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Moment Approximations of Individual-based

Models

Richard Law
Ulf Dieckmann

1 Introduction

This chapter illustrates insights into individual-based spatial models of ecological commu-
nities that can be gained from deterministic approximations. To do this we revisit some
of the issues raised in Chapter 1 in Dieckmann et al. 2000 and show how approximations
can help to

• separate the signal of an ecological stochastic process from intrinsic random variation;

• clarify qualitative dependencies that underlie the ecological stochastic process;

• determine how ecological stochastic processes depend on their parameters.

The deterministic approximations we use are the dynamics of spatial moments. These
are closely related to pair-approximation methods (Matsuda et al. 1992; Harada and Iwasa
1994; see also Chapters 13, 18, and 19 in Dieckmann et al. 2000), but are constructed in
a continuous rather than a discrete space. They also differ from diffusion approximations
(see Chapters 16, 17, 22, and 23 in Dieckmann et al. 2000) in that they deal specifically
with both structure at small spatial scales and the discrete nature of individual plants and
animals. Moment methods represent a new departure in ecology for understanding the
effects of interactions and movements of individuals in small neighborhoods (Bolker and
Pacala 1997; Dieckmann et al. 1997; Law and Dieckmann, in press), and we argue that
they hold promise for gaining understanding of ecological processes where the mean-field
assumption breaks down. Moment methods are particularly helpful for providing insight
into dynamics of plant communities, because interactions mostly occur with immediate
neighbors (see Chapter 2 in Dieckmann et al. 2000). The methods also have potential
for describing ecological dynamics in certain kinds of structured landscapes (Wiens et al.
1993; Dunning et al. 1995).

Formal treatments of moment methods are given in Chapters 20 and 21 in Dieckmann
et al. 2000. The equations used here are derived in Chapter 21 in Dieckmann et al. 2000
and differ in certain respects from those in Chapter 20 in Dieckmann et al. 2000. The
motivation, however, is the same: to gain insight into the complex behavior of individual-
based stochastic processes of ecological communities. We develop ideas in the context
of plant communities comprising one or two competing species (see also Chapter 20 in
Dieckmann et al. 2000), but the formal structures can be applied more widely to ecological
systems with spatial structure.
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Figure 1 Spatial patterns at time 0 (top row) and time 15 (bottom row) from a realization of a stochastic
model of two competing species. Locations of species 1 are given by filled circles; those of species 2, by open
circles. On the right-hand side are the three radial pair correlation densities that summarize important
aspects of spatial information.

2 Spatial Patterns and Spatial Moments

Consider a community living in a large, two-dimensional space, with individuals located at
points x = (x1, x2) in this plane. The abiotic environment is homogeneous in space, and
any spatial structure that develops is generated internally by the community. Locations
of individuals of species i at some point in time t are given by a function pi(x), and these
are collected into a vector of density functions p(x) = (p1(x), p2(x), . . .) to give what
we call the spatial pattern of the community. If individuals are not located at random
in the plane (i.e., if their pattern is not described by a homogeneous Poisson process:
see Chapter 5 in Dieckmann et al. 2000), we refer to the community as having spatial
structure. As explained in Boxes 21.2 and 21.3 in Dieckmann et al. 2000, an individual
is represented as a Dirac delta function, and the function pi(x) is the sum of all these
individual contributions.

The community changes through three primary, stochastic events acting on individuals:
birth, death, and movement. Whenever an event occurs, a new spatial pattern p(x) is
generated. Depending on how the events take place, a myriad of different spatial patterns
can develop over the course of time; Figure 1 shows results at two points in time from
just one realization of two competing species. The upper spatial pattern corresponds
to a random layout of individuals of two species at time 0. During the realization, the
spatial pattern is repeatedly updated, and the lower spatial pattern in Figure 1 shows the
pattern that has emerged by time 15, after approximately 2000 events have taken place.
By this time, species 1 has developed aggregations of individuals and there is some spatial
segregation such that where species 1 occurs, species 2 tends to be absent.

The problem with such realizations is that they are time consuming to generate and
difficult to understand. Approximations based on moments try to avoid such drawbacks
by replacing the spatial pattern with statistics summarizing its main features and then
describing dynamics in terms of these statistics. In a sense this approach has been used
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in ecology for many years, because the spatial mean density, widely used by ecologists, is
the lowest-order spatial moment. The new departure is putting into place dynamics of a
second-order spatial moment that carries information about spatial structure over time.

The two spatial moments we use are defined as follows. The first moment,

Ni(p) =
1

A

∫
pi(x) dx , (1)

is the familiar mean density of species i over a spatial region A. The second moment,
holding information on spatial structure, we call the pair correlation density function.
This is a product of pairs of densities of individuals of species i and j, averaged over the
spatial region A:

Cij(ξ, p) =
1

A

∫
pi(x) [pj(x+ ξ)− δij δ(ξ)] dx , (2)

where j is located at ξ relative to i. [The term δij δ(ξ) is needed to remove self-pairs, and
comprises the Kronecker symbol δij , which takes the value 1 when i = j and 0 otherwise,
and the Dirac delta function δ(ξ); see Boxes 21.2 and 21.3 and Section 21.3 in Dieckmann
et al. 2000, Corrected correlation densities.] We scale the pair correlation densities here
and below by dividing them by the product NiNj; in the absence of spatial structure they
then take the value 1; aggregated (respectively regular) patterns are given by values greater
(respectively less) than 1. To make the functions still easier to depict, we display them in a
radial form; this entails integrating over the angle around the circle, which results in no loss
of information if the processes, like many of those in real ecological systems, are isotropic.
The pair correlation density is not a central moment (see Chapter 20 in Dieckmann et al.
2000); we use it because the dynamic equations are then simpler (Chapter 21 in Dieckmann
et al. 2000). It is important to understand that the second moment is a function rather
than a scalar quantity, giving information on spatial structure over a range of spatial
scales, in keeping with measures of spatial structure used in the past in plant ecology
(Pielou 1968; Greig-Smith 1983).

To illustrate how pair correlation densities capture information about spatial struc-
ture, we have computed the second moments for the spatial patterns shown in Figure 1.
In this two-species system there are three correlation functions associated with any spatial
pattern: two auto-correlation functions C11(ξ, p), C22(ξ, p), and a cross-correlation func-
tion C12(ξ, p) (Figure 1). At time 0, there is no spatial structure and the functions are
all flat. At time 15, the tendency for species 1 to form aggregations causes an excess of
pairs at small distances, giving values of C11(ξ, p) much greater than 1 at short distances.
Conversely, the segregation between species 1 and 2 causes a shortage of pairs at small
distances, giving values of C12(ξ, p) much less than 1 at small distances.

During a realization of a stochastic process, the spatial moments (1) and (2) take new
values each time the pattern changes. But, a realization is, of course, just one of an infinite
ensemble that can be generated from the stochastic process, and it is the generic properties
of the ensemble, not the properties of an individual realization, that we need to base our
understanding on. We therefore replace the moments of the pattern at time t with their
averages over all realizations at this time:

Ni =

∫
Ni(p)P (p) dp , (3)

Cij(ξ) =

∫
P (p)Cij(ξ, p) dp , (4)
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where P (p) is the probability density for patterns p at time t, and the integration dp is
over the space of functions p.

The quantities in Equations (3) and (4) comprise the state variables of the moment
dynamics we use below. We derive a system of equations for these dynamics in Chapter 21
in Dieckmann et al. 2000, and these equations couple the changes in the first and second
moments. In this way there is feedback from the spatial structure to the dynamics of the
mean density (and vice versa) as the spatial system unfolds over time.

3 Extracting the Ecological Signal from
Stochastic Realizations

Stochastic processes are a good framework in which to formalize ideas about ecological
events acting on individuals (e.g., Pacala et al. 1996). In particular, they have the
advantage of not glossing over the effects fluctuations have on local and global states of
ecological systems. They have the drawback that it may not be obvious from individual
realizations what the generic behavior of the process is. To illustrate this problem, and
to show how moment dynamics can help to overcome it, we give an example of two
competing plant species from Law and Dieckmann (in press), essentially a spatial version
of the familiar Lotka–Volterra model of competition:

d

dt
Ni = (bi − di)Ni −

∑
j

d′ijNiNj for i, j = 1, 2 . (5)

The equations are parameterized here with bi (respectively di) as a density-independent
birth (respectively death) rate. The term d′ij is a component of the death rate that depends
on the density of the competing species j, competition being intraspecific when i = j, and
interspecific when i 6= j.

The spatial extension arises in that individuals are indexed by location in space, and
the spatial model keeps track of (1) competition among individuals located close enough
together and (2) movements of individuals. As we are dealing with plant species, we
assume that movements are always associated with seed dispersal (birth of a new plant).
Parameters of the community are set such that, on the one hand, species 1 is the stronger
competitor and would replace species 2 in the absence of spatial structure. On the other
hand, seeds of species 2 disperse over longer distances. Once the dynamics allow for spatial
structure, whether species 2 goes to extinction is an open question.

Stochastic process

From the general birth–death–movement process given in Chapter 21 in Dieckmann et al.
2000 [Equations (21.1) and (21.2)], we can write down a stochastic process explicitly for
two competing species. The probability per unit time of the transition from a pattern
p(x) to another pattern p′(x) is fully defined in terms of two independent events.

• Birth. The probability per unit time Bi(x, x
′, p) that an individual of species i,

located at point x in a pattern p(x), gives rise to a daughter at location x′ is given
by

Bi(x, x
′, p) = bim

(b)
i (x′ − x) , (6)

where bi, the birth rate, is multiplied by a dispersal term m
(b)
i (x′ − x) indepen-

dent of the birth rate, placing the daughter at location x′ with probability density
m

(b)
i (x′ − x).
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Table 1 Parameter values for a community of two competing species. Source : Law and Dieckmann (in
press).

Value for species i

Parameter i = 1 i = 2 Explanation

Death di 0.2 0.2

d′i1 0.001 0.002
}

Species 1 is a stronger
competitor than species
2

d′i2 0.0005 0.001

s
(d)
i1 0.03 0.03

s
(d)
i2 0.03 0.03

r
(d)
i1 0.12 0.12

r
(d)
i2 0.12 0.12

Birth bi 0.4 0.4

s
(b)
i 0.03 0.2

}
Species 2 disperses
farther than species 1r

(b)
i 0.12 0.5

Note: Simulations were done on the unit square with periodic boundaries.

• Death. The probability per unit time Di(x, p) that an individual of species i, located
at point x in a pattern p(x) dies is given by

Di(x,p) = di+
∑
j

d′ij

∫
w

(d)
ij (x′−x)

[
pj(x

′)− δijδx(x′)
]
dx′ . (7)

Here, di is the neighbor-independent component of the death rate common to all
individuals, and the remaining terms on the right-hand side deal with the effects of
competition with neighbors. Specifically, w

(d)
ij (x′ − x) is a competition kernel (see

Box 20.1 in Dieckmann et al. 2000) weighting the effect of a neighbor of species j at
location x′ according to its distance from x; this is multiplied by the density pj(x

′) of
plants of species j at x′, integrated over all locations x′, and scaled by the parameter
d′ij. The expression δij δx(x′) removes the target plant of species i at location x from
the competition kernel; it is needed because the target plant does not compete with
itself.

We use Gaussian functions to describe dispersal distances and the effect of distance
on competition, and characterize the functions with two parameters. The first parameter

s
(b)
ij (respectively s

(d)
ij ) is the standard deviation for dispersal (respectively competition).

The second parameter truncates the functions at maximum radius r
(b)
ij (respectively r

(d)
ij )

for dispersal (respectively competition), and can be thought of as setting an upper limit
on the distance over which dispersal (respectively competition) takes place. The functions
are normalized so that their integrals are equal to 1. Table 1 gives the parameter values;
notice the competition parameters are set such that species 1 is a stronger competitor
than species 2, but disperses over shorter distances than species 2.

Four realizations of the stochastic process, run from time 0 to 15, are shown in Figure 2.
(Here, and in all realizations below, the stochastic process is implemented in a space of
unit area with periodic boundaries.) The graphs give the paths in the plane of population
densities of the two species, and it is important not to confuse this with the physical
space in which the two species live and interact. The generic behavior, or signal, of the
stochastic process is not clear from inspection of the paths. Demographic stochasticity
masks any obvious trend: the paths differ from one another and have the appearance of
tangled webs. As one would expect, matters are improved by taking the mean path of
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Figure 2 Plane of population density of two competing species. Graphs (a), (b), (c), and (d) show the
path mapped out by individual stochastic realizations over 15 time units. (e) Mean path of 20 realizations,
with the deterministic approximation (found by solving the equations for the dynamics of the first and
second spatial moments) superimposed as a smooth curve. The filled circle marks the starting point of
each path.

some realizations, but the number of realizations needed may be quite large. This can be
seen in Figure 2e, which shows the mean of 20 realizations; a distinct curl to the path is
now evident.

Moment dynamics

From the general equations for the dynamics of the first and second spatial moments (21.9)
and (21.10), we can write down the equations as they apply to two competing species. The
dynamics of the first moments (mean densities) are given by

d

dt
Ni = (bi − di)Ni −

∑
j

d′ij

∫
w

(d)
ij (ξ′)Cij(ξ

′) dξ′ , (8)

for i, j = 1, 2. The first term on the right-hand side is the neighborhood-independent
component of births and deaths, and the second term is the neighborhood-dependent com-
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ponent of deaths. Evidently, in turning from the nonspatial version of the Lotka–Volterra
equations to the spatial version, the products NiNj of the Lotka–Volterra equations are
replaced by integrals involving the pair correlation densities, compare Equations (5) and
(8). The effect of competition depends fundamentally on the relative magnitude of these
integrals, and we should therefore expect the outcome to be radically altered by the in-
troduction of spatial structure.

The dynamics of the second moment (pair correlation densities) are given by

d

dt
Cij(ξ) =

+ bi
∫
m

(b)
i (ξ′)Cij(ξ + ξ′) dξ′ + bj

∫
m

(b)
j (ξ′)Cji(−ξ + ξ′) dξ′

+ δij bim
(b)
i (−ξ)Ni + δji bjm

(b)
j (ξ)Nj

− diCij(ξ) − dj Cji(−ξ)
−
∑
k

d′ik
∫
w

(d)
ik (ξ′) Tijk(ξ, ξ

′) dξ′ −
∑
k

d′jk
∫
w

(d)
jk (ξ′) Tjik(−ξ, ξ′) dξ′

− d′ij w
(d)
ij (ξ)Cij(ξ) − d′ji w

(d)
ji (−ξ)Cji(−ξ) ,

(9)

for i, j = 1, 2. The term δij is the Kronecker symbol, and Tijk(ξ, ξ
′) is the correlation

density of triplets, for which we assume the moment closure

Tijk(ξ, ξ
′) =

1

Ni
Cij(ξ)Cik(ξ

′) , (10)

as explained in Section 21.4 in Dieckmann et al. 2000. With 10 terms, some of which are
integrals, Equation (9) looks somewhat forbidding. But the complexity of the equation is
not altogether surprising, because there are five types of event in species i affecting the
flux in and out of the pair density Cij(ξ), as given by the terms in the first column on the
right-hand side of Equation (9). For each type of event affecting i, there is an equivalent
one affecting j, given by the terms in the second column. It can be seen from inspection
of Equations (8) and (9) that they are coupled, so changes in the mean density affect the
rate of change of the pair correlation densities, and vice versa.

Numerical integration of Equations (8) and (9) clearly indicates the signal of the
stochastic process, shown as the smooth curve in Figure 2e. At the start, species 1 is
favored over species 2, but, after a short period of time, this is reversed. The reason for
this reversal is quite interesting and results from the generation of spatial structure in the
community (Law and Dieckmann, in press). To begin with, individuals are situated at
random locations in the plane. Species 1, the stronger competitor, is at an advantage in
these circumstances and starts to increase in density, whereas species 2 decreases; thus the
deterministic path starts by pointing down and to the right. But species 1 is also a poorer
disperser and begins to develop a clumped spatial pattern which inflates the strength of
intra-specific competition. Eventually, clumping becomes strong enough to place species 1
at a disadvantage in the community, causing the deterministic path to swing round in the
direction of increasing density of species 2 and decreasing density of species 1.

The deterministic path in Figure 2e provides information on a small part of the plane
of population densities. To illustrate the dynamical behavior more broadly, we have taken
a larger sample of paths and run them for a longer period of time, as shown in Figure 3
(Law and Dieckmann, in press). Figure 3a gives the mean path, averaged over 20 realiza-
tions, from a grid of starting points of the stochastic process. This shows that species 1,
despite its competitive advantage, is eventually always driven to extinction due to the
excess intraspecific competition it generates by spatial aggregation. Figure 3b gives the
corresponding deterministic paths obtained by solving Equations (8) and (9). There is
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Figure 3 Plane of population density of two competing species. Paths are given from a grid of 16
combinations of starting densities. Individuals are placed at random locations in space at the start, and
paths are allowed to run for 100 time units. (a) Mean paths of 20 realizations of the stochastic process.
(b) Deterministic paths given by the dynamics of the first and second moments. The paths are projections
from higher-dimensional dynamics, Equations (8) and (9), and may therefore intersect one another. (c)
Paths given by the nonspatial, Lotka–Volterra competition equations. Source : Law and Dieckmann (in
press).

a close match between the paths in Figure 3a and 3b: evidently the moment dynamics
give a good approximation to the behavior of the stochastic process. The same cannot
be said of the nonspatial Lotka–Volterra competition equations (5), shown in Figure 3c.
These equations neglect the effects of dispersal and the small neighborhoods within which
competition occurs, and lead one to expect that species 2 should be driven to extinction.
Space is clearly crucial here – to ignore it is to be qualitatively in error.

The message from this analysis of two competing species is threefold. (1) The signal
of the stochastic process often can barely be seen from looking at individual realizations.
(2) The method of moments provides a close approximation to the average behavior of
the stochastic process and can be used to gain insight into its generic features. (3) The
spatial extension is fundamental to understanding the dynamics of plants competing and
dispersing in small neighborhoods.
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4 Qualitative Dependencies in a Spatial Logistic
Equation

Here we show some qualitative properties of stochastic realizations that can be better
understood by means of deterministic approximations. We do this in the context of a
spatial extension of the familiar logistic model of single-species population growth

d

dt
N = (b− d)N − d′N 2 , (11)

parameterized in the same way as Equations (5). The spatial extension turns out to have
some qualitative features that are surprising, at least at first sight. Yet these features
follow in a simple, natural way from the moment dynamics, as we show below.

Stochastic process

The stochastic process has much in common with the spatial Lotka–Volterra competition
equation described in Section 3, allowing (1) an increased risk of death of individuals
located close enough together and (2) dispersal of seeds. Notationally, the stochastic
process is easier to handle because, with only one species, terms do not need to be indexed
by species. As before, there are two stochastic events.

• Birth. The probability per unit time B(x, x′, p) that a plant, located at point x in a
pattern p(x), gives rise to a daughter plant at location x′ is given by

B(x, x′, p) = bm(b)(x′ − x) . (12)

• Death. The probability per unit time D(x, p) that a plant, located at x in a pattern
p(x), dies is given by

D(x, p) = d+ d′
∫
w(d)(x′ − x)

[
p(x′)− δx(x′)

]
dx′ . (13)

Terms are as defined in Equations (6) and (7), and parameter values that remain fixed in
the simulations below are b = 0.4, d = 0.2, and d′ = 0.001.

Three sets of realizations of this stochastic process are given in Figure 4. The sets
differ in the size of the competition neighborhoods and in the distances over which seeds
disperse. The results are surprising. Depending on the choice of parameter values for local
competition and seed dispersal, the populations may grow to densities substantially larger
or smaller than one would expect from the equilibrium density of the logistic equation (11),
which equals 200 with the parameter values above. This is a good example of the new
phenomena that emerge when the spatial extension to population dynamics is introduced,
as has been stressed at many places in Part B.

Moment dynamics

Why does the asymptotic density depend on the competition neighborhood and distances
over which seeds disperse? The answer becomes apparent once the equation for the dy-
namics of the first spatial moment of the stochastic process is put into place; this is a
simplified version of Equations (8),

d

dt
N = (b− d)N − d′

∫
w(d)(ξ′)C(ξ′) dξ′ . (14)

The term N 2 of the nonspatial model is replaced by an integral involving the pair correla-
tion densities, compare Equations (11) and (14). Evidently, the outcome depends on the
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Figure 4 Stochastic realizations of a spatial, logistic model of population growth with contrasting dispersal
and competition neighborhoods. In each case three realizations are run, starting with 200 individuals
located at random (200 is the equilibrium value of the corresponding nonspatial logistic model). (a)
Competition and dispersal take place over large distances: s(d) = 0.15, s(b) = 0.15. (b) Competition and
dispersal take place over intermediate distances: s(d) = 0.05, s(b) = 0.05. (c) Competition takes place at a
smaller scale than dispersal: s(d) = 0.015, s(b) = 0.15. The maximum radii are three times the standard
deviations. Superimposed on the realizations is the deterministic approximation obtained from solving the
equations for the dynamics of the first and second moments.

spatial structure that develops over time, as given by C(ξ′), and on the extent to which
plants experience this structure, as given by w(d)(ξ′). If the integral is greater than N 2,
the population comes to equilibrium at a density less than that of the nonspatial version.
Conversely, if the integral is less than N 2, the equilibrium density is greater than that of
the nonspatial version. Clearly, details of the spatial structure really do matter.

To understand how the spatial structure develops, we need the dynamics of the second
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moment:

1

2

d

dt
C(ξ) = + b

∫
m(b)(ξ′′)C(ξ + ξ′′) dξ′′

+ bm(b)(ξ)N

− dC(ξ)

− d′C(ξ)

∫
w(d)(ξ′)C(ξ′)/N dξ′

− d′w(d)(ξ)C(ξ) .

(15)

This equation is simplified from Equation (9). The two columns on the right-hand side of
Equation (9) can be added together, because there is only one species and the process is
isotropic; we then divide both sides by 2, getting the factor 1/2 on the left-hand side of
Equation (15).

It turns out that the spatial structure that develops over time depends on the size
of the competition neighborhood and dispersal distances. Figure 5 illustrates this with
stochastic realizations using the three combinations of parameter values given in Figure 4.
All three start with the same random spatial pattern and show the spatial pattern of a
realization of the stochastic process after a long period of time has elapsed. In Figure 5a,
seeds disperse over relatively large distances and the correlation function shows rather little
spatial structure. In fact, it would not make much difference if there were more small-
scale spatial structure, because the neighborhoods of competition integrate over relatively
large areas and would be blind to such structure. In Figure 5b, where both dispersal
distances and competition neighborhoods are smaller, matters are different. Shorter dis-
persal leads to more aggregation, and the smaller neighborhoods of competition make the
plants sensitive to this structure. Thus the plants experience a density much greater than
the spatial average in the interaction neighborhoods, and population growth is stopped at
lower mean density. In Figure 5c, the competition neighborhoods are made still smaller
(while the dispersal neighborhood is reset to a larger size), and plants that lie too close
together have very high mortality rates. This high mortality of plants with close neighbors
leads to a regular spatial pattern at short distances. The correlation function is now much
less than 1 in the immediate neighborhood of plants, and the plants experience a local
density much lower than the spatial average. The population therefore continues to grow
to a greater mean density.

How good an approximation to the stochastic process do the moment dynamics pro-
vide? A partial answer is given by placing the time course of mean density on the stochastic
realizations in Figure 4. This shows that the moment dynamics do correctly capture the
qualitative outcome and give a reasonable approximation to the quantitative properties of
the dynamics.

The message from this example is that qualitative features of the stochastic realiza-
tions, at first sight surprising and non-intuitive, become much easier to understand once
dynamics have been reduced to the first and second spatial moments. As an ecological
footnote, the logistic equation, especially its equilibrium density, has played a central role
in developing ideas in ecology. The results here suggest that we may be seriously mis-
led in applying the nonspatial logistic equation to systems with strong spatial structure
and small neighborhoods of interaction (see Roughgarden 1997). We should stress though
that moment models have still to address some important properties of population growth,
such as the dependence of competition neighborhood on size of individuals (Chapter 2 in
Dieckmann et al. 2000).
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Figure 5 Effect of contrasting dispersal and competition neighborhoods on spatial pattern in a logistic
model of population growth. The spatial pattern at the top shows the initial state, comprising 200 indi-
viduals placed at random locations. Columns (a), (b), and (c) have parameter values matching Figures 4a,
4b, and 4c, respectively; the radius of the heavy circle is the standard deviation s(b) of the competition
neighborhood, and the radius of the shaded area is the standard deviation s(d) of the dispersal neighbor-
hood. The columns show the state of sample realizations at time 100 in terms of the spatial pattern and
the corresponding auto-correlation function.

5 Exploration of Parameter Space

The results in Section 4 suggest that the spatial extension of the logistic equation has
dynamics that depend sensitively on the size of the neighborhoods over which individuals
compete and the distances over which dispersal occurs. But so far we have only inves-
tigated three fixed points in parameter space and have little idea about the overall form
of the dependence. Below, we use the deterministic approximation based on the dynam-
ics of the first and second spatial moments, Equations (14) and (15), to show how more
knowledge about the equilibrium density can be gained.

A convenient method for obtaining equilibrium densities of the moment dynamics is

• to determine, with ĉ(ξ) = Ĉ(ξ)/N̂ 2, the equilibrium of the first spatial moment for
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Figure 6 Equilibrium densities of a spatial logistic equation, expressed as a function of competition radius
and dispersal distance. (a) Competition radius s(d) is varied between 0 and 0.2 for s(b) = 0.08; (b) shows
the effect of varying s(b) over the same interval for s(d) = 0.05. While outcomes of stochastic realizations
(crosses) show considerable scatter, and mean-field results (dashed lines) are sometimes qualitatively in
error, the deterministic approximation based on spatial moments (continuous curves) provides satisfactory
descriptions of how equilibrium densities depend on the radii.

a given second moment from Equation (14),

N̂ =
b− d

d′
∫
w(d)(ξ′) ĉ(ξ′) dξ′

, (16)

• and then, using that solution in Equation (15), to solve numerically for the equilib-
rium of the (normalized) second moment, d

dt ĉ(ξ) = 0.

Figure 6 shows how sensitive equilibrium densities are to changes in local competition
and dispersal. Evidently, the equilibrium density given by the mean-field results of the
nonspatial logistic equation applies only in the limits as the interaction neighborhood
becomes large and dispersal distances become large. If the competition neighborhood is
small relative to dispersal, densities much in excess of the mean-field value occur due to the
tendency of other individuals to be absent in this small neighborhood (Figures 5c and 6a).
At the other end of the scale, if dispersing offspring tend to fall within the competition
neighborhood, and the competition neighborhood is itself small, the population can go
extinct (left range in Figure 6b). Extinction comes about as a result of dense aggregations
of individuals within the competition neighborhood. The denominator in Equation (16)
is then large; for finite populations, this leads to population sizes so small that accidental
extinction by demographic stochasticity becomes very likely.

Clearly, the spatial version of the logistic equation has some new and interesting fea-
tures. But the new features that emerge are not easily accessible from numerical studies
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of the stochastic process itself. It is through approximation schemes, here the moment
dynamics, that we gain understanding of how the dynamics depend on model parameters.
Once a dynamical system that gives an acceptable approximation to the stochastic process
is in place, a battery of analytical techniques (such as methods from bifurcation theory)
is available to gain understanding of the consequences of spatial heterogeneity.

6 Concluding Comments

If a strong foundation for studying the dynamics of spatially structured communities is to
be developed, we need methods that give good approximations to the underlying, intricate,
individual-based processes. We think methods based on the dynamics of spatial moments
hold promise in this regard. The approximations evidently work well. Moment models
enable the signals from ecological stochastic processes to be extracted reliably and give
new insights into the rich dynamics of spatial ecological processes. The models are, of
course, no more than approximations and work best where spatial structure applies at a
small spatial scale and is not too extreme in intensity; the range of spatial structures over
which the method works has yet to be determined in detail. Structure at large spatial
scales is better dealt with by diffusion approximations (Chapters 16, 17, 22, and 23 in
Dieckmann et al. 2000); to account for spatial structure at both small and large scales
simultaneously, it may be possible to amalgamate moment and diffusion approximations.

A recurring feature of the moment dynamics above is the use of a spatial integral of
the pair correlation densities weighted by some function of distance, Equations (8) and
(9), in place of the product of the average densities NiNj. We are replacing the spatial
average of the densities with what might be termed an average neighborhood that carries
information about local spatial structure. The integral, in effect, formalizes a notion of the
“plant’s-eye view” of the community that has been in the plant-ecological literature for
many years (Turkington and Harper 1979; Mahdi and Law 1987). In switching the focus
to the average neighborhoods of plants, some basic changes in plant community dynamics
are to be expected. For instance, it is well established in natural plant communities that
conspecifics tend to be aggregated (e.g., Greig-Smith 1983; Mahdi and Law 1987). As
shown in Chapter 20 in Dieckmann et al. 2000, spatial structure may make it much easier
to achieve coexistence of plant species than has previously been thought.

Evidently, theoretical ecologists have some fundamental thinking to do about the effects
of spatial structure. Many basic ideas in ecology come from theory based on the mean-
field assumption: the maximum sustainable yield, the competitive exclusion principle,
community stability, and so on. But terrestrial communities are spatially structured, and
mean-field dynamics are often inappropriate. It is clear from the examples given here
and elsewhere in the book that spatial structure needs to be properly incorporated into
ecological dynamical systems if we are to avoid coming to seriously mistaken conclusions
about ecological processes. Moment approximations provide a key for opening the door
into spatial structure.
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