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Preface

In the day-to-day management of river basins one of
the crucial issues is the derivation of real-time operating
policies, which are to be optimal in a certain sense, for
the water resource systems. As telemetered systems are
gradually coming into use this problem is becoming more
and more inportant for decision makers operating such
systems. In view of the inherent random nature of water
resource systems there is a lot of room for methodological
research as well, therefore the IIASA Research Plan for 1976
provides a task on the Methodology of Real-Time Forecasting
and Control of Water Resource Systems; the aim of which is
to contribute to the solution of the aforementioned problems.

As it turned out in the past few years the state space
modeling techniques are particularly well suited for study-
ing the problems of real-time forecasting/control in water
resource systems. Quite a number of papers have been pub-
lished on this subject, nevertheless water resource
engineers were and still are reluctant to use in the course
of their every day practice the techniques advocated. One
probable reason for that is that the papers mentioned assume
a certain amount of knowledge on the state space techniques,
an assumption which sometimes does not really hold. There-
fore, stimulated by needs of many practitioners, this paper
aims to give a short introduction to state space modeling
with particular reference to water resources systems.
Through a number of examples the notion and structural pro-
perties of states of water resource systems are discussed,
both for the deterministic and stochastic cases, since, as
Yevjevich (1974) states, "only an integration of both deter-
ministic and stochastic approaches promises the best math-

ematical-physical understanding and description of hydrologic

processes and environment". It will be seen that the state
space techniques are indeed capable of offering such an
integrated approach.

As the purpose of this paper is merely to give an
insight into the applicability of modern systems theory to
water resource systems, the mathematics will be kept on a
lower level, however, we will follow Einstein's dictum that
"an explanation should be as simple as possible but no
simpler". The recursive filtering and prediction algorithms
are not discussed here; they are left for another paper
where the final results of the aforementioned IIASA task
will also be reported.
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Finally, a technicality. The equations and examples in
each of the four sections are numbered independently. If a
reference is made from one section to an equation in another
section, the number of the section stands first followed by
the number of the particular equation referred to, e.g.,
equation (10) in section 1 is referred as (1-10) in any sec-
tion except section 1, where it is referred simply as (1).
The same holds true for the examples.
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Abstract

In section 1 the notion of state and state eguations
for water resource systems are discussed both for continuous
and discrete dynamics. Section 2 presents the solution of
state equation for linear systems including the derivation
of state transition and impulse response matrices. 1In
section 3 the structural properties such as observability,
controllability, indentifiability and minimal realizations
are discussed. Finally, in section 4 the state concept
for stochastic systems is reexamined. The state and
measurement disturbances are considered as being white
Gaussian noise processes and it is showed how the case of
of sequentially correlated uncertainties can be reduced
to an augmented system model having white Gaussian state
disturbance only. The paper concludes with the generaliza-
tion of structural properties for stochastic systems. To
illustrate the underlying concepts examples taken from a
broad range of water resources problems, such as rainfall
analysis, rainfall/runoff relation, reservoir and lake/
aquifer problems, water quality control etc., are presented.






1. THE NOTION OF STATE AND STATE EQUATIONS FOR
WATER RESOURCE SYSTEMS

The concept of state has its roots in the cause-effect
relation of classical mechanics and in fact is not an entirely
new concept but rather a unifying framework in which the rela-
tively easy handling of complex systems with many interactions
and/or input/output variables becomes possible. The state
space approach is based upon the internal description of the
systems as opposed to the classical internal description which

considers the input/output relations only.

The concept of the state of the system I (which is actually
the system model of the real system_g[and the word "system" is
unfortunately used for the sake of shortness even though it
might be ambiguous) is a mathematical entity which mediates
between the inputs and the outputs, i.e. the inputs act on the
state which, in turn, generates the outputs. As Casti (1976)
states, it is important to emphasize that the state, in general,
has no intrinsic meaning and is introduced solely as a mathe-
matical convenience in order to inject the notions of causality
and internal structure into the description of L. The only
quantities which have physical meaning are those which can
generate or observe, namely the inputs and outputs. It should
be stressed, however, that it is desirable for the model to
reflect and use as much physical information as possible, i.e.
the state variables, if possible, should have physical meaning.

This is the principle of physicality.

Another, more intuitive, interpretation of the state is
that it is the least amount of information which, together with
the current input, uniquely determines the state at the next
moment of time; in other words it is the minimal amount of
information about the past history of the system which is
required to predict its future behavior (&strdém, 1970). of

course, this is a somewhat circular definition, but it does




convey the intuitive flavor of the state concept.

Continuous Systems

Generally, systems are distributed over space and time and can
be described by partial differential equations (Butkovsky, 1969).
Our discussion here will be restricted to lumped systems des-
cribed by ordinary differential or difference equatiéns. First,
consider the continuous case where the system dynamics is given

by a set of differential equations. Thus, if
Xl(t)lXZ(t):---IXn(t)

are the state variables (or simply the states) of the process

at time t, and
ul(t),uz(t)..--,up(t)

are the input or control variables to the process at time t,

then the system may be described by n first-order differential

equations

x,(t) = fl[xl(t)lxz(t)r---rxn(t)lul(t)ruz(t);---rup(t)bt]

xz(t) = fZ[XI(t)IXZ(t)I"'IXn(t)rul(t)lu2(t)l°--lup(t)It]
(1)

kn(t) = fn[xl(t)IXZ(t)r~~orxn(t)ru1(t)ru2(t)l---lup(t)It]

where x; (t) is in general a nonlinear time varying function f;
of the states, the inputs and time. The n state variables may
be associated with separate axes in an n-dimensional (Euclidian)

space called the state space and denoted by X. The path or

motion of a system's states in their state space is called the

state trajectory which, in other words, describes the history

of state values in a given time interval. By defining
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x () Cx () ] =[xy (8) X (), .., xg (E)]7

Xz(t)

Xn (t)

as the state vector of the system, and

u(t) = [ul(t),uz(t),...,up(t)]T

as the input vector, the state or system equation can be written

x(t) = felx(o),u(e)] (2)

where the definition of f{ is apparent by comparison with (1).
If the input vector is missing from (2) the system is said to be
free; otherwise it is forced. As a matter of fact (2) gives
the relation how the inputs acts on the states which in turn

generate the outputs according to the algebraic relation
y(t) = helx®)l (3)
where y(t) is an m-vector of the output variables and hy is a

nonlinear vector function. In the literature (3) is called

output equation. Obviously m < n, indicating that sometimes

not all the state variables are connected directly to the output.

As an illustration of these concepts in a hydrological

context consider the following

Example 1 discussed in detail by Duong et al (1975).
As is well-known, direct runoff may be considered as
the result of the transformation of rainfall excess by
the basin. The physical process of this transformation

is very complex, depending mainly upon the storage



effects in the basin. (The reader interested in the
details and interconnections between the processes
involved is referred to Dooge's (1973) comprehensive
review.) To take into account these effects Kulandai-
swamy (1964) derived the following general expression
N n M m

st = ] an(qw T I buta,u) S
where S is the storage, t is time, N ahd M are integers,
and ap(g,u) and b;{(q,u) are parametric functions of the
direct runoff g and the excess rainfall u. To apply
the above storage relations to the study of the
rainfall-runoff processes in a particular watershed,
the values of N and M,‘and the form of a,(+) and bm(-),
respectively must be determined. Unfortunately, some-
times it is not feasible in practice. Therefore Prasad
(1967) suggested the use of a simplified storage equation

in the form of

S(t) = Kig¥(t) +x, $LEL
where K;, K, and N are the unknown parameters to be
estimated. In his study, Prasad assumed that these
parameters are constant for a particular hydrograph.
Using the continuity equation the following differential

equation is obtained for the rainfall-runoff process

d’q N-1 dgq -
KZ dtz + Kqu dt + q u

This can be written as

d’q _ _[1L N-1 dq _ (1 2 -
dt?- Kz Kqu 3t X, q + R, u . (E1 1)

By defining the following set of state variables



x1(t) = q(t)
X2 (t) = q4(t)
x3(t) = K

Xy (t) = %;
xs5(t) = N '

and assuming that the model coefficients are time invariant,
the Prasad model (E1-1) becomes

B X2 (t) )
%2 (t) ‘Xa(t)Xq(t)Xs(t)XIXS(t)_1(t)Xz(t)+Xu(t)[u(t)-xl(t)]
x3(t) | = 0
Xy (t) 0
X5 (t) ] L ' 0 ]
(E1-2)
or, in abbreviated notation,
R('t) = felx(t), u(v)] , (E1-3)

which, like (2), is a nonlinear state equation of time
invariant type. As for the output equation, one can
immediately realize that by choosing the output process
g(t) as being a state variable itself, it is in the form
of

cy(t) = [1,00,0,01] [ x1(t)
X2 (t)
x3 (t) (E1-4)
xy (t)
L xs5(t) |

or, like (3), in abbreviated notation as




y(t) = hilx(t)] . (E1-5)

In fact, the output equation for the Prasad model is a
linear one and the output process is scalar. The conclu-

sions of this example are:

It is not at all necessary that nonlinear output

equation be attached to a nonlinear state equation;

Variables with no direct physical meaning can also

be chosen as being state variables.

We mention that in a recent work by Maidment (1376) the
linearized form of the Kulandaiswamy model is illustrated

in a state space fashion.

Discrete Systems

Until now we have been discussing systems which evolve on a
continuous time set Tg = {t: t, <t «<tg}, t ) and tg being the
starting and finishing times respectively of the processes.

From now on we set ty, = O and tg may be either finite, N, or
infinite. We can define, similarly, a discrete time set

Tq = {t: t =0,1,2,...}, and we are interested in the state
space modeling of processes evolving on such a discrete time set.
By analogy with (2) and (3) the following nonlinear difference

equations can be derived for discrete time systems:

x(tb+1) = £ .[x(t), uly)l (4)

for the states and
y(t) = hilx(t)] (5)
for the output process. For the sake of illustration consider

the following example.



Example 2. In the hydrological literature many

y(t)

papers (Amorocho, 1963; Hino et al., 1971; Amorocho
and Brandstatter, 1971; Bidwell, 1971; Diskin and
Boneh, 1972; Diskin and Boneh, 1973; Zand and Harder,
1973; Quimpo, 1975) deal with the Volterra series
representation of the nonlinear rainfall-runoff system.

Such a representation has the form

= J hy(t;)u(t-1,)dTt: + JJ ho (t1,T2)ult-t1)ul{t-t2)drdt2
0] 00
+ ... + [J e J hu(Tl,...,Tu)u(t-Tl)...u(t—Tu)dTl...dTu
00 0

(E2-1)

where p is the highest index in the truncated representa-
tion, u(t) is the input to the nonlinear system and

h;, h,, ... are the Volterra kernels. The problem is
that of determining these kernel functions. To do that
Amorocho and Brandstetter (1971) used Laguerre poly-
nomials, Bidwell (1971) regression analysis, and Hino et
al (1971) and Quimpo (1975) a technique developed by Lee
and Schetzen which is based upon white noise input
process. Here, it is assumed that the nonlinear system
can be separated into cascaded blocks of linear dynamic
system and a zero memory non-linear system as shown in
Fig. 1. The linear subsystem has an impulse rzssponse
g(t) and the nonlinear subsystem has a power representa-

tion given by

y(t) = by y () + by yj(t) + ... + b yp(t),

(E2-2)
where y(t) is the output and yz(t) is the input to the
nonlinear subsystem; in fact the latter is the output of
the linear subsystem at the same time. So, the problem
is that neither the impulse response g(t) of the linear

subsystem nor the coefficients b,, b, ..., b, of the

H



nonlinear subsystem are known. As a matter of fact the
Volterra series for y(t) of this particular system can be
expressed in terms of g(t) and the coefficients of the
nonlinear part. To show this, it is to be noted that the
output yg(t) of the linear subsystem is given by the
convolution integral
Yg(t) = I g(t)u(t-r1)dT . (E2-3)
0]
Substituting this into (E2-2) the output y(t) can be
written as ‘
y(t) = b J g(ti)u(t T1)dt; + b> f g(ti)u(t-11)dT, x
O O
x© ) [o4]
x g(tz2)u(t-12)dt, + ... + b, J g(ty)u(t-1,)dty % ...
0]

Oo—

o]

x J g(ty)ult-t,)dr, - (E2-4)
0]

Comparing this expression with (E2-1) one concludes that

the Volterra kernels for the system concerned are given by
hij(t1,T2,++.,T5) = Dbj gi(Ti), i=1,2,...,u. (E2-5)

Now, let us assume that the input is an impulse function.
Then, by definition, the output yy(t) of the linear sub-
system is equal to the impulse response g(t). Consider

a truncated series approximation of g(t)

g(f) = g a; ¢1(t) , - (E2-6)
i=1
where aj are some yet unknown constant and ¢;(t) are a
set of chosen orthogonal polynomials, for example

Languerre polynomials. Substituting this series



approximation into (E2-2) the following expression is

obtained:
P 2 P H
= b, ) a;0,;(t) + bz[ ) ai¢i(t)] + ...+ bu[ N ai¢i(t)] .
i=1 i=1 i=1
(E2-7)
By defining a vector of unknown coefficients
T
X = a1, az, <., apl bi, b2, ..., bu] '
(E2-7) can be rewritten as
y(t) = hlx1, (E2-8)
where h[+-] is a nonlinear function. Comparing this

expression with (5) it becomes apparent that it is an
output equation acting on discrete states which are, in
fact, the parameters. As the coefficients ay,a2,---,ap
and bl,bz,...,bu are all constant one can construct a

linear state equation in the form
x(t+1) = x(t) , (E2-9)

where t€Tqy. The conclusions of this example are:

It is not at all necessary that a nonlinear state equation
be attached to a nonlinear output equation, and reversely
as it was shown in Example 1l; Again, variables with no

physical meaning can be chosen as being state variables.

We mention that Laguerre polynomials, due to the fact that
they can be computed recursively, are particularly well
suited for such an analysis. For details, see Dooge
(1965) and Amorocho and Brandstatter (1971).
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2. STATE EQUATIONS FOR LINEAR SYSTEMS

Continuous Case

The state equations for linear systems can be obtained as a
special case of (1-2). The dynamic behaviour of such a system
can be modeled by a set of first order linear differential

equations
x(t) = F(t)x(t) + G(t)u(t) , (1)

where te:Tc, x{t) is an n-vector 6f states of the system, u(t)
is a p-vector of input variables, F(t) is an n xn matrix, and
G(t) is an n xp matrix. These latter matrices, commonly

called the system matrices, are assumed to be continuous in t.

The initial state is given by x(O).

It is assumed that the output equation (1-3) is degenerated to

the following linear relation:
y(t) = H(t)x(t) , (2)

where y(t) is an m-vector of output variables, and H(t) is a

continuous m xn matrix which relates the states to the outputs.

The above model, from (1) and (2), is of time-varying type.
Clearly when F, G and H are constant we obtain a time-invariant
description. The system is thus specified by the triplet
(F,G,H), which will be denoted as I = (F,G,H).

Illustrating the above concepts through a series of examples,

first a simple catchment model is considered.

Example 1. Figure 2 shows a simple hydrological

system in which u; (t) and u: (t) are the rainfall inputs
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(say at different locations); the states are defined as
the surface storages x:(t), x2(t) and x3(t) and the
groundwater storage as x, (t) respectively. The constants
in each case are: k's for surface water flow, #£; and %
for infiltration. The expression £3[xs(t) —x3(t)]
signifies the exchange between the groundwater and the
stream. The outputs are y; (t) and y.,(t), the streamflow

output and the contribution of groundwater to streamflow,

respectively. The continuity equations for this problem
are
x1(t) = =—(k1+21)x:(t) + up(t)
X2 (t) = -—(kz2+22)x2(t) + uz(t)
(E1-1)
X3(t) = kixi(t) + koxa(t) + L3[xs(B)-x3(t)] - ksxs(t)
}.(u(t) = 2/1X1 (t) + £,%, (t) - 2/3[Xu (t) - X3 (t)] -

In vector-matrix form we have the following time invariant
continuous state equation, with the initial condition
x(0) = C.

x(t) = F x(t) + G u(t) (E1-2)
where
F = [ =(k;+2;) 0 0 o 71,
O —(k2+22) 0 O
ki ks -(ks + 23) L3
2/1 22 2/3 -2/3

o O O +
O O +~ O
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The output equation becomes
y(t) = H x(t) , (E1-3)

where
0 0 k; O
H o=
0 O =23 23

In the above example the states were being defined as
storages, i.e. a discrete physical meaning can be attached
to them. One might argue that, though this formulation
is conceptually simple and elegant it is not applicable to
practical problems, simply due to the fact that the
parameters in the matrices F, G and H are very much
uncertain, if not unknown completely. To surmount these
diffuclties the adaptive parameter estimation technique,

discussed in detail in Sz#l1ll8si-Nagy (1976), can be used.

Example 2. Duckstein and Kisiel (1972) investigated
the role of linear control theory as an aid to the
integral control of hydrologic systems for the case of
a combined lake and aquifer storage system that supplies
water demand. For illustrative purposes they demon-
strated the case of Lake Kinneret in Israel. The system
shown in Fig. 3 has a single output y(t) and two state
variables x;(t) and x:(t) that define the lumped linear
storage in the lake and aquifer respectively. By

continuity, the system output is
y(t) = (l-c)bx;(t) + (l-g)fx,(t) + (l-a)u(t) , (E2-1)

where u(t) is the flow, and a,b and f,g are constants

that may be subjected to control also. Now they are
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considered as being given fixed numbers. (E2-1) can

be written in the familiar form of output equations as

y(t) H x(t) + L u(t) (E2-2)
where H= [(l-¢)b,(1l-g)f], L = (l-a) and
x(t) = [x;(t), xz(t)]T. Similarly, by continuity, the

state equations for each of the lumped elements are,

respectively,
X1 (t) = =bx;(t) + gfx,(t) + au(t)
x2(t) = cbx;(t) - fx,(t)

In vector-matrix form these coupled differential equations

are

% (t) F x(t) + G u(t) , (E2-3)

where

To investigate stability form the following determinant

equation in A

~b-2A gf
| F - )\I | = = (0] ’
cb -f-
where I is the identity matrix. Expanding the above

determinant one obtains the characteristic equation

A2 + (b+£f)x + bf(l-cg) = O,
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whose discriminant
A? = (b-£)?2 + 4bfcg

is always greater than zero. Hence, the eigenvalues ),

and A, are always real

Also, (b+ £f) > A because (b+£f)? > A? = (b+ f)2 -4bf (1l - cqg).
Hence X3 and A afe always less than zero, and the system
is highly damped. Both the lake and the aquifer act as
filters or dampers so long as no energy (or water head)

is added to the system from another source; otherwise

the system may become oscillatory. The reader interested
in stability problems is referred to Willems (1970) for
further details.

Another illustration of the use of continuous state space
modeling as applied to hydraulics can be found in Muzik (1974),
where a model is developed describing the unsteady non-uniform
flow in terms of a set of first order ordinary differential
equations. Conceptually the model consists of a series of
interacting reaches with unsteady uniform flow subjected to

impulse input.

Discrete Case

As in the foregoing, relating to the continuous case,
state space models can easily be defined for discrete processes.

By analogy with (1) and (2) the state equation is defined as
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x(t+1) = ¢(t+1,t) x(t) + T(t) u(t) , (3)

where 3(t+1,t) is called the state transition matrix, which

in the case of free systems maps the state at time t to the
new state at time t +1. The control transition matrix T (t)
is similar to G(t) but it is denoted by I' to emphasize that
it stands for a discrete system. As in (2) the output equation

is given by

y(t) = H(t) x(t) . (4)

The matrix block diagram of this discrete linear system is
shown in Fig. 4. To differentiate from scalar block diagrams

the signal flow is depicted by fat arrows.

To illustrate the concept and solution of discrete state space
equations in water resources systems, the simplified storage

process of a reservoir is discussed below as

Example 3. The volume x(t+ 1) of stored water
at time t+1 in a reservoir with capacity V can be

calculated as follows:

0 E(t) + ¢x(t) «D(t)
x(t+1) = px(t) +E(t) -D(t), E(t) +¢x(t) >D(t) (E3-1)
\' E(t) + ¢x(t) > V+D(t)

where £(t) means the inflow to the reservoir at time t
and D(t) is the water demand at the same time. (For
simplicity both are regarded as being deterministic
variables.) ¢ is a reducing factor to account for
losses due to evaporation, seepage, etc. The wvolume
of stored water is chosen as being the (scalar) state
variable. Introducing a new variable u(t) =£(t) - D(t),

which might be called 'net inflow', the storage equation
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(E3-1) can be written as
x(t+1) = ¢x(t) + u(t) (E3-2)
with the initial conditions x(0),u(0) given. It is clear

that the state 'space' X is bounded by O and V. Equation

(E3-2) can easily be solved by recursive substitutions:

x{1) = ¢x(0) + u(0)
x(2) = ¢x(1) + u(l) = ¢%x(0) + u(l) + ¢x(0)
. t-1
x(t) = ¢x(0) + § ¢ot-T-ly(r) . (E3-3)
=0

The last one is the solution itself and is composed of

two parts, firstly the free or transient response, which
depends only on the initial state and in practice contains
all the information about the past of the system, and
secondly the forced response, which depends upon the input
(i.e. the net inflow). Using this example it might be
interesting to investigate the stability of the system.
Assume that the input is identically equal to one: u(t)= 1.
It might be thought of as an outflow from a regulated
reservoir located on an upper reach of the river, with an
outflow of 2D(t). Then (E3-3) becomes

x(t) = ¢Ex(0) + (L+¢+¢2+ ...+t

which has a solution

-4+t
$tx(0) + & ~b-, for ¢ # 1
x(t)

It

x(0) + t ' for ¢ =1

If we introduce x* = 1/(1 - ¢), then
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ot[x(0) - x*] + x* , for ¢ # 1

1]

x(t)
x(0) + t , for ¢ =1

The possible transient parts of this solution are
depicted in Fig. 5, from which one concludes that the
necessary condition for stability is that the absolute
value of the reducing factor must be less than one,

lo]| < 1. Otherwise the system either 'blows up' or

does not damp to an equilibrium state.

Solution of the time invariant discrete vector state
equation can be carried out along the same lines as in the

above example and is

t-1
x(t) = o¢tx) + 7 ¢t T7L ru(r) . (
=0

(&1

When the ¢ and ' matrices are time dependent, which is the case

in (3), the solution is

t-1 t-2 t-1
x(t) = Jlo(t+l,T)x(0) + } Y} o(t+l,T)T(T)u(t) + I (t=-1)u(t-1)
=0 u=0 T=y+l

(6)

Again, this is obtained by recursive substitutions.

To further amplify the applicability of the state space
approach in hydrology, the free discrete state equation model

of the rainfall process is given below as

Example 4. Gabriel and Neumann (1962) found that
a two-state Markov chain gives a good description of wet
and dry days. If ¢; denotes the probability that a dry
day is followed by a wet day, then 1 - ¢, means the
probability of the event that a dry day is followed by
another dry day. Similarly, if ¢, denotes the probability



-18-

that a wet day is followed by a dry day etc., then the

following transition probability matrix can be constructed:

Actual Day

Dry Wet
. (Stage 0) (Stage 1)
Dry (Stage O) 1-2¢, o1
Preceding Day = ¢,
Wet (Stage 1) b2 1-9¢> (E4-1)

which will here play the role of state transition matrix

and is assumed to be time-invariant. Of course,

0 £¢;1 «1 and O < ¢, « 1. Let the vector

x(t+1) = [xo(t+1l),x:1(t+1)]T denote the probability of
finding the system in stage O (dry day) or in stage 1 (wet
day) at time t+ 1. Let the initial condition, t=0, for
this vector be x(0) = [xo(O),xl(O)]T. First, consider
the event of being in stage 0 at time t+ 1. This event

can occur in two mutually exclusive ways:

(1) stage O prevails at time t and no transition out
of stage O occurs at time t + 1. This has a
probability of x,(t) (1 -¢,);

(2) alternatively, stage 1 prevails at time t and
a transition from stage 1 to stage O occurs
at time t+ 1. This has a probability of x;(t)é¢s.

The probability of being in stage 1 at time t+ 1 could

be obtained similarly. The probabilities at time t+1

are given by the recurrence relations

xo(t) (L=-1¢1) + x1(t) 92

Xo(t+ 1)

x1(t+1) Xo(t)dy + x1(t) (1 -¢42) .,

or, in vector-matrix form,

x(t+1) = ¢ x(t) , (E4-2)
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which is, cf. (3), an unforced or free state equation

with the solution
x(t) = ot x(0) , (E4-3)

according to (5), teTg. In fact, the related output

equation has the form
y(t) = Hx(t) , (E4-4)

where H=1 is the identity matrix; i.e. the states
themselves are the output variables. The power t of the
state transition matrix in (E4-3) can easily be calculated.
e.g. by the use of the Cayley-Hamilton theorem, and has

the form

ot = 1 (1-¢;-95)"
R b1+ 92

provided ¢ + ¢ # O. Since A; =1 and A, =1-¢1-¢, are
eigenvalues of ¢, and taking into consideration the fact
that x,(0) =1-x,(0), the final results for the probabili-

ties in (E4-3) are

Xo (t)

|

<

N
+
=

I
-
-

I
<
N

s
1
»

o
—~
@)

1
k=g
N

[ |

x1(t) = —Lz‘*' (1_¢1-¢2)t[x1(0) - _1491_] .

One question that arises is whetheér after a sufficiently
long period of time the system settles down to a condition
of statistical equilibrium in which the stage occupation

probabilities are independent of the initial conditions.
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If this is so then there is an equilibrium probability
distribution x* = [x*,x*]T and, on letting t-+e« in (E4-2),

x* will clearly satisfy

or (E4-7)
X*(I-06) = 0,

which will have non-zero solutions if the determinant

|1-¢| vanishes. With this and with the condition

* * =
X3 + X7 1

in mind one obtains the equilibrium probabilities

- $2 - $1 -
xg rewrareul xf 6?173; ’ (E4-8)

which are indeed independent of the initial condition

x(0) . To gain further interesting insight substitute
(E4-8) into (E4-6). The conclusions are left to the
reader. The equilibrium probabilities might in fact be

obtained by taking limits, t-—+®, in (E4-5) or (E4-6),
since |X2| < 1. Finally, for the sake of completeness,
consider the degenerate cases. It means that if

1 = ¢2 =0 then

x(t+1) = x(t) = x(0) ,
i.e. the system remains forever in its initial state.

This follows from (E4-1), (E4-2) and (E4-3). On the
other hand, if ¢, =¢, =1 then

Xo(t+l) Xl(t) Xo(t—l) ..o

X]_(t-l) ) ’

x;(t+1) X0 (t)

i.e. the system oscillates deterministically between two
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stages, and if the initial state is given, the behavior
of the system is non-random. See the remarks about

equilibrium states in Example 3.

State Transition Matrix

Now let us turn to the continuous case and consider the
solution of the continuous state equation, given by (1).
First we deal with the unforced case, u(t) = O. For such a
case the state equation is the homogeneous vector differential

equation

k(t) = F(t) x(t) . . (7)
Assume that the solution of (7) is known in the form

x(t) = &(t,0)x(0) , (8)

where again x(0) 1is the vector of initial states at to =0
and ¢(t,0) is a state transition matrix since it maps the

initial state into a state at any later time t > O. Obviously,
®(0,0) = 1, : (9)

i.e. at the initial time the state transition matrix is the
identity matrix itself. Taking derivatives of the assumed
solution (8), one obtains

x(t) = L o(t,0) x(0) = &(t,0) x(0) . (10)

dt

On the other hand, premultiplying (8) by F(t) shows that (7)

becomes

X(t) = F(t) o(t,0) x(0) ,
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which combined with (10) gives
&(t,0) x(0) = F(t) &(t,0) x(0) . (11)
Since (11) must hold for all possible initial states it yields
$(t,0) = F(t) &(t,0) . (12)

That is, one concludes that the state transition matrix
satisfies a matrix differential equation, given by (12), and

the solution is unique.

For time invariant systems F(t) =F. The state transition
matrix depends only on the lag t-t,, i.e. in our case on t
only, ¢(t,0) = ¢(t). For this case the solution of (12) is

readily obtained as
o(t) = exp (Ft) , (13)
which is known as the matrix exponential.
The state transition matrix has some interesting properties.

The first, namely (9), has already been mentioned. For

realizing the second property consider the expressions

x(t2) = &(ty,t:) x(t;)
x(ti1) = o(t1,te) x(ty)
since (8) holds for any initial state. Here, to give a more

general flavour we used to, to indicate the initial time.

That is, by substitution
x(t2) = &(ta2,ty) o(t;1,te) x(ty)

By definition of the state transition matrix, on the other
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hand,
x(t2) = &(t2,to) x(to) .

Taking into account that x(t,) is arbitrary, by combining the

above two expressions we have

d(ta,to) = &(t2,t;) d(t1,t0) (14)
for any tg, t; and t,, independently of the order of them.
It is clear from (14) that the state transition matrix is never
singular

and does have an inverse. To examine the third property

consider the expressions

d(ta,t1) x(t1)

x(t2)

(ty,t2) x(t2) .

x(t1)

Premultiplying the latter by the inverse state transition

matrix

71 (t1,t2) x(t;) = x(t,)

and comparing this with the former, we have the relationship

™1 (t1,t2) = O(ta,ty) (15)
for any t; and t; in any order. That is to say to change
subscripts the state transition matrix must be inverted. A

diagrammatic representation of these properties is shown in
Fig. 6. In summary, the state transition matrix has the

following properties in continuous case:
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Time varying systems Time invariant systems
(1) | ®(tosto) =1 exp [F(to—to)] =1
(11) | ®(E2/to) | exp [F(tz2-to)]
= o(tz2,t1)0(t1,to) = exp [F(tz-t1)]exp[F(t;-ty)]
(III)| ¢~ ' (ty1,t2) = &(ta,t)) exp [~F(t1-t2)] = exp[F(tz-t1)]

Other relationships involving the determinant of the state

transition matrix are

S 1 et t0) | [tr F(t)] | o(t,to) |

and
t

exp | J tr F(t) dt |,
t

0

| @(t,to) |

where tr denotes the trace of the transition matrix, i.e. the
sum of its elements along the main diagonal. The proof is
simple; for details consult Meditch (1969)

Solution for Continuous Systems

Now, we can turn to the solution of the state eguation
of forced linear dynamic systems given by (1). Here the
Lagrangean method of variation of constants will be used. In
this method a function is to be constructed which, upon multi-
plication with the homogeneous solution, satisfies the given
state equations. It is assumed that the initial condition,

say ¢, in the solution

x(t) = o(t,to) c(t) (16)
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of the homogeneous equation is also a function of time which is

to be determined. Derivation of (16) gives’™
X(t) = o(t,to)&(t) + d(t,to) c(t) .
Substitution of (12) into the above expression gives
x(t) = &(t,to) ¢(t) + F(t) d(t,ty) c(t) (17)

On the other hand, by substituting the assumed solution (16)

into the original differential equation (1) one obtains
x(t) = F(t) o(t,to) clt) + G(t) u(t)
which, combined with (17), yields
o(t,to)e(t) = G(t) u(t)

Premultiplying this expression by the inverse of the state
transition matrix the following differential equation is
obtained:

&(t) = o~ '(t,tg) G(t) ult) .

Integrating over [ty,t] and considering that by (8) and (16)
c(ty) = x(tg), the function c(t) is
t
c(t) = x(to) + J = (t,te) G(t) u(t)dr ,
to
which, if substituted into (16), gives the solution of the
state equation (1) as
t
x(t) = ©o(t,ty) x(to) + [ ¢(t,t) G(t) u(r) dr , (18)
to

where the relations (14) and (15) respectively have been applied.
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According to the output equation (2) the output is then given
by
t
y(t) = H(t) o(t,te) x(to) + J H(t) o(t,t) G(1) u(r)dr (19)
to

For time invariant systems, by considering (13) one can

immediately obtain the solution for the states as

. t
x(t) = o (E-t0) X(to) + J eF(8-T)g u(t)dr , (20)
to
and for the output as
t
y(t) = meF F7F) yeg) 4 J B eF &g u(mar . (21
to

In fact the solutions in both cases can be split into

two parts

x(t) 5§[X(to)] + 55[%th0,t)] ’ (22)
where the first part is the free response which depends only on
the initial state and in practice contains all the information
about the past of the system, while the second part is the
forced response which depends upon the input segment

%%to,t) = {u(t):t = to,t1, ...,t}; and of course both of them
depend upon the structure of the system represented by the
matrices ¢() and G(-). To emphasize the similarities between
the continuous (20) and discrete (5) solutions, a table is
presented below for the time invariant system. A similar one
can of course be set up for time varying systems. To make

the similarities even more apparent, (13) 1is used.
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Continuous Time Discrete Time
Free Component d(t) x(0) ot x(0)
© E . |
Forced Component f@(t-T)G u(t)dr Y o0 T u(t)
=0
to
Example 5. As an example the Nash model of the
rainfall-runoff process is discussed here. Nash (1960)

modeled the surface runoff by a series of n reservoirs
each of which has the same storage coefficient K which
is a dimensionless constant. It is assumed that the
outflow from one reservoir is proportional by k to the
content of the reservoir in question (Fig. 7). Let the
content of the ith reservoir at time t, x;(t), be the
ith state variable. Then by continuity, the state

equation 1is

[ %1 (t) ] -k (%, (£)] 1 Ju(t)
(0]
}'(2 (t) k -k X2 (t) (0]
. = k -k . + . (E5-1)
. )
L kn(t) | i k -k J_zn(t)_ L O |

or, in vector-matrix form,

x(t) = F x(t) + G u(t) . (E5-2)

Since the outflow from the last reservoir is the output of

the system, the output equation becomes

y(t) = H x(t) , (E5-3)
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where H = [0, O, ..., k]. If the system is initially
relaxed and the input is a Dirac function, u(t) = §(t),

then the output is the impulse response of the system,

y(t) = h(t), which is in fac. the instantaneous unit
hydrograph. Considering that the input is an impulse
function, (E5-1) can be solved successively instead of
by the general solution (20). Thus
%1 () + kxy (8) = 8(t) ~ x () = e Xt
%2 (t) + kxo(£) =k e XF 5y, (t) = kt e XF

i-1

_ (k) -kt
&) = @F-pr°

That is, according to (E5-3), the impulse response is

(xt)? 1 ke

h(t) = an(t) = k W e ’

(E5-4)

which, by letting k = 1/XK, gives the well-known Nash IUH

Alict

1 (g)1 1 -
hit) = ¢ H -7 €

It is interesting to note that the same expression for the
use of successive routing through a characteristic reach
for channel routing has been derived by Kalinin and
Milyukov (1957). Their procedure is based upon the
linearization of the unsteady flow egquation. The

similarities with Muzik's approach (1974) are apparent.
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Impulse Response Matrix

When the system is initially relaxed, x(to) = O, then the

impulse response matrix of the system is given by
grit, 1) = H(t) e(t,1) G(1) (23)

since (18) becomes
t
y(t) = [é#?t,T) u(t) dr . (24)
to

The name of the impulse response matrix derives from the fact
that each element hij(t,r) of ¢ (t,1) is the response of the
ith component of y(t) for a unit impulse input in the jth
component of u(-) applied at time T. The use of the system
impulse matrix is convenient when one wishes only an input-
output relation and is not concerned with the system's state

variables.

For time invariant systems J#(t,1) = H#(t-1), i.e.

t
y(t) = f gt - 1) u(t) dr , (25)
to
which is the well-known convolution. t is clear from (21)
that g#(t-1) = H exp F(t - 1) G. Equations (24) and (25) give
the external description of a linear dynamic system. This

means that the input-output behavior is described by a Volterra

integral equation.

Discrete Formulation

In practice the aforementioned procedures are applied
mainly for digital computers that work in a discrete environment.

Care must be exercised, however, when one wishes to set up a
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discrete linear model for a system which has continuous linear

dynamics in reality.

Let a discrete time set Td=5{t:t=to,tg+l,...,tk,tk+1,...}
be given and consider the time interval tj € t< ty,; for some
k=0,1,... We assume that x(tyk) is given and u(t) =u(ty) is
constant for t, T t ¢ thpy- Then it follows from (18) that

trs1 |
X(tk+l) = ¢(tk+l’tk)x(tk) + |:J q)(tk+l'T) G(T)dT}U(tk) (26)
tx
Defining
x(t+1) = x(tk+l)
x(t) = X(tk)
q)(t"'llt) = Q(tk_'_lrtk)
and tr+1
r) = J ¢(tk+l,T) G(t)dr , (27)
tk

we can write (26) as
x(t+1l) = d(t+1,t) x(t) + T'(t) u(t) , (28)

for t =0, 1, ..., which is identical to (3). It is important
to emphasize that the above discrete system is described from a
continuous system, therefore the invertibility of the state
transition matrix is always assured and computational difficul-
ties do not arise. The output equation is the same as in the

pure discrete case.

Example 6. Here the discrete state space formulation

of the continuous Streeter-Phelps model is discussed.
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Engineefs used this model for many years to describe the
changes in water quality of a river. Although there are
much more sophisticated techniques that have been developed
in the past few years for water quality modeling, the
Streeter-Phelps model is still in use, mainly because of
its simplicity. In many cases it still gives meaningful
answers and elegant results. To prove this the reader
is referred to the extremely rich literature on this
subject (Koivo and Phillips, 1971; Young and Beck, 1974;
Singh, 1975; Sz0ll6si-Nagy, 1975; Gourishankar and
Lawson, 1975).

The model assumes that the water quality of the river can
be characterized by the dynamic interrelationship between
the biochemical oxygen demand (BOD) and the dissolved
oxygen (DO). Further, it assumes a first order reaction
kinetic for the BOD

d B(t) _ _ _
Sge L = - Ky B() (E6-1)

where B(t) is the BOD concentration in mg/%2 and K, is

the BOD removal or decay coefficient in day™! By
continuity
d D) = -k, D(t) - Ky B(£) + K, Dg (E6-2)

where D(t) is the DO concentration in [mg/%2], K5 is the
re-aeration coefficient in [day~ '], and Dg is the satura-
tion level of the dissolved oxygen. Defining the state
variables as x;(t) =B(t) and x,(t) =D(t) - Dg respectively,
the latter being known as oxygen deficit and having' direct
physical meaning, the state equation for the Streeter-Phelps

model 1is

x(t) = F x(t) , (E6-3)
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where
-K- 0
F =
-K,  -K,
is considered to be constant. As a matter of fact one of

the objectives of setting up a water quality model is to
control the water quality itself in order to achieve a
desirable level of quality. The water quality of a river
might for example be controlled by, amongst other things,
treatment plants and artificial aeration facilities located
along the river. We define the control vector as

u(t) = [u1(t),u2(t)]T, where u; (t) is for control of
effluent dumping from the sewage treatment plant and u; (t)
is for artificial aeration carried out. The first control
might mean, say, the operation rule for a retention
reservoir situated right after the treatment plant; the
second control is the timing schedule for the aeration
facilities. So, considering (E6-3), the process model

becomes

x(t)

F x(t) + G u(t) , (E6-4)

where

The minus sign refers to the fact that the more the
artificial aeration the less the oxygen deficit, and vice
versa. And now we are ready to derive a discrete model
for the continuous process given by (E6-4). According to
(13) the state transition between two discrete time epochs

t and t+1, respectively, is characterized by the
d(t + 1,t) = exp F (E6-5)

matrix exponential. Since the eigenvalues of F are
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negativés, A1==-Kr and X, = -K5, the system (E6-4) is
stable. Using the well-known Sylvester expansion theorem,

the one-step state transition matrix is obtained as

exp (-K,) : 0]
d(t+l,t) = N B¢ T
Xr (-Kg) - exp (-Ky)] (-Kg)
) KoK, [exp (K, exp adl T exp a
provided that K, # Kyp. As for the determination of the

control transition matrix T'(t), (27) is evaluated and, due
to the special structure of G, gives the same form as
(E6—6) except that the matrix element in the lower right
hand corner is negative. In fact both the state and
control transition matrices are time invariant and hence

the discrete state equation of the continuous process is
x(t+1) = ¢ x(t) + T u(t) . (E6-7)

As far as the output of the system is concerned, the
situation is that the evaluation of BOD concentration
usually needs several days in a laboratory and to determine
real-time control policies DO measurements are available

only. That is
y(t) = H x(t) , (E6-8)

where H = [0,1]. The system thus is specified by the
triplet (¢, T, H), which will be denoted as £ = (%, T, H).
The dynamics of this water quality control system is shown

in Fig. 8.
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Example 7. Here we determine the impulse responses of
the water quality system discussed above. Let us assume
that the system at ty, =0 is initially relaxed, i.e.
x(o) = O (or it is transformed into an initially relaxed
system by the transformation x' (o) = x(0o) - x*, where x* is
some equilibrium state). Then the state transition matrix
is

—KrT

e 0

¢(t,0) =

___Kr o Krt _ ~Kat ' o~Kat
Ka—Kr

According to (23) the impulse response vector for the water

quality system is

K - - -
S¥(1) = H &(1,0)G = [_ < _; [e KrT__e KaT]I_e KaT] ,
a " tr

and the output is given by (25) as

t
K Ky (t- ~Ka (t-
o - [l e ),

o

_e‘Ka(t—T)} u; (1) } dr .

uz ()

Subsequently we deal with systems which are either discrete by
nature or have been transformed from the continuous description

into a discrete one.
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3. STRUCTURAL PROPERTIES FOR LINEAR DISCRETE SYSTEMS

In this section we consider two fundamental concepts of
linear system theory which are intimately related to the basic
ideas of estimation and control. These notions, termed obser-
vability and controllability are due to Kalman (1961). 1If
these conditions are not met, optimal control, estimation, and

identification cannot be obtained.

Previously we have seen that many systems have only one
output variable even though many state variables might be neces-
sary to describe the internal behavior of the systems. Similar-
ly, there may be only one or a few inputs to the system and
there might be states which are not affected by the input(s).

The pertinent guestions are:

1. Under what conditions is it possible to establish,
in a finite interval of time, the time history of
the state of a dynamic system given the time history

of the output over the same interval?

2. Under what conditions is it possible to transfer
the state of a dynamic system from a given state
to a desired state in a finite interval of time

using a control u?

To illustrate the problems related to these questions con-
sider the dynamic system I shown in Fig. 9 (Meditch, 1969),
where d is a vector whose components consists of some or all
of the elements XqreserXp. Because of the system's structure
there is no way that the values Xppqree+ 01X, can be determined
from the output y, since these variables do not affect Xqreoor Xy
nor do they appear in y. Such a system is said to be unobser-
vable. On the other hand, since u affects all of the elements

of x the system is controllable. By changing the direction of
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the vector d, as shown in Fig. 10, an observable-uncontrollable
system is obtained since u affects only the variables XqreeorXy
but all of the state variables are observable. As Kalman (1962)
showed in his canonical structure theorem any linear dynamic
system can be decomposed into four subsystems: (1) a control-
lable and observable subsystem; (2) a subsystem which is con-
trollable but not observable; (3) a subsystem which is not
controllable but observable; and finally, (4) a subsystem which
is neither controllable nor observable. This decomposition is
shown in Fig. 11. ©Note, that in Figs. 9,10, and 11 the sub-
scripts c,¢#,0, and 4 stand, respectively, for controllable,

uncontrollable, observable and unobservable.

Observability

Consider the discrete linear dynamic systems given either
by (2-3) and (2-4) or by (2-28)

x(t+1) = o(t+1,t)x(t) + T(t)u(t) (1)
y(t) = H(t)x(t) , (2)
where t=0,1,... . We assume that the input sequence

{u(0),u(1),...} is given but x(0) is unknown. Now, the problem
is, as posed by question 1, that we wish to determine x(t) from
an examination of y(t) over some finite interval of time. Ob-

viously if H(t) in nxn and nonsingular for all t>0, then
-1
x(t) = H "(t)y(t)

and the guestion of observability is resolved trivially. The
same can be inferred if H(t) is nxn but nonsingular for only

one value of tZO, say ti'

The real problems arise when either H(t) is nxn but singular
for all t>0 or H(t) is mxn, m#n. For these cases it is not at
all clear how x(t) can be determined from y(t), 0<t<N, for some

finite N.
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With this in mind we define observability in the following
way.
The discrete linear dynamic system given by
(1) and (2) is observable if x(0) can be
determined from the set of outputs y(1),...,
{y(1),...,y(N)} for some finite N. 1If
this is true for any initial time, the

system is said to be completely observable.

Since u(t) is assumed known for all t>0, its contribution to
x(t), which is given by the second terms of either (2-6) or
(2-26), is easily determined. Hence, it is sufficient to con-

sider only the unforced system

x(t+1) = ¢(t+1,t)x(t) (3)
y(t) = H(t)x(t) . (4)
Consider now the sequence of outputs {y(t),...,y(N)} begin-
ning with t=1. From (3) and (4) we have, by recursive substitu-
tions
y(1) = H(1)x(1) = H(1)®(1,0)x(0)
y{(2) = H(2)x(2) = H(2)%(2,1)x(1) = H(2)8(2,1)9(1,0)x(0)
y(N) = H(N)x(N) = H(N)®(N,N-1)x(N-1) = H(N)®(N,N-1)..5(1,0)x(0)
Defining (5)
y (1)
Yy = :
y (N)

and
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®(i,0) = ®(i,i-1)...%(1,0)
for i=1,...,N , it is clear that Yy is an mN vector. Letting
H(1)®(1,0)
Hy = . , (6)
H(N) ®(N,0)

which is an mNXn matrix, we obtain for (5) that
YNy = HNx(O) . (7)
Premultiplying this relation by Hg we get
T T
Hy Hy x(0) = Hy Yy - (8)
From the definition (6) of HN we can realize that

o7 (i,0)HT (i)H(i)®(i,0) (9)
1

jos}

ool

Il
e~

i
which is an nXn symetric matrix and is denoted by #(0,N) and

called asobservability matrix. Then it follows from (8) that
x(0) = o Vo,muly (10)
7 N N [

which shows that the system is completely observable if ©&(0,N)
is positive definite for some N>0. This is the sufficient
condition for observability. It can be easily shown (Desoer,

1970) that it is a necessary condition at the same time.

Criterion for observability for time invariant systems can
be established along the same lines. That is, consider the

unforced system

x(t+1) dx(t) (11)

y(t) Hx (t) (12)
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and a sequence of outputs {y(0),...,y(n-1)}. Again, we have

y (0) = Hx(0)

y{(1) = Hx(1) = H®x(0)

y(n21) = Hx(n-1) = HO" 'x(0)

By similar definitions as before

y_ = x(0) = @ x(0) . (13)

If x(0) is to determined uniquely the matrix GT (or equivalentely

¢©) must have an inverse, i.e., be nonsingular. This statement

is the same as to requre that the nxmn observability matrix @&
poTHT 1. 1eT)PTHT) (14)
be of rank n, p(®)=n, since the rank of any matrix is the order

of the largest square array in the matrix, formed by deleting

rows and/or columns, that is nonsingular.

Example 1. Here we examine whether the rainfall system

in Example 2.4 is observable. Since H in (2-E 4-4) is equal

to the identity matrix HT=I and consequently @T T=®T. That

is the observability matrix is
1 0 1—¢1 ¢2
0 1 ¢1 1—¢2

which has a rank of 2 so the system is observable.
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Example 2. Can we say the same about the water quality

system discussed in Example 2.6? For notational simplicity
let (2-E6-6) be

¢11 0
¢ = .
¢21 ¢22
Since
0
HT = ’

the observability matrix (14) for this case, n=2, becomes

which has a rank of 2, or is invertible, only if ¢21#0,

i.e. if

First, consider the case when Kr#Ka. Obviously

1
0D < }(C < o
Ka K 1
and
“Ky ~K5
0 < e - e < C2 < o
Consequently
0 < 1 _Kr - -Ka < C,C, < ™
K_-K © < 172 '
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therefore if Ka#Kr, then ¢21#0. Now consider the possibility
that Ka=Kr‘ Then

-K -(K_-K_.)
K e rl} a r —J

Ka_Kr

o |o

which is an indeterminate form. Thus let Ka—Kr=K and

consider

lim e'Kr 1-eK
K-+0 r K

for which the L'Hospital' rule is applied giving

lim _Kr —KeK —Kr
K-+0 Kr € [ 1 ] = —Kr e 7 0

Thus if K_ and K, are non-zero and bounded the observability
matrix is nonsingular. Consequently, the system is com-
pletely observable. To gain more insight to the notion

of observability let us make a change in the water quality
system, namely assume that only BOD data are available for

control. Then for this new system with structure L4 the

output matrix is H, = [1,0] and the observability matrix
becomes
1 ¢
11
O, =
0 0

which is of rank one, i.e. the system I, is unobservable.
In fact by such a structural change Fig. 8 becomes similar
to Fig. 9.
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Remark. The relation between observability and estimation
should be clear at this point. In fact (10) is
an algorithm for determining x(0) from available
output data. Along with (1) the determination
of the states' history becomes possible, in other
words, we have solved the estimation problem under
ideal conditions, that is, for deterministic systems.

Controllability

To establish the criterion of controllability we proceed
analogously to that of observability. We consider the discrete

linear system
x(t+1) = ¢(t+1,£)x(t) + T(t)u(t) (15)

for t=0,1,... , where x(0) is known but {u(0),u(1),...} is not
specified. We concern ourselves here with the problem of trans-
ferring the state of the system (15) from x(0) to some desired

terminal state x(N) where N is finite.

We define controllability in the following way:

The discrete linear dynamic system of (15) is
controllable at time t=0 if there exists a
control sequence {u(0),u(1),...,u(N-1)} such
that the state x(0) can be driven to any
arbitrary state x(N) where N is finite. 1If

this is true for any x(0) and initial times

the system is said to be completely controllable.

Following similar steps as in the observability analysis,
the criterion of complete controllability for time varying

systems that is that the nxn controllability matrix

N T T
%(0,N) = ) ®(0,i)T(i-1)T (i-1)¢ (0,1i) (16)
i=1

is positive definite for some finite N>0, where

$(0,i) = ¢(0,1)ee-d(i-1,1) , i=1,1,...,N.
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For time invariant systems consider

x(t+1) = ox(t) + ru(t) , (17)

with known initial state x(0). Again, the question is that
under what conditions can we determine the control necessary to
drive the system to x(n), where x(n) is arbitrary in the state
space? As in the observability study we may apply recursive
substitutions, yielding (c.f.: 2-E3-3)

x(1) = #x(0) + Tu(0)
x(2) = ®x(1) + Tu(1) = ©2x(0) + @Tx(0) + Tu(1)
x;n) = 0™%(0) + ™ 1T u(0) + +++ + Tu(n-1)
Therefore
x(n) - o"x(0) = ¢" 'ru(0) + o™ 2ru(1) + -+ + Tu(n-1)

= [T : T «ev ' 6™ '] ru(n-1)

Since x(n) and x(0) are given the condition for a unique solu-
tion for the control sequence to exist is that the nxnp con-
trollability matrix &

% = [T 2 or & «oo 1 oM g (18)
has rank n, p(@®) = n.
Example 3. Here we analyze whether the water quality

system discussed in Example 2.6 is controllable or not.

The controllability matrix (18) for the system is




-l

-2K
e T

—Kr ( —2Kr -2Ka)
e T-e

K_-K
a’'r

¢ O

I
=
V)

R
"

Following similar steps as in Example 2 it can be seen that
the above matrix is of rank 2, consequently the system is
controllable. Again, let us make a change in the water
gquality system of Fig. 9 and assume that only the dissolved
oxygen is controlled. Then for this new system with struc-

ture I,, the control transition matrix becomes

=¢5)

i.e., the controllability matrix is

0] 0 0 0
Crr = '

2
0 =ty 0 -0y,

which is of rank one, i.e., the system Lys 1s uncontrollable.
By such a structural change Fig. 8 becomes similar to Fig. 10.
To make the analysis complete consider the situation when
only the biochemical oxygen demand is controlled. Then for
this system with structure I,,, the control transition matrix

becomes

0
11
I ges =

51

and the controllability matrix is

%99 O 1 0
Crxx = '
099 0 0y (dteyn) O
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which is, again taking similar steps as in Example 2,
of rank 2, i.e., this system is controllable. The
conclusions of this example are: controlling the diss-
solved oxygen only the water gquality system becomes
uncoltrollable while controlling the biochemical

oxygen demand, alone or together with the DO, the

system is controllable.

Remark. Similarities between observability and control-
lability are extremely interesting. For example,
to derive the condition (16) for controllability
it is enough to make the following changes in the
observability condition (9):

Observable ———» Controllable

©(0,N) —— &% (0,N)

®(i,0) > 01 (0,1i)

H(i) rT(i-1)

\/

This property was first observed by Kalman (1961),
who termed it duality. Thus observability and
controllability are dual properties of linear
dynamic systems.

Identifiability

Consider a time invariant free system given by
x(t+1) = dx(t) , x(0) is known. (19)
As Lee (1964) defines it, a system is said to be identifiable

if it is possible to determine ¢ from the time history of the

state variables. Again, by recursive substitutions

x(1) = dx(0)
x(2) = ox(1) = ¢°x(0)
x(n) = dx(n-1) = Qn_1X(0)
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Since all the state variables are available, we can set up a

matrix

[x(1) ox (1) ox (n-1)]

.
x
—
N
~
.
.
.
.

: x(n)] = [0x(0)

[x(0) x(1) x(n-1) 1 .

If ¢ is to be determined uniquely the matrix
[x(0) = x(1) = +es? x(n=-1)]

must be nonsingular. This statement is the same as to require
that the identifiability matrix &

F = [x(0) + 0x(0) * -+t 0™ Tx(0)] (20)

be of rank n, p(#) = n. Physically, it means that x(0) must
excite all modes of the system.

Examp1le 4. Consider again the second order water quality
system discussed in Example 2.6. The identifiability matrix

is

: x4 (0) 91 %1 (0)
S = [x(0) : ox(0)] =
: x, (0) $5q X1 (0) +¢,,%,(0)

The system is identifiable if p(#) = 2; unidentifiable, if
the determinant of this matrix equals zero. This is the
case if both columns of the matrix are linearly dependent.
We can distinguish (1) a trivial case: x1(0) = x2(0) =0,
that is the relaxed system cannot be identified; and (2)

a non-trivial case

\ x4 (0) _ $11 0 x1(0)

X2 (0) ¢21 ¢22 XZ(O)
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or

x1(0)
[® - AIl
x2(0)

from which the eigenvalues X1 and Xz and the corresponding
eigenvectors e, and e, can be obtained. If x(0) = A1e1
then only one mode exp(x1t) of the process is exited by
x(0) and the mode exp(xzt) is not identifiable. TIf

x(0) = A2e2’
Consequently, the process is identifiable only if all

then only the mode exp(kzt) can be identified.

modes of the process are excited by x(0). For further

details see Lee (1964).

Minimal Realizations

We have seen in Section 2 that the input-output description
of a linear dynamic system, (2-24) and (2-25), can be derived
from its state-space representation. One might ask whether it
is possible to construct a dynamic system in state-space form
such that it generates the same input-output pairs as the dy-
namic system in input-output form. This is the problem
realization. It can be shown (Willems and Mitter, 1971) that
every input-output dynamic system has a state-space realization.

It is clear that the input-output system (2-24) is realized
by a state space model if and only if its impulse response ma-

trix has the form of (c.f.: (2-23))
(e, 1) = H(t)o(t,1)G(T) ,

for all t>t1. Furthermore, the input-output system has a finite
dimensional linear realization if and only if the impulse re-

sponse matrix has the separable form

S, 1) = Yy (D), (1)

For time invariant systems this is obviously true since (2-25)

can be written as
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t

y(t) = J He
0

F(t-1) Gu(t) dt .,

where the impulse response matrix
erie,) =mef T 6 = et (e7FT6) =y (t)y, (1)

is separable. The sufficiency can also be proven easily. For

time varying systems we refer to Casti (1976).

Given a record of input-output pairs (an external descrip-
tion of the system) the realization (F,G,H) that can produce
this record is not unique in the sense that many different sets
of (F(or ¢),G(or T),H) can give the same input-output behavior.
The choice of a particular (F(or ¢),G(or T),H) corresponds to the
choice of a coordinate system. This choice can have consider-
able impact in numerical analyses as well as affecting system

observability and controllability.

Assume that a state space model ¥ = (¢,T,H) is a realization
of the input-output system. Then it is said to be a minimal
realization of the input-output system if every other realiza-
tion of finite dimensional linear type has a state space of

greater or equal dimension.

We cannot hope to identify states that are unobservable and
for all practical purposes there is no point in specifying more
states than can be controlled. Therefore the minimal realiza-

tions have the following properties (Kalman et al, 1969):

1. All minimal realizations of I are equivalent.

2. Any minimal realization of I is completely
controllable and completely observable.

3. If a minimal realization of I is completely
controllable and completely observable, it

is a minimal realization.
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A minimal realization of a system I is thus a subsystem of &
having the same dimension as® only when I itself is minimal.
The above properties of minimal realization can be stated
formally (see Desoer, 1970) as: A realization (¢,T,H) is
minimal if and only if the system

x(t+1) dx(t) + Tu(t) (21)

H

y(t) H x(t) (22)
is completely observable and completely controllable. Moreover,
a minimal realization always exists and any two minimal realiza-

tions (¢1,F1,H1) and (¢2,F2,H2) are related via the similarity

transformation
6. =T 6, T |
2 1 !
F2 =T F1 ’
H, = H, T |
2 7 M
for some nonsingular matrix T. So, it turns out that the

minimality of realizations is intimately related to the concept
of controllability and observability, which is somewhat surpris-

ing since there is no a priori reason why this should be the case.
Example 5. The water gquality control system I discussed
in Example 2.6 is a minimal realization of the processes

involved. Obviously, the realizations I, and I,, discussed

in Examples 2 and 3, respectively, are not minimal.

Equations (21) and (22) can be written as
x(t)

[¢,T]
u(t)

H x(t) ’

x(t+1)

y(t)
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and assuming that all the state variables are also output

variables, i.e., H = I, we have
y(t)
y(t+1) = [¢,T] ’ (23)
u(t)

which is a direct relation between the'input and output, it
does not have the state vector x(t) appearing explicitly.

Using (23), [¢,T] can be obtained from the relation

N
L

N
1[y(t+1)---y(t+n+p)]==[®,F] z [Y(t)-.-y(t+n+p—1)] , (24)
t= t=1

u(t) e ++u(t+n+p-1)

provided that the matrix multiplying [¢,T'] is nonsingular. In

this case these are a unique solution for [¢,T].

For observable and controllable systems with output matrix
H not equal to identity matrix Ho and Kalman (1966) constructed
algorithms to obtain minimal realization using Hankel matrices
formed from the impulse response matrices. This question is
far beyond the scope of this paper, so the reader is referred
to the literature (Kalman et al, 1969; Desoer, 1970; Budin,
1971; Casti, 1976). An effective minimal realization algorithm

can be found in Silverman (1971).



-51-

4., DISCRETE LINEAR STOCHASTIC DYNAMIC SYSTEMS

The Notion of State and the Derivation of State Equations

Up until now we dealt with strict deterministic systems
where there are no uncertainties of any kind. Unfortunately,
in practical water resources application this is certainly not
the case, since, as Yevjevich (1974) states, it is extremely
difficult to find a pure deterministic hydrologic process in
nature. In this section we redefine the previous concepts of
dynamic systems and give some insight into the behavior of
systems in a random environment. The discussion will be re-
stricted to discrete systems. For continuous stochastic sys-

systems the reader is referred to Fleming and Rishel (197S5).

As Bstrém (1970) indicates for stochastic systems we
naturally cannot require, as we did for deterministic systems
in Section 1, that the future behavior be uniquely determined
by the actual state x. A natural extension of the notion of
state to stochastic systems would be to require that the pro-
bability distribution of the state x at future time should be
uniquely determined by the actual value of the state. This
means that, we require that the system be described as a
Markov process. In other works, we assume that x(t+1) is not
uniquely given by x(t) and u(t) as expressed by (1-3), but
that x(t+1) is a random vector which also depends on a random

variable w(t), i.e.,
x(t+1) =§t[X(t),u(t),W(t)] r L €Ty (1)

where ft now is the conditional expectation of x(t+1) given
x(t),u(t), and w(t). It is assumed here that w(t) has zero
mean. The above equation is called a stochastic difference

equation.
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For stochastic linear systems, by analogy with (2-3), the

state equation becomes
x(t+1) = ¢ (t41,8)x(t) + T(t)ult) + w(t), (2)

where, beyond the already known notations, w(t) is a vector of

white gaussian noise (WGN) sequences, with zero mean

Elwie)} = 0 (3)
and covariance matrix

Ew(Dw (1)} = Q)6 , ()

where § T is the Kronecker delta and Q(t) is a positive semi-

t
definite matrix. Since the state itself is a random variable

the initial state is given by its mean

€{x(0)} = %(0) (5)
and covariance matrix

E1ix(0) - %x(0)1[x(0) - %(0)1T} = P(0) (6)

where P(0) is a positive semidefinite nxXn matrix. The noise
process is called process disturbance, or sometimes model un-

certainty, and is assumed to be independent of x(0), so that
ELIx(0) - x(0)] w ()} = 0 (7)

for all t € Tq- If the control variable u(t) is missing from

(2), then the system generates a Gauss—-Markov sequence.

By similar arguments as before it is assumed that the out-
put of the system is contaminated with some noise, i.e., (2-4)

becomes the following measurement equation
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z(t) = H(t) x(t) + v(t) , (8)

where x(t) is the m-vector of measurements, and v(t) 1is a vector

of WGN sequences, called measurement error or measurement un-

certainty with zero mean

Evit)} =0 (9)
and covariance matrix

Ev(DVI(B)} = R(E)S (10)

where R(t) is a positive semidefinite matrix. We assume that

the measurement uncertainty is independent of x(0), so that
E([x(0) - x(OIv ()} =0 , (11)

for all t € Td' Moreover, it is also assumed that the un-

certainties are independent of each other
Ew(t) vi(e)r =0 (12)

for all t,Tt € Td' Clearly, the measurements z(t) generate an

increasing measurement sequence

¥, = [2(1),2(2),...,2(£)]17 (13)

with the obvious chain property of
¥ o= (¥ (£)17
L = £=1'2 . (14)

The matrix block diagram of the discrete stochastic linear
systme is shown in Fig. 12. Upon inspection with Fig. 4, the
differences from and similarities with the deterministic case

become immediately apparent.
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For illustrative purposes some examples on the state space

formulation of time series models are presented below.

Example 1. In water resources literature there is a
long history of using autoregressive (AR) time series
models wither to predict or to generate sequences. For a
detailed account consult Clarke (1973). A discrete time

AR model of order n has the form of
y(t+1) = ¢>1y(t)+¢2Y(t—1)+"'+¢ny(t—n+1) + w(t) , (E1-1)

where the ¢s are the autoregressive coefficients, and w(t)
is a WGN sequence with the usual properties. Defining the
state variables as x1(t)=y(t—n+1), x2(t)=y(t—n+2),...,

xn(t)=y(t), (E1-1) can be written in the state space model

x(t+1) = Idx(t) + w(t) ' (E1-2)
where
0 1 0 +«+. 0 0
0] 0 1 e Q 0
> =1: . , I = .
. 0 1 .
¢n ¢n—1 e ¢2 ¢1 1

The measurement equation, which in this case is the output

equation as well, is

z(t) = y(t) = H x(t) ' - (E1-3)

where

H=[0,0,...,1] .

In fact in the above model the noise sequence plays the role

of the input and the measurement uncertainty is not present.
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ample 2. To model rainfall sequences a moving average
(MA) model of order or

y(t) = 0, w(t-1) + 02 w(t=2) + =+« + On w(t-n) (E2-1)

1
is frequently used in hydrology, where 0s are the moving

average parameters and w(+) is a WGN sequence. For example
Matalas (1963) has applied the above model to relate effec-

tive annual precipitation to annual runoff. Defining the

state variables as x1(t) = w(t-n), x2(t) = w(t-n+1),...,
xn(t) = w(t-1), (E2-1) can be written
x(t+1) = ox(t) + Tw(t) , (E2-2)
where
[0 0 +++ 0] , [0 ]
0 0 1 «¢o 0 0
® = : : r T = :
0 1
| 0 e 0 1
and
z(t) = y(t) = H x(t) p (E2-3)
where
H = [On, On_1,..., 91]

amp le 3. Here the state space model of the combination
of the previous time series models is derived. These times
series models are called mixed autoregressive-moving average
models (ARMA) and are extensively treated in Box and Jenkins
(1970). For hydrological interpretation consult Spolia and
Chander (1974) and Dooge (1972), where the intimate relation
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between ARMA models and linear reservoirs is pinpointed.
Consider an ARMA (n,n) model, which has n autoregressive

and m moving average terms, respectively, i.e.,

y(&+1) + ¢,y (t) +eeet ¢ y(t-ntl) = 0qw(t) + Ow(t=1) +++++0 w(t-n+1) , (E3-1)

which can be transformed into a state space model

dx(t) + Tw(t)

]

x(t+1)
(E3-2)

y (t) Hx(t) ’

where ¢,[',H are given by (Lee, 1964)

FO | 1 eeee O
. | 3 [ ] .
. | . L ] .
L] I . . .
¢ = 0 | 0 oee o 1 ’
- — - = - = -
I——¢nu. u—¢n_1. o e —¢1J
,__ -1 _ —
1 ® o & o ® & 0 0 91
¢4 1 . 0,
°
' = ¢2 ¢‘| PY * . ’
. . o * .
. . ¢ :
L ¢n—1 ¢n... ¢1 1_ N On _
H= [1,0,...,0]1 .

Other examples for stochastic state space modeling as
applied to hydrologic systems can be found in Kontur (1975),
McLaughlin (1975), and Yakowitz (1975).
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State Model for Systems with Correlated Noise Seguences

As it turns out form (4) and (10) the uncertainties were
assumed to be independent between sampling intervals, i.e.,
they were assumed to be WGN sequences. One might say that this
is a somewhat serious restriction since in real-world water
resources systems the uncertainties are often sequentially
correlated. Below, we demonstrate, following Sorrenson (1966),
how a state space model can be constructed when the uncertain-
ties are serially correlated. For simplicity we omit the con-

trol vector from (2) and consider the system

x(t+1)

P(t+1,t) x(t) + F(t) (15)

z(t) H(t) x(t) + ¥7(t) , (16)

where the noise processes #(t) and ¥(t) are not necessarly
independent between sampling times. It is assumed however, that
they are zero mean processes and are still independent of each

other, i.e.,
Elwit) ¥ (e)} =0 (17)

for all 1, t € Td' The covariance matrices of the noise pro-

cesses are given by

ELw (1) w7 (t)}

W(T,t) (18)

€l (1) ¥ (t)}

v(t,t) . (19)

It is known (see e.g. Box and Jenkins, 1970), however, that a
correlated sequence can be looked upon as the output of a linear
system whose input was a WGN sequence. Such a linear system is
called shaping filter. This means that the correlated noise

processes are generated by
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w(t+1)

b (B+1,£) 9p(t) + w(t) (20)

Y (t+1)

o, (t+1,8) ¥ (8) + v(t) (21)

where ¢, (<) and QV(-i are the transition matrices of the appro-
priate shaping filters, and w(+) and v(+*) are WGN sequences
acting as inputs to the shaping filters (Fig. 13). By augment-
ing the state vector with the correlated noise processes and
combining (15), (16), (20), and (21) we have

2 (t+1) ®(t+1,t) I 0 x(t) 0
H (t+1) = 0 @W(t+1,t) 0 Ht) |+ | w(t) (22)
F(t+1) 0 0 év(t+1,t) ¥(t) v(t)
x(t)
z(t) = [H(t) 0 I] W(t) ' (23)
. Y (t)

which is apparently a state space model for
' T
x'(t) = [x(t), (), #(t) ] '
in the form of (2) and (8) as

x' (t+1)

d' (t+1,t) x'(t) + w' (t) (24)

z(t)

It

H' (t) x'(t) , (25)

or even simpler since there is no WGN measurement uncertainty
present since the correlated measurement uncertainty is embedded
in the state equation of the augmented system. Thus, whenever
the mathematical model includes correlated processes which are
of such a nature as to permit the derivation of the appropriate
shaping filter, the system can be reduced to the form of (24)

and (25). In this case all the techniques developed for handling

(2) and (8) are valid provided that the state transition matrices
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@W(-) and ¢V(-) are available. We turn now over attention to
the determination of these matrices. Here we derive ¢W(') only,

noting that the very same procedure holds for ¢V(-).

As it is known, a random sequence ¥ (t) with zero mean is
said to be wide-sense Markov, or equivalently, serially cor-
ralated sequence if its covariance matrix W(t,t) satisfies the

relation

W(t,0) W ' (u,0) W(U,t) = W(T,t) |, (26)
where

T>V >t
Assume that the correlated sequence ¥(-) is generated by (20),
where the matrix ¢W(-) must obey the properties of the state
transition matrices discussed in Section 2. Then, in accordance

with (18) and (20) we have

W t+1) w7 ()}

W(t+1,t)

ELLo, (t+1, ) () +w (£) 197 (1)}

o, (t+1,8) € (D) # T ()} + Elw () ™ (£)})

Since w(t) is independent of w(t)

I
o

Ewit)ywT(t)}
we have

W(t+1,t)

¢W(t+1,t) W(t,t)
Assuming that the covariance matrix W(t,t) is positive definite,

g (E+1,8) = W(L+T,t) w Ve, t) (27)
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Now, we verify that @W(J) is really a state transition matrix.

Obviously
‘I’W(t,t) =1 ’
which corresponds to (2-9), and

Vote-1,e-1)

O (t+1,8)@  (t,£=1) = W(t+1,t) Wk, ) Wk, t=1) W
which, due to (26) and (27), reduces to

W(t+1,t-1) w’1(t—1,t-1)

@W(t+‘|,t)<bw(t,t—1)

@w(t+1,t—1) '

thus @W(') satisfies the requirement for a state transition
matrix stated in Section 2.

To complete the discussion the covariance matrix of the
WGN process w(*) is still to be derived. It follows from (20)
that

Elw(t)wr (t)}

ELDFE+) —0 (£+1,8) o (£) 1 (017}

W(t+1,t41) - W(t+1,t) W (t,0)W(t,t+1) , (28)

which is nonnegative-definite.

Example 4. Consider a scalar correlated sequence ¥ (t)

with an exponential covariance function

-l t-v]

W(t,t) = e T >V

Then, according to (26),

"

W(t,t) = W(Tt,u)W ' (v, 0)W(u,t)

ol T=ul lu-t] _ -lt-t]
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since T > v > t. Using (27) the state transition factor
becomes
o (E+1,t) = W+, 0) W (t,t) = e~ E+1-t] 0.3679

and the covariance of the corresponding WGN sequence is

o) = 8lwl(t)} = 1 - e lE¥1t] —lt-t-1]

=1-¢e%=0.8647 .

Structural Properties

Here we shortly reexamine the structural properties such
as observability, controllability, minimal realization, de-
veloped for deterministic systems in Section 3, for discrete
stochastic linear dynamic systems. The relevant questions are
the same as in Section 3 but here the system and measurement
uncertainties make life much more interesting. The names of
these structural properties will be the same modified only by

the adjective stochastic.

For stochastic observability, by similar arguments as in
Section 3, it is sufficient to consider only the unforced
system if it is assumed that there is no system uncertainty,

i.e.,

~
o+
+
—
I

d(t+1,t)x(t) (29)

N
—_
+
~—

I

H(t)x(t) + v(t) , (30)

with noisy measurements, having the usual statistics, on it.
Here again, if we can determine the state vector at any one
time in Td' such as x(0), then from (29) we can determine all
other state vectors. Because of noisy measurements, however,
it is no longer possible to determine the state vector from a

finite number of observations. Instead, we consider the proklem
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of obtaining the maximum likelihood estimate of x(0) by maxi-

mizing the likelihood function
plz, | x(0)] (31)

with respect to the choice of x(0). Again, determining, or rather
estimating, x(0) in this fashion is equivalent to estimating

x(1), for 0 < 1 < t, since x(1) evolves from x(0) according

to (29). Qt has the same meaning as in (13). We have, for the
first two conditional moments

E{x(i) |x(0)} = H(i)x(i) = H(T)®(T1,0)x(0)

var{z (i) |x(0)}

R(i) ,
where
®(i,0) = d{(i,i-1)+-0(1,0) .

The likelihood function, or probability density of Zt condition-
ed upon x(0), is Gaussian and has the form of

-t/2 1/2exp(_;||z(i)-H(i)x<i)I|2_1 1. (32)
R

(1)

t
plZ,|x(0)] = T [(2m) |R(1) |

i=1
where, for the sake of brevity, the notation
. . . |2 _ . , T =1,. . . .
[z@-H@x@D 7, = [2D)-H@Dx@D ] R (1) [z(E)-H(E)x(1)]
R (i)
was used for the quadratic forms. As a matter of fact the max-

imization of the likelihood function is equivalent to the min-

imization of the quadratic forms, i.e.,

1
2 .
i

J =

It e~
-—

lz(1) - '@ x| %, (33)
R (i)



-63-

is to be minimized. This minimization is of least squares type

which must be accomplished with respect to x(0), where

x(i) = o(1i,0)x(0) . (34)
Combining the two foregoing equations, differentiating with
respect to x(0), and setting the result equal to zero the

estimated initial state can be obtained as

%(0)

t
0. 0,t) T o7 (1,0 8T (DR (i) 2 (4) (35)
i=1

where

t o T, .\ =1
O (0,t) = ] ¢ (i,00H (1)R "(i)H(i)e(i,0) (36)

i=1

is an nxn symmetric matrix called stochastic observability
matrix. For the solution (35) to exist @E(O,t) must have an
inverse. If such an inverse exists the system (29) and (30)

is said to be stochastically observable. By comparing (36) with
(3-9) it appears that the only difference between the deter-
ministic and stochastic observability matrices is that the
later, through the measurement noise covariance matrix, con-
siders the uncertainties as well. For the case when the system
is not free similar criterion can be established; for details
see Aoki (1967).

Here the same remark can be made as for the deterministic
observability, namely that the observability and estimation of
stochastic systems state are intimately related concepts. In-
deed, using (29) along with (35) the estimation of the states'
history becomes possible. We note that in practical computer
applications recursive techniques are applied. These procedures

are discussed in detail later.

Criterion for controllability of stochastic systems can be

obtained along the same lines. The final result is that the
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stochastic controllability matrix

<I>(0,i)I‘(i-1)Q(i-1)TT(i-1)<I>T(0,i) (37)
1

N~

€ (0,t) =
i
must be positive definite, i.e., the process noise must excite
all the states in the system (c.f.: (3-16)). Again see Aoki
(1967) where the identifiability conditions for stochastic

systems are also discussed.

As for minimal realizations of stochastic systems Akaike
(1974) showed recently that the natural representation of a
state space for stochastic systems is given by the predictor
space, the linear space, spanned by the predictors when a

system is driven by a WGN input sequence, and a minimal real-

ization corresponds to a selection of a basis of this predictor

space. As in the deterministic case, any two minimal realiza-
tions are connected by a nonsingular linear transformation
between the two corresponding bases of the predictor space.
Akaike's minimal realization algorithm is again based upon the
analysis of the infinite dimensional Hankel matrix composed

from the impulse response matrices.



-65-

References

Akaike, H. (1974), Stochastic Theory of Minimal Realization,
IEEE Transactions on Automatie Control, AC-19, 6, 667-674.

Amorocho, J. (1963), Measures of the Linearity of Hydrologic
Systems, J. Geophys. Res., 68, 8, 2237-2249.

Amorocho, J. and Brandstatter, A. (1971), Determination of
Nonlinear Functional Response Functions in Rainfall-Runoff
Processes, Water Res. Res., 7, 5, 1087-1101l.

Aoki, M. (1967), Optimization of Stochastiec Systems, Academic
Press, New York.

Rstrbm, K.J. (1970) Introduction to Stochastic Control
Theory, Academic Press, New York.

Bidwell, V.J. (1971), Regression Analysis of Nonlinear Catch-
ment Systems, Water Res. Res., 7, 5, 1118-1126.

Box, G.E.P. and Jenkins, G.M. (1970), Time Series Analystis,
Forecasting and Control, Holden-Day, San Francisco.

Budin, M.A. (1971), Minimal Realization of Discrete Linear
Systems from Input-Output Observations, IEEE Transactions
on Automatic Control, AC-16, 5, 395-40l.

Butkovsky, A.G. (1969), Distributed Control Systems (trans-
lated from Russian), American Elsevier, New York.

Casti, J. (1975), A New Representation for Volterra Factors
and the Fredholm Resolvent, RM-75-41, International
Institute for Applied Systems Analysis, Laxenburg, Austria.

Casti, J. (1976) Dynamical Systems and their Application:
Linear Theory, (manuscript of a book), International
Institute of Applied Systems Analysis, Laxenburg, Austria.

Clarke, R.T. (1973), Mathematical Models in Hydrology, FAO,
Irrigation and Drainage Papers No. 19, Rome.

Desoer, C.A. (1970), Notes for a Second Course on Linear
Systems, Van Nostrand, New York.

Diskin, M.H. and Boneh, A. (1972), Properties of the Kernels
for Time Invariant, Initially Relaxed, Second Order,
Surface Runoff Systems, J. Hydrol., 17, 115-141.



66—

Diskin, M.H. and Boneh, A. (1973), Determination of Optimal
Kernels for Second-Order Stationary Surface Runoff
Systems, Water Res. Res., 9, 2, 311-325.

Dooge, J.C.I. (1965), Analysis of Linear Systems by Means of
Laguerre Functions, J. SIAM Control, Ser. A, 2, 3, 396-408.

Dooge, J.C.I. (1972), Mathematical Models of Hydrologic Systems,
Proec. Int. Symp. on Modelling Techniques in Water Resource
Systems, 1, 171-189. Dept. of the Environment, Ottawa.

Dooge, J.C.I. (1973), Linear Theory of Hydrologic Systems.

USDA, Techn. Rept. No. 1468, Washington D.C.

Duckstein, L. and Kisiel, C.C. (1972), Control of Hydrologic
Systems for Multiple Uses in a Closed-Loop Framework.
J. Hydrol., 15, 69-76.

Duong, N., Winn, C.B. and Johnson, G.R. (1975), Modern Control
Concepts in Hydrology. IEEE Trans. on Systems, Man and
Cybernetics, SMC-5, 1, 46-53.

Fleming, W.H. and Rishel, R.W. (1975), Deterministic and
Stochastie Optimal Control, Springer-Verlag, New York.

Gabriel, K.R. and Neumann, I. (1962), A Markov Chain Model for
Daily Runoff Occurrence at Tel-Aviv, Quart. J. Roy. Met. Soc.
88, 90-95.

Ganendra, T. (1975), A State Space Approach to Rainfall-
Runoff Modelling, M.Sc. Thesis, Imperial College of Sci.
and Technology, London.

Gourishankar, V. and Lawson, R.L. {1975), Optimal Control of
Water Pollution in a River System, Int. J. Systems Sect.,
6, 3, 201-21s6.

Hino, M., Sukigara, T. and Kikkawa, H. (1971), Nonlinear Runoff
Kernels of Hydrologic Systems, in V. Yevjevich, ed.,
Systems Approach to Hydrology, Water Res. Publ., Fort
Collins.

Bo, B.L. and Kalman, R.E. (1966) , Effective Construction of
Linear State-Variable Models from Input/Output Function,
Regelungstechnik, 14, 545-548.

Kalinin, G.P. and Milyukov, P.I.  (1957), On the Computation of
Unsteady Flow in Open Channels, (in Russian), Meteoroligtya
i Gidrologiya Zhurnal, 10, 10-18.

Kalman, R.E. (1961), On the General Theory of Control Systems.
Proe. Ist IFAC Congr., 1, London



-67-~

Kalman, R.E. (1962), Canonical Structure of Linear Dynamic
Systems, Proc. Nat. Acad. Sei., (USA), 48, 596-600.

Kalman, R.E., Falb, P.L. and Arbib, M.A. (1969), Topics in
Mathematical System Theory, McGraw-Hill, New York.

Koivo, A.J. and Phillips, G.R. (1971) , Identification of
Mathematical Models for DO and BOD Concentrations in
Polluted Streams from Noise Corrupted Measurements,
Water Res. Res., 7, 4, 853-862.

Kontur, I. (1975), Some Stochastic Runoff Models, Proec. 2nd
IWRA World Congress, V, 61-71, New Delhi.

Kulandaiswamy, V.C. (1964), A Basic Study of the Rainfall
Excess Surface Runoff Relationship in a Basin System,
Ph.D. Dissertation, Univ. of Illinois, Urbana.

Lee, R.C.K. (1964), Optimal Estimation, Identtfication and
Control, The M.I.T. Press, Cambridge, Massachusetts.

Maidment, D.R. (1975), Stochastic State Variable Dynamic
Programming for Water Resources Systems Analysis.
Ph.D. Dissertation, Univ. of Illinois, Urbana.

Matalas, N.C. (1963), Statistics of a Runoff-Precipitation
Relation, U.S. Geol. Survey Professional Papers, 434-D.

McLaughlin, D. (1975), Investigation of Alternative Procedures
for Estimating Ground-Water Parameters, Water Resources
Engineers, Walnut Creek, California.

Meditch, J.S. (1969), Stochastic Optimal Linear Estimation
and Control, McGraw-Hill, New York.

Muzik, I. (1974), State Variable Approach of Overland Flow,
J. Hydrol., 22, 347-364.

Nash, J.E. (1960), A Unit Hydrograph Study with Particular
Reference to British Catchments, Inst. Civ. Eng. Proc.,
17, 249-282.

Prasad, R. (1967), A Nonlinear Hydrologic System Response Model,
Proc. ASCE J. Hyd. Div., 93, HY4, 201-221.

Quimpo, R.G. (1975), Stochastic Identification of Nonlinear
Hydrologic Systems, IAHS Symp. on the Appl. of Math. Models
in Hydrology and Wat. Res. Systems,

Silverman, L.M. (1971), Realization of Linear Dynamic Systems,
IEEE Trans. on Automatic Control, 554-567.

Singh, M.G. (1975), River Pollution Control, Int. J. Systems
Science, 6, 1, 9-21.



-68-

Sorrenson, H.W. (1966), Kalman Filtering Techniques, in
C.T. Leondes, ed., Advances in Control Systems, 3, Academic
Press, New York.

Spolia, S.K. and Chander, S. (1974), Modelling of Surface
Runoff Systems by an ARMA Model, J. Hydrol., 22, 317-332.

Szollosi-Nagy, A. (1974), State Space Approach to Hydrology,
Symp. on Math. Modelling in Hydrology, Galway.

S$z6110si-Nagy, A. (1975), On the Optimal Stochastic Control of
Water Resources Systems. Internal Paper, International
Institute of Applied Systems Analysis, Laxenburg, Austria.

Szollosi-Nagy, A. (1976), On the Optimal Adaptive Parameter
Estimation of Water Resources Control Systems. Internal
Paper, International Institute of Applied Systems Analysis,
Laxenburg, Austria.

Willems, J.L. (1970), Stability Theory of Dynamical Systems,
Nelson

Willems, J.L. and Mitter, S.K. (1971), Controllability,
Observability, Pole Allocation, and State Reconstruction,
IEEE Trans. on Automatie Control, AC-16, 6, 582-595.

Yakowitz, S. (1975), Water Table Prediction. (Manuscript)

Yevjevich, V. (1974), Determinism and Stochasticity in
Hydrology, J. Hydrol., 22, 252-238.

Young, P. and Beck, M.B. (1974), The Modelling and Control of
Water Quality in River Systems, Automatica, 10, 455-468

Zand, S.M. and Harder, J.A. (1973), Application of Nonlinear
System Identification to the Lower Mekong River, Southeast
Asia, Water Res. Res., 9, 2, 290-297.



_69_

Figures
Figure 1. Nonlinear System as Cascaded Blocks of Linear
Dynamic and Zero Memory Nonlinear Subsystems.
Figure 2. Simplified Catchment Model.
Figure 3. Flow Chart of Lake-Aquifier System.

Figure 4. Matrix Block Diagram of a Discrete Linear
Dynamic System.

Figure 5. State Trajectories for Transient Responses.
Figure 6. Three Basic Properties of the State Transition
Matrix

Figure 7. State Representation of the Nash-Model.

Figure 8. The Dynamics of the Discrete Time Water Quality
Control System.

Figure 9. An Unobservable-Controllable System.
Figure 10. An Observable-Uncontrollable System.

Figure 11. Canonical Decomposition of a Linear Dynamic
System into Four Subsystems.

Figure 12. Matrix Block Diagram of a Stochastic Discrete
Linear Dynamic System.

Figure 13. The Notion of Shaping Filter.
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Linear Nonlinear
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Figure 1. Nonlinear System as Cascaded Blocks of
Linear Dynamic and Zero Memory Nonlinear
Subsystems.
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Figure 3. Flow Chart of Lake-Aquifier System.
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Figure 5. State Trajectories for Transient Responses.
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X(to) = d>(to,to)X(to) = IX (to)
(ii) x(t2) Q(tz,to)x(to) = ¢(t2,t1)x(t1) =
= d>(t2,t1)d>(t1,to)x(t
x(t1) = @(t1,to)x(to)
x(to)

x(t1) = @(t1,t2)x(t2) =

= o (e, t ) x(t,)

= 205X

Figure 6. Three Basic Properties of the
State Transition Matrix.
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Figure 8. The Dynamics of the Discrete Time
Water Quality Control System.
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Figure 9. An Unobservable-Controllable System.
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Figure 1'0. An Observable-Uncontrollable System.
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Figure 11. Canonical Decomposition of a Linear
Dynamic System into Four Subsystems.
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Figure 13. The Notion of Shaping Filter.






