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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.

In: van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183–231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.

Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.

Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.

Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic
Populations.
Theoretical Population Biology (1995) 48, 126–171.

No. 8 Ferrière R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.



No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.

American Naturalist (1996) 147, 692–717.

No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-Equilibrium
Dynamics.
IIASA Working Paper WP-96-070.

Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G:
The Dynamics of Adaptation and Evolutionary Branching.
IIASA Working Paper WP-96-077.

Physical Review Letters (1997) 78, 2024–2027.

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ:
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Abstract 

We investigate the local bifurcations experienced by a time-discrete dynamical system 
from population biology when there is an attractor in an invariant subspace that loses 
stability. The system describes competition between two species in a constant environ-
ment; invariant subspaces contain single-species attractors; the loss of stability of the 
attractor in one invariant subspace means that the corresponding species (i.e. the ‘resi-
dent’ species) becomes invadible by its competitor. The global dynamics may be under-
stood by examining the sign structure of Lyapunov exponents transverse to the invariant 
subspace. When the transverse Lyapunov exponent (computed for the natural measure) 
changes from negative to positive on varying a parameter, the system experiences a so-
called blowout bifurcation. We unfold two generic scenarios associated with blowout 
bifurcations: (1) a codimension 2 bifurcation involving heteroclinic chaos and on-off 
intermittency and (2) a sequence of riddling bifurcations that cause asymptotic indeter-
minacy. An ingredient that both scenarios have in common is the fact that the ‘resident’ 
species subspace contains multiple invariant sets with transverse Lyapunov exponents 
that do not change sign simultaneously. This simple model adds on a short list of arche-
typical systems that are needed to investigate the structure of blowout bifurcations. 
From a biological viewpoint, the results imply that mutual invasibility in a constant en-
vironment is neither a necessary nor a sufficient condition for coexistence. 
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1 Introduction 

Invasion is an important concept in population biology. On the ecological timescale, 

invasibility underlies criteria for the maintenance of diversity of animal or plant com-

munities [Turelli, 1978; Chesson & Ellner, 1989]. On the evolutionary timescale, the 

long-term dynamics of the process of natural selection are determined by the so-called 

invasion function of mutant genes [Metz et al., 1992; Rand et al., 1994; Ferriere & 

Gatto, 1995; Dieckmann, 1997]. How can one define invasion in the language of non-

linear dynamical systems theory? Competition between two different species or types 

can be modelled as a dynamical system operating on the phase space of population 

densities, with two invariant subspaces corresponding to the single-type populations. 

The restriction of the dynamical system to the invariant subspace of either type contains 

the attractor of a pure population of that type (which is assumed to be unique). Then we 

say that type X is not invadible by type Y whenever the single-type X attractor AX  is 

also an attractor in the full phase space [Metz et al., 1992; Rand et al. 1994; Ferriere & 

Gatto, 1995]. This depends on the sign of the largest Lyapunov exponent χ  computed 

for the natural measure on AX  with respect to perturbations in the subspace which is 

transverse to the X invariant manifold. When χ  is negative, AX  attracts trajectories 

transversely in the vicinity of the X invariant manifold ; if χ  is positive, trajectories in 

the neighborhood of the X invariant manifold are repelled away from it, hence AX  is 

transversely unstable and Y invades. The set of Y trait values for which the transverse 

Lyapunov exponent is zero is called the invasion boundary of X [Ferriere & Gatto, 

1995]. As the system crosses the invasion boundary, it experiences a ‘blowout’ bifurca-

tion — a term coined by Ott & Sommerer [1993] although the phenomenon was earlier 

recognised by Pikovsky [1984] and Yamada & Fujisaka [1984]. 

A question of considerable interest in community ecology and evolutionary theory is 

whether mutual invasibility is a necessary and sufficient condition for long-term coexis-

tence [May, 1973; Chesson & Ellner, 1989; Hofbauer & Sigmund, 1998]. Let us formu-
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late this problem more precisely. Assume that each type X and Y is characterized by a 

set of demographic parameters (the reproductive rate and survival probability of indi-

viduals of a given type) that determine X and Y population dynamics. Assume that type 

X has fixed demographic parameters. Now let Y parameters vary in such a manner that 

the transverse Lyapunov exponent of Y always remains positive whereas the transverse 

Lyapunov exponent χ  of X passes from negative to positive values.  In other words, we 

make type Y cross the invasion boundary of X into the parameter domain of mutual in-

vasibility. Then we ask, is this sign change of χ  accompanied with a transition from 

exclusion (of Y) to coexistence of X and Y ? 

Chesson & Ellner [1989] have addressed this issue for monotonic competition in a 

random environment. Using a two-dimensional system of stochastic difference equa-

tions on R R+ +×  to describe competition, they define a type as ‘persisting’ if the sto-
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Figure 1   Sequence of bifurcations beyond the onset of invasion. Parameter r2  varies near to the inva-

sion boundary of X when there is a period-3 saddle (A) and a stable 3-cycle (B) on the x axis. The phase 

portrait of the third-iterate map is shown. Fixed parameters: r1  = 33.0, s1  = 0.004, s2  = 0.02. 

a r2  = 16.65 ( χ = 0 0308. ). Internal focus born from transcritical bifurcation. 

b r2  = 16.72 ( χ = 0 0342. ). Torus from Neimark-Sacker bifurcation. 

c r2  = 16.722217985 ( χ = 0 0343. ). Close to heteroclinic connection. 

d r2  = 16.75 ( χ = 0 0354. ). Heteroclinic chaos. 
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chastic boundedness criterion applies, that is the distribution of population size is-

bounded below by that of a positive random variable [Chesson, 1982]. They show that 

mutual invasibility implies coexistence in the sense that each type is stochastically 

boundedly persistent, and conversely that a negative long-term invasion exponent im-

plies extinction almost surely. The important biological assumption here is monotonic-

ity of the competitive effects, which entails that intraspecific competition is never so 

severe that a higher density now results in a lower density after one unit of time. 

Monotonicity implies that each single-type model in its deterministic version has very 

simple dynamical properties: a unique attractor (a stable, monotonically convergent 

equilibrium) which is also the unique invariant set of the system in R+
∗ . 

The existence of multiple invariant sets, however, may be the rule, rather than the 

exception, in population models. In particular, the existence of a chaotic attractor does 

entail that there is also an infinite number of unstable periodic orbits. A simple model in 

a constant environment that violates the monotonicity assumption is the Ricker-Gatto 
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Figure 2   Feigenbaum diagram of resident attractor with respect to r1 , for s1  = 0.004. 
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(RG) model, which involves variable reproductive success according to the Ricker for-

mula [Ricker, 1954]. The two-type population dynamics in the RG model are expressed 

as 

( ) ( ) ( ) ( )[ ] ( )x t r x t x t y t s x t+ = − − +1 1 1exp  

( ) ( ) ( ) ( )[ ] ( )y t r y t y t x t s y t+ = − − +1 2 2exp  

(assuming equal competitive coefficients in the density-dependent term). The first term 

on the right-hand side represents density-dependent reproductive success and the second 

term represents the survival of adults. Thus, each type is characterized by two demo-

graphic parameters: the intrinsic reproductive success ri  and adult survival probability 
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Figure 3   Phase portrait for the third iterate map: heteroclinic chaos (a-c) and on-off intermittency (d). 

Fixed parameters: s1  = 0.004, r2  = 16.75, s2  = 0.02. The resident attractor on the x axis is a transversely

unstable cycle, except in the bottom-right panel where it is a transversely unstable chaotic attractor. Up-

per-left panel: r1  = 33.0, upper-right: 31.0, bottom-left: 30.25, bottom-right: 30.0. Colors indicate how 

frequently each pixel of the phase portrait image is visited by an orbit. Yellow: low visit rate, red: inter-

mediate, black: high. 
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si . For suitable values of reproductive success and survival, the single-type population 

dynamics may involve coexisting stable and unstable cycles or chaotic attractors [Gatto, 

1993] (also see May & Oster [1976] for the analysis of the semelparous case s = 0). 

Invasibility properties of RG models have been explored by Gatto [1993] and Ferriere 

& Gatto [1995]. If both types are semelparous, that is, all individuals die after one single 

reproductive event ( s s1 2 0= = ), the transverse Lyapunov exponent of the type with 

largest r is positive, whereas that of the other type is negative. Then the study of perma-

nence by Hofbauer et al. [1987] shows that the exclusion principle holds true. If at least 

one type is iteroparous (that is, an individual may reproduce several times during its 

lifetime, hence s1  or s2 0≠ ), mutual invasibility may occur, in which case Gatto [1993] 

has provided numerical evidence that the two types can coexist. 

Here we make use of local bifurcation analysis (e.g., Kuznetsov [1998]) to investi-

gate the structure of blowout bifurcations that underlie  the process of  invasion in the 

RG model. Calculations are based on continuation methods (see Kuznetsov [1998] for a 
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Figure 4   Fold-Hopf organizing centers in ( )r r1 2,  parameter space. Fixed parameters: s1  = 0.004, s2  = 

0.02. Notice that the r1  parameter range (horizontal axis) is the same as in Fig. 2. See text for explana-

tions. 
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comprehensive survey) as implemented in the specialized software LOCBIF [Khibnik et 

al., 1993]. After recalling some basic results on the RG system (Sec. 2), we describe two 

scenarios for blowout bifurcations associated with invasion. First we unfold a codimen-

sion 2 scenario akin to a fold-Hopf bifurcation (Sec. 3). In particular, as the transverse 

Lyapunov exponent of the resident attractor is slightly positive, a heteroclinic connec-

tion arises between the resident attractor and another invariant set in the resident sub-

space. If the resident attractor is chaotic, the invader experiences on-off intermittency, 

an extreme kind of population bursting [Heagy et al., 1994; Venkataramani et al., 1995, 

1996; Ashwin et al., 1998]. The alternative scenario (Sec. 4) is a sequence of riddling 

bifurcations [Ashwin et al. 1996, Nagai & Lai 1997] which develops as the resident 

transverse Lyapunov exponent approaches zero from the negative side. This bifurcation 

route involves a chaotic resident attractor and is mediated by the loss of transverse sta-

bility of unstable periodic orbits embedded in that chaotic attractor [Nagai & Lai, 1997]. 

Riddling entails that the resident attractor is no longer a topological attractor in the full 

phase space: its basin of attraction is a fractal set riddled with holes that belong to the 

basin of another internal attractor. That is, for every initial density condition that drives 

the alternative type to extinction, there are initial densities arbitrarily nearby that leads 

to a coexistence attractor. Riddled basins in ecological models had previously been de-

tected in a few instances [Alexander et al., 1992; Hastings, 1993; Kaitala & Heino, 

1996]. 

This bifurcation analysis shows that mutual invasibility in constant environment is 

neither a necessary nor a sufficient condition for coexistence. When on-off intermit-

tency occurs, the intermittent type, although invading, faces a high probability of extinc-

tion due to demographic stochasticity. On the other hand, basin riddling implies that a 

noninvading strategy has yet a positive probability, for arbitrarily small initial density, 

of reaching a coexistence attractor. The distribution of finite-time transverse Lyapunov 

exponents can be used to evaluate the extinction probability of an on-off intermittent 

type and to quantify the effect of small random noise on riddled basins [Ferriere & Ca-

zelles, 1999, Ferriere & De Feo, unpublished results]. 

 

2 Elementary Properties of the Ricker-Gatto Model 

For biologically meaningful values of parameters r and s ( r > 0 , 0 1< <s ), each  single-

type population governed by the RG equation possesses two fixed points: 0 and 

( )ln r s1− . The equilibrium 0 is stable if r s+ <1. The nontrivial equilibrium is stable 

if ( ) ( )1 1 2 1< − < −r s sexp . For fixed s and increasing r there is a transcritical bifurcation 

when r s+ = 1 ; then the nontrivial equilibrium passes through the origin and becomes 

positive and stable, whereas the equilibrium 0 becomes unstable. As r is increased fur-
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ther, the stable nonzero equilibrium looses its stability through a supercritical flip bifur-

cation at ( ) ( )r s s< − −1 2 1exp  that yields a stable period-2 cycle [Ferriere & Gatto, 

1993]. 

Considering the full RG competition system, in addition to the trivial equilibrium at 

the origin, the phase space contains a ‘degeneracy line’ of equilibria ( )�, �x y  whenever 

( )r s r s R1 1 2 21 1− = − = . That degeneracy line is then given by � � lnx y R+ = . In this 

paper, our goal is to analyse the bifurcations associated with invasion and global behav-

ior in competition systems characterized by two invariant subspaces (the single-type 

x

y

(1)(2)(3)

(5)

(6)

(7)

(8)

(4)

P80

P40

P20

P10
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Figure 5   Riddling bifurcations. Schematic diagram of the cascade of periodic saddles losing transverse

stability (transcritical bifurcations on the x axis) and reverse-flip bifurcations of internal cycles as r2  is

increased. Actual numerical analysis performed with r1  = 22.0, s1  = 0.007815, s2  = 0.5. Bifurcation

points: (1) r2 =2.791586 (transcritical) —  (2) r2 =2.861159 (transcritical) —  (3) r2 =2.873062 (tran-

scritical) —  (4) r2 =2.887210 (flip) —  (5) r2 =2.887899 (flip) —  (6) r2 =2.888366 (transcritical) —

(7) r2 =2.893935 (flip) —  (8) r2 =2.897663 (flip). 



 8

 

population subspaces). Therefore we shall ignore the case where there exists a degener-

acy line of equilibria, which is anyhow restricted to a very special range of parame-

ters si and ri . Also, for parameters very close to the degeneracy line, infinitely many bi-

furcations may occur and a singular bifurcation analysis is required to obtain insights 

into their structure. This work lies beyond the scope of the present paper and will be re-

ported elsewhere. 

 

3 First Scenario: Fold-Hopf Bifurcation and On-Off 
 Intermittency 

The first bifurcation scenario occurs near the invasion boundary of X where the trans-

verse Lyapunov exponent is slightly positive. It may develop for any kind of resident 

attractor: stable equilibrium, stable cycle or chaotic attractor, provided that the x > 0 

axis contains other invariant sets. 

To describe this route we consider an example where there are a period-3 saddle, A, 

and a stable period-3 ( P3 ) cycle, B, on the x axis, both being transversely stable. An-

other period-3 saddle, C, exists in the fourth quadrant. Let r2  increase. The saddle C 

first collides on B and exchanges transverse stability through a transcritical bifurcation. 

At this point, the invasion exponent changes sign, from negative to positive. Now C is 

an attractor in the positive first quadrant and B has become a saddle (transversely unsta-

ble) See Fig. 1a. Next C undergoes a Neimark-Sacker bifurcation: C becomes an unsta-

ble focus while a torus (T) is born around it (Fig. 1b). The torus T further approaches 

the two saddles A and B on the axis and eventually forms a heteroclinic connection be-

tween them (Fig. 1c). As the connection is established, T breaks down and is replaced 

by a strange attractor S (Fig. 1d). 

A similar scenario is likely to apply when the resident attractor is chaotic and con-

tains infinitely many unstable periodic orbits. This can be best illustrated by starting 

from the chaotic attractor due to the heteroclinic connection between the resident saddle 

A and stable cycle B (Fig. 1d), fixing r2  and decreasing r1 . The A and B cycles appear 

to belong to a window of periodicity in the Feigenbaum diagram of species X with re-

spect to r1  (Fig. 2). Moving r1  towards the chaotic region on the left-hand side of the 

window causes A and B to collide and disappear through a fold bifurcation. As long as 

A and B exist, the heteroclinic connection drives the system dynamics (Fig. 3a-c). As 

the resident attractor becomes chaotic, the internal attractor S still presents a striking 

heteroclinic structure (Fig. 3d). Trajectories concentrate around a point on the x axis 

which is close to the former B saddle and where chaotic orbits in the resident attrac-

toralso tend to accumulate (Fig. 2). There they are repelled upward along vertical direc-
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tions that parallel (locally at least) the previous unstable manifold of B. This is the phe-

nomenon known as on-off intermittency in physics, one which has received much atten-

tion over the past few years (see Sec. 5). 

We now show that this scenario unfolds around a codimension 2 fold-Hopf organiz-

ing center [Kuznetsov, 1998]. Notice that the fold-Hopf organizing center is defined 

usually for three-dimensional continuous time systems. However, because of a cylindric 

symmetry, the truncated normal form of this bifurcation is a continuous time system in 

two dimensions only, with an invariant axis corresponding to the axis of the cylindric 

symmetry. In our case, the symmetry axis is the x axis, which is actually invariant. (The 

reason why a fold-Hopf bifurcation does not admit a real normal form is explained in 

Guckenheimer & Holmes [1983], Wiggins [1990] or Kuznetsov [1998].) 

When compared to one of the four possible unfolding of the fold-Hopf bifurcation, 

the scenario that we previously described only misses the fold bifurcation on the x axis. 

In the local parameter region we have considered so far, the only fold bifurcation for the 

period-3 cycle on the x axis occurs in correpondence with the opening and closure of 

the period-3 window as r1  is varied (Fig. 2). In order to identify the fold-Hopf organiz-
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Figure 6   Transverse Lyapunov exponent of natural measure on chaotic attractor S on the x-axis, as a 

function of r2 . Values of r1 , s1  and s2  values as in Fig. 5. Transcritical bifurcations of saddles in S are 

indicated (see Fig. 5 for corresponding numbering). Basin riddling occurs as saddles lose transverse sta-

bility. 
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ing center, we numerically continued the former, opening fold with respect to r1  and r2  

(shown as Fd Fd1 1
− +∪  in Fig. 4) and looked for its degeneracy that must occur at the 

organizing point (denoted by FH1).  Obviously that fold taking place on the axis is not 

affected by r2 , hence Fd Fd1 1
− +∪  is a straight, vertical line in Fig. 4. Next we unfolded 

the structure locally around FH1 to determine the bifurcation curves organized by this 

point. The line Trc1, that separates regions (7) and (1), corresponds to the transcritical 

bifurcation between the period-3 solution B and the period-3 solution C in the scenario 

described previously. In region (7) C is a saddle in the fourth quadrant and B is attract-

ing, while region (1) corresponds to the case illustrated by Fig. 1a. Across the NS line 

(Neimark-Sacker), C looses its stability while a stable torus T appears around it; there-

fore, region (2) corresponds to the case depicted by Fig. 1b. As we cross the line Ht, the 

heteroclinic connection between A and B is established and, as the system enters region 

(3), a strange attractor S (visible in Fig. 1c) originates from the torus T. As one crosses 

the line Trc2 , C and A undergo a transcritical bifurcation whereby C moves into the 

fourth quadrant and A changes its transversal stability. Finally, on the line Fd Fd1 1
− +∪ , 

A and B collide and disappear. In the region of parameter space where no attractor 

should exist in continuous time (region ( ) ( )5 6∪ ), however, our discrete-time model 

gives rise to a chaotic attractor, either an internal one (in region (5) where the transverse 

Lyapunov exponent is positive), or on the x axis (in region (6) where the transverse Ly-

apunov exponent is negative). The line Zle1 that separates region (5) and (6) , along 

which the transverse Lyapunov exponent vanishes, seems to converge to the organizing 

point FH1, thereby adding a new bifurcation to the scenario known for continuous time. 

We conducted a similar analysis for the other Fold bifurcation corresponding to the 

closure of the window of periodicity. The same bifurcation structure was found, organ-

ized around a point now denoted by FH2. Moreover, continuing the lines Trc1, NS and 

Trc2 issued from the two organizing centers FH1 and FH2 shows the unexpected result 

that these lines exactly coincide without leading to any other codimension 2 point. The 

narrowness of region (5) comprised between Fd 2
+  and Zle2 may be understood intui-

tively from the Feigenbaum diagram (Fig. 2) by comparing the shape of the chaotic at-

tractors on the left and on the right of the periodic window. On the right-hand side, the 

chaotic attractor on the x axis is much wider. The fraction of the attractor that attracts 

internal trajectories to the axis becomes larger as one moves towards Zle2 by increasing 

r1 , and soon dominates the transverse stability of the axis, yielding quickly to a negative 

transverse Lyapunov exponent. 
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4 Second Scenario: Riddling Bifurcations 

We now describe a bifurcation scenario which takes place near to the invasion boundary 

when the resident transverse Lyapunov exponent is slightly negative. We start with a 

chaotic attractor S on the x axis. We assume that the transverse Lyapunov exponent of S 

is initially negative, i.e. the chaotic attractor attracts all points in some neighborhood. 

There are infinitely many periodic orbits embedded in the chaotic attractor which all are 

saddles or repellors. The loss of transverse stability of the attractor occurs when some 

properly weighted transverse eigenvalues of these two groups are balanced [Nagai & 

Lai, 1997]. 

As we increase r2 , periodic repellers contained in the fourth quadrant start colliding 

with saddles in S and undergo a transcritical bifurcation as they pass through the x axis. 

As they do so, they exchange stability with the corresponding saddles in S: the latter 

ones become transversely unstable. Figure 5 displays a sequence of saddles arising suc-

cessively through such a mechanism and bifurcating (reverse flip) into attractors. First, a 
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Figure 7   Riddled basin. The chaotic attractor on the axis is transversely stable ( χ = −0 0161. ), yet its 

basin of attraction is riddled by the basin of the internal period-5 cycle. r1  = 22.0, s1  = 0.007815, r2  = 

2.95, s2  = 0.5. Points attracted to the chaotic set on the axis are colored blue and points attracted to the 

internal P5 attractor are colored orange. The color is shaded according to the speed of convergence. Light 

orange or light blue: fast convergence. Dark orange or dark blue: slow convergence. 
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period-5 (P5) saddle enters the first quadrant. As r2  increases, this saddle moves upward 

whilst a P20 saddle, followed by a P40 saddle, enter the first quadrant. Then the P40 be-

comes stable through a reverse flip with a stable P80 (that likewise had entered the quad-

rant as a saddle — not shown). As r2  is increased further, the P40 shrinks around the P20 

saddle and disappears to leaving a stable P20. Keeping on increasing r2 , a P10 saddle en-

ters the first quadrant and collides with the P20 in another reverse flip. Finally, the stable 

P10 flips with the P5, and the latter becomes stable. During this process, the system pos-

sesses two attractors in the closed positive cone: the strange attractor on the axis, and a 

P
5 2⋅ n  internal cycle. As saddles enter the positive cone, the transverse stability of the 

strange attractor S on the x axis is weakened (Fig. 6) and eventually lost, i. e. the trans-

verse Lyapunov exponent of the natural measure on S becomes positive, and P5 remains 

as the only attractor. As saddles in S lose transverse stability, basin riddling occurs 

(Figs. 6 and 7): the basin of attraction of S in the full phase space is riddled with holes 

that belong to the basin of attraction of the internal P
5 2⋅ n  cycle. The set S is no longer a 

topological attractor; it is a Milnor attractor, i. e. it attracts a set of initial conditions 

with positive Lebesgue measure.  

The transition to basin riddling can be understood geometrically as follows (Fig. 8). 

Initially, all trajectories are captured by attracting ‘tongues’ that originate around the 

saddle cycles embedded in the chaotic attractor (Fig. 8a). When a saddle on the axis un-

dergoes a transcritical bifurcation, it becomes a repellor and the corresponding tongue 

becomes repelling. A trajectory with initial conditions in the repelling tongue initially 

takes off but it is likely to be recalled to the axis for the tongue intercepts other nearby 

attracting tongues (Fig. 8b). Once enough tongues have become repelling as more sad-

dles have entered the positive cone, any trajectory originated near the chaotic attractor 

has a positive probability of escaping and asymptoting to the internal attractor (Fig. 8c). 

In our example, this happens as the P5 is the internal attractor of the system (Fig. 7). 

 

5 Concluding Remarks 

Recently, examples of important problems in the physical sciences have motivated the 

intensive study of nonlinear dynamical systems that possess chaotic dynamics in a 

smooth invariant manifold of lower dimension than that of the full phase space. These 

physical systems are typically endowed with symmetries, and any initial state that has 

the same symmetry as the entire system evolves to other states that also respect the 

symmetry of the system. The set of such symmetric initial states then forms a manifold 

that is invariant under the system dynamics. These invariant manifolds can also have the 

property that the dynamics restricted to the manifold is chaotic, i.e., symmetric initial 
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states can be attracted to a chaotic set in the manifold. As one varies a ‘normal parame-

ter’ [Ashwin et al., 1996] that only affects the dynamics transverse to the invariant 

manifold, blowout bifurcations may occur [Ott & Sommerer, 1993]. 

Blowout bifurcations are local symmetry-breaking bifurcations accompanied either 

ith bubbling transitions [Ashwin et al., 1994; Venkataramani et al., 1996] and riddled 

basins [Ashwin et al., 1996; Lai et al., 1996; Astakhov et al., 1997], or with on-off 

intermittency [Lai, 1996]. Although considerable insights have been gained into the sta-

tistics of on-off intermittent dynamics [Heagy et al., 1994; Venkataramani et al., 1995, 

1996], their geometrical underpinning had not yet been elucidated (but see Melbourne  

[1993]). This analysis provides the complete unfolding of a codimension 2 bifurcation 

scenario that explains on-off intermittency. 

Blowout bifurcations were known to occur as the perfect symmetry of a dynamical 

system (a set of coupled identical equations) is broken by making the coupling asym-

metric. Blowout bifurcations in competition models of the kind described in this Letter 

a b

c
d

 
 

Figure 8   Mechanism of basin riddling. Closer to the invasion boundary, more attracting (shaded) 

tongues that originate around saddles in the chaotic set on the axis become repelling (white). Trajectories 

picked at random acquire a positive probability of escaping to the internal attractor, hence basin riddling. 

See text for further explanations. 
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also involve symmetry breaking, but here the system symmetry is broken by making the 

parameters of sub-systems (single-type populations) slightly different without altering 

the coupling (competition) terms. In spite of this important qualitative difference, the 

bifurcation route to basin riddling in biological models involves the same ingredients as 

in physical systems, namely the change in the transverse stability of periodic saddles 

embedded in the chaotic set [Lai et al., 1996; Astakhov et al., 1997; Nagai & Lai, 1997] 

(also see Mira et al. [1994] for a different approach). Thus our results indicate that this 

bifurcation scenario is even more general than previously thought. 
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