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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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Evolutionary Branching and Coexistence of Germination Strategies.
IIASA Interim Report IR-99-014.

No. 35 Dieckmann U, Doebeli M:
On the Origin of Species by Sympatric Speciation.
IIASA Interim Report IR-99-013.

Nature (1999) 400, 354–357.

No. 36 Metz JAJ, Gyllenberg M:
How Should We Define Fitness in Structured Metapopulation Models? In-
cluding an Application to the Calculation of Evolutionarily Stable Dispersal
Strategies.
IIASA Interim Report IR-99-019.

Research Report A39 (1999), University of Turku, Institute of Applied Mathematics, Turku,
Finland.

No. 37 Gyllenberg M, Metz JAJ:
On Fitness in Structured Metapopulations.
IIASA Interim Report IR-99-037.

Research Report A38 (1999), University of Turku, Institute of Applied Mathematics, Turku,
Finland.

No. 38 Meszéna G, Metz JAJ:
Species Diversity and Population Regulation: The Importance of Environ-
mental Feedback Dimensionality.
IIASA Interim Report IR-99-045.

No. 39 Kisdi É, Geritz SAH:
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No. 44 Meszéna G, Kisdi É, Dieckmann U, Geritz SAH, Metz JAJ:
Evolutionary Optimisation Models and Matrix Games in the Unified Perspec-
tive of Adaptive Dynamics.
IIASA Interim Report IR-00-039.

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density Dependence
and Demographic Stochasticity.
IIASA Interim Report IR-00-035.

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained free of charge.
Please contact:

Adaptive Dynamics Network
International Institute for Applied Systems Analysis
Schlossplatz 1
A–2361 Laxenburg
Austria

Telephone +43 2236 807, Telefax +43 2236 71313, E-Mail adn@iiasa.ac.at,
Internet http://www.iiasa.ac.at/Research/ADN



Contents

1 Introduction 1

2 Model description 3

3 Migration risk and extinction risk 3

4 Demographic stochasticity 5

5 Alternative growth regimes 6

6 Discussion 7

A Stochastic model and resulting invasion fitness 10

B Deterministic model and resulting invasion fitness 11

C Procedure for determining CSS dispersal rates 12



Abstract

Selective pressures governing the evolution of dispersal rates are difficult to evaluate and
currently poorly understood. In particular, predictions of evolutionarily stable dispersal
strategies have only been derived under a number of limiting conditions regarding the ecol-
ogy of dispersing species. In this paper we predict the outcome of dispersal evolution in
metapopulations based on a suit of assumptions that are more likely to be met in the field:
(i) population dynamics within patches are density-regulated by realistic growth functions,
(ii) demographic stochasticity resulting from finite population sizes within patches is ac-
counted for, and (iii) the transition of individuals between patches is explicitly modelled
by a disperser pool. In addition we make few further changes which add to the models
interest for comparison purposes; (iv) individuals can disperse between habitable patches
throughout their lifetime, and (v) metapopulations are described in continuous time in-
stead of relying on season-to-season descriptions. Extending available models in regard to
these features, we demonstrate the existence of two general patterns of metapopulation
adaptation. We show, first, that evolutionarily stable dispersal rates do not necessarily
increase with rates for the local extinction of populations due to external disturbances
in habitable patches. Instead, without demographic stochasticity, adapted dispersal rates
exhibit a maximum for intermediate levels of disturbance and fall off for both higher and
lower rates of local extinction. Second, we describe how the demographic stochasticity
that inevitably occurs in finite populations affects the evolution of dispersal rates. Con-
trary to predictions from deterministic models, evolutionarily stable dispersal rates in
metapopulations composed of small local populations can remain high even when rates
of local extinction are low. The first pattern is shown to be robust, provided that demo-
graphic stochasticity is not too severe, under a range of local growth conditions, including
logistic growth and its variants. We also demonstrate that high degrees of demographic
stochasticity can enrich the behavior of adapted dispersal rates in response to varied levels
of disturbance: monotonic increases or decreases can be observed as well as intermediate
maxima or minima.



About the Authors

Kalle Parvinen
Department of Mathematics,

University of Turku, FIN-20014 Turku, Finland

Ulf Dieckmann
Adaptive Dynamics Network

International Institute for Applied Systems Analysis
A-2361 Laxenburg Austria

Mats Gyllenberg
Department of Mathematics,

University of Turku, FIN-20014 Turku, Finland
and

Turku Centre for Computer Science
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Evolution of Dispersal in Metapopulations

with Local Density Dependence

and Demographic Stochasticity

Kalle Parvinen
Ulf Dieckmann
Mats Gyllenberg
Johan A.J. Metz

1 Introduction

Metapopulations and their dynamics have become a central subject of conservation ecology
and evolutionary ecology. Accounting for the spatial fragmentation occurring in many
species’ habitats, the study of metapopulations is providing new insights into the impacts
of spatial heterogeneity on population viability and on the evolutionary forces acting on
key life-history traits.

In this context, the evolution of dispersal rates has attracted particular attention (Gan-
don 1999; Gandon & Michalakis 1999; Gyllenberg & Metz 1999; Metz & Gyllenberg 1999;
Parvinen 1999; Ronce et al. 2000; Nagy in press; Heino & Hanski submitted). One reason
is that changes in dispersal strategies provide an option for threatened populations to re-
spond to the perpetual fragmentation of their habitats. Consequently, success or failure of
such adaptation often determines whether a challenged population can persist. Moreover,
evolution of dispersal is driven by selection pressures that are inherently more complex
than those arising in well-mixed populations. In particular, adaptive features that im-
prove a phenotype’s competitiveness within patches may well have detrimental effects on
the same phenotype’s ability to spread between patches, and vice versa. To evaluate the
evolutionary consequences of such two-level selection pressures and to assess the relative
strength of their components has proven to be very difficult, with general results essen-
tially lacking. Yet, we can be confident that the ecological details assumed at both levels
of population structure can qualitatively affect evolutionary outcomes. For this reason, it
is important to cast investigations of adapting dispersal rates in ecological settings that
are not only amenable to analysis but, at the same time, provide a sufficiently close match
with conditions in the field by epitomising their salient features.

In this paper we present and investigate an evolutionary metapopulation model that
aims at incorporating more realistic ecological detail into studies of dispersal evolution.
We focus on three distinct aspects that are all intended to improve the match between the
modelling exercise and ecological reality.

First, most previous studies of dispersal evolution have relied either on Levins-type
models (Levins 1969, 1970), which altogether ignore the within-patch dynamics of popu-
lations, or, instead, have assumed relatively simple types of local population regulation,
based on a ceiling for local population sizes (Olivieri et al. 1995; Olivieri & Gouyon 1997;
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Ronce et al. 2000; see also Hanski et al. 1996; Hanski 1998). In the latter case, pop-
ulations approach the ceiling without density regulation and then abruptly stop growing
once the ceiling is hit. In contrast, following recent studies on structured metapopulations
(Gyllenberg & Hanski 1992,1997; Gyllenberg et al. 1997; Gyllenberg & Metz 1999; Metz
& Gyllenberg 1999) we rest our analysis on fully density-regulated local population dy-
namics, as they are commonplace in studies of single populations. The consequences of
logistic growth rates and of more general variants are investigated in detail.

Second, we focus on the implications of stochastic population dynamics. A central
conceptual argument in our understanding of dispersal evolution is based on the notion of
bet hedging. Specifically, dispersal is advantageous because growth conditions as well as
the length of undisturbed periods of growth tend to differ randomly between patches. For
this reason, it is essential to incorporate these two kinds of stochastic factors into models
of metapopulation adaptation; in our approach, both environmental stochasticity due to
local extinction and demographic stochasticity due to individual-based reproduction and
mortality are considered. In the following local extinction risk means all the time risk of
local extinction due to external disturbances, not demographic stochasticity.

Third, some models of metapopulation dispersal assume that individuals migrate in-
stantaneously from one patch to another (Hastings 1983; Olivieri et al. 1995; Doebeli &
Ruxton 1997; Olivieri & Gouyon 1997; Parvinen 1999). In real ecological systems, how-
ever, individuals in transit between patches are migrating for a certain duration before
they can settle again; during this period of stochastic length they tend to experience im-
peded reproduction and an increased level of mortality. By introducing a disperser pool
as in Gyllenberg & Hanski (1992) this mechanism is incorporated into our model; see also
Giles & Goudet (1997).

In addition to these improvements we make two further changes that add to the models
interest for comparison purposes: Fourth, we allow for individuals to disperse between
metapopulation patches more than once during their lifetime. Such behaviour occurs in
a number of animal metapopulations. This contrasts with dispersal at birth as studied
for example in the context of plant metapopulations. Fifth, we allow metapopulation
dynamics to unfold in continuous time such that processes of reproduction or dispersal do
not have to be synchronised. This contrasts with season-to-season descriptions in discrete
time, as they are employed by some existing models (Gyllenberg et al. 1993, 1996; Hastings
1993).

A complete description of our evolutionary metapopulation model, incorporating the
different features outlined above, is provided in Section 2. In Section 3 we show that
dispersal rates adapted to different risks of local extinction can exhibit an intermediate
maximum. In other words, increasing levels of disturbance can lead to higher as well as
lower dispersal rates. Adaptations of dispersal rates to different risks of dying during
migration, on the other hand, show a monotonic trend. That demographic stochasticity
strongly affects evolutionarily stable dispersal strategies is demonstrated in Section 4.
The findings presented there show that deterministic models that ignore the implications
of finite local populations can be qualitatively in error. In Section 5 we investigate the
robustness of our results under variations in local density regulation and show that the
highlighted patterns of metapopulation adaptation persist for different kinds of growth
regimes.
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2 Model description

We consider a metapopulation with N patches of habitable environment. Given a local
population size of n individuals within a patch, per capita birth and death rates are
given by bn and dn, respectively. Individuals migrate out of their patches at rate m, thus
entering the disperser pool of the metapopulation. While in the disperser pool, individuals
experience mortality at rate d̃. They leave the disperser pool by settling into a new patch
at rate s. Extinction of a local population due to external disturbances occurs at rate e.

Within this ecological setting we investigate the adaptation of dispersal ratesm. We as-
sume that the number of patchesN is large enough for the entire metapopulation not to be
liable to chance extinction by demographic stochasticity; otherwise, evolutionarily stable
dispersal rates obviously cannot be attained. Equations for this evolutionary metapopu-
lation model are summarised in Appendix A. Notice that because of the individual-based
nature of this model and due to the existence of external disturbances, local populations
are subject to both demographic and environmental stochasticity. This implies that al-
though patches are intrinsically equivalent, the local environments experienced by individ-
uals typically show a broad spectrum of variation, with some patches being overcrowded
while others harbouring only small populations or being completely empty.

The growth of local populations is governed by density regulation. For simplicity, we
assume that per capita birth rates are unaffected by density, bn = r, while per capita
death rates increase linearly with local population size, dn = rn/k, where r is the intrinsic
growth rate of local populations and k determines the local carrying capacity of patches.
Local growth consequently is logistic, fn = bn − dn = r(1 − n/k). Departures from this
growth regime are investigated in Section 5.

3 Migration risk and extinction risk

The most important determinants for the evolution of dispersal rates are the mortality risk
experienced by a migrating individual and the extinction risk to which local populations
are exposed. The former can be interpreted as a cost of dispersal and is thus expected to
select for lower rates of migration. On the other hand, local extinctions make it impossible
for a metapopulation to persist without dispersal. This fact was already stated in Van
Valen (1971). Local extinctions moreover result in empty or thinly populated patches,
the existence of which makes dispersal profitable. For these reasons, increasing extinction
risks are expected to select for higher dispersal rates.

We assess the validity of these heuristic predictions by systematically evaluating the
evolutionarily stable dispersal rates under a range of migration and extinction risks. For
this purpose we employ a modification of the model presented in the previous section by
assuming that local carrying capacities are large. Two reasons motivate this consideration.
First, the assumption of large local populations allows for approximating our stochastic
metapopulation model by a deterministic one. This simplification is frequently employed
in the literature (Doebeli & Ruxton 1997; Gandon 1999; Gandon & Michalakis 1999;
Gyllenberg & Metz 1999; Parvinen 1999) and facilitates the determination of evolution-
arily stable strategies. Equations for the approximate deterministic model are given in
Appendix B. A second reason is that we wish to emphasize the limitations of such deter-
ministic descriptions: by comparison, our results in Section 4 highlight the importance of
demographic stochasticity and the danger of ignoring it in deterministic approximations.

Evolutionarily stable rates of migration, resulting from different risks of migration
and extinction, are presented in Figure 1. In Appendix C we explain why the resulting
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0
0.2

0.4
0.6

0.8

0
0.1

0.2
0.3

0.4
0.5

0.6

0

1

2

3

0
0.2

0.4
0.6

00.20.40.60.8

0
0.2

0.4
0.6

0

0.25

0.5

0.75

1

00.20.4d̃/(s+
d̃) e

d̃/(s+
d̃) e

Figure 1: (a) CSS dispersal rates and (b) equilibrium population sizes at CSS in depen-
dence on migration risk d̃/(s + d̃) and extinction risk due to external disturbances e for
logistic growth and large carrying capacities. Displayed dispersal rates are based on the
deterministic model and therefore do not reflect the effects of demographic stochasticity.
Notice that evolutionarily stable migration rates are maximal for intermediate extinction
risks, whereas equilibrium population sizes decrease monotonically with extinction risk.
By contrast, increased migration risks lead to monotonic decreases in evolutionarily stable
migration rates as well as in equilibrium population sizes. In the absence of catastrophes,
CSS dispersal rates are zero. Parameters: r = 1, s = 0.5.

dispersal rates are not only evolutionarily stable strategies (ESS) but also continuously
stable strategies (CSS) and that they can thus be regarded as the final outcomes of gradual
evolutionary processes.

The results in Figure 1 demonstrate that the heuristic predictions sketched above
were too simplistic. For low extinction risks, adapted dispersal rates indeed increase
with higher rates of local extinction, thus confirming our expectations. For high rates of
local extinction, however, adapted dispersal rates start to decrease again when extinctions
become more frequent. In other words, evolutionarily stable rates of migration are maximal
for intermediate extinction risks; around this maximum, adapted dispersal rates fall off
when extinction risks are either increased or decreased. Such an intermediate maximum
of dispersal rates has been observed in an analysis by Ronce et al. 2000. See also Karlson
et al. (1995). The model in Ronce et al., however, describes a metapopulation in discrete
time, with natal dispersal and without a disperser pool. Moreover, the model by Ronce
et al. does not allow for demographic stochasticity and is based on a restricted type
of density regulation that simply imposes a ceiling on local population sizes. That the
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Figure 2: CSS dispersal rates for different levels of demographic stochasticity. Low car-
rying capacities k lead to large fluctuations in local population sizes and therefore select
for positive CSS dispersal rates even in the absence of local extinction events. For the
same reason, CSS dispersal rates are highest for low carrying capacities. For high carry-
ing capacities, CSS dispersal rates converge towards the predictions of the deterministic
model as shown in Figure 1. The white part of the bottom plane corresponds to inviable
metapopulations. Parameters: r = 1, s = 0.5, d0 = 0.

highlighted pattern of adaptation is found in two so different models of metapopulation
dispersal underscores its potentially wide-ranging relevance.

4 Demographic stochasticity

We now address the question whether and to which extent the results presented in Fig-
ure 1 are affected by the simplifying assumption of ignoring the demographic stochasticity
occurring within patches. This problem was actually flagged as unsolved in Ronce et al.
2000.

We therefore utilise the fully stochastic metapopulation dynamics introduced in Sec-
tion 2, instead of relying on its deterministic approximation. The impact of demographic
stochasticity on evolutionarily stable dispersal rates is expected to be strongest when lo-
cal population sizes are small. For this reason, we explore adapted rates of migration for
metapopulations with different local carrying capacities. The results presented in Fig-
ure 2 demonstrate that demographic stochasticity must not be ignored when predicting
dispersal strategies. In particular for small rates of local extinction, systematic qualita-
tive departures arise: under such conditions, selection favours much higher dispersal rates
than expected. These discrepancies between deterministically-based and stochastically-
based predictions are largest for small carrying capacities and occur for all combinations
of migration risk and extinction risk. Not only does a decrease in local carrying capacities
select for higher dispersal rates, it also reduces the domain of metapopulation viability,
see Figure 2.

This surprising feature of metapopulation adaptation can be explained intuitively. If
local populations exhibit deterministic growth, patches will fill up with individuals until
their carrying capacity is exactly reached. There can be no overshooting of this capacity,
neither can populations have smaller sizes unless a patch is reset by a local extinction
event. In these circumstances, and if the frequency of empty patches is low, dispersal does
not pay: the mortality cost of dispersal, combined with a low probability for finding a
better patch, prevents evolutionarily stable dispersal rates to take off from zero. This is
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Figure 3: (a-d) Four different responses of CSS dispersal rates to variations in local extinc-
tion risks e due to external disturbances: (a) monotonic decrease, (b) monotonic increase,
(c) intermediate minimum, and (d) intermediate maximum. In all four panels, variation of
extinction risks extends over the range of viable metapopulations. (e) Parameter ranges
that lead to the four types of behavior in dependence on carrying capacity k and de-
mographic noise level d0. The narrow ranges of more complicated cases, such as a local
maximum followed by a local minimum, are marked with black lines. Parameter combi-
nations corresponding to (a-d) are marked by black circles. Notice that the heuristically
expected pattern of CSS dispersal rates increasing with extinction risks is confined to a
very narrow band. Parameters: r = 1, s = 0.5, d̃/(s+ d̃) = 0.005.

precisely what can be observed along the right-hand edge of Figure 1. However, as soon as
local populations are subject to demographic stochasticity, the situation is different. Now
local abundances will fluctuate around the carrying capacity of patches. Consequently,
individuals in a non-empty patch always have a chance of finding better patches that are
inhabited by fewer individuals. The fixed per capita cost of dispersal is thus counteracted
by a benefit and, consequently, high rates of dispersal can evolve even for very low degrees
of environmental disturbance.

Levels of demographic stochasticity are not only changed by variations in carrying
capacities. Notice that growth rates of local populations are unaffected by modifying the
sum of birth and death rates, bn + dn, as long as their difference, bn − dn, is preserved.
In fact, the sum bn + dn measures the amount of demographic noise arising in local pop-
ulations. We can therefore consider the same growth rates as, for example, in Figure 2
while increasing the level of demographic stochasticity by offsetting per capita birth and
death rates by the same positive amount. Outcomes of metapopulation adaptation under
such conditions are shown in Figure 3. For large ranges of parameters, we observe four
kinds of behaviour with respect to increasing extinction risk: adapted dispersal rates can
either increase or decrease monotonically with the risk of local extinction or they may
exhibit an intermediate maximum or minimum. We also find a small range of parameter
values where we have even more complicated case: a local maximum followed by a local
minimum. See Figure 3 for details. The possibility for monotonically decreasing relations
or for intermediate minima appears to have gone unnoticed in previous studies.

5 Alternative growth regimes

The results displayed in Figures 1, 2, and 3 are valid for metapopulations with locally
logistic growth. Yet, we conjecture that the two patterns of metapopulation adaptation
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Figure 4: (a) Four different local growth regimes and corresponding growth functions
f . The bold straight line characterizes logistic growth, as employed in Figure 2b. (b-d)
CSS dispersal rates resulting from the three alternative different growth functions. Notice
that in comparison with Figure 2b most qualitative features of dispersal evolution remain
intact. However, intermediate maximization of CSS dispersal rates is less likely for convex
growth functions. Parameters: k = 5, s = 0.5, d0 = 0.

presented so far apply under a much wider range of ecological conditions.
To substantiate this claim, we analysed evolutionarily stable dispersal rates for dif-

ferent kinds of growth regimes. The characteristic feature of logistic density regulation
is a linear dependence of per capita growth rates on population size. Instead of main-
taining this somewhat artificial assumption (which, of course, is only supposed to serve
as an approximation to the behaviour of real populations), we investigate three nonlinear
dependencies, see Figure 4a. Results are presented in Figures 4b to 4d. We conclude
that the considered departures from logistic growth kept intact both described patterns
of metapopulation adaptation.

6 Discussion

In this paper we have evaluated the consequences of different metapopulation ecologies for
the evolution of dispersal. We have aimed at incorporating into an individual-based model
some features of metapopulation ecology as they are encountered in the field: demographic
stochasticity and density regulation of local populations, migration of individuals at several
stochastically determined moments during their lifetime, as well as randomly varying
duration of migratory processes between patches, resulting in dispersal costs that vary
across migration events. Under these conditions we have shown the existence of two
patterns of metapopulation adaptation: dispersal rates do not necessarily increase with
increased catastrophe rates, and relatively high dispersal rates can evolve for small local
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populations with negligible extinction risks. We have demonstrated that both patterns
are robust under a variety of local growth regimes.

The present study would have been impossible to conduct without the availability of
recent results for determining the frequency-dependent fitness of strategies in metapopu-
lation structures (see Appendices A and B). Instead of explicitly simulating the stochastic
population dynamics of resident and potentially invading mutant phenotypes for a wide
range of parameter values,all results in this paper are based on the direct computation of
fitness values for mutant strategies in given resident environments. For this endeavour,
the theory of adaptive dynamics (Metz et al. 1996; Dieckmann 1997; Geritz et al. 1997,
1998) has provided the appropriate framework, see also Appendix C.

Evidently, an attempt to incorporate ’realistic dynamics’ into models of metapopu-
lation evolution can amount to no more than a relative claim and therefore has to be
interpreted against the backdrop of available literature. Although we propose that the
present study allows for a much closer match between models of dispersal evolution and
conditions actually encountered in the field, many simplifying assumptions remain to be
overcome. To facilitate and encourage such extensions in the future, we provide a summary
of issues that we suggest ought to be addressed.

1. First, connectivity structures and patch-size distributions of real metapopulations
are certainly not uniform as has been assumed in our model. Patches tend to be
connected by feasible migration routes to only a relatively small set of close-by
patches; carrying capacities and demographic rates also tend to be heterogeneous
across patches (Gyllenberg et al. 1997). In a similar vein, regional instead of global
disperser pools could be considered to account for spatially bounded dispersal ranges.

2. An important second issue concerns the incorporation of sexual reproduction into
models of metapopulation evolution. The repercussions of diploid inheritance, as
opposed to the clonal reproduction assumed in the present paper, should be inves-
tigated. In this context, consideration of the dynamics of inbreeding depression is
critical, as such depletion of local genetic variance can detrimentally affect the per-
formance of small and relatively disconnected local populations. Another potential
driving force of dispersal evolution is kin selection; here the study of genetic correla-
tions emerging within and between patches is critical (see Gandon 1999 and Gandon
& Michalakis 1999).

3. A further direction for future analysis is a systematic investigation of the effects
of local growth regimes on metapopulation evolution. Although in this paper we
could show the robustness of our findings for logistic growth and some variants,
further exploration of alternative growth regimes is warranted. In particular, the
consequences of Allee effects in local population dynamics should be addressed and
are expected to result in modified or novel patterns of metapopulation adaptation.

4. In this paper we have assumed that rates of emigration, immigration, and local ex-
tinction are density-independent. Although this appears to be a reasonable assump-
tion for many species and environments, a higher crash rate for large populations
(resulting, for example, from the overexploitation of local resources) or density-
dependent rates for leaving or entering patches (for animals with sufficiently devel-
oped perception skills) are entirely conceivable. For investigations in this direction
see Gyllenberg & Metz (1999) and Metz & Gyllenberg (1999).

5. Finally, the metapopulation paradigm itself is based on the idealisation of a clear-cut
dichotomy between habitable and nonhabitable patches of environment. In reality,
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gradations of habitability are common and, moreover, the fine-structure of interac-
tions within patches is likely to play a role.

The art of modelling in ecology is based on extracting from the complex reality of
natural systems precisely those features that are most salient for understanding a given
phenomenon or pattern. Unfortunately, this agenda urges us to comprehensively explore
a wide variety of candidate features before we can decide which particular aspects deserve
to be highlighted. The results advanced in this paper and the suggestions outlined above
ought to be interpreted in this vein.

In addition to the list of steps for developing an increasingly adequate methodological
foundation for the analysis of dispersal evolution, the importance of controlled empiri-
cal studies of metapopulation ecology and evolution can hardly be overestimated. We
hope that the two patterns of metapopulation adaptation reported in this paper serve to
stimulate such future developments.
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A Stochastic model and resulting invasion fitness

The general model and method for computing invasion fitness in metapopulations are
described in Metz & Gyllenberg (1999). The model presented here differs from theirs by
allowing for dispersal events throughout the lifetime of individuals, instead of considering
natal dispersal.

In our model, a set of equivalent patches undergoes a Markov process with events for
birth, death, dispersal, and local extinction. In the limit of infinitely many patches, the
probability distribution pn for a patch to have local population size n behaves determin-
istically:

d
dtp0 = −sDp0 + (d1 +m)p1 + e(1− p0) ,
d
dtpn = [sD+ (n− 1)bn−1]pn−1 − [n(bn+m+ dn) + sD + e]pn

+(n+ 1)(dn+1 +m)pn+1 for n > 0 ,
d
dtD = −sD +m

∑∞
n=1 npn − d̃D .

(1)

The occupationD of the disperser pool is measured as the number of migrating individuals
per patch. All other parameters are as explained in Section 2. In practice it is necessary to
cut the summation in (1) at a value of n where npn has become negligible because patches
of that size are exceedingly rare.

The method for determining values of invasion fitness is based on first solving for the
equilibrium p̂n of (1) for a given resident strategy.

The following equations then describe the dynamics of a small mutant population
and are obtained from a linearization of (1). Occupation of the mutant disperser pool
is measured by D′, while p′n,n′ denotes the fraction of patches that are inhabited by a
combination of n resident and n′ mutant individuals.

d
dtp
′
n,1 =sD′p̂n + [sD + (n− 1)bn]p

′
n−1,1

− [(n+ 1)dn+1 + nm+m′ + sD + (n+ 1)bn+1 + e]p
′
n,1

+ (n+ 1)(dn+2 +m)p′n+1,1 + 2(dn+2 +m
′)p′n,2 ,

(2)

d
dtp
′
n,n′ =[sD + (n− 1)bn+n′−1]p

′
n−1,n′ + (n′ − 1)bn+n′−1p

′
n,n′−1

− [(n+ n′)dn+n′ + nm + n′m′ + sD + (n+ n′)bn+n′ + e]p
′
n,n′

+ (n+ 1)(dn+n′+1 +m)p′n+1,n′ + (n′ + 1)(dn+n′+1 +m
′)p′n,n′+1 ,

(3)

d
dtD

′ =− (s+ d̃)D′ +m′
∞∑
n=0

∞∑
n′=1

n′p′n,n′ . (4)

Let p̂′n,n′ be the equilibrium densities of p′n,n′ calculated from (2) and (3) for D′ = 1.
The Gauss-Seidel iteration method turned out to be most suitable for solving them. Then
the quantity

R′0 =
m′

s+ d̃

∞∑
n=0

∞∑
n′=1

n′p̂′n,n′ (5)

is the metapopulation equivalent of the basic reproductive ratio of the mutant as it is
familiar from ordinary population dynamics. Notice, however, that R′0 measures the in-
crease in the mutant population size between dispersal events as opposed to between birth
events. For given dispersal rates of resident and mutant, m and m′, the resulting invasion
fitness is obtained as sm(m′) = logR′0 and measures the expected long-term per capita
growth rate of the small mutant population in the absence of density regulation.
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B Deterministic model and resulting invasion fitness

For large local populations, effects of demographic stochasticity can be neglected. We can
then describe within-patch dynamics deterministically,

d

dt
n = f(n)n−mn+ sD = F (n,D) . (6)

The first term in the sum depends on the local growth regime, with per capita growth rates
f(n), while the second and third term describe the effects of emigration and immigration,
respectively. In the case of logistic growth we choose f(n) = r(1− n/k).

Like in the stochastic model, the metapopulation state is described by the probability
distribution p(n) of local population sizes, augmented by a measure for the occupation of
the disperser pool:

∂

∂t
p(n) +

∂

∂n
F (n,D)p(n) = −ep(n) , (7)

d

dt
D = −(s+ d̃)D +m

∫ ∞
0
np(n)dn . (8)

The boundary condition sDp(0) = e ensures that empty patches are filled at the same
rate at which they are generated.

Gyllenberg & Metz (1999) derived an analytical expression for the invasion fitness of
this metapopulation model. Here we reproduce one of their results in the notation of
the present paper. Assume that we know the equilibrium occupation D̂ of the disperser
pool. The maximal local population size is then ñ(D̂), defined by F (ñ(D̂), D̂) = 0. For n
between zero and ñ(D̂), the equilibrium of (7) is given by

p̂(n, D̂) = e (F (n, D̂))−1 exp

[
−e
∫ n
0

(F (ν, D̂))−1dν

]
. (9)

From d
dtD̂ = 0 and (8), D̂ is determined by solving the equation

D̂ =
m

s+ d̃

∫ ñ(D̂)
0

np̂(n, D̂)dn . (10)

The expected per capita number of mutant dispersers produced by a local mutant
population that was established when the cohabiting resident population had size n0 is

E ′(n0, D) =

∫ ñ(D)
n0

m′

F (n,D)
exp

(∫ n
n0

f(ν)−m′ − e
F (ν, D)

dν

)
dn . (11)

From this, the metapopulation equivalent of the basic reproduction number of the mutant
is obtained as

R′0 =
s

s+ d̃

∫ ñ(D̂)
0

E ′(n, D̂)p̂(n, D̂)dn . (12)

Like in Appendix A, the corresponding invasion fitness is given by sm(m′) = logR′0.
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Figure 5: (a) Transition diagram for a single patch. Arrows describe the possible transi-
tions in the state of the patch. Local population size is incremented by one by birth and
immigration events and decreases by one when a death or emigration event occurs. Local
extinction events can kill all individuals in a patch, thus resetting its population size to
zero. At carrying capacity k, birth and death rates are equal. (b) Pairwise invasibility
plot of dispersal rates. Gray regions correspond to combinations of resident and mutant
dispersal rates, m and m′, that allow for mutant invasion. For these combinations, the
invasion fitness sm(m′) is positive. In contrast, white regions correspond to negative signs
and therefore to deletereous mutants. In the displayed plot, sequences of mutant inva-
sion converge to a resident dispersal rate of m ≈ 5.5. This strategy is also evolutionarily
stable since sm(m′) < 0 for all mutant strategies m′. The value m ≈ 5.5 therefore cor-
responds to a continuously stable strategy or CSS. Parameters: r = 1, k = 7.5, s = 0.5,
d̃/(s+ d̃) = 0.005, e = 0.8.

C Procedure for determining CSS dispersal rates

In this paper we have used the framework of adaptive dynamics (Metz et al. 1996; Dieck-
mann 1997; Geritz et al. 1997, 1998) to predict outcomes of dispersal evolution. Based on
the descriptions of invasion fitness derived in Appendices A and B, the evolutionary dy-
namics of the metapopulation can be analyzed by means of pairwise invasibility plots. In
these plots, the sign of the invasion fitness sm(m′) is displayed in dependence on resident
and mutant dispersal rates, m and m′, see the example in Figure 5b. Notice that results
in this paper are all based on analytic fitness measures and not on the usual and slow
method of indirectly estimating fitness values from the population dynamics of residents
and mutants.

A strategy m∗ is called convergence stable if the repeated invasion of nearby mutant
strategies into nearby resident strategies will lead to the convergence of resident strategies
towards m∗. This happens if, for a resident m and a mutant m′ that are both close to
m∗, we have sm(m′) > 0 for m < m′ < m∗ and for m > m′ > m∗. In contrast, a strategy
m∗ is called evolutionarily stable if it cannot be invaded by any other strategy m′, i.e. if
sm∗(m

′) < 0 for all m′. Strategies that are both convergence stable and evolutionarily
stable are called continuously stable strategies or CSSs (Eshel 1983). Such strategies are
the expected final outcomes of the evolutionary process.

In Figure 5b, a CSS is located at m ≈ 5.5. Notice that invasions will lead towards
the CSS both from the left and from the right until, at the CSS, no further mutants can
invade. All pairwise invasibility plots investigated in this study exhibited such CSSs. For
identifying CSS dispersal rates we have utilized a bisection method to determine the zeros
of ∂
∂m′ sm(m′)|m′=m, the selection gradient resulting from invasion fitness sm(m′).
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