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Relaxation Projections and the

Method of Moments

Ulf Dieckmann
Richard Law

1 Introduction

Theory in spatial ecology has to steer a narrow and challenging course between the Scylla
of oversimplification and the Charybdis of intractability. Until about 15 years ago, most
of theoretical ecology was based on the mean-field paradigm, thus targeting well-mixed
ecological systems. Although the underlying assumption of spatial homogeneity is violated
for many, if not most, ecological populations and communities in the field, mean-field ap-
proaches appeared to be the only way forward. They even took center stage in certain
areas, as in epidemiological systems (Bailey 1975; Anderson and May 1991), today recog-
nized as typical examples of ecological processes for which space matters. It was only with
the advent and ready availability of modern computer technology that explorations into
critical effects of spatial heterogeneities became feasible (Levin 1974, 1976; Weiner and
Conte 1981; Weiner 1982; Pacala and Silander 1985; Holsinger and Roughgarden 1985;
Pacala 1986; Hogeweg 1988). Today, computer screens and journals abound with images
of spatially extended simulations that have convincingly demonstrated that many predic-
tions of classical ecological theory are inappropriate in the presence of spatially structured
habitats or short-range ecological interactions.

Despite their value as counterexamples to mean-field predictions and their usefulness in
exploring the emergence of macroscopic effects resulting from microscopic ecological mech-
anisms, simulation studies often remain inconclusive. Are the reported phenomena robust
under changed ecological parameters? Where, among the noisy dynamics of individual-
based and stochastic models, is the ecological signal? How many (usually time-consuming)
spatial simulations have to be run before reliable conclusions can be drawn? These ques-
tions remind us that only part of our ecological understanding is based on description:
on top of this, we look for mechanistic explanations and for reliable generalizations from
observations. Specifically, we are interested in qualitative rules, and for this reason we
would like heterogeneous ecological processes to be amenable to tools that allow robust
conclusions to be drawn. For many systems, such sound qualitative insight can only be
derived from careful quantitative analyses (well-known examples from classical ecological
theory are many inequality conditions and results of bifurcation analyses).

Is it realistic to hope for a middle ground between oversimplified mean-field models and
intractable computer simulations? The answer depends on how many essential degrees of
freedom there are in spatial ecological systems. A degree of freedom here is a quantitative
piece of information needed to specify the current state of and the expected change in
a given system. How many degrees of freedom are considered essential often depends
on the purpose of an investigation. Think of the trajectory traced by a stone thrown
into the air. A detailed description of the flying stone would account for the state of
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all its atoms. For practical predictions of the stone’s expected path, however, most of
these details are utterly irrelevant: only the position and velocity of its center of mass are
essential, and even the stone’s orientation and rotational speed can be neglected. Another
illustration is provided by milk being poured into a cup of coffee. To specify the initially
intricate pattern of milk and coffee mixing, very many variables are needed. After a short
while, however, the milk concentration becomes uniform and can be specified by a single
number. Likewise, in ecological systems we can often ignore most of the physiological or
biochemical details of individuals, provided that our interest rests at the population level.
Lewontin has introduced the term dynamic sufficiency for distinguishing between essential
and dispensable degrees of freedom: a subset of variables is called dynamically sufficient if
sufficiently accurate predictions of future dynamics can be based on these variables alone
(Lewontin 1974).

Sometimes the dynamically sufficient number of variables is small from the outset (the
thrown stone), and sometimes it quickly decreases as a consequence of internal processes
(the milk drop). The rapid “destruction” of degrees of freedom is also typical for many
spatially extended systems: often, a small set of variables is dynamically sufficient for
adequately capturing the system’s state. In a grassland, for instance, observing a few
spatial statistics in a few square meters may provide most of the information required
to characterize the whole area. We do not need to know the precise position of every
single shoot in this area to predict the system’s expected development at the population
level: specifying a much smaller number of essential degrees of freedom will suffice. But
only in systems that eventually become completely homogeneous, like the milk in the
cup of coffee, does the number of essential degrees of freedom become minimal. In other
cases, a certain amount of heterogeneity is preserved in the system since certain mech-
anisms counteract full mixing. In ecological systems, these mechanisms arise from the
local interactions between individuals, their restricted dispersal, and their dependence on
a potentially heterogeneous habitat; we therefore cannot simply expect all variables apart
from mean densities to become superfluous. Instead, a balance between forces of mixing
and ordering (Watt 1947) will lead to states with more essential degrees of freedom than
in mean-field approximations, but still with only a fraction of the vast number of degrees
of freedom possible.

This general expectation is corroborated by observations and explicit simulations of
spatial ecological dynamics that start from arbitrarily complicated initial configurations
and whose internal dynamics, after a while, reliably sustain only a small class of patterns.
Imagine gardeners setting up a plot with ornate patterns of plants, like those in the
baroque gardens at Versailles. Without continuous examination and lots of effort on
the part of the gardeners, that intricate distribution will soon relax into a more natural
configuration, characterized by considerably fewer essential degrees of freedom than were
initially present. Interactions between plants tend to operate at a local scale; therefore, in
the absence of external heterogeneities, any long-range correlations between plants present
in the gardeners’ original setup cannot persist – leaving the Versailles gardens unattended
for a century would eradicate most of the artful patterns originally devised. In our quest
for a tractable but still dynamically sufficient description of ecological systems in space
and time, we can capitalize on this tendency of natural systems to “destroy” degrees of
freedom by relaxation. Hence, for models of ecological heterogeneity, we have to cast the
set of all possible configurations onto that much smaller subset toward which the system
will rapidly relax; we call this general procedure a relaxation projection (see Box 1).
Relaxation projections help establish the middle ground between oversimplification and
intractability. By culling the dynamically irrelevant degrees of freedom initially present in
many spatially heterogeneous systems, we reduce the number of variables to manageable
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Box 1 Relaxation projections in spatial ecology

Spatio-temporal processes usually possess some degrees of freedom operating on a fast time
scale: any initial pattern p, taken from the set P of all possible patterns, will quickly converge
to a more limited set Pr of patterns. A smaller number of variables – called essential degrees
of freedom – is required to characterize patterns within Pr than within P .

Spatial statistics are variables for describing the state of a spatio-temporal process at
any point in time. If S denotes a set of spatial statistics sufficient to characterize patterns
in P , and Sr contains those needed for Pr, the statistics in S′ = S\Sr are only needed
to distinguish between patterns in P ′ = P\Pr and hence are no longer essential after the
system’s fast degrees of freedom have decayed.

Illustration of the rapid decay of initial conditions toward a relaxation manifold in a three-dimensional
dynamic. The relaxation projection defines a relaxation manifold and a projection of initial conditions onto
this manifold; both are supposed to approximate the actual dynamics’ first phase of rapid decay.

As S′ thus retains no essential information about the state of the process after relaxation,
all spatial statistics of resulting patterns can be expressed approximately as functions of
those in Sr, S

′ = f(Sr). Hence, the functions f simplify the complexity of describing the
state of a spatial process. In addition, the functions f simplify the dynamics of the process:
in the space S of statistics, the functions f define

• a projection of arbitrary initial conditions s = (sr , s
′) in S onto a relaxation manifold,

(sr , s
′)→ (sr , f(sr)), and

• the shape of the relaxation manifold itself, which is the subspace of all states s in S
invariant under that projection, thus satisfying (sr , s

′) = (sr , f(sr)).

The projection mimics the fast relaxation of the spatio-temporal process. The relaxation
manifold can be used for constructing a simplified dynamic on that manifold: starting from
a state sr on the relaxation manifold, the missing statistics s′ can be reconstructed as
s′ = f(sr). Now the change d

dts of the state s = (sr , s
′) follows from the dynamics of the

spatio-temporal process and implies a change d
dtsr along the relaxation manifold. We call

projections of this kind relaxation projections. In general, projections are non-invertible
mappings, and objects projected consequently carry a diminished amount of information.
In particular, relaxation projections remove the dynamically nonessential information from
a spatial pattern. The art of constructing relaxation projections amounts to finding suitable
small sets of statistics S and simple functions f so that the actual relaxation process as well
as the resulting relaxation manifold are well approximated and the relaxation projection
itself is sufficiently simple to allow for the derivation of tractable dynamics.

proportions. Obviously, this culling must not go too far: retaining only mean densities
would take us back to mean-field descriptions.

These considerations lead to the following question: if we are to capture the essential
aspects of spatial heterogeneity in a dynamically sufficient way, which variables should we
use to complement mean densities? To address that central issue in detail, this chapter uses
a widely applicable class of stochastic models for individual-based and spatially extended
ecological systems, described in Section 2. In Section 3, we introduce and analyze a
flexible set of spatial statistics, called correlation densities or spatial moments, which are
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Box 2 The Dirac delta function in spatial ecology

Dirac’s delta function is a particularly useful tool for characterizing the distribution of
individuals across continuous spaces. Imagine a plot of plants, each occupying a specific
location. One way of describing their spatial distribution relies on quadrat counts: after
imposing a square grid on the ecological space, the number of plant individuals within each
square is counted. The resulting information can be represented as a histogram, where the
volume of each column is proportional to the number of individuals present in the underlying
square (Figure a).

Histograms of increasing resolution, constructed for the same spatial pattern of individuals distributed over
the unit square (depicted as points on the top plane). The high-resolution limit yields a Dirac delta function
at the location of each individual.

The information captured by quadrat counts, however, is incomplete. Within each
square of the grid, no information is available about the distribution of individuals. The
situation can be improved by choosing a grid of higher resolution in which each square is
of a smaller size. For a sufficiently fine grid, most of the squares will contain either zero
or one individual, with squares containing two or more individuals being the exception. If
the volume of histogram columns is still to correspond to the number of individuals, the
height of columns has to be increased as their base squares are shrunk (Figure b). To assess
the number of individuals within a certain area, we can then just add the volume of all
histogram columns over that area.

Plants and animals, of course, possess a spatial extension as well as a spatial location.
It is often convenient to distinguish these two aspects of spatial structure by thinking of
individuals as being centered at some location, while including information about their
extension, if necessary, in the state of individuals. Although on finer grids accuracy is
improved, information regarding the precise location of individuals within squares is still
discarded.

For theoretical considerations, then, it is natural to let the size of squares shrink to
zero, so that full information about the location of individuals is retained. Keeping our
interpretation of the volumes of histogram columns requires letting their height go to infinity.
From this limit we obtain a Dirac delta function at the location of each individual. These
functions are zero everywhere, except at one specific location. There, their height is infinite,
such that their integral is 1 (for illustration of this point, a very fine grid is shown in
Figure c). By integrating over all delta functions within a given area, we thus obtain the
abundance of individuals occupying that area.

In summary, a spatial pattern of individuals can be described by a sum of delta functions,
each peaked at the location of a single individual, thus describing its contribution to the
population’s density function.

candidates for providing the extra spatial information needed on top of mean densities.
Section 4 explains how relaxation projections can be applied to the dynamics of spatial
moments. We examine alternative projection schemes and show that some of these provide
powerful descriptions of spatially heterogeneous ecological change. Section 5 considers
extensions of the framework and examines consequences of the stochastic effects that
inevitably arise when individuals interact with finite numbers of neighbors. We conclude
that the novel class of ecological models developed in Sections 3 and 4 allows for robust and
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generalizable insights into the inner workings of spatially structured ecological populations
and communities.

2 Individual-based Dynamics in Continuous Space

In this section we introduce a class of spatially explicit, individual-based, stochastic birth–
death–movement processes that, on the one hand, can be calibrated to reflect ecological
dynamics as observed in the field and, on the other hand, are suitable targets for applying
the technique of relaxation projections (Sections 3 and 4). Such individual-based stochastic
processes in continuous space also underlie the analyses in Chapter 20 in Dieckmann et al.
2000, and it is helpful to make them explicit.

Patterns of individuals in continuous space

A natural starting point for specifying ecological details of a spatially explicit model is the
demographic events experienced by individuals. As a step toward the real world, we allow
birth and death rates of individuals to depend on their local environment. In the class
of models below, individuals can disperse (at birth) and relocate (during their lifetime)
within a given habitat. We think it is preferable to envisage individuals at locations in
continuous space rather than at discrete sites on a grid. Avoiding the discretization of space
into regular cells – which, for most ecological systems, is artificial – offers a more faithful
and direct correspondence between model parameters and model dynamics and those
quantities and processes that can be measured in the field. This modeling framework has
the additional advantage of adequately reflecting the gradual effects of increased physical
distance on the interaction strength between individuals, and it allows for continuous
changes of dispersal and relocation probabilities with distance traveled.

Individuals can belong to different species i, with i = 1, . . . , n, where n is the number
of species in the community. All individuals inhabit a space of locations x; the habitat
can have one, two, or three spatial dimensions. Most applications in plant ecology, of
course, focus on planar habitats. The spatial extension of the habitat is measured by A,
denoting the habitat’s length, area, or volume, respectively. Individuals l in species i are
situated at spatial locations xil, with l = 1, . . . , ANi, where Ni is the mean population
density of species i. The distribution of individuals in each species i is described by spatial
density functions pi(x) =

∑
l δxil(x), where δxil denotes Dirac’s delta function peaked at

location xil (for an explanation of this representation and the motivation behind it, see
Boxes 2 and 3). The density function pi(x) is thus peaked at all locations occupied by
individuals of species i and is zero elsewhere. At any moment in time, the spatial pattern
within the community is given by collecting the density functions of all species into a
vector p(x) = (p1(x), . . . , pn(x)).

Birth, death, and movement events

The per capita death rates of individuals can depend on the presence or absence of other

individuals in their local environment. We denote by w
(d)
ij (x − x′) the strength with which

an individual of species j at location x′ affects the mortality of an individual of species i at

location x. The functions w
(d)
ij are called interaction kernels for density-dependent death

and are scaled so that they integrate to 1,
∫
w

(d)
ij (ξ) dξ = 1. (In this chapter we denote

absolute spatial locations by xs and relative locations by ξs.) The reason for calling these
functions kernels becomes evident when we realize that, in the death rate of an individual
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Box 3 Properties of the Dirac delta function

The delta function was introduced by the English physicist Paul A.M. Dirac (Dirac 1926,
1958), and relates to previous work by G. Kirchhoff and O. Heaviside (Jammer 1966).
Dirac’s idea was to construct a strictly localized function on the real numbers: δ(x) is zero
for any x, except for x = 0, where it is peaked.

To make this notion precise, the delta function is defined by∫ +∞

−∞
f(x′)δ(x′ − x) dx′ = f(x)

for any continuous function f . This is called the sifting property of the delta function: since
the term δ(x′ − x) is 0 except at x′ = x (where the delta function’s argument vanishes),
only at that point can the value of f contribute to the integral. This can also be expressed
by f(x′)δ(x′ − x) = f(x)δ(x′ − x).

From this definition we can derive other useful properties of the delta function:

• The delta function is symmetric: δ(−x) = δ(x).

• Its integral equals 1:
∫ +∞
−∞ δ(x′) dx′ = 1.

• One or more zeros in the delta function’s argument contribute according to their
inverse slope: δ(g(x)) =

∑
i δ(x− xi)/|g′(xi)|, summing over all zeros xi of g.

• Its primitive function is the unit-step or Heaviside function:
∫ x
−∞ δ(x

′) dx′ = θ(x),
where θ(x) equals 0 for negative and 1 for positive x.

• The Fourier and Laplace transforms of the delta function are equal to 1.

The Dirac delta function can also be envisaged as the limit of a series of functions.
Setting h(x) to 1/ε for |x| < ε/2 and to 0 elsewhere, we can write δ(x) = limε→0 h(x).
Compare this with the figures in Box 2: while the width of such a function shrinks to zero,
its height goes to infinity. Setting h to a normal distribution with mean 0 and standard
deviation ε has the same effect. All properties of the delta function can alternatively be
derived from such limit representations (theory of distributions; Schwartz 1950).

In more than one dimension, the delta function is defined as the product of one-
dimensional delta functions: δ(x) = δ(x1)δ(x2) . . . δ(xn) for x = (x1, x2, . . . , xn). For conve-
nience, the location of a delta function’s peak is often given as a subscript: δ(x′−x) = δx(x′).

of species i at location x in a community with spatial pattern p,

Di(x, p) = di +
∑
j

d′ij

∫
w

(d)
ij

(
x′ − x

)[
pj(x

′)− δijδx(x′)
]
dx′ , (1a)

w
(d)
ij occurs as the kernel of a convolution integral (see also Boxes 20.1 and 20.2 in Dieck-

mann et al. 2000). Here, di denotes the intrinsic per capita death rate of species i, and d′ij
weighs the density-dependent effect of species j on the mortality of individuals in species i.
The integral in Equation (1a) collects the contributions from all locations x′ according to

their interaction strength w
(d)
ij (x′ − x) and local density pj(x

′). Obviously, individuals do
not compete with themselves; therefore the contribution of the focal individual at location
x, given by δx(x′), is removed from the integration when the summation over j reaches
the focal species i (the Kronecker symbol δij equals 1 for i = j and is 0 otherwise).

The rate of movement of an individual in species i at location x to another location x′

is given by

Mi

(
x, x′, p

)
= mi

(
x′ − x

)
. (1b)

Equation (1b) implies that rates of movement events are homogeneous in space; they only
depend on the distance moved x′−x, and not on absolute location x or on spatial pattern
p. Nevertheless, the movement kernel mi can differ from species to species. It is convenient
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to keep the movement kernel unnormalized: its integral |mi| =
∫
mi(ξ) dξ measures the

expected total per capita rate of movement.
Like death events, we allow the per capita reproduction rate for each individual to de-

pend on its local environment. Unlike death events, however, an offspring takes, by means
of dispersal, a spatial location different from that of its parent. The rate of reproduction
of an individual in species i at location x, giving rise to a new individual at location x′, is
given by

Bi
(
x, x′, p

)
=
[
bi +

∑
j

b′ij

∫
w

(b)
ij (x′′ − x)

×
[
pj(x

′′)− δijδx(x′′)
]
dx′′
]
m

(b)
i (x′ − x) .

(1c)

Here bi and b′ij denote the density-independent and density-dependent components of the
per capita birth rate, respectively; w

(b)
ij is the interaction kernel for density-dependent

birth and m
(b)
i is the dispersal kernel. Like the kernels of interaction, the dispersal kernel

is normalized to 1. In Equation (1c), competitive interactions occur for b′ij < 0; these
will be the most natural choice for many ecological systems. Yet, mixtures of compe-
tition with neutral (b′ij = 0) or mutualistic (b′ij > 0) interactions are also possible and
can be readily incorporated. Equations (1a) and (1c) describe the spatial analogues of
Lotka–Volterra competition and provide a natural starting point for exploring interaction
effects in spatially heterogeneous systems. Alternative assumptions, allowing for nonlinear
dependencies of Di and Bi on p, are discussed in Section 5.

Pattern dynamics

Starting from an initial spatial configuration, we can now investigate how a pattern changes
with the ecological events described above. According to Equations (1), the dynamics of
patterns are stochastic (any two runs from the same starting patterns are expected to result
in different patterns) and Markovian (rates of change at any moment in time depend only
on the current pattern). Such processes are characterized by so-called master equations
(van Kampen 1992). Denoting by P (p) the probability density for observing pattern p,
the rate of change in this probability density is given by

d

dt
P (p) =

∫ [
w(p|p′)P (p′)−w(p′|p)P (p)

]
dp′ , (2a)

where w(p′|p) is the probability density per unit time that any event will turn a pattern
p into another pattern p′. Hence the first term on the right-hand side corresponds to an
increase in the probability density of pattern p due to events that lead to p and originate
from a different pattern p′, while the second term captures the decrease of the probability
density at p resulting from events that change pattern p into a different pattern p′.

The functions w(p′|p) are also known as transition rates and for our model are simply
given by summing and integrating over all possible birth, death, and movement events
that can turn a pattern p into a pattern p′,

w(p′|p) =
∑
i

∫∫
Bi(x, x

′, p)pi(x)∆(p+ uiδx′ − p′) dxdx′

+
∑
i

∫
Di(x, p)pi(x)∆(p− uiδx − p′) dx

+
∑
i

∫∫
Mi(x, x

′, p)pi(x)∆(p− uiδx + uiδx′ − p′) dxdx′ .

(2b)
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Box 4 The generalized delta function

The generalized delta function ∆ extends the functionality of the Kronecker symbol and the
Dirac delta function from the realm of integers and real numbers, respectively, to that of
functions.

Markovian jump processes on integers, reals, or functions are described by master equa-
tions (for an introduction, see, e.g., van Kampen 1992). This class of equations is based on
transition rates and characterizes the flow of probability into and out of states of a stochastic
process, as in Equation (2a). Transitions between states often result from different types
of event, each of which changes the state of the process in a particular manner. Switch
functions are used to link descriptions of events and their rates to transition rates of the
process; these functions are “on” only for a particular transition. An important role for all
three delta functions is to serve as such switches.

State variable Master equation / transition rates / switch function

Integer i d
dt
Pi =

∑
i′ [wii′Pi′ − wi′iPi]

wi′i =
∑
∆iE∆i,i δi+∆i,i′∑

i′ Fi′ δi′i = Fi (Kronecker symbol)

Real number r d
dt
P (r) =

∫
[w(r|r′)P (r′) −w(r′|r)P (r)] dr′

w(r′|r) =
∑
∆r E(∆r, r) δ(r + ∆r − r′)∫

F (r′) δ(r′ − r) dr′ = F (r) (Dirac delta function)

Function f d
dtP (f) =

∫
[w(f |f ′)P (f ′) −w(f ′|f)P (f)]df ′

w(f ′|f) =
∑

∆f E(∆f, f) ∆(f +∆f − f ′)∫
F (f ′) ∆(f ′ − f) df ′ = F (f) (Generalized delta function)

While the sums in the equations for transition rates w extend over all possible jumps ∆i, ∆r,
or ∆f , only permitted jumps with non-vanishing event rates E contribute to the transition
rates w. Substituting the transition rates into the corresponding master equation, the switch
functions select only those states i′, r′, or f ′ that can be reached by permitted jumps.

We can envisage the generalized delta function ∆ as an infinitely narrow and infinitely
high peak in the space of functions f . Such a heuristic notion, together with the functional
integration occurring in the master equation for functions, is made exact by defining the
generalized delta function so as to collapse the functional integration in

∫
F (f ′) ∆(f ′−f) df ′

by yielding the functional F ’s value at the location of ∆’s peak, F (f). This definition is
analogous to that of Dirac’s delta function (Box 3). After the functional transition rates are
thus combined with the functional master equation, neither a functional integration nor a
generalized delta function remain in the end result. Or, in the words of Dirac (1958): “The
use of delta functions thus does not involve any lack of rigour in the theory, but is merely
a convenient notation, enabling us to express in a concise form certain relations which we
could, if necessary, rewrite in a form not involving delta functions, but only in a cumbersome
way which would tend to obscure the argument.”

The unit vector ui for species i has 1 as its ith element and zeros elsewhere. We refer to
∆ as the generalized delta function (Dieckmann 1994; Dieckmann et al. 1997, in press), see
Box 4. Like Dirac’s delta function δ (Boxes 2 and 3), it is peaked where its argument is zero,
and is zero elsewhere. Unlike Dirac’s delta function, however, generalized delta functions
take functions as arguments. All three sums on the right-hand side of Equation (2b)
comprise terms of the form ∆(pevent−p′). They therefore only contribute to the transition
rate w(p′|p) when pevent = p′, in other words, only if the considered event can turn the
current pattern p into the new pattern p′. For example, the expression ∆(p+ uiδx′ − p′)
is “switched on” when p+ uiδx′ = p′ (that is, only if a birth event in species i, producing
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Figure 1 Examples of individual-based birth–death–movement processes. (a) A single species with
dispersal and local logistic competition. Owing to spatial aggregation, the asymptotic mean density is
significantly below the mean-field prediction. (b) Two dispersing species with competitive interactions.
Under mean-field conditions, this pair of species cannot coexist. (c) Three dispersing species with com-
petitive interactions. Notice how quickly any regularity of the initial pattern is destroyed. For all three
systems, stochastic realizations are shown at three different moments in time: initial pattern (left column),
intermediate pattern (center column), and a pattern from the asymptotically stable distribution (right
column). Parameters for all three systems are given in Table 1.

a new individual at location x′, changes pattern p into pattern p′).
Models of the kind described in this section are flexible tools for studying the dy-

namics of spatially extended ecological systems. Their parameterization gets closer than
mean-field models to individual-based processes in the field and should permit incorpo-
ration of empirical measurements. Moreover, their intrinsic mixture of randomness and
determinism corresponds well to processes in natural populations. Models of this kind are
also easily implemented as computer simulations (see Figures 1, 14.1, and 14.5). Thus
individual realizations of the stochastic processes defined above are readily available; their
properties can be investigated in detail without introducing any further simplifying as-
sumptions. At the same time, these complicated interactive dynamics are ideal candidates
for demonstrating how to simplify spatial complexity. As we will see in the following two
sections, considerable insight can be gained by subjecting these dynamics to relaxation
projections and to the resulting method of moments.

3 Dynamics of Correlation Densities

With the general class of birth–death–movement models in place (Section 2), we consider
how to simplify the spatial complexity of these models by applying a relaxation projection.
As a first step in this process, we have to decide which are the essential degrees of freedom
in the spatial patterns under consideration.



– 10 –

Table 1 Parameter values for the three systems in Figure 1.

System Timesa Parametersb

Figure 1a 0, 10, 30 N1(0) = 200
b1 = 0.4, d1 = 0.2, d′11 = 0.001

s.d.w
(d)
11 = 0.04, s.d.m

(b)
1 = 0.02

Figure 1b 0, 5, 15 N1(0) = N2(0) = 150
b1 = b2 = 0.6, d1 = d2 = 0.2
d′11 = d′22 = 0.001, d′12 = 0.004, d′21 = 0.005

s.d.w
(d)
11 = s.d.w

(d)
12 = s.d.m

(b)
1 = s.d.m

(b)
2 = 0.06

s.d.w
(d)
21 = s.d.w

(d)
22 = 0.05

Figure 1c 0, 0.2, 2 N1(0) = N2(0) = N3(0) = 200
b1 = b2 = b3 = 0.8, d1 = d2 = d3 = 0.2
d′11 = d′22 = d′33 = 0.001, d′12 = 0.003, d′13 = 0.004
d′21 = 0.005, d′23 = 0.003, d′31 = 0.002,
d′32 = 0.006

s.d.w
(d)
11 = s.d.w

(d)
12 = s.d.w

(d)
13 = s.d.w

(d)
21 =

s.d.w
(d)
22 = s.d.w

(d)
23 = s.d.w

(d)
31 = s.d.w

(d)
32 =

s.d.w
(d)
33 = 0.06

s.d.m
(b)
1 = 0.06, s.d.m

(b)
2 = 0.07, s.d.m

(b)
3 = 0.05

a Times at which the three snapshots are taken. Each snapshot depicts the unit square with periodic
boundary conditions.
b Interaction and dispersal kernels are Gaussian with standard deviations (s.d.) as indicated. Parameters
not mentioned are zero.

Scales of spatial heterogeneity

Spatial heterogeneity can occur at various scales, and therefore a basic distinction is helpful
here:

• either patterns are small scale relative to the extension of the habitat, in which case
the whole habitat contains many varied instances of a unit pattern,

• or we are dealing with large-scale patterns, for which the habitat is not large enough
to comprise many replicates of any unit pattern.

The term “unit pattern” here is not meant in the sense of a spatial tiling, but rather refers
to the totality of spatial configurations at the scale above which the pattern becomes
repetitive and conveys no further information on essential degrees of freedom (for a way
of estimating this scale, see Chapter 12 in Dieckmann et al. 2000). Think, for example,
of an ecological habitat that is divided into two disjunct spatial domains, each of which
is occupied by a single species. Here, the pattern of spatial segregation spans the entire
habitat and thus occurs at a large scale relative to this habitat. In contrast, imagine that
local clumps are formed by individuals of one species, and that these are gradually invaded
by individuals of a second species, while at the same time new clumps of the former are
re-established elsewhere. In this case, a not-too-small habitat will comprise many clumps
and we therefore refer to the pattern as being small scale (with the various shapes of
clumps playing the role of “unit patterns”). The dichotomy is important because essential
degrees of freedom for large-scale patterns vary from pattern to pattern. This means that
for each type of large-scale pattern, it would be necessary to evaluate which essential
degrees of freedom best capture the system’s state. For small-scale patterns, however,
matters are simpler: here, average information on the local environments of individuals
often can capture the essentials of the spatial pattern. Although relaxation projections
can also be devised for large-scale patterns (Ellner et al. 1998), in this chapter we focus
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Figure 2 Pair correlation densities for field data and simulated pattern. Pair densities are normalized
so that mean-field expectations are 1 (shown as dashed lines). (a) Measurements by Mahdi and Law
(1987). Species 1 is Carex caryophyllea; species 2 is Carex flacca ; distances are measured in cm. At short
distances, small cross-correlations indicate heterospecific segregation. (b) Pair densities for the spatial
pattern in Figure 1b at time t = 15. As can be verified by examining the original pattern, large auto-
correlations and small cross-correlations suggest the existence of conspecific aggregations at spatial scales
of 0.1 to 0.2.

attention on techniques suitable for understanding the implications of small-scale spatial
heterogeneity.

Correlation densities

Given that interactions between individuals are local, the fate of each individual is de-
termined by its local environment. To understand the ensuing dynamics, we must take
a “plant’s-eye view” (Turkington and Harper 1979) of spatial heterogeneity. If patterns
are sufficiently small scale, individuals within each species experience similar “views,” and
essential degrees of freedom are thus given by descriptions of their average local envi-
ronment. For example, Mahdi and Law (1987) measured average local environments in
a community of grassland species by determining the expected densities of several other
species at various radial distances around individuals of a focal species (see Figure 2a).
We can do the same for the spatial patterns simulated in Figure 1b; results are shown in
Figure 2b.

The quantities illustrated in Figure 2 are special cases of a general class of spatial
statistics. These statistics are based on the densities at which certain spatial configurations
appear in a given spatial pattern.

• The simplest spatial configuration is a singlet; the density of single individuals in
a species across a given habitat simply corresponds to the mean density of the
considered species.

• Now consider the spatial density of pairs comprising an individual of species i and
one of species j (where j can be equal to i) that are a vectorial distance ξ apart
(see Figures 3a and 3b). Pair densities thus give information about the average local
environments of individuals in each species. Local environments often are isotropic,
that is, there are no special directions in space along which the pattern is aligned.
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Figure 3 Measuring pair correlation densities. (a) For a given planar pattern of area A and mean
density N , the density of pairs at distance ξ = (ξ1, ξ2) is assessed by counting, for a focal individual at
location x, the number of paired individuals within the square (x1+ξ1, x1+ξ1+dξ1)×(x2+ξ2, x2+ξ2+dξ2),
using a sufficiently small spatial resolution dξ. Repeating this procedure with each individual in turn
being the focal one and dividing the total count by A and by dξ1dξ2 yields the pair density at distance ξ.
Figure (b) illustrates how the resulting pair densities depend on ξ. (c) For isotropic patterns, it is useful
to average pair densities over all angles of ξ. Equivalently, paired individuals are counted in rings of radius
r = |ξ| and width dr, centered on a focal individual. Total counts over all focal individuals are divided
by A and by 2πr dr. Figure (d) shows the resulting radial pair density. Pair densities in (b) and (d) are
normalized by division through N2 so that mean-field expectations are 1.

In such cases (as in Figure 2), it is convenient to construct angular averages of pair
densities, or, equivalently, to determine the spatial density of pairs that are a given
length r = |ξ| apart (see Figures 3c and 3d).

• Apart from pairs, we can also examine spatial configurations comprising three indi-
viduals; for instance, individuals of species j and k that are at distances ξ and ξ′,
respectively, from an individual of species i. In an isotropic setting, these triangular
configurations are characterized by three radii, r, r′, and r′′ = |ξ′−ξ|, corresponding
to the three edges of the spanned triangle.

For any given pattern p we can thus define correlation densities of order m by

Ci1...im(ξ1, . . . , ξm−1, p) =
1

A

∫
pi1(x)

m∏
j=2

pij(x+ ξj−1) dx , (3a)

where i1 to im specify the species of the m individuals constituting the spatial config-
uration, and ξ1 to ξm−1 denote the distances of individuals 2 to m, respectively, from
individual 1. The integration extends over all locations x in the area A, which is assumed
to be large enough that effects resulting from its boundary are negligible. As described
above, special cases of correlation densities are given by mean densities (also referred to
as global or singlet densities),

Ci(p) =
1

A

∫
pi(x) dx , (3b)

by pair densities (also referred to as local, environs, or doublet densities),

Cij(ξ, p) =
1

A

∫
pi(x)pj(x+ ξ) dx , (3c)
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and by triplet densities,

Cijk(ξ, ξ′, p) =
1

A

∫
pi(x)pj(x+ ξ)pk(x+ ξ′) dx . (3d)

All correlation densities are given as integrals over products of spatial density functions
and are therefore also known as spatial moments. Pair densities (second moments) Cij
are also called auto-correlations for i = j and cross-correlations for i 6= j. For mnemonic
convenience, we denote mean densities (first moments) by Ni = Ci and triplet densities
(third moments) by Tijk = Cijk.

The spatial pattern p of an ecological community comprising m individuals is com-
pletely characterized (apart from its absolute location and orientation) by a correlation
density of order m. This is because for two individuals the pair correlation density has
a single peak at a location given by the vectorial distance between the two individuals.
For three individuals, the triplet correlation function would have such a single peak at a
location determined by the distances between individuals in the triangular configuration.
Analogously, for m individuals, information about all relative locations of individuals is
available from the mth-order correlation density. Although it is difficult to measure corre-
lation densities of high order, it is evident that information about a spatial pattern can be
represented either in location-based form (by specifying a pattern p) or in correlation-based
form (by specifying a correlation density C of sufficient order). These two representations
contain exactly the same information about the relative position of all individuals. We can
regard this equivalence as a coordinate transformation, expressing the same information
in two different ways.

What, then, is the advantage of describing the dynamics of spatial patterns in
correlation-based form? There are several reasons for doing so; here we give a preview of
features that will be developed in this chapter.

• Quantitative descriptions of spatial patterns ought to be based on suitable sum-
mary statistics; correlation densities define such statistics. In particular, this class
of statistics includes both mean densities and pair densities, two statistics that are
natural for describing small-scale patterns and are readily applied to field data (Rip-
ley 1981; Diggle 1983). Therefore, the expected dynamics of low-order correlation
densities provide valuable insight into the main characteristics of a developing spatial
process.

• Because first-order correlations correspond to mean densities, mean-field models can
be envisaged as a subset of correlation-based models. Correlation densities thus offer
a systematic way of gradually extending and refining the set of summary statistics
by successive integration of higher correlation orders. Such a task would be more
difficult if based on sets of disparate types of spatial statistics.

• High-order correlations often relax much faster than low-order correlations (see Fig-
ure 4); consequently, essential degrees of freedom are captured by the low-order end
of the correlation spectrum. It is for this reason that, for many spatio-temporal
processes, relaxation manifolds (see Box 1) take a simple and tractable form in the
space of correlation densities, whereas these manifolds tend to have a complicated
topology in the space of spatial patterns or when expressed in terms of other spatial
statistics. This feature of correlation densities greatly facilitates the application of
relaxation projections.

• Pair densities naturally arise when assessing population-level consequences of pair-
wise interactions under spatial heterogeneity. In fact, the integrals over pair densities
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n
c̄
t̄

Figure 4 Relaxation time scales of correlation densities. Already for a single-species system, dy-
namics of pair and triplet densities cannot be depicted in full. We thus use integral statistics c̄ =
N−2

1

∫
w

(d)
11 (ξ)C̃11(ξ)dξ and t̄ = N−3

1

∫∫
w

(d)
11 (ξ)w

(d)
11 (ξ′) × T̃111(ξ, ξ′) dξdξ′ instead and, for convenience,

also normalize mean densities to n = N1/N1(0). As an initial condition, we choose a distribution of indi-
viduals, designed to satisfy t̄ = 0. Even in the reduced state space (n, c̄, t̄), the system’s response to such
an artificial state is evident from the figure: (a) fast relaxation at a very short time scale is followed by
(b) subsequent changes occurring over a much longer time scale. To diminish the amount of noise, time se-
ries are averaged over 10 realizations. Parameters are the same as in Figure 1a, except for s.d.w

(d)
11 = 0.015

and s.d.m
(b)
1 = 0.05.

in Equations (1a) and (1c) extend the principle of “mass action” to spatially het-
erogeneous settings: formally speaking, individuals respond to linear functionals of
spatial distributions.

• Whereas essential degrees of freedom in large-scale patterns can vary widely from
process to process, correlation densities offer a universal representation of these
essential degrees of freedom for small-scale patterns. A general theory of small-scale
heterogeneity in ecological processes can therefore be built on the basis of correlation
densities.

Corrected correlation densities

A simple modification of the correlation densities defined above is often helpful. Whenever
a spatial configuration of order m > 1 is considered, the same individual may figure twice
in the description of the configuration. Whereas formally it is correct to count pairs
that individuals form with themselves, from an ecological point of view such pairs are
meaningless and misleading. For this reason, it is useful to construct corrected correlation
densities, from which so-called self-pairs and similar repetitive configurations are removed.
Corrected pair densities are marked by a tilde and, corresponding to Equation (3c) for
uncorrected pair densities, are defined by

C̃ij(ξ, p) =
1

A

∫
pi(x) [pj(x+ ξ)− δijδx(x+ ξ)] dx . (4a)
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With this correction, the focal individual of the first density function at location x is
removed from the second density function evaluated at location x + ξ. Of course, such
removal is only necessary if the two density functions describe the same species; otherwise,
individuals contributing to these functions belong to different species and therefore can
never be identical; this is taken care of by the Kronecker symbol δij. Similarly, we can
remove self-pairs and self-triplets from the third-order correlation densities,

T̃ijk(ξ, ξ
′, p) =

1

A

∫
pi(x) [pj(x+ ξ)− δijδx(x+ ξ)] (4b)

×
[
pk(x+ ξ′)− δikδx(x+ ξ′)− δjkδx+ξ(x+ ξ′)

]
dx ,

where, for the third density function, we have to subtract contributions of the focal indi-
viduals of both the first and second density functions.

With this additional refinement in place, we can now turn to describing the dynamics of
spatial patterns in terms of the corresponding dynamics of corrected correlation densities.

Correlation dynamics

Whenever a stochastic process of pattern dynamics is run, it creates a different realization
(see, for example, Figure 14.2). This is in keeping with field observations which show that,
although we may try to generate very similar initial spatial setups in, for example, plots
of plants intended as replicates, the actual processes in each plot usually result in a wide
variety of spatial patterns at later points in time. To extract the deterministic signal of
a spatial ecological process from among all accompanying stochastic noise, averages over
replicates are needed. If, however, we were to average spatial density functions across the
many different patterns that can arise from a single initial condition, we would merely
obtain an uninformative and rather unstructured “average pattern”: in the long run, high
abundances at some location in one replicate would cancel out low abundances at the same
location in other replicates. It is therefore important to average over spatial statistics,
rather than across spatial patterns. For example, the mean density of a particular species
averaged across realizations is a meaningful ecological quantity.

In this vein, we define expected values of corrected correlation functions as

C̃i1...im(ξ1, . . . , ξm−1) =

∫
C̃i1...im(ξ1, . . . , ξm−1, p)P (p) dp , (5)

that is, by weighting the correlation densities for a pattern p with the probability density
P (p) for that pattern to occur. We can now study the dynamics of expected correlation
densities [for notational convenience we omit the arguments (ξ1, . . . , ξm−1) of C̃i1...im in
the next three equations],

d

dt
C̃i1...im =

∫
C̃i1...im(p)

d

dt
P (p) dp . (6a)

Using Equation (2a), this gives

d

dt
C̃i1...im =

∫
C̃i1...im(p)

∫ [
w(p|p′)P (p′)−w(p′|p)P (p)

]
dp′dp , (6b)

which, by separating the difference into two integrals, swapping the integration variables
p and p′ in the first of them, and then joining the two integrals again, yields

d

dt
C̃i1...im =

∫ {∫ [
C̃i1...im(p′)− C̃i1...im(p)

]
w(p′|p)dp′

}
P (p)dp . (6c)

The term in curly braces is known as the first jump moment (van Kampen 1992) of the
mth-order correlation density; it describes the correlation density’s expected rate of change
around a given pattern p, and we denote it by ai1...im(ξ1, . . . , ξm−1, p).



– 16 –

Dynamics of mean densities

We can now evaluate the expected rate of change in mean densities, or first spatial mo-
ments, by using Equations (2b) and (3b) in Equation (6c). According to Equation (2b),
ai(p), the first jump moment of the first spatial moment in species i, can be decomposed
into three contributions coming from birth, death, and movement events, respectively,

ai(p) = a
(b)
i (p) + a

(d)
i (p) + a

(m)
i (p) . (7)

The birth contribution is

a
(b)
i (p) =

∫ [
Ni(p

′)−Ni(p)
]

(8a)

×
∑
j

∫∫
Bj(x, x

′, p)pj(x)∆(p+ ujδx′ − p′) dxdx′dp′ ,

which, after collapsing the integration over p′ using the definition of the generalized delta
function (see Box 4), simplifies to

a
(b)
i (p)=

∑
j

∫∫
[Ni(p+ ujδx′)−Ni(p)]Bj(x, x

′, p)pj(x)dxdx′ . (8b)

For all j 6= i, the term in square brackets is 0, while for j = i it is 1
A . We see this

by considering Ni(p + ujδx′) = 1
A

∫
(p + ujδx′)i(x) dx = 1

A

∫
pi(x) dx+ 1

Aδij
∫
δx′(x) dx =

Ni(p) + 1
Aδij . This gives

a
(b)
i (p) =

1

A

∫∫
Bi(x, x

′, p) pi(x) dxdx′ , (8c)

or, by using Equation (1c) and exploiting that m
(b)
i is the probability density for dispersal

and thus integrates to 1,

a
(b)
i (p) =

1

A

∫ [
bi +

∑
j

b′ij

∫
w

(b)
ij (x′′ − x)

×
[
pj(x

′′)− δijδx(x′′)
]
dx′′
]
pi(x) dx ,

(8d)

or, when separating terms for density-independent and density-dependent birth,

a
(b)
i (p) = bi

1

A

∫
pi(x) dx+

∑
j

b′ij
1

A

∫∫
w

(b)
ij (x′′ − x)

×pi(x)
[
pj(x

′′)− δijδx(x′′)
]
dxdx′′ .

(8e)

We now replace the integration over x with one over ξ = x′′ − x, use the definitions of
Ni(p) and C̃ij(ξ, p), and thus obtain

a
(b)
i (p) = biNi(p) +

∑
j

b′ij

∫
w

(b)
ij (ξ)C̃ij(ξ, p) dξ . (8f)

For death events, we have Ni(p− ujδx)−Ni(p) = − 1
Aδij , which yields

a
(d)
i (p) = −diNi(p)−

∑
j

d′ij

∫
w

(d)
ij (ξ)C̃ij(ξ, p) dξ , (8g)

while Ni(p− ujδx + ujδx′)−Ni(p) = 0 for movement events gives

a
(m)
i (p) = 0 . (8h)
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Collecting all three results together, and using Equations (6c) and (7), gives the ex-
pected rate of change in the mean density of species i

d

dt
Ni = + biNi +

∑
j

b′ij

∫
w

(b)
ij (ξ)C̃ij(ξ) dξ

− diNi −
∑
j

d′ij

∫
w

(d)
ij (ξ)C̃ij(ξ) dξ .

(9)

This result is readily interpreted. Movement does not contribute to the dynamics of mean
densities at all: moving individuals around does not alter their abundance. Notice that,

according to Equation (9), for both birth and death events the interaction kernels w
(b)
ij (ξ)

and w
(d)
ij (ξ) of individuals of species j at distance ξ from individuals in species i, are

weighted with the density C̃ij(ξ) at which individuals of species j are expected to be
found at a distance ξ around individuals of species i. Effective local densities – that is,
the integrals in Equation (9) – are then simply the sum of all such contributions. In this
way, the mean densities within a spatial pattern change according to the “individual’s-eye
view” of its local environment, as described by the pair densities. If spatial heterogeneity
were removed by setting C̃ij(ξ) = NiNj for all i, j, and ξ, we would recover the familiar
Lotka–Volterra dynamics of mean-field theory, d

dtNi = (bi − di)Ni +
∑

j(b
′
ij − d′ij)NiNj.

For spatially heterogeneous systems, however, this simple description is incorrect and the
dynamics of mean densities become contingent on those of pair densities.

Dynamics of pair densities

To provide the information on corrected pair densities C̃ij(ξ) as required in Equation (9),
we need to work out their expected rates of change. For this purpose, we follow the same
sequence of steps as was used for deriving the dynamics of mean densities and thereby
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gain the following general result:

d

dt
C̃ij(ξ) =

Birth



+ δijbim
(b)
i (−ξ)Ni

+ bi

∫
m

(b)
i (ξ′)C̃ij(ξ + ξ′) dξ′

+ δijm
(b)
i (−ξ)

∑
k

b′ik

∫
w

(b)
ik (ξ′′)C̃ik(ξ′′) dξ′′

+
∑
k

b′ik

∫∫
m

(b)
i (ξ′)w

(b)
ik (ξ′′)T̃ijk(ξ + ξ′, ξ′′) dξ′dξ′′

+ b′ij

∫
m

(b)
i (ξ′)w

(b)
ij (ξ + ξ′)C̃ij(ξ + ξ′) dξ′

Death



− diC̃ij(ξ)

−
∑
k

d′ik

∫
w

(d)
ik (ξ′′)T̃ijk(ξ, ξ

′′) dξ′′

− d′ijw
(d)
ij (ξ)C̃ij(ξ)

Movement


− |mi| C̃ij(ξ)

+

∫
mi(ξ

′)C̃ij(ξ + ξ′) dξ′

+ 〈i, j, ξ→ j, i,−ξ〉 .

(10)

The derivation of this equation is provided in Appendix A. All terms on the right-hand
side have a precise interpretation, given below. We first focus on the i individual of the ij
pair; analogous considerations apply to events undergone by the j individual, as discussed
at the end of the section.

The first five terms on the right-hand side describe the increase in the density of ij
pairs at vectorial distance ξ resulting from birth events in species i.

• A new i individual, arising from density-independent birth, generates a parent–
offspring pair of type ii with its parent. This is accounted for by the first term, which
therefore only contributes to the expected dynamics of auto-correlation densities; this
is reflected by the Kronecker delta δij. Multiplying the mean density of individuals
Ni by the density-independent per capita birth rate bi gives the rate for such events

creating a pair at any distance ξ; different distances occur at spatial density m
(b)
i (−ξ)

of parents around dispersed offspring.

• The second term also accounts for density-independent birth, but focuses on the new
pair that the i offspring forms with the j neighbor of its parent. If the i individual
of an ij pair at distance ξ + ξ′ gives birth to a new individual at distance ξ′ from
its parent, a new ij pair at distance ξ is generated. The per capita rate for density-
independent birth is bi, the density of ij pairs at distance ξ + ξ′ is C̃ij(ξ + ξ′), and

the spatial density of offspring settling around the i parent is m
(b)
i (ξ′). Multiplying

these three factors and integrating over all possible distances ξ′ of offspring dispersal
yields the second term.
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• The third term describes how, under density-dependent birth, a new parent–offspring
pair changes the density of ii pairs. Fecundity of an i individual can be modified
by the presence of a k individual at distance ξ′′. The expected density of k individ-
uals around the i individual is C̃ik(ξ′′), the interaction kernel for the ik pair yields

w
(b)
ik (ξ′′), so that integrating over all interaction distances ξ′′ gives the third term’s

integral. We then have to sum over all species k that exert such an effect: sign
and weight for the contribution of each species are determined by coefficients b′ik.
The resulting density-dependent per capita birth rate is multiplied by δij , since this

term only affects the dynamics of auto-correlations, and by m
(b)
i (−ξ), the density of

parent individuals as seen from the i offspring.

• The fourth term describes the effect of new offspring–neighbor pairs of type ij aris-
ing from density-dependent birth. As in the previous term, the fecundity of an i

individual in an ij pair at distance ξ + ξ′ can be modified by the presence of a k

individual at distance ξ′′ relative to the i individual. Under these circumstances, an
i offspring, located at distance ξ′ from its parent, generates a new ij pair at distance
ξ. The density of the original ijk triplet configuration is T̃ijk(ξ+ ξ′, ξ′′), the interac-

tion kernel for the ik pair yields w
(b)
ik (ξ′′), and the spatial density of offspring around

parent individuals is m
(b)
i (ξ′). Multiplying these factors and integrating over all pos-

sible dispersal distances ξ′ and interaction distances ξ′′ weights the effect of species
k in the fourth term’s sum. The resulting integrals are summed over all species k
that exert such an effect on i’s fecundity: signs and weights for these contributions
are again determined by the interaction coefficients b′ik.

• The fifth term, the last to account for birth effects, describes the consequences of
density-dependence of birth rates within the ij pair. The density of such pairs at
distance ξ+ξ′ is C̃ij(ξ+ξ′), and the effect that interaction with j has on i’s birth rate

is given by b′ijw
(b)
ij (ξ + ξ′). An i offspring at distance ξ′ from the i parent, arising at

density m
(b)
i (ξ′), creates a new ij pair at distance ξ. Integrating these three factors

over all dispersal distances ξ′ yields the fifth term.

The next three terms account for the decrease in the density of ij pairs at distance ξ
due to death events in species i.

• Density-independent death of the i individual of the ij pair occurs at per capita rate
di. Multiplying di by the density C̃ij(ξ) of ij pairs at distance ξ in the sixth term
gives the resulting decrease in that density.

• Density-dependent death of the i individual of the ij pair can result from the pres-
ence of a k individual at distance ξ′′. Such triplet configurations occur at density
T̃ijk(ξ, ξ

′′), and the cumulative effect of individuals of species k, situated at different
distances from the i individual, is obtained by weighting the triplet density with

w
(d)
ik (ξ′′), given by the interaction kernel for density-dependent death, and integrat-

ing the product over all interaction distances ξ′′. Multiplying this contribution of
species k with the corresponding interaction coefficient d′ik and summing over all
species k gives the seventh term.

• Like birth events, the density-dependent component of death rates can also be af-
fected by interaction of the focal i individual with its j partner within the ij pair.
The interaction coefficient for this interaction is d′ij, the effect of distance ξ on the
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strength of interaction is measured by w
(d)
ij (ξ), and the pair configuration occurs at

density C̃ij(ξ). The product of these three factors gives the eighth term.

The next two terms describe how the density of ij pairs at distance ξ changes because
of movement of the i individual.

• When the i individual moves, the original ij pair at distance ξ is destroyed. The
ninth term reflects this: here, the per capita rate |mi| for i’s movement is multiplied
by the density C̃ij(ξ) of the original pair configuration.

• On the other hand, a new ij pair at distance ξ is created when the original pair
distance is ξ + ξ′ and the i individual moves a distance ξ′. This effect is captured
by the tenth term, which weights the density C̃ij(ξ+ ξ′) of the original pair configu-
ration with the movement kernel mi(ξ) for species i and integrates over all possible
movement distances ξ′.

In all events described above we have focused on the i individual. Of course, analogous
events can occur to the j individual of the ij pair. When swapping the roles of the i and
j individuals, the distance vector ξ must also be reversed. The last term 〈i, j, ξ→ j, i,−ξ〉
accounts for this: it is shorthand for all preceding terms after changing i to j, j to i, and
ξ to −ξ.

4 Moment Closures and their Performance

A critical step toward simplifying the spatial complexity of ecological birth–death–
movement models is to close the correlation dynamics derived in Equations (9) and (10). In
this section, we introduce alternative closures and investigate their relative performance.

Moment hierarchies and moment closures

While the right-hand side of the mean densities’ dynamics, Equation (9), depends on pair
densities, that of the pair densities’ dynamics, Equation (10), contains triplet densities.
This observation can be generalized: when interactions are pairwise, for any order m of
correlation densities, dynamics are contingent on correlation densities of order m+1. The
resulting sequence of equations is called a moment hierarchy, the head of which is given
by Equations (9) and (10). This hierarchy precludes exploiting the dynamics of N unless
we have information on C̃; this information comes from the dynamics of C̃, for which we
need information on T̃ , and so on.

To escape from this cascade of dependencies, the moment hierarchy has to be truncated.
In other words, we have to express the correlation densities of order m + 1 in terms of
those of order m and below. Such expressions are called moment closures. In the previous
section, we saw that inserting

C̃ij(ξ) = NiNj (11)

into Equation (9) yields a closed dynamical system that is the mean-field approximation
of the considered birth–death–movement process. This comes as no surprise: assuming
C̃ij(ξ) = NiNj for all ξ implies pair densities that are independent of distance or, equiv-
alently, the absence of salient spatial structure. These are precisely the circumstances
under which the mean-field assumption is valid. We therefore conclude that using the
moment closure given in Equation (11) to truncate the moment hierarchy after the first
order recovers the mean-field approximation.
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To improve on this result we go beyond the first order of the hierarchy: the natural
next step is to truncate the hierarchy after its second order. For this purpose, we have
to express triplet densities, or third moments T̃ , in terms of first and second moments N
and C̃. Notice that in the derivation of Equations (9) and (10) no approximations have
been introduced; consequently, these equations are exact. The price that has to be paid
for a moment closure is that the resulting description is an approximation. In fact, the
performance of such an approximation may vary with the moment closure chosen. So
what criteria can guide the choice of moment closures to give a good approximation and
the desired truncation of the moment hierarchy at the second order?

Conditions for moment closures

Moment closures are not uniquely determined and thus alternative versions can be chosen.
Yet, some conditions narrow the range of options.

• Condition (C1). In the absence of any pair correlations, no information on spatial
structure is available to closures for triplet densities, and therefore individuals in
triplets must also be assumed to be uncorrelated. In other words, if C̃ij(ξ) = NiNj

for all i, j, and ξ, any consistent moment closure ought to yield T̃ijk(ξ, ξ
′) = NiNjNk

for all i, j, k, ξ, and ξ′.

• Condition (C2). Because attention is focused on small-scale spatial structure, pairs
of individuals separated by large distances are assumed to be uncorrelated. There-
fore, lim|ξ|→∞ C̃ij(ξ) = NiNj and lim|ξ|→∞

d
dt C̃ij(ξ) = d

dt(NiNj) = Ni
d
dtNj +Nj

d
dtNi

for all i and j, hold in general: any potentially developing structure is
supposed not to affect pair densities at large distances. When evaluat-
ing Equation (10) in this limit, consistency with Equation (9) requires that

we assume (i) lim|ξ|→∞
∫
w

(d)
ik (ξ′′)T̃ijk(ξ, ξ′′) dξ′′ = Nj

∫
w

(d)
ik (ξ′′)C̃ik(ξ′′) dξ′′ and

(ii) lim|ξ|→∞
∫∫

m
(b)
i (ξ′)w

(b)
ik (ξ′′)T̃ijk(ξ + ξ′, ξ′′) dξ′dξ′′ = Nj

∫
w

(b)
ij (ξ′′)C̃ij(ξ′′) dξ′′ for

all i, j, and k, and for all kernels w
(d)
ik , w

(b)
ik , and m

(b)
i . Conditions (i) and (ii) are

fulfilled if, and only if, lim|ξ|→∞ T̃ijk(ξ, ξ
′′) = NjC̃ik(ξ

′′) holds for all i, j, k, and ξ′′.

The two conditions above provide criteria for valid moment closures. We now have to
consider how to characterize good moment closures.

Moment closures as relaxation projections

To distinguish better moment closures from less suitable ones, the notion of relaxation
projections (see Box 1) becomes critical. Usually, not all degrees of freedom in a system
change on the same time scale. Some degrees of freedom are fast and decay quickly, while
others are slower and thus remain essential for a longer time. In particular, triplet densities
often have a much faster pace of change than both pair and mean densities. Figure 4 gives
an example illustrating this feature.

After a system’s fast degrees of freedom have decayed, they are no longer independent
variables and instead become functions of the slower degrees of freedom. For example,
when pair densities C̃ have decayed, it must become possible to express them in terms of
mean densities N . Such a relation is provided by Equation (11); it truncates the moment
hierarchy at first order. The mean-field approximation therefore can also be interpreted
as a relaxation projection. Likewise, after triplet densities T̃ have decayed, they lose their
role as essential degrees of freedom and can be expressed as functions of pair densities
C̃ and mean densities N . Such relations are the moment closures we are seeking for
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i

j

k

Figure 5 Triplet configuration for moment closure. Individuals of species i, j, and k are separated by
vectors ξ, ξ′, and ξ′ − ξ.

truncating the moment hierarchy at second order. As described in Box 1, good moment
closures match a system’s relaxation manifold and define a projection onto this manifold
that resembles the system’s actual relaxation dynamics.

Candidate moment closures

To express triplet densities T̃ as a function of pair densities C̃ and mean densities N ,
different assumptions for the relaxation manifold can be made. Here we introduce and
investigate four possible candidates:

T̃ijk(ξ, ξ
′) = C̃ij(ξ)Nk + C̃ik(ξ′)Nj

+ C̃jk(ξ′ − ξ)Ni − 2NiNjNk ,
(12a)

T̃ijk(ξ, ξ
′) = C̃ij(ξ)C̃ik(ξ

′)/Ni , (12b)

T̃ijk(ξ, ξ
′) = 1

2

[
C̃ij(ξ)C̃ik(ξ

′)/Ni

+ C̃ij(ξ)C̃jk(ξ
′ − ξ)/Nj

+ C̃ik(ξ′)C̃jk(ξ′ − ξ)/Nk −NiNjNk

]
,

(12c)

T̃ijk(ξ, ξ
′) = C̃ij(ξ)C̃ik(ξ

′)C̃jk(ξ′ − ξ)/(NiNjNk) . (12d)

All these candidate closures satisfy Conditions (C1) and (C2) as defined above. As a
counterexample, consider an alternative candidate, T̃ijk(ξ, ξ

′) = 1
3 [C̃ij(ξ)Nk + C̃ik(ξ′)Nj +

C̃jk(ξ′ − ξ)Ni], for which Condition (C1) holds but (C2) is violated.
The salient ingredients for these closures are the pair correlations along the three sides

of the triangular configuration of the i, j, and k individuals: C̃ij(ξ), C̃ik(ξ′), and C̃jk(ξ′−ξ)
(see Figure 5). The closures above can be constructed according to the following recipe.

• First, choose the power of the closure. This is the number of pair densities that are
multiplied by each other and determines the “building blocks” of the closure: for a
power-1 closure, each building block is a pair density; for a power-2 closure it is the
product of two pair densities; and for a power-3 closure, the product of three pair
densities.

• Second, construct all building blocks arising from permutations among the three
corners of the triangle.

• Third, modify each building block by multiplying or dividing by mean densities such
that it satisfies Condition (C1).
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• Fourth, add all blocks.

• Fifth, modify the sum by adding or subtracting NiNjNk blocks and divide by the
resulting net number of blocks so that Condition (C2) is met.

Closures in Equations (12a), (12c), and (12d) simply follow this recipe for powers 1, 2,
and 3, respectively. Higher powers are not considered since they would require repeating
pair densities in building blocks.

The closure in Equation (12b) is obtained from the same recipe by modifying the second
step. This is motivated by the asymmetric way triplet densities enter into Equation (10):
triplet densities there characterize the density of j and k individuals around a focal i
individual (or of i and k individuals around a focal j individual, see below), whose birth and
death rates are affected by its local surroundings. The i individual therefore has a special
role in the triplet; this is reflected in the closure in Equation (12b), which concentrates
on the pair densities along those two edges of the ijk triangle that are connected to the
corner occupied by the i individual (i.e., the ij and ik edges). For a focal j individual,
the same consideration applies: now the triplet configuration in Equation (10) is jik,
and in Equation (12b) the special role is assumed by the j individual. The closure in
Equation (12c), in contrast, gives equal weight to all three pairs of edges of the triangle;
the resulting expression for T̃ijk is thus completely symmetric under permutations of the i,
j, and k individuals. Closures that reflect the special role of the one focal individual cannot
be constructed for powers 1 and 3; thus, the asymmetric power-2 closure, Equation (12b),
is the only asymmetric closure included in the considered set of candidates.

The power-1 moment closure in Equation (12a) can be motivated by defining so-called

central third moments, T
(c)
ijk(ξ, ξ′, p) = 1

A

∫
[pi(x)−Ni][pj(x+ ξ)−Nj][pk(x+ ξ′)−Nk] dx,

and is based on the assumption that these are vanishing (see Chapter 20 in Dieckmann
et al. 2000; Bolker and Pacala 1997). In contrast, the motivation for power-2 closures
comes from a probabilistic argument. When assessing the probability density of a trian-
gular configuration based on pair correlations along edges, we notice that only two of the
triangle’s three edge vectors can be chosen independently; the third edge vector directly
follows from choosing the other two. Envisaging the probability density for a particular
triangle as the joint probability density for two of its edge vectors and assuming that the
contribution of both edges is statistically independent naturally leads to moment closures
that use products of two pair densities as building blocks (see Chapter 14 in Dieckmann
et al. 2000; Dieckmann et al. 1997, in press). The power-3 closure in Equation (12d) has a
long tradition in the literature of theoretical physics, where it is known as the Kirkwood
superposition approximation (Kirkwood 1935; Ziman 1979).

Testing the candidate closures

We now test the performance of the four candidate closures by comparing the results of
individual-based simulations with predictions derived from these moment closures.

The first test considers triplet densities directly. This requires measuring, at one
moment in time, the distribution of triplets in the three-dimensional space spanned by
the edge lengths (r, r′, r′′) of all triangles formed by triplets of individuals. For a triplet
configuration with a pair (ξ, ξ′) of edge vectors, we have r = |ξ|, r′ = |ξ′|, and r′′ = |ξ′− ξ|
(see Figure 5). Contour surfaces resulting from such a measurement of triplet densities
are depicted in Figure 6a, based on the same system as in Figure 4 at time t = 100.
Figures 6b to 6e are obtained by applying the moment closures in Equations (12a) to (12d),
respectively, to the mean and pair densities of the individual-based dynamics measured
at the same time. All four closures describe the triplet density’s shape roughly correctly;
it would be difficult to say which one performs best. An obvious discrepancy occurs
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Figure 6 Comparison of triplet densities in a single-species system with densities predicted by candidate
moment closures. (a) Triplet densities with radial distances (r, r′, r′′) realized at time t = 100 in the
system described in Figure 4 are shown as contour surfaces. Triplet densities can be envisaged as clouds of
varying intensity, and contour surfaces of increasing value are nested inside one another; the surfaces shown
correspond to triplet densities of 2 (left column), 2.5 (center column), and 3 (right column), all measured
relative to a mean-field expectation of 1. Notice that the three main diagonals of the boundary planes
through the origin span a pyramid, outside of which triplet densities are zero – a confinement resulting
from the three triangle inequalities for (r, r′, r′′). Realized singlet and pair densities at time t = 100 are
combined with one of the four moment closures in Equations (12a) to (12d) and predicted triplet densities
are shown in panels (b) to (e), respectively. To diminish the amount of noise, densities are averaged over
100 realizations.

for the asymmetric power-2 closure, which does not approximate the triplet density for
small distances r′′ very well. This is not surprising as, in a triplet, r′′ measures the
distance between the two neighbors of a focal individual; the pair correlation density
between these neighbors (which can differ from 1 when r′′ is small) does not enter into
Equation (12b). Ideally, one would want to repeat comparisons as in Figure 6 for different
points in time, different initial conditions and process parameters, and different numbers
of species. Measuring, depicting, and comparing densities in three-dimensional spaces,
however, is relatively difficult and time consuming and we therefore turn to describing two
alternative types of test.

In a second test, we consider the performance of the candidate closures in predicting
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Figure 7 Comparison of mean-density dynamics of a single-species system with predictions by candidate
moment closures. For a spatial logistic model, three different parameter combinations result in asymptotic
mean densities (a) similar to, (b) lower than, or (c) higher than the mean-field equilibrium of N1 = 200.
In each case, time series of mean densities for three realizations are shown in gray. Dynamics predicted
by pair correlation dynamics in conjunction with one of the moment closures in Equations (12a) to (12d)
are superimposed in black. Parameters are the same as in Figure 1a, except for (a) s.d.w

(d)
11 = 0.15,

s.d.m
(b)
1 = 0.15; (b) s.d.w
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11 = 0.05, s.d.m

(b)
1 = 0.05; (c) s.d.w

(d)
11 = 0.015, s.d.m

(b)
1 = 0.15.

time series of mean densities for different parameter settings of a single-species system.
When used in conjunction with Equations (9) and (10), to what extent can the closures
forecast the transient and asymptotic behavior exhibited by mean densities? We use three
different parameter settings, leading to mean densities that are similar to (Figure 7a),
lower than (Figure 7b), or higher than (Figure 7c) those expected from the mean-field
approximation. As one would expect, there is little to choose between the closures when
the dynamics are close to those of the mean field (Figure 7a). Under strong spatial
aggregation (Figure 7b), the asymmetric power-2 closure performs better than the others.
In the case of overdispersion (Figure 7c), the symmetric power-2 closure performs best.

We extend the comparison of closure performances to predict population dynamics
in a two-species system. In a third test, we investigate phase portraits of trajectories
for the mean densities of two competing species, with each trajectory starting from a
different initial condition. Results of individual-based dynamics are shown in Figure 8a.
Moment closures in Equations (12a) to (12d) are used to describe the dynamics of auto-
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Figure 8 Comparison of phase portraits of a two-species system with predictions by candidate moment
closures. Each panel shows trajectories of mean densities (N1, N2), starting from a grid of 16 initial con-
ditions. (a) Mean paths of the stochastic process, averaged over 20 realizations. (b to e) Phase portraits
predicted by pair correlation dynamics in conjunction with one of the moment closures in Equations (12a)
to (12d): (b) power-1 closure; (c) asymmetric power-2 closure; (d) symmetric power-2 closure; (e) power-3
closure. Notice that trajectories are projections from higher-dimensional dynamics and may thus in-
tersect one another; see also Figure 14.3. Parameters: b1 = b2 = 0.4, d1 = d2 = 0.2, d′11 = d′22 = 0.001,
d′12 = 0.005, d′21 = 0.002, s.d.w
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correlation and cross-correlation pair densities, Equation (10), which affect the dynamics
of mean densities, Equation (9). The phase portraits predicted by those moment closures
are displayed in Figures 8b to 8e. In this test, the power-2 closures clearly perform best
and yield accurate portraits of the actual dynamics. In particular, only the asymmetric
power-2 closure captures the fine details of the phase portrait. Performance of the power-1
closure is compromised by an instability at small densities, and the power-3 closure even
results in prediction of a wrong attractor.

The first test above (summarized in Figure 6) is independent of the correlation dynam-
ics and therefore directly probes the accuracy of the moment closures. In contrast, the
last two tests (recorded in Figures 7 and 8) rely on evaluations of the joint performance
of closures and correlation dynamics. While a benefit of the first test is its independence
of additional theory, more discriminating results and more direct relevance to predictive
quality are advantages of the latter pair. On the basis of these tests, we have chosen the
asymmetric power-2 closure for exploring ecological processes in Chapter 14 in Dieckmann
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et al. 2000. There is, however, much to be learned about moment closures, and we do not
intend to suggest that this particular closure performs best under all circumstances. To
gain further insight, there appears to be no alternative to empirical tests for particular
ecological settings, in the manner of Figures 7 and 8.

5 Further Developments and Extensions

In this chapter we have derived a closed dynamical system for describing spatially hetero-
geneous change in general ecological communities of interacting species. Instead of con-
sidering the simultaneous dynamics of mean and pair densities, Equations (9) and (10),
we can further simplify the description by using Equation (10) alone. This is possible
because Condition (C2), see Section 4, which is satisfied for small-scale spatial patterns,
implies lim|ξ|→∞ C̃ii(ξ) = N 2

i : consequently, information about mean densities is implicit
in the description of pair dynamics. After inserting one of the moment closures from
Equations (12), Equation (10) represents the central result of this chapter and provides a
powerful tool for reducing the complexity of individual-based models. We have explained
how this result is based on the method of moments : expressing the essential degrees of
freedom for a developing spatial pattern in terms of spatial moments and truncating the
resulting moment hierarchy using a suitable moment closure yields an approximation for
the expected dynamics of moments. The utility of such moment dynamics for describing
and understanding ecological processes under spatial heterogeneity is examined in Sec-
tion 4; a variety of successful applications are also presented in Chapter 14 in Dieckmann
et al. 2000.

To conclude this chapter, we briefly review several directions for further elaborations
on the method of moments. These extensions remove some remaining restrictions of the
results presented and broaden the scope of ecological systems amenable to simplifying
spatial complexity.

External heterogeneity and internal states

Moment dynamics can account for small-scale spatial heterogeneity in the external en-
vironment of populations. As discussed in Section 4.3 in Dieckmann et al. 2000, which
variables are considered external to a system depends on how the system’s boundaries
are defined. On a short time scale, for example, the concentration of soil nutrients in a
spatially extended plant community may be fixed in time and thus can be considered ex-
ternal to the system. In the long run, however, we expect feedback between the dynamics
of plants and nutrients. Another example is the effect that landscape patterns have on the
dispersal behavior of animals. Some butterflies, for instance, inhabit meadows that arise in
gaps created by forest fires, and while the meadows are easily traversed, stretches of forest
act as dispersal barriers. In this case, there is no significant feedback between the dynam-
ics of butterflies and forest trees. With or without such feedback, spatial heterogeneity
of environmental conditions encountered by a focal population can be formally treated on
par with the heterogeneity arising from the presence of extra populations. Straightforward
generalizations of Equations (10) therefore account for a population’s unfolding against the
backdrop of a heterogeneous landscape. Salient state variables are the auto-correlations of
the focal population, complemented by the auto-correlations of environmental conditions
(these may be variable or fixed) as well as the cross-correlations between the population
and its environment. Moment dynamics of this kind can provide insights into complex
interactions between internal and external mechanisms of ecological pattern formation.
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Another extension of moment dynamics allows the incorporation of details about the
state of individuals. For example, instead of characterizing a population of trees just by the
locations on which they are centered, the size of each tree (height or crown diameter) can be
accounted for as well. Implications of asymmetric competition for light, for instance, can
thus be studied in spatially heterogeneous settings. Also, a plea for dynamic neighborhoods
(see Section 2.5 in Dieckmann et al. 2000) that vary with, for example, plant size can be
met in this way. Other such internal states by which location-based information can be
augmented are the age of individuals, their physiological status, or their phenotype. In
each case, pair correlation densities take two extra arguments, measuring the internal state
of paired individuals in addition to their distance. Merging physiologically structured and
spatially structured population models in such a way is not easy; yet, such integration
would bring models closer to the reality of field systems and is therefore an important
path to follow in developing ecological theory.

Fluctuation and correlation corrections

The importance of taking an “individual’s-eye view” in determining the response of a pop-
ulation to its environment has already been emphasized. In this context, we must realize
that, for populations of finite density, any bounded neighborhood around an individual
will comprise only a finite number of individuals. When numbers of neighbors are large,
resulting sampling variation is negligible. But for many systems, neighbors around each
individual are few enough for the latter to experience substantially varying local environ-
ments. We thus have to ask whether and how such fluctuations feed through to population
dynamics and their description by moment equations. The answer comes in three steps.

We observe, first, that local fluctuations do not bear on the expected dynamics of
moments if individuals respond linearly to the local densities of individuals in their sur-
roundings. Equations (1a) and (1c) are based on this assumption – per capita birth and
death rates in these spatial analogues of Lotka–Volterra competition depend linearly on the
pattern of individuals – and therefore no fluctuation-related terms arise in Equations (9)
or (10). Under such circumstances, the mean response of a population to a distribution of
environments equals the response predicted for the distribution mean; consequently, local
fluctuations have no effect.

Second, even in the absence of spatial structure (i.e., without pair correlations), the
behavior of a well-mixed population of individuals that respond nonlinearly to relatively
small numbers of neighbors is different from that of a population under mean-field condi-
tions. A typical result is explained in Box 5.

Third, we can investigate the implications of nonlinear responses of individuals to
local fluctuations in the presence of pair correlations. Let us consider a single species for
which per capita birth and death rates are nonlinearly dependent on local densities, so
that, analogous to Equations (1a) and (1c), we have D(x, p) = d (n(x, p)) and B(x, x′, p) =
b (n(x, p))m(b)(x′−x), with local densities n(x, p) =

∫
w(x′′−x)[p(x′′)−δx(x′′)]dx′′. Under

mean-field conditions, the global mean density simply changes according to d
dtN = f(N)N ,

with a per capita growth rate f = b−d. With local fluctuations and correlations, however,
reasoning analogous to that in Section 3 shows that the mean-field result ought to be
replaced with d

dtN = [f(n̄) + 1
2σ

2f ′′(n̄)]N , with an average n̄ = N−1
∫
w(ξ)C̃(ξ)dξ and

a variance σ2 of local densities. Comparing both dynamics for the global mean density,
we observe two corrections relative to the mean-field result. First, a correlation correction
replaces the global mean density N with the average local density n̄ in the argument of the
response function f . This reflects the fact that, in the presence of correlations, the average
environment around individuals is different from the environment averaged over the entire
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Box 5 Fluctuation corrections in well-mixed systems

Even in the absence of spatial structure, fluctuations in the local environments of individuals
can cause departures from mean-field predictions if individuals respond nonlinearly to their
environment.

As an example (R. Ferrière, personal communication; Leitner, unpublished), consider
a completely randomly distributed population of individuals, whose recruitment from one
season to the next is affected by the number of competing neighbors.

For a mean density N and a uniform weighting of competitors within a neighborhood
area a, the average number of neighbors equals aN . Around this average, neighbor numbers
vary according to a Poisson distribution: the probability of finding n neighbors is Pn =
1
n!

(aN)ne−aN . If we assume that recruitment in the absence of any competition is R0

and that it decreases by a factor c with each competing neighbor, then for n neighbors
we have Rn = R0c

n. The expected per capita offspring number is thus given by 〈R〉 =∑∞
n=0RnPn = R0e

−aN∑∞
n=0

1
n!(acN)n = R0e

−aNeacN = elnR0−a(1−c)N . If the between-
season dynamics depend entirely on recruitment, the next season’s mean density is N ′ =
N〈R〉 = Ner(1−N/K), with r = lnR0 and K = lnR0

a(1−c) . This is the famous Ricker equation
(Ricker 1954) and is quite different from N ′ = NR0c

aN , the result expected in the absence
of fluctuations.

Results of this type are also available for more complicated interactions between indi-
viduals (Durrett and Levin 1994b; Czárán 1997) and are always important if individuals
respond nonlinearly to small numbers of neighbors. Notice that even though the systems
described by these models are assumed to be well mixed, the discreteness of individuals
and the finiteness of population densities can result in substantial departures from mean-
field predictions. To distinguish such corrections of mean-field results from those arising
from spatial structure, we refer to the former as fluctuation corrections and to the latter as
correlation corrections.

habitat. Without pair correlations, we have C̃(ξ) = N 2 [see Equation (11)], which yields
n̄ = N , thus recovering the mean-field result. Second, a fluctuation correction adds the
extra term 1

2σ
2f ′′(n̄) to the population’s response function. Notice that the sign of the

term and thus the direction of this correction depends on the response function’s curvature
at the average local density. We also see that this term vanishes if there are no fluctuations
in local densities (σ2 = 0) or if the response function is linear (f ′′ = 0).

Other spatial statistics and further reductions of complexity

Low-order correlation densities often capture the essential degrees of freedom in spatial eco-
logical processes. For isotropic systems, spatial complexity can be simplified even further
by considering angular averages of pair densities, as explained in Section 3 and Figure 2.
Such a transformation of Equation (10) then describes pair densities as a function of radial
distance instead of vectorial distance. One further step in removing non-essential degrees
of freedom can be accomplished by a short-range expansion of Equation (10), approxi-
mating pair dynamics by the dynamics of intercept, slope, and curvature of pair densities
at distance zero. That slope in particular is often a good measure of a pattern’s correla-
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tion length, characterizing how rapidly pair correlations decay with distance. Correlation
lengths can change in the course of ecological dynamics and thus carry key information
about patterns as well as processes.

These extensions emphasize that alternative kinds of spatial statistics may be most
appropriate for describing a given ecological system. In fact, correlation functions are
not the only choice of statistics suitable for simplifying spatial complexity – for particu-
lar systems, other relaxation projections may offer superior performance. Chapter 15 in
Dieckmann et al. 2000 provides an example by constructing a patch-based approxima-
tion of a spatial host–parasite system. Instead of tracing through time the probabilistic
cellular-automaton dynamics of that system, only the expected average abundances of
species in patches of different types are considered, thus yielding a deterministic descrip-
tion of substantially reduced complexity. Other examples are the so-called local structure
approximations of Hiebeler (1997) and the pair-edge approximation of Ellner et al. (1998).
The latter approach is especially suited to a class of large-scale spatial patterns where two
types of populations live in adjacent domains and a traveling invasion wave develops at
their interface (see also Chapters 16, 17, 22, and 23 in Dieckmann et al. 2000); for such
patterns, the position of the invasion front is the central degree of freedom.

This chapter has introduced a general theory of small-scale heterogeneity in ecolog-
ical processes that is based on correlation densities. Eventually, a tool kit of successful
relaxation projections and associated spatial statistics should become available to help
ecologists reduce various kinds of complex spatio-temporal models to manageable approx-
imations.

Appendix A Derivation of Pair Dynamics

In this appendix we explain how to derive the dynamics of corrected pair densities, presented in
Equation (10).

The expected rates of change in corrected pair densities C̃ij(ξ) are determined by the first
jump moments of these densities, see Equation (6c),

d

dt
C̃ij(ξ) =

∫
aij(ξ, p)P (p) dp , (13a)

with contributions coming from birth, death, and movement events,

aij(ξ, p) = a
(b)
ij (ξ, p) + a

(d)
ij (ξ, p) + a

(m)
ij (ξ, p) . (13b)

Let us focus on the birth contribution first. From Equation (6c) and Equation (2b), we have

a
(b)
ij (ξ, p) =

∫ [
C̃ij(ξ, p

′)− C̃ij(ξ, p)
]

×
∑
k

∫∫
Bk(x, x′, p)pk(x)∆(p+ ukδx′ − p′) dxdx′dp′ ,

(14a)

which, after collapsing the integration over p′ using the definition of the generalized delta function
(see Box 4), simplifies to

a
(b)
ij (ξ, p) =

∑
k

∫∫ [
C̃ij(ξ, p+ ukδx′)− C̃ij(ξ, p)

]
× Bk(x, x′, p)pk(x) dxdx′ .

(14b)
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With C̃ij(ξ, p + ukδx′) = 1
A

∫
(p + ukδx′)i(x)[(p + ukδx′)j(x + ξ) − δijδx(x + ξ)] dx = 1

A

∫
[pi(x) +

δikδx′(x)][pj(x + ξ) + δjkδx′(x + ξ) − δijδ(ξ)] dx = C̃ij(ξ, p) + 1
A

[δjkpi(x
′ − ξ) + δikpj(x

′ + ξ) +

δikδjkδ(ξ) − δikδijδ(ξ)] = C̃ij(ξ, p) + 1
A [δjkpi(x

′ − ξ) + δikpj(x
′ + ξ)], we obtain

a
(b)
ij (ξ, p) =

=
∑
k

1

A

∫∫
[δjkpi(x

′−ξ)+δikpj(x
′+ξ)]Bk(x,x′,p)pk(x)dxdx′

=
1

A

∫∫
[pi(x

′−ξ)Bj (x,x′,p)pj(x)+pj (x
′ + ξ)Bi(x,x

′,p)pi(x)]dxdx′

=
1

A

∫∫
pi(x)pj(x

′+ξ)Bi(x,x
′,p)dxdx′+〈i,j,ξ → j,i,−ξ〉 . (14c)

As in Equation (10), the expression 〈i, j, ξ → j, i,−ξ〉 is shorthand and stands for all its preceding
terms after changing i to j, j to i, and ξ to −ξ. Inserting Bi according to Equation (1c) yields

a
(b)
ij (ξ,p) =

1

A

∫∫
pi(x)pj(x

′+ ξ)
[
bi +

∑
k

b′ik

∫
w

(b)
ik (x′′ − x)

× [pk(x′′) − δikδx(x′′)]dx′′
]
m

(b)
i (x′− x)dxdx′+ 〈i,j,ξ → j,i,−ξ〉 ,

(14d)

or, when separating terms for density-independent and density-dependent birth,

a
(b)
ij (ξ, p) = + bi

1

A

∫∫
pi(x)pj(x

′ + ξ)m
(b)
i (x′ − x) dxdx′

+
∑
k

b′ik
1

A

∫∫∫
pi(x)pj(x

′ + ξ)

× [pk(x′′)− δikδx(x′′)]m
(b)
i (x′ − x)w

(b)
ik (x′′ − x) dxdx′dx′′

+ 〈i, j, ξ → j, i,−ξ〉 .

(14e)

The x-integration of pipj in the first term and of pipjpk in the second resembles the definitions of
C̃ij and T̃ijk in Equation (4a) and (4b), respectively. For full compatibility with integrands in these
definitions, we must subtract (and then add in again) one self-pair term for C̃ij, pi(x)pj(x

′+ ξ) =
pi(x)[pj(x

′ + ξ) − δijδx(x′ + ξ)] + pi(x)δijδx(x′ + ξ), and two such terms for T̃ijk, pi(x)pj(x
′ +

ξ)[pk(x′′) − δikδx(x′′)] = pi(x)[pj(x
′ + ξ) − δijδx(x′ + ξ)][pk(x′′) − δikδx(x′′) − δjkδx′+ξ(x

′′)] +
pi(x)δijδx(x′ + ξ)[pk(x′′) − δjkδx′+ξ(x

′′)] + pi(x)[pj(x
′ + ξ) − δijδx(x′ + ξ)]δjkδx′+ξ(x

′′). With
ξ′ = x′ − x and ξ′′ = x′′ − x, we thus obtain

a
(b)
ij (ξ, p) = + bi

∫
m

(b)
i (ξ′)C̃ij(ξ + ξ′, p) dξ′

+ δijbim
(b)
i (−ξ)Ni(p)

+
∑
k

b′ik

∫∫
m

(b)
i (ξ′)w

(b)
ik (ξ′′)T̃ijk(ξ + ξ′, ξ′′, p) dξ′dξ′′

+ δijm
(b)
i (−ξ)

∑
k

b′ik

∫
w

(b)
ik (ξ′′)C̃ik(ξ′′, p) dξ′′

+ b′ij

∫
m

(b)
i (ξ′)w

(b)
ij (ξ + ξ′)C̃ij(ξ + ξ′, p) dξ′

+ 〈i, j, ξ → j, i,−ξ〉 .

(14f)

We now turn to calculating the death contribution,

a
(d)
ij (ξ, p) =

∑
k

∫ [
C̃ij(ξ, p− ukδx) − C̃ij(ξ, p)

]
Dk(x, p)pk(x) dx . (15a)

With C̃ij(ξ, p−ukδx) = 1
A

∫
[pi(x

′)− δikδx(x′)][pj(x
′+ ξ)− δjkδx(x′+ ξ)− δijδ(ξ)] dx′ = C̃ij(ξ, p)+

1
A [−δjkpi(x− ξ)− δikpj(x+ ξ) + δikδjkδ(ξ) + δikδijδ(ξ)] = C̃ij(ξ, p)− 1

A{δik[pj(x+ ξ)− δjkδ(ξ)] +
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δjk[pi(x− ξ) − δikδ(ξ)]}, we obtain

a
(d)
ij (ξ, p) =− 1

A

∫
pi(x) [pj(x+ ξ) − δijδ(ξ)]Di(x, p) dx

+ 〈i, j, ξ → j, i,−ξ〉 .
(15b)

After inserting Di according to Equation (1a), this yields

a
(d)
ij (ξ, p) =− di

1

A

∫
pi(x) [pj(x+ ξ) − δijδ(ξ)] dx

−
∑
k

d′ik
1

A

∫∫
pi(x) [pj(x+ ξ) − δijδ(ξ)]

× [pk(x′′)− δikδx(x′′)]w
(d)
ik (x′′ − x) dxdx′′

+ 〈i, j, ξ → j, i,−ξ〉 .

(15c)

Notice that the integral in the first term matches the definition of C̃ij. To achieve full compatibility
with the definition of T̃ijk in the second term, we subtract (and then add in again) a self-pair term,
as we did in calculating the birth contribution: pi(x)[pj(x + ξ) − δijδ(ξ)][pk(x′′) − δikδx(x′′)] =
pi(x)[pj(x + ξ) − δijδx(x + ξ)][pk(x′′) − δikδx(x′′) − δjkδx+ξ(x

′′)] + pi(x)[pj(x + ξ) − δijδx(x +
ξ)]δjkδx+ξ(x

′′). With ξ′′ = x′′ − x, we arrive at

a
(d)
ij (ξ, p) =− diC̃ij(ξ, p)

−
∑
k

d′ik

∫
w

(d)
ik (ξ′′)T̃ijk(ξ, ξ′′, p) dξ′′

− d′ijw
(d)
ij (ξ)C̃ij(ξ, p)

+ 〈i, j, ξ → j, i,−ξ〉 .

(15d)

Finally, we calculate the contribution of movement events to the dynamics of corrected pair
densities,

a
(m)
ij (ξ, p) =

∑
k

∫∫ [
C̃ij(ξ, p− ukδx + ukδx′) − C̃ij(ξ, p)

]
×Mk(x, x′, p)pk(x) dxdx′ .

(16a)

With C̃ij(ξ, p− ukδx + ukδx′) = 1
A

∫
[pi(x

′′)− δikδx(x′′) + δikδx′(x
′′)][pj(x

′′ + ξ) − δjkδx(x′′ + ξ) +

δjkδx′(x
′′+ξ)−δijδ(ξ)] dx′′ = C̃ij(ξ, p)+ 1

A [−δjkpi(x−ξ)+δjkpi(x
′−ξ)−δikpj(x+ξ)+δikδjkδ(ξ)−

δikδjkδx′(x+ ξ)+ δikδijδ(ξ)+ δikpj(x
′+ ξ)− δikδjkδx(x′+ ξ)+ δikδjkδ(ξ)− δikδijδ(ξ)] = C̃ij(ξ, p)−

1
A
{δik[pj(x

′+ξ)−pj (x+ξ)−δjkδx(x′+ξ)+δjkδ(ξ)]+δjk[pi(x
′−ξ)−pi(x−ξ)−δikδx(x′−ξ)+δikδ(ξ)]},

and with Mi(x, x
′, p) = mi(x

′ − x) from Equation (1b), we get

a
(m)
ij (ξ, p) = +

1

A

∫∫
pi(x)

[
pj(x

′ + ξ)− pj(x+ ξ)

− δijδx(x′ + ξ) + δijδ(ξ)
]
mi(x

′ − x) dxdx′

+ 〈i, j, ξ → j, i,−ξ〉 .

(16b)

For matching the definition of C̃ij, we rewrite this equation by splitting the integral in two,

a
(m)
ij (ξ, p) = +

1

A

∫∫
pi(x) [pj(x

′ + ξ)− δijδx(x′ + ξ)]mi(x
′ − x) dxdx′

− 1

A

∫∫
pi(x) [pj(x+ ξ) − δijδ(ξ)]mi(x

′ − x) dxdx′

+ 〈i, j, ξ → j, i,−ξ〉 .

(16c)
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With ξ′ = x′ − x, this yields

a
(m)
ij (ξ, p) = +

∫
mi(ξ

′)C̃ij(ξ + ξ′, p) dξ′

− C̃ij(ξ, p)
∫
mi(ξ

′) dξ′

+ 〈i, j, ξ → j, i,−ξ〉 .

(16d)

Inserting the three results from Equations (14f), (15d), and (16d) into Equations (13) recovers the
dynamics of corrected pair densities, Equation (10).
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