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Abstract

This note deals with on-line computation or learning of Pareto optimal insurance
contracts. We account for the fact that the loss distribution often is unknown,
unavailable, or intractable. Alternatively, the contracting parties could be inexpe-
rienced. In both cases losses must be simulated or observed, one at a time, these
causing iterated revisions of the premium. The mechanical nature of probability
calculus thus yields to more tentative procedures, possibly closer to how humans
operate or reason in face of risk. Emphasized here is the remarkable simplicity and
stability of the resulting procedures. Special attention goes to catastrophic risks
and subsidized insurance.
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Finding Pareto Optimal Insurance Contracts

Yuri M. Ermoliev (ermoliev@iiasa.ac.at)
Sjur Didrik Fl̊am (sjur.flaam@econ.uib.no)

1 Introduction

It is hard to deal effectively with probabilistic information, particularly with regard
to events of sizeable magnitude but infrequent occurrence. Above all, this fact
applies to the perception and management of so-called economic risks. The need
for such management leads us to consider here how stochastic optimization, and
notably Monte Carlo techniques, may assist in designing risk-transfer from exposed,
averse agents to specialized bearers. In that consideration we shall focus exclusively
on welfare efficient arrangements.

The setting is broadly as follows. A mutual, a syndicate, or a representative
agent faces a risk. Specifically, the agent at hand may incur an economic loss of not
quite predictable magnitude. Preferring more predictability and less uncertainty he
shifts the said risk, in part or full, to an insurer. The latter, who thereby receives
a compensating premium, could be the public sector, an insurance company, the
capital market, or a composition of those institutions. Such situations, being ubiq-
uitous in reality, are bread and butter for practical insurance - and for its theory.
On the normative side of that theory, the Pareto optimal form of risk-shifting has
been studied by Arrow [1], Raviv [9] and others. (For a nice exposition see [8].) On
the positive side, how those contracts can be computed, or achieved, has received
little attention. This motivates us to explore that issue here below.

A premise for our investigation - and a problem as well - is that the risk at hand
has unknown or hidden probability distribution. Consequently, our approach can
presume no or little knowledge of probabilities and distributions of these. Respecting
that shortage, we shall neither evaluate mean values nor require the capacity to do so.
Of course, some surrogate and compensating input must then be available. As such
we shall repeatedly let realized, representative losses cause some adaptation of the
premium. Accordingly, what is set up in the following is an iterative scheme totally
driven by upcoming samples or observations. That scheme amounts to adaptive
optimization, using Monte Carlo simulation or observed losses. It may be construed
as a learning procedure which depicts how inexperienced agents, in terms of premium
and coverage, eventually may come up with Pareto optimal insurance. In short, we
advocate a step-wise procedure that has two rather attractive features: First, it
is remarkably simple in form, concept, and implementation. Second, it effectively
and quite naturally splits insurance design in two related parts: an easy ex post
specification of recompenses, and a more difficult choice of the appropriate premium
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paid ex ante. If such splitting were not undertaken, then contract design would entail
difficult search in a function space.

2 The Model

To convey main ideas we confine attention to tractable features, embodying only a
small measure of complexity. Thus we consider a stylized setting in which agent 1
holds an economic risk X, henceforth called a loss. Formally, this object is a non-
negative random variable defined on some probability space not made explicit here.
For simplicity in the argument we posit that X has a probability density f(x)dx.1

The function f(·) may very well be unknown. We assume though, that someone
has the capacity to simulate (or observe) an infinite sequence {Xn} of independent
realizations, each distributed as X. Members of {Xn} will be unveiled and arrive
sequentially, one at a time.

At a fixed premium π agent 1 buys an insurance policy I = I(·), guaranteeing
him recovery (recompense) of the part I(x) ∈ [0, I(x)] in case the loss X = x comes
up. I(x) denotes an upper level beyond which additional losses will not be covered.
For instance, the specification I(x) := min {x, L} reflects presence of a cap-loss L.
If no such cap exists, then take L = +∞ and I(x) = x.

We shall focus on the treaty (π, I) but take no organized insurance market as
given; the pair (π, I) could rather be seen as a customized contract. Agent 1 has
wealth W1 and von Neumann-Morgenstern utility U1 [·] with U ′1 > 0, U ′′1 < 0. So, if
insured in such terms, he envisages expected utility

Ū1(π, I) :=

∫
U1 [W1 − π − x + I(x)] f(x)dx.

Insurance will limit his losses but also support his economical activities in ways not
modelled here. Suppose henceforth that the pair (π, I) makes insurance worthwhile.
That is, suppose Ū1(π, I) ≥ Ū1(0, 0) =

∫
U1 [W1 − x] f(x)dx. This inequality must

hold to incite demand for the associated contract. On the supply side resides agent 2,
also called the insurer. He issues and underwrites the policy I . Enjoying wealth (or
reserves) W2 and von Neumann-Morgenstern utility U2 [·] he obtains in expectation

Ū2(π, I) :=

∫
U2 [W2 + π − I(x)− c(I(x))] f(x)dx (1)

where c(·) accounts for his administrative cost. We posit that U2 and c be twice
continuously differentiable with

U ′2 > 0, U ′′2 ≤ 0, and c′ > −1, c′′ ≥ 0. (2)

Given coexistence of these two agents our errand is to the compute, or constructively
approach, Pareto optimal insurance contracts. Motivation for this inquiry stems
mainly from two sources: First, it is interesting in itself to exhibit what policies

1This assumption is not necessary and will later be relaxed.
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will maximize total welfare under diverse circumstances. Second, we note that novel
insurance instruments are now traded in fairly competitive, large, and widespread
financial markets. The first fundamental welfare theorem indicates that equilibrium,
under such price-taking conditions, might come fairly close to Pareto optimum.
Anyway, the problem of finding a Pareto optimal pair (π, I) can now be stated as
follows:

maximize Ū1(π, I)
subject to Ū2(π, I) ≥ u2

}
(3)

where u2 ≥ Ū2(0, 0) = U2 [W2] is a specified constant, guaranteeing the insurer a
threshold welfare. Alternatively, one may fix weights α1 ∈ (0, 1), α2 := 1− α1, and
consider the problem

maximize α1Ū1(π, I) + α2Ū2(π, I). (4)

In fact, we shall mostly deal with formulation (4). The decision variables are, of
course, the premium π and the recompense function x 
→ I(x) ∈ [0, I(x)] . Before
addressing (4) we make some

Remarks :
• (On the objective of the insured) As said, U1 could represent the aggregate

preference of a finite syndicate or mutual M ; see [15]. For example, U1 might
be synthesized as follows: Suppose member m ∈ M has wealth wm, increasing
smooth strictly concave utility um [·] , and risk Xm. Then, let W1 :=

∑
m∈M wm,

X :=
∑
m∈M Xm, and

U1 [W1 + y] := sup

{∑
m∈M

um(wm + ym) :
∑
m∈M

ym = y

}
.

This construction preserves continuity (in fact, differentiability) and concavity.
• (On the objective of the insurer) The first part of assumption (2), concerning

the nature of U2, is far from innocuous. Specifically, the insurer is apt to worry
about insolvency (and a fortiori about potential ruin). If so, a chance constraint

Prob {W2 + π − I(x)− c(I(x)) ≤ 0} ≤ r (5)

might be attached to (1), featuring some reasonably small ruin probability r ∈ (0, 1);
see [14]. In other words, the insurer’s essential objective equals (1) when (5) holds,
−∞ otherwise. Such ”death penalty” on his part is, of course, unrealistic. Moreover,
it may render problems (3) and (4) discontinuous or entail loss of concavity. So, for
greater realism and easier computation, the softer penalty and function

Ū2(π, I) + µEmin {0,W2 + π − I(x)− c(I(x))}

comes conveniently, incorporating a parameter µ > 0. Continuity and concavity will
thus be maintained, and for large enough µ satisfaction of (5) obtains to desirable
degree; see [5], [6]. Since x 
→ I(x) + c(I(x)) increases, insolvency occurs when x
exceeds some implicit level x̂ = x̂(W2, π, I(·), c(·)). So, (5) and Prob{x ≥ x̂} ≤ r are
equivalent. In other words: (5) imposes a chance constrained version of I(x) ≤ I(x̂).
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• (On uncertainty) Uncertainty is here objective and independent of the agents.
We have thus avoided all problems related to subjective probabilities and informa-
tion asymmetries. Admittedly, this situation seems exceptional. Often the insured
holds lower estimates of expected loss than does the insurer. Additional complex-
ity stems from the fact that risks are not entirely exogenous to economic behavior:
Their severity depends on mitigation measures not considered here. Also, since
uncertainty usually concerns commodity bundles or money payments over various
locations and future dates, a multi-variate probability distribution would suit bet-
ter. However, given existence of markets - and also our focus on economic losses - it
appears reasonable to aggregate diverse items and risks by their monetary values.
• (On insurance problems) Since our emphasis is on welfare, we disregard adverse

effects of moral hazard, selection, or fraudulent behavior. In particular, we do not
discuss whether ex post relief discourages mitigation. Non-insurable risks are also
ignored [2]. These may be associated with the considered one, and they would
call for multi-variate statistics. We tacitly presume that the costs of information
acquisition, contract writing, condition monitoring, and policy enforcement do not
preclude purchase of insurance. Finally, the fact that many insurance markets often
are politicized, and involve redistribution of wealth, is not accounted for - except in
the final section.

3 Avenues to Pareto Optimal Contracts

We shall utilize a simple observation, namely: For given premium π and loss x the
optimal recompense I(x) is easily found. To see this recall that (4) embodies the
integrand

α1U1 [W1 − π − x + I ] + α2U2 [W2 + π − I − c(I)] . (6)

So, given premium π and loss x, expression (6) should be maximal with respect to
I = I(x) ∈ [0, I(x)] . This elementary fact tells that the real challenge, be it in terms
of computation or learning, comes with fixing the premium. We shall address that
challenge shortly. First we review though, some well known results concerning the
choice of I. Since (6) is strictly concave in I, the maximizing coverage will be unique.
Given smoothness of all intervening functions, the standard first-order optimality
conditions becomes both necessary and sufficient. Arrow [1] and Raviv [9] have thus
obtained, in one form or another, the following two propositions.

Proposition 1 (Optimal coverage) Let here x ≥ 0 and π be fixed. Suppose f(x) >
0.

(i) If the unique solution I of

α1U
′
1 [W1 − π − x + I ] = α2U

′
2 [W2 + π − I − c(I)]{1 + c′(I)}

belongs to the feasible domain [0, I(x)] , then that I = I(x) is the optimal coverage
in case of loss x.

(ii) If, on the other hand

α1U
′
1 [W1 − π − x] < α2U

′
2 [W2 + π − c(0)] {1 + c′(0)}
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then minimal coverage I(x) = 0 becomes optimal. More generally, suppose

α1U
′
1 [W1 − π] < α2U

′
2 [W2 + π − c(0)] {1 + c′(0)} .

Then there is a stop-loss level l, uniquely determined by

α1U
′
1 [W1 − π − l] = α2U

′
2 [W2 + π − c(0)] {1 + c′(0)} ,

such that I(x) = 0 iff x ≤ l.
(iii) Finally, if

α1U
′
1 [W1 − π] > α2U

′
2 [W2 + π − x− c(x)] {1 + c′(x)}

then maximal coverage I(x) = I(x) becomes optimal. 2

Optimal coverage was first studied by Mossin [10] and Smith [13]. Studies of the
optimal deductible l include [3] and [11]. Evidently, since U ′1 decreases, and since

U ′2 [W2 + π − x− c(x)]{1 + c′(x)} ≥ U ′2 [W2 + π − c(0)] {1 + c′(0)} ,

it cannot happen that (ii) holds for some loss x while (iii) comes into vigor for others.
In other words: at most one, and always the same, of the scenarios (ii) and (iii) will
be realized if any.

It is sometimes instructive reconsider the form of I(·) via problem (3). Note
that the integral constraint Ū2(π, I) ≥ u2 will bind. Therefore, while having optimal
control in mind, we introduce the state variable

s(x) :=

∫ x
0

U2 [W2 + π − I(·)− c(I(·))] f(·).

Note that
s(0) = 0 and s(1) = u2. (7)

Thus, the active constraint Ū2(π, I) = u2 assumes the equivalent differential form

s′(x) = U2 [W2 + π − I(x)− c(I(x))] f(x)

subject to boundary conditions (7). Using I as decision variable, problem (3), when
stated in control form, has Hamiltonian

H(s, I, λ) := {U1 [W1 − π − x + I ] + λU2 [W2 + π − I − c(I)]} f(x). (8)

Since H does not depend on s, the adjoint system λ′(x) = − ∂
∂s
H = 0, tells that λ

must be constant. Let

r1 : = −U ′′1 [W1 − π − x + I ] /U ′1 [W1 − π − x + I ] and

r2 : = −U ′′2 [W2 + π − I − c(I)] /U ′2 [W2 + π − I − c(I)]

denote Arrow-Pratt measures of absolute risk aversion [12]. Pointwise maximization
of (8) with respect to I now yields:
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Proposition 2 (Incremental coverage) If the unique solution I to

U ′1 [W1 − π − x + I ] = λU ′2 [W2 + π − I − c(I)]{1 + c′(I)} (9)

satisfies I ∈ [0, I (x)], then that I is the optimal coverage (or recovery rate) of
damage x. Consequently, the differential equation

I ′(x) =
r1

r1 + r2 {1 + c′}+ c′′

(1+c′)

(10)

holds in open x-regions where (9) is satisfied for some I(x) ∈ [0, I(x)]. In particular,
when the insurer is risk-neutral, we may set U ′2 = 1 so that (9) and (10) simplify,
respectively, to

U ′1 [W1 − π − x + I ] = λ{1 + c′(I)} and I ′(x) =
(1 + c′)r1

(1 + c′)r1 + c′′
.

If moreover, c′(I) equals a constant called load, then

U ′1 [W1 − π − x + I ] = λ{1 + load} and I ′(x) = 1. 2

Equation (10) may help in extrapolating I(·) over intervals of substantial size.
Anyway, with I(·) holding so much structure one might be tempted to parametrize
this item and thereafter proceed to optimize in parameter space. Such temptation
should be resisted: It may force I(·) into a straight-jacket, bring no simplification,
and overthrow useful concavity properties. Attention and effort should rather con-
centrate on the premium. The reason is simple: For given π the optimal recompense
scheme x 
→ I(x) ∈ [0, I(x)] is determined ex post, term by term, for each x, as the
unique maximand of (6). Moreover, as explained in Proposition 1 and elaborated in
Proposition 2, that maximization is easy to execute. So, exploiting this feature let

U(π, x) := max
0≤I≤I(x)

{α1U1 [W1 − π − x + I ] + α2U2 [W2 + π − I − c(I)]} (11)

denote the ex post optimal value.2 Program (11) has been stated rather abstractly.
In practice it involves concrete and familiar objects such as deductibles and caps.
Now the Pareto optimal premium π is found as the optimal solution of the program:

maximize U(π) :=

∫
U(π, x)f(x)dx. (12)

The last observation leads us to record a few crucial properties of the objective in
(12). Evidently, for given x integrand (6) is jointly concave in (π, I). Consequently,
after maximizing with respect to I, the resulting optimal value U(π, x) remains
concave in π. Differentiability of that value derives directly from Danskin’s envelope
theorem. So, we get a technically motivated

2U1 and U2 could here contain penalty terms stemming from concerns with survival versus ruin.
Note that uncertainty does not intervene directly in this part of the problem. Indirectly though,
it works via π.
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Proposition 3 (Concavity and differentiability) The reduced function U(π, x), as
defined in (11), is concave and differentiable in π with

∂

∂π
U(π, x) := −α1U ′1 [W1 − π − x + I(x)] + α2U

′
2 [W2 + π − I(x)− c(I(x))] (13)

Here I(x) denotes the unique optimal coverage in situation π, x. It follows that (12)
has a concave differentiable objective with

U ′(π) :=

∫
∂

∂π
U(π, x)f(x)dx. 2 (14)

Another technicality deserves mention here. Namely, even when U(π, x) is nons-
mooth in π, integration with respect to a smooth density f restores classical differen-
tiablity - and ensures validity of (14). The objective in (12), its amenable properties
notwithstanding, still poses two problems. First, and most severely, we need not
know the density f. Indeed, the contracting parties may hold little experience - or
so far not have identified f with reasonable confidence. Second, absent an analytical
form of f , exact integration may be out of question. To circumvent these problems
we resort to

An iterative procedure, searching for a Pareto efficient premium
Start at any reasonable guess π0 - determined maybe by preceding experience.
Update the premium sequentially, at stages n = 0, 1, ..., by the rule

πn+1 := πn + ρn
∂

∂π
U(πn, Xn). (15)

The numbers ρn > 0 which figure in (15), are predetermined step-sizes, satisfying∑
ρn = +∞ and

∑
ρ2n < +∞. For example, the specification ρn = 1

n+1
would

suit. In (15) Xn is a stage-n independent observation of X, possibly furnished by
a simulation device. The following result is now a direct consequence of stochastic
programming theory [4]:

Proposition 4 (Global convergence) Suppose the sequence {πn} generated by (15)
remains bounded. Then it converges almost surely to a Pareto optimal premium. 2

Some remarks fit here:
• Having eventually reached the limiting π, the associated recompense scheme

x 
→ I(x) is easily constructed. It will then resurge in familiar form.
• The existence of a density f is not needed. For example, if the loss X is

distributed over only a finite set of possible outcomes x with associated but unknown
probabilities p(x), then the above arguments (except those related to Proposition
2) all hold verbatim, using the ”integral”

∑
x ·p(x) instead of

∫
·f(x)dx. Mixed

distributions are also important. Section 4 provides illustration.
• State-dependent utility functions can easily be accommodated. Such depen-

dence creates no novel problem for the main argument. Smoothness (i.e., differentia-
bility) of the functions U1, U2, and c can be dispensed with. Absent such properties,
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algorithm (15) would still work with generalized derivatives ∂
∂π
U(πn, Xn) taken in

the sense of convex analysis.
• The strict concavity of U1 is most natural and convenient. We can do without

though, again at the possible expense of loosing classical differentiability.
• Typically, there will be a non-degenerate interval closed Π to which the pre-

mium π a priori must belong. If so, then (15) could, with no loss of convergence
properties, safely and better be cast in the form

πn+1 := P

[
πn + ρn

∂

∂π
U(πn, Xn)

]
.

Here P [r] denotes the projection of r ∈ R onto the closest point in Π.

4 The case of Catastrophic Risk

We consider here the special instance when agent 1 owns a sizeable capital stock
K > 0 exposed to catastrophic risk. That agent could be a captive or syndicate
created by similar or diverse businesses with the shared objective of controlling
their insurance cost. Alternatively, the agent in question could be a region or soci-
ety. Then, for interpretation, one may construe K as measuring the infrastructure
threatened by natural catastrophes. That infrastructure serves productive purposes
or it provides access to public goods. Thus, if not reduced or destroyed, it generates
utility U1 [W1 +K] to its risk-averse owner.

A catastrophe will occur with small but presumably known probability p ∈ (0, 1).
When it occurs, the fraction x ∈ [0, 1] ofK will be wiped out - and rendered worthless
- with probability density f(x) > 0. At a fixed premium π per unit of risk-exposed
capital its owner may buy an insurance policy I = I(·), guaranteeing him recovery
of the fraction I(x) ∈ [0, I(x)] ⊆ [0, x] after a catastrophe of size x.3 If insured, the
capital owner envisages expected utility

Ū1(π, I) := (1−p)U1 [W1 +K(1− π)]+p

∫ 1
0

U1 [W1 +K(1− x− π + I(x))] f(x)dx.

The insurer obtains in expectation

Ū2(π, I) := (1−p)U2 [W2 +K {π − c(0)}]+p
∫ 1
0

U2 [W2 −K {I(x) + c(I(x))− π}] f(x)dx.

For given premium π and catastrophe x let

Û (π, x) := max
0≤I≤I(x)

{α1U1 [W1 +K(1− x− π + I)] + α2U2 [W2 −K {I + c(I)− π}]}

denote the post-event Pareto optimal welfare. Insert for that scenario the maximiz-
ing recompense I = I(x) to get marginal welfare

∂

∂π
Û (π, x) = −α1U ′1 [W1 +K(1− x− π + I(x))]+α2U

′
2 [W2 −K {I(x) + c(I(x))− π}]

3Concerning the financing of catastrophe risk see [7].
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per unit of K. In terms of the latter entity computation (or learning driven by a
flow of data) could proceed as follows:

At stage n = 0, 1, ..., given a current premium πn, sample a new realization Xn
of X. Then update the premium as follows:

πn+1 := πn+ρnK

〈
(1− p) {−α1U ′1 [W1 +K(1− πn)] + α2U

′
2 [W2 +K {πn − c(0)}]}

+p ∂
∂π
Û(πn, Xn)

〉

The sequence so constructed converges to a Pareto optimal premium.

5 Subsidized Insurance

Insurance often incorporates transfers between groups. This motivates us to con-
clude by briefly considering problem format (3) with the special interpretation that
−u2 equals an average subsidy from group 2, say society at large, to group 1, for ex-
ample sick people. Assign a multiplier λ ≥ 0 to the constraint in (3). The resulting
Lagrangian then incorporates the integrand

U1 [W1 − π − x+ I ] + λ{U2 [W2 + π − I − c(I)]− u2} , (16)

much like (6). Given π, x, and λ, maximize (16) with respect to I ∈ [0, I(x)]. The
best choice I(x) yields optimal value

U(π, x, λ) := max
0≤I≤I(x)

〈U1 [W1 − π − x + I ] + λ{U2 [W2 + π − I − c(I)]− u2}〉

and associated partial derivatives

∂
∂π
U(π, x, λ) = −U ′1 [W1 − π − x + I(x)] + λU ′2 [W2 + π − I(x)− c(I(x))]

∂
∂λ
U(π, x, λ) = U2 [W2 + π − I(x)− c(I(x))]− u2

We seek a max-min saddle point (π, λ) of the concave-convex Lagrangian U(π, λ) :=∫
U(π, x, λ)f(x)dx. Using the preceding step sizes ρn and realizations Xn such a

point might be found as the limit of the following iterations: Start at any rea-
sonably guessed nonnegative pair (π0, λ0). Update the premium and the multiplier
sequentially, at stages n = 0, 1, ..., by the rule

πn+1 := πn + ρn
∂
∂π
U(πn, Xn, λn),

λn+1 := max
{
0, λn − ρn

∂
∂λ
U(πn, Xn, λn)

}
.

Then the averaged sequence {ρ0(π0, λ0) + · · ·+ ρn(πn, λn)} /{ρ0 + · · ·+ ρn}will clus-
ter to a saddle point.
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