03567
0.00000 0. 00000 2.82843
-100. 00000 8.94427
-100.00000 25.29822
100. 00000 10. COCO0 16.,12452
100.00000 10. COCOO 16.12452
amp = (uv+vu)/2 of _land 2stored in 3 =
0.50000 -L.OOOOO 0, 00000
1., 00000 0. 10000 |, 00000
0.00000 0.50000 -1.00000
1.05000 0.50000 -1.00000
sq(ahs.val) abs.value modulus
1.98000 1.40712 1.4142]
0.75000 0.86603 | . 00000
1 .85250 1.36107 | .45000
3 by | stored in 4
0.50000 -1, 00000 0.00000

-0.00000
vector
command 3

set |
quad

2 1s unallowable for division

hynpermodulus
7.28011
13.60147
2.82843
13.41641
27.20294
12, €4911
12.€4911

0.10000
0. CC000
0. 00000
hypermodulus
0.14142
0.50000
0.50000

magnitude
10,.86278
19.54482
4, CO000
16.,12452
37.14835
20.49390
20.49390

magnitude
1.42127
1.11803
1.53379
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examples of general quadratics

p(x)=as${xk*2
a

b
c
xl=

0.41421
x2=
-2.41421

pi{xt)
p(x2)

[}

pix}=as$(x#k2
a

-0 O
nni

Xi=
-1.00000
x2=
~.=1.,00000
plx1) =
p{x2) =

as(xxx2

-1.7071
pi{x1) =
p(x2) =

-0.74516
plx1)
p(x2)

there is no solution of quadratic equation

p(x)=a$ (x*x2
a
b
C

wnn

1.0
0.6
0.0

+ bsx + ¢) =0
1.00000 0. 00000
2.00000 0.,00000
-1, 00000 0. 00000
0.,00000 0. 00000
0. C0C00 0.0G000
-0. 00000 0.C0000
0.00000 0.00000
+ bsSx + ¢) =0 i
1. 00000 0.00000
2., 00000 0.00000
1, 00000 0. 00000
0.00000 0. 00000
0.0C000 0. 00000
0. 00000 0.00000
0.00000 0.00000
+ bSx + ¢) = 0
1. 00000 0. 00000
2.00000 0. 00000
1.,00000 0. 00000
0.00000 -0.70711
0. 00000 0.70711
0. 0C000 0. 00000
0. 00000 0.00000
+ bsx + ¢) =0
1. 00000 0.10000
2.00000 0. 00000
1.. 00000 0.00000
0.15461 -0.53626
-0.05360 1.54636
0.00000 0.00000
0. 00000 0. 00000

+ bsx + ¢c) =0

determinant is negative

. p{x)=as{x¥e2
a

b
c
xl=

0.55934
x2=

-0.02904
plxl) =
p(x2) =

command ¢

int t 3
integer

command t

set |
<
roots

0.1 1.0 0.l
0.5 -1.0 0.0
0.0 1.0 -0.5
+ bsx +¢c) =0
1.C0000 0.1C000
0. 00000 0.50000
0.00000 0. 00000
-0.34977 -1.19297
~0.2032¢ 1.66267
0. 00000 0.00000
0.00000 0. 00000

0. 00000
0. CCoon
0.0C000

0. 0000

0.00c00

0.00000
0.00000

0.0C000
0.0C000
0.00000

0.0000C
0.00000

0. C0000
0.00000

0.00000
0.00000
I, 0C000

0. 00000

0.00000

0.00000
0.00000

1. 00000
0. 0GC000
1. 0CG000

O.15461

~-0.05360
0.00000.

0.00000

. CCO00
~1.00000
2.00000

0.97534
-1.02837

0.00000
-0.00000

0.00C00
0. 00000
0. C0000

0. CCCOo0
0.C0000

0.00000
0. (0C00
0.00000

0.C0000
0.0C000

0. 00000
0. CCCO0
0.00000

0. 00000
0. COa00

0. 10000
0.00C00
0.000Q0 .

0.C0000
0.00000

0. 10000
0.00000
-0.50000

Q. C0000
0.. 00000
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examples of cube roots
in each case the araument is in location |.
the 3 cube roots are in locs. 2, 3, 4. :
(if 3, 4 are zero, only one allowable root exists)
the results of cubing the roots are in locs 5, 6, 7.
cube roots of minus unity o

| -1.00000 0. 00000 0.00000 " 0.00000
2 ~-1.0C000 0. 00000 0.00000 0. 00000
3 0.50000 0.00000 0.86603 0.-00000
4, 0.50000 0.00000 -0.86603 . 0.00000
5 -1, CC000 0. 00000 0. 00000 0.00000
6 -1.MNC000 0.°00000 -0.00000 -0, ¢00a0
7 -1. 00000 0.00000 0.00000 0. 00000
n. sqlahs.val} abs.value modulus hypermodulus magnitude
1 1. 00C00 * 1.C0000 1. 00000 0.00000 1.00000
2 1. 00000 1.00000 1.00000 : 0. 00000 1. 00000
3 1.00000 1. 00000 1. 00000 0.00000 1.CO
4 1. CCO0O0 1. 00000 1. 00000 0. 00000 1.000
cube roots of complex unit 1.
| 0. 0CO00 0.00000 | . 00000 0.00000
2 0.00000 0.00000 -1 . 00000 0. 00000
3 0.86603 0. 00000 0.50000 0.00000
4 -0.8€¢603 0. 00000 0.50000 0. 00000
5 0. 00000 0.00000 1.00000 0. 00000
6 0.00000 0.00000 1. 00000 0.00000
7 0.00000 0. 00C00 1. 00000 0.00000
n sq(ahs.val) abs.,value modulus hypermodulus magnitude
| 1.00000 1. 00000 | . 00000 0.00000 1. C0000
2 . CO000 1.00000 1.00000 0. 00000 1.,00000
3 '1.0C000 1. 00C00 1. 00000 0. 00000 1. 00000
4 1. 00000 1.00C00 1. 00000 0. 0000 1. 00000
cube ronts of (| + 1)
1 1. 00000 0.00000 1.00000 0.00000
2 1.08422 . 0.00C00 0.29051 0. 00000
3 -0.79370 0. 00000 0.79370 0.00000
4 -0.29051 0. 00000 ~-1.08422 0.00000
5 1.00000 0.00C00 f . 00000 0. 00000
6 | . 00000 0.00000 1.00000 0.00000
7 1.CC000 0. 00000 1.00000 0.00000
n sq{abs.val) abs.value modul us hypermodulus magnitude
1 2.00000 1.41421 1.4142] 0.00000 1.41421
2 1.25992 . 1.12246 1.12246 0. 00000 1.12246
3 1.25992 1.12246 1.1224¢6 0. C0000 1.1224¢
4 . 1.25992 1.12246 1.12246 0.00000 1.12246
command 3
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general quadriforms with only one allowable root

W=

4
5
6
7

n

1

2

3

4
|
2
3
4
5
6
7

n

|

2

3

4

general quadriform cube roots

~NOoOUhAWN -

n

1

2

3

4
|
2
3
4
5
6
7

n

1

2

3

4

command

5

1,00000
0.90521
0. 00000
- 0.00000
1,0C000
0. 00000
0. 00000

sq{abs.val)

0.38000
0.72432
0. 00000
0.00000

27.00000
2,96973
0. 00000
0. 00000

27. 00000
0.00000
0. 00000

sglabs,.val)

665, 00000
8.72852
0. 00000
0.00000

27,00000

3.003¢4
-1.59236
-1.41128
27.00000
27. 00004
27. 00004

sq(abs.val)
737. 00000

9.03280
9.0328l
9.03282

0. 00000
0.0C000
1,00068
~1.000¢8
0.00000
-0.00000
0. 00000

sq(abs.val)

2.38000
1.33514
1.33514
1.33514

0.90000
0.35248
0.00000
0.00000
0.90000
0. 00000
0, 00000

abs.value

0. 61644
0.85107
0.00000
0. 00000

8.00000
0.30133
0. 00000
0., 00000
8.00000
0. 00000
0.00000

abs.value

25.78759
2.95441
0. 00000
0. 00000

8. 00000
0.29570
7.20955
-7.50525
8. 00000
7. 99995
8. 00005

abs.value

27.14775
3.00546
3.0054¢
3.00546

0.90000
-0. 67409
0.33704
¢ 0.33704
0.90000
0.90000
0.90000

abs.value
154272
1.15548
1.15548
1.15548

1, 00000
0.39164
0. 0000
0. 00000
1, 00000
0.00000
0.00000

modulus
|1.41421
0.98631
0. 00000
0,00000

&. 00000
0.30133
0.00000
0.00000
8. 00000
0. 00000
0,00000

modulus
28.,1602¢
2.98498
0.00000
0. 00000

9. 00000
0.33266
8.11074
-8,44341
9. 00000
8.99994
9.00007

modulus
28,46050
3.02201
8,26558
8.56054

2,00000
~1.49797
0.74899
0.74899
2. 00000
2. 00000
2.00000

modulus
2.00000
1.49797
1,24993
1,24993

-0.90000
-0.35248
0. 0000
0. 00000
-0,90000
0. 0000
0. 00000

hypermodulus

1.27279
0.49848
0. CQ000
0.00000

-8. 00000
-0.30133
0.00000
0. C0000
-8. 00000
0.00000
0. c0000

hypermodulus

11,3137
0.42615
0. 00000,
0. 00000

-3.,00000
-0.11089
-2.70358
2.81447
-3. 00000
-2.99998
~3.00004-

hypermodulus

8.54400
0.31580
7.€9980
8.0156I

~0. 90000
0. €7409
-0. 33704
-0. 33704
~0. 90000
-0.90000
-0,90000

hypermodulus

1427279
0.95331
0.47665
0.47665

magni tude
1.90263
1.10512
0. 00000
0. 00000

magni tude
30.3470%8
3.01525
0. 00000
0.00000

magnitude
29.71532
3.03846
11.29631
11,72744

magni tude
2.37065
1.77559
14233773
1.33773
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] 1. 00000 0.90000 2.00000 -0.90000
2 1.15819 0.23287 0.51748 -0.23287
3 -0.92478 0.46871 1.04159 -0.4687I
4 ~0.23341 -0.70158 -1.55907 0.70158
n sglahs.val) abs.value modulus hvpermodulus
1 3.38000 |.83848 2.23607 1.27279
2 1.50074 1.22505 1.26854 0.32932
3 1.50074 1.22505 1.39288 0.€6286
4 1.50074 1.22505 1.57644 0.99218
positive square root and fourth root of u
5 1.19122 0.37713 0.83941 -0.37773
6 1.12854 - 0.16735 0.37190 -0.16735
n sqlahs.val) abs.value modulus hynermodulus
5 1.83848 1 .35590 1.45734 0.53419
6 1,35590 1.16443 1.18824 0.23667
first cube root times fourth root and vice versa, = 7/12 root
7 1.192554 0.45663 1.01473 -0.45663
8 1.19256 0.45663 1.01473 -0.45663
n sqlabs.val) ahs.value modulus hypermodulus
1 2.0348¢ 1.42€49 1.56585 0.¢€4577
8 2.03486 1.42649 1.56585 0.64577
reciprocals of cube and fourth roots, products both ways, = =-7/12 root
9 0.77175 -0.155M ~-0.34482 0.15517
10 0.83232 -0.12343 -0.27428 0.12343
] 0.58607 ~0. 22440 ~0.49867 0. 22440
12 0.58607 -0.22440 -0.49867 0.22440
n sqlabs.val) abs.value modulus hypermodulus
9 0.66634 0.81¢€30 0.84528 0.21944
10 0.73751 0.85879 0.87635 0.17455
1 0.49143 -0.70102 0.76951 0.31735
12 0.49143 0.170102 0.7¢951 0.31735
7712 root times -7/12 root .
13 ) 1.00000 0.00000 0. 00000 0. 00000

command @

magni tude
2.57294
1.31059
1.54257
1.86269

magni tude
1.55216
1.21158

magni tude
1.69378
1.€9378

magni tude
0.87330
0.89356
0.83238
0.83238
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vy, sin v, cos v, (sin v)**x2, (cos Vv)**2, sum of squares

O BWN ~—

anhwNn=—3

same as above with sinqular v

[« 3V, T RY S
[« YO NYRY VR

OB WN) =

1. 0C000 0.50000
0.76687 0.26212
0.49240 -0.40823
0.63756 0.40202
0.36245 -0,40202
1. 0C000 0. 00000
sq(abhs.val) abs.value
0.82000 0.%0554
0.53862 0.73391
0.12247 0.34996
0.29011 0.538¢€2
0.01500 0.12247
1.00000 1. 00000
0.70710 0.70710
0.4938% 0.49388
0.57798 -0.42202
0.48764 0.48784
0.5121¢ -0.487834
{ . 00000 -0, 00000
sq(ahs.val) ahs,.value
0,00000 0.00C00
0.00000 0. 00000
0.15596 0.39491
0. 0C000 0. C00N0
0.02432 0.1559¢
| . 0000 1.00000
complex projection of v is on lower diagonal
0.50000 0.30C00
0.49630 0.26636
0.90848 ~0.14551
0.19114 0.26439
0.RrO88C -0,26439
1.00000 -0.00¢00
sqlabs.val) ahs.value
0.32000 0.56569
0.30150 0.54909
0.84180 0.91750
0.09090 0.30150
0.708¢€3 0.84180
1, 0CO0O 1. C0C00

ONLAWN—T

command @

0.,40000
0.20970
~0.32458
0.32162
~-0.32162
-0,00000
modulus
1.,07703
0.79502
0.59086

0.71408 -

0.48457
1. 00000

0.70710.

0.49388
-0,42202
0.48784
-0.48784
-0, 00000
modulus
0.99999
0.69R45
0.71%6%
0. 68991
0.70732
1.00000

-0.50000
-0.44393
0.24252
-0, 44065
0.44065
0. 00000
modulus
0.70711
0. 66588
0.94029
0.48032
0.92110
1.00000

0. 30000
0.15727
-0,24494
0.24121
-0.24121
-0. 00000
hypermodulus
0.58310
0.30568
0.47607
0.46883
0.46883
0.00000

0.70710
0.49388
-0.42202
0.,48784
-0.48784
-0. 00000
hynermodulus
0.¢9999
0.€9345
0.59683
0.68991
0. €8991
0. 00000

0.306000
0.26636
-0.1455]1
0.26439
-0.26439
~0. CO000
hyvpermodulus
0.42426
0.37669
0.20578
0.37390
0.37390
0.00000

magni tude
1.22474
0.85176
0.75879
0.85424 -
0.67425
1.00000

magnitude
1.41420
0.9877¢
0.9318¢
0.97568
0.98806
I . CO000

J

magni tude
0.824¢€2
0.76504
0.96255
0.60869
0.99410
1. CO00O
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examples of e¥*v and ln v

U, v, ekku, eikkv ’ .
0.50000 0.40000 0.30000 0.2000)

|
2 0.40000 0.10000 0.60000 0.30000
3 1.74024 0.67165 - 0.50373 0.33582
4 1.30205 0.14280 0.85681 0.42840
utv, ekk(udv), e*xku * ekky, ekkv * eikky '
5 0.90000 - 0.50000 0.90000 0.50000
6 2.08811 1.16724 2.10103 - 1.16724
7 . 2.0740¢ 1.19496 1.90716 0.¢7925
8 2.07406 1.05109 2.38672 1.68632
(e*ku % ekkv)ik|/2, (e*ky * edkyu)ikrl]/2
9 1.50560 0.39684 0.63335 . 0.22557
10 1.505€0 0.3490¢ 0.79261 0.56002
n sq(abs,.val) abs.value modulus hypermodulus magni tude
1 0.14000 0.3741 T 0.58310 0.44721 . 0.73485
2 0.42000 0.64807 0.72111 0.31623 0.78740
3 2.71828 1.64872 1.81168 0.75092 1.96114
4 2.22554 . 1.49182 1.55867 0.45158 1.62277
5 1.120¢0 1.05830 1.27279 0.70711 1.45602
6 6.049¢5 2.459¢0 2.96219 1.65073 3.39108
7 €.04965 2.45960 2.81762 1.37452 3.13501
8 6,04965 2.45960 3.16198 1.98708 3.73451
9 2.459€¢0 1.56831 1.63339 0.45647 1.69598
10 2.459¢0 1.56831 1.70149 0. 65990 . 1.82497
(ekk) k ekkv)kk]|/2 * (ekkv * ekku)kkl/2
11 2.029€7 0.94713 2.00344 1.08932
log edxu = u, log evkv = v, log exkx(utv) = u+v - :
12 0.50000 0.40000 0.30000 0.20000
13 0.40000 0.10000 0.60000 0.30000
14 0.90000 0.50000 0.90000 0.50000 o
log (e*%u * ex*v), log (ekkv * ekku)
15 0.9C000 0.51293 0.81863 0.29156
16 0.90000 0.45117 1.02448 0.72384
log ((ewku * ewkv)dk|/2), log ((ekkv * edku)xl/2)
17 0.45000 0.25¢46 0.40932 0.14578
18 0.45000 0, 22559 0.51224 0.36192
log((ekx*u % ekkv)dkl/2 % (ekky * edku)kk|/2)
19 - 0,90000 0.40921 0.86559 0.47064
n sa(ahs.val) abs.value modulus hypermodulus magni tude
1" 6.04965 2.45960 2.85190 1.44350 3.19641
12 0.14000 0.37417 0.58310 .0.44721 0.73485
13 0.42000 0.64807 0.72111 - 0.31623 0.78740
14 1.12000 1.,05830 1.27279 0.70711 1.45602
15 1.13206 1.06398 1.21:662 " 0.59000 1.35213
16 1.13206 {.06298 1.36366 0.85294 1.60843
17 o 0.28301 0.53199 0.60831 0.29500 0.67607
18 ” 0.28301 0.53199 0.68183 0.42647 0.804 22
19 1.17028 1.08180 1.24869 0. 62366 1.39578
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