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A Game with Program Control and Variable
Terminal Moment

S.A. Brykalov ™ (brykalov@imm.wran.ru)

In the theory of positional differential games, it is well known that
continuous strategies, generally speaking, do not provide the best possi-
ble result. In the present paper, a simple example is given that shows
that a similar property holds for conflict control systems in which one of
the two players chooses a program control, and the other one chooses the
moment of termination of the game, in which the payoff is calculated.
The payoff functional depends on the phase state at this time moment.
It is shown that in this control system no rule for choosing the termi-
nal time moment described by a continuous mapping can guarantee the
corresponding player a nonzero result. However, simple discontinuous
mappings can ensure the desired nonzero result. Two examples of such
discontinuous rules are given. One of them requires measuring the phase
state at one time moment only.

Introduction

Positional differential games [1-5] have been intensively studied in the last decades.
Properties of continuous strategies in comparison with discontinuous ones were stud-
ied in [6]. Multivalued upper semicontinuous strategies were considered in [7].
Alongside with other questions, in [8] properties of strategies described by Cara-
théodory functions were investigated. Systematic introduction into the theory of
positional differential games requires discussing these questions in some form. Thus,
in [2] on pp 17-24, the class of positional strategies and the corresponding motions of
controlled system were discussed. In this connection, on pp 18-21 in [2] an example
of a two-dimensional differential game was given, for which the guaranteed result
was found with respect to the classes of discontinuous and continuous strategies.
The corresponding proof in [2] employed the Schauder fixed point theorem.

In [9] the above mentioned differential game was modified so that one of the
two players can choose the time moment when the payoff should be calculated.
The payoff depends on the norm of the phase vector at this time moment. Thus,
the quality index contains a variable point, which can specify the game’s terminal
moment assigned by feedback on the basis of measurements of current values of the
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phase vector. It was shown in [9] that in this problem the methods of feedback
control described by continuous mappings are of limited capability even in case of
practically complete current information on the process (including its history) at
all the time moments. On the other hand, a simple discontinuous mapping was
constructed that describes a control law that provides the desired result using but
very limited current information and modest possibilities to influence the process.
The proof in [9] used the fixed point theorem of Kakutani. (The corresponding
mapping in [9] turned out to be multivalued due to technical reasons.) The efficiency
of a control law in the mentioned problem is directly connected with the existence
or nonexistence of solutions to some nonlinear boundary value problem in ordinary
derivatives with a solution dependent point in one of the two boundary conditions.
The corresponding boundary condition is described by a nonlinear functional of
special form. Let us note that nonlinear boundary value problems for functional
differential equations with solution dependent points in boundary conditions arising
in connection with thermal conflict control systems were considered in [10, 11].

The aim of article [9] was to consider a modification of a well-known control
system used in the theory of differential games as a sample example. However,
similar properties connected with the choice of termination moment are possessed
by some simpler systems. The present paper gives such an example. The control
system considered below is described by a simple scalar differential equation, which
allows to simplify significantly the proofs and to do without fixed point theorems.
Instead we use the well-known fact that a scalar continuous function that takes
values of different signs at the ends of an interval vanishes at some point.

1 A Scalar Game Problem

Let the current state of a controlled object be described by a scalar x. The evolution
of the value x on a time interval [0, 2] is governed by a differential equation

P=t+u, 0<t<2. (1)

Equation (1) should hold for almost all time moments ¢. The function z(-) is assumed
to be absolutely continuous. The initial state is zero

z(0) = 0. (2)
The payoff functional has the form

7(z(-) = [(Do)]-

Note that the payoff v(x(-)) depends not only on the function z(-), but also on the
number .

There are two players. One of them chooses the parameter —1 < u < 1 as a
Lebesgue measurable function of time u : [0,2] — [—1,1]. The aim of this player is
to minimize the value of quality index y(z(-)). The other player chooses the number
0 <9y < 2 with an aim to maximize the index v(z(+)).
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For a fixed program control u(-), the solution z(-) to the initial value problem
(1),(2) has the form

(t) = g + / u(r)dr. 3)

If the choice of control parameter ¥, is known beforehand to the player that chooses
the control w, then this player can make y(z(-)) = 0 putting for example u(t) =
—3g/2.

Thus, the corresponding player can not choose the constant ¥y so that a nonzero
result is guaranteed for any possible disturbance u(-). However the player can try
to ensure a nonzero result by choosing the number ¥y = Yo(z(-)) on the basis of
feedback, that is on the basis of measurements of the current phase state z(t) for
some time moments . Sometimes it is possible to measure the disturbance u also.
In this case the player can assign the number 9y in the form ¥y = Jo(x(-), u(+)).

2 Continuous Strategies

Assume now that the player that chooses the number ¥y employs some continuous
mapping
U9 : C° = [0,2] (4)

to appoint the value ¥9 = ¥o(z(-)) on the basis of feedback. (Other possible restric-
tions on this mapping will be discussed below.) Here C° denotes the space of all
continuous scalar functions endowed with the standard uniform norm. It turns out
that whatever the continuous mapping (4) might be, it does not guarantee a nonzero
result y(z(-)). For any continuous mapping 9 = Yo(z(-)) there exists a control u
such that the payoff functional (z(-)) vanishes. Here it suffices to employ constant
controls u = const independent of the variable t. It is even possible to allow the
number ¥y = Jo(z(+),u) to depend also on the parameter wu.

One can formulate this fact as the following existence result for a boundary value
problem with a solution-dependent point in boundary condition.

Proposition. For an arbitrary continuous mapping 9o : C°x [—1,0] — [0, 2]
there exists a constant u € [—1, 0] and an absolutely continuous scalar function z(t),
t € [0, 2], that satisfy the boundary value problem (1),(2),(5) with a condition

z(Jo(z(+), u)) = 0. (5)

Proof of Proposition. To establish the solvability of boundary
value problem (1),(2),(5), let us consider initial value problem (1),(2) and choose
the parameter u so that the boundary condition (5) is valid. For a number u €
[—1,0] denote by z,(-) the unique solution of the initial value problem (1),(2) that
corresponds to the chosen value u. According to (3), one has the formula

2
x(t) = 3t ut. (6)

Thus, the inequalities hold
z-1(t) <0, wot) =0 (7)



for all ¢ € [0,2]. Consider a function
Y(u) = zu(Vo(2u(-), u)).

Note that ¥(u) is a continuous scalar function defined for all u € [—1,0]. It follows
from inequalities (7) that ¥(—1) < 0, ¥(0) > 0. So, the function ¥ vanishes at some
point in [—1,0]. For this point u, the function x,(-) satisfies boundary condition (5).
Thus, boundary value problem (1),(2),(5) has a solution. Proposition is proved.
The continuous map (4) above is arbitrary. This does not lead to any contradic-
tion if one formally considers the corresponding boundary value problem, or if one
considers the control system associated with it assuming the variable ¢ to be some
coordinate. (The case of coordinate in somewhat similar problems was studied in
[10, 11], where the feedback assigned points were not time moments but coordinates
of point heat sources on a rod being heated and a class of conflict control problems
was considered.) However, if the value ¢ is treated as the time variable, it seems to
make no sense to allow the player that chooses the time moment 9y to use infor-
mation on the future evolution of the process. In this case the map (4) should be
restricted by the following condition of non-anticipation.
(NA) For any y(-),2(+) € C° if y(s) = z(s) for all s € [0,99(y(-))], then Jo(y(-)) =
Do (2(-))-
This condition allows to consider 9 as the time of termination of the game. The
non-anticipation condition for maps of the form ¥y = ¥o(z(-),u) can be formulated
in exactly the same way.

Condition (NA) or its analogues were not used in the proof of Proposition.

3 Discontinuous Strategies

Consider now the case when the map (4) is allowed to be discontinuous. To ensure
a nonzero result, the corresponding player can choose the number ¥, as follows

1,  z(1) < —1/4,
ﬂo<x<~>>—ﬂo<8><x<~>>—{2 N ®

Thus the rule (8) is described by a scalar function of the scalar argument z(1).

One has
z(2) > z(1) +1/2 (9)
for an arbitrary solution x to equation (1) with an admissible control function u(-).
Indeed,

2
/T+U d7'>/7'—1d7'—1/2
1

Consequently, for either case in formula (8) one has an inequality

|(Dogs) (2(-)))] = 1/4,

and the result y(z(-)) > 1/4 is guaranteed.
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Another rule for choosing the number 9y can be given by the formula

Jo(2(-)) = ooy (z(-)) = min{7 : |z()| = 1/4}. (10)

From relations (2),(9) and the continuity of function x it follows that the set of
numbers 7 in formula (10) is nonempty. As this set is closed, the minimum is
attained. So, the number (10) is defined correctly, belongs to the interval [0, 2], and
the described mapping provides the result vy(z(-)) = 1/4.

On the other hand, whatever the map (4) is, a better result can not be ensured
for the player that chooses ¥y because for the program control

23
S1< )
ult) = 2 (11)

<t<2,

the solution to initial value problem (1),(2) has the form
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0, 0<t 2J1

o(t) = (12)

%%2 4t +1) 27VE <y
4 ) 2 — — )

\)

IN

S

and satisfies the inequality |z(¢)| < 1/4 for all ¢ € [0, 2].

Note that both (8) and (10) are discontinuous mappings in the sense (4). Both
of them satisfy condition (NA).

Let us also note that in the considered control problem the number (10) satis-
fies the inequality Jo(10)(2(-)) < 2. Indeed, if Joa0)(z(-)) = 2, then z(2) = £1/4,
inequality (9) implies (1) < —1/4, and consequently Jo10)(z(-)) < 1, which con-
tradicts the assumption Jo(10)(2(-)) = 2.

However, solutions x of the control problem can be chosen for which the numbers

Yo(10)(x(+)) are as close to 2, as one wants. This can be shown by modification of
functions (11),(12). Take

—t, 0<t< + e,

22
u(t,e) = Y 2
2—+/2
-1, 5 +e<t <2,

for 0 < & < V2 /2. The chosen control function satisfies the restriction —1 <
u(t,e) < 1. The corresponding solution to initial value problem (1),(2) has the form

=

2 —

0 0<t
’ - 2

IN

+ ¢,
x(t,e) =

S
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2

1
ﬂm?—@+1+2m6—a£y +e<t<2,



1 2 —¢g? 1
and satisfies the relation x(t,¢) > z(1,¢) = -1t MTS > =7 for all ¢t € [0, 2],

e € (0,4/2/2]. Onehas 9g(10)(z(+,€)) = 1+4/1 — ev2 + &2 < 2 and 1_i>1110 PYo0)(x(+, €))
= 2. (However the function (-, 0) coincides with the solution (12), and ¥o(10y(z(+,0))
= 1, which confirms the discontinuity of the mapping (10).)

It is interesting to compare the rules (8) and (10) as two different ways of be-
haviour of the corresponding player. In the case (8), at the time moment ¢ = 1 the
player becomes aware of the value z(1) and, basing on this information, a decision is
taken either to stop the game immediately, or to wait until its end at t = 2. (Obvi-
ously, any nondegenerate rule of this type is described by a discontinuous mapping.)
The rule (8) requires measuring the phase state x only at one point ¢ = 1, whereas
the mapping (10) requires to measure = continuously on the interval [0, 2]. The time
moment ¥y calculated according to formula (10) is smaller than or equal to the one
given by formula (8). By definition, for a fixed trajectory, the time moment given by
(10) is the smallest possible one that achieves the result 1/4. As was shown above, in
the considered problem this time moment is always strictly smaller than 2, though
it can be arbitrarily close to 2. The rule (10) always gives the guaranteed result 1/4,
whereas the rule (8) might provide a better result for the player that chooses ¥y in
case the opponent makes mistakes. One can also indicate other reasonable ways to
appoint the time moment ¥y that provide the ensured result.
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