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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 38 Meszéna G, Metz JAJ:
Species Diversity and Population Regulation: The Importance of Environ-
mental Feedback Dimensionality.
IIASA Interim Report IR-99-045.

No. 39 KisdiÉ, Geritz SAH:
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Abstract

We use the theory of adaptive dynamics to construct and analyse a generic example of
cycling evolution with alternating levels of polymorphism. A monomorphic population
evolves towards larger trait values until it reaches a so-called evolutionary branching
point. Disruptive selection at the branching point splits the population into two
strategies. In the dimorphic population the strategies undergo parallel coevolution
towards smaller trait values. Finally one of the two strategies goes extinct, and the
remaining single strategy evolves upwards again to the branching point. The reversal of
the direction of evolution is brought about by the changing level of polymorphism.
Extinction is deterministic, i.e., it occurs inevitably and always at the same trait values;
which of the two strategies goes extinct is, however, random. The present model is
discussed in relation to other mechanisms for evolutionary cycles involving branching
and extinction.
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Red Queen Evolution by Cycles
of Evolutionary Branching and Extinction
Éva Kisdi
Frans J.A. Jacobs
Stefan A.H. Geritz

Introduction
Continual evolution under constant external conditions, called Red Queen dynamics,

intrigued biologists ever since Van Valen (1973) raised the possibility of sustained

evolutionary changes. Early lag-load models of Red Queen evolution (Stenseth and

Maynard Smith, 1984) soon gave place to models with explicit trait dynamics

(Rosenzweig et al., 1987). Since most continuous traits are bounded, Red Queen

dynamics usually take the form of evolutionary cycles. Many examples of cyclic

evolution are known, for example in predator-prey systems (Abrams, 1992, 1997;

Marrow et al., 1992, 1996; Dieckmann et al., 1995; Van der Laan and Hogeweg, 1995;

Abrams and Matsuda, 1997; Doebeli, 1997; Gavrilets, 1997; Doebeli and Dieckmann,

in press), in competitive coevolution (Pease, 1984; Law et al., 1997), in the evolution of

dispersal in metapopulations (Doebeli and Ruxton, 1997) or in sexual selection (Iwasa

and Pomiankowski, 1995, 1999; Pomiankowski and Iwasa, 1998).

A customary approach to model coevolution in ecological systems is to assume that

evolution (i.e., changes in trait values of the coexisting strategies or species) is much

slower than population dynamics (changes in the densities of the coexisting strategies).

Under the separation of ecological and evolutionary time scales, Khibnik and

Kondrashov (1997) classified the different mechanisms leading to Red Queen evolution

into the categories of ecologically, genetically, and ecogenetically driven systems. In

ecologically driven systems, the population densities of the coexisting strategies settle

on a nonequilibrium attractor, and the fluctuations in population densities cause small-

amplitude fluctuations in the relatively slowly evolving traits. With increasing time

scale separation, however, these trait fluctuations disappear. Most examples of cyclic

evolution cited above fall in the category of genetically driven systems, i.e., the

coevolution of trait values has nonequilibrium dynamics while population densities

track equilibrium values corresponding to the momentary trait values. The
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ecogenetically driven systems may simply exhibit a superposition of ecologically and

genetically driven cycles (and hence become genetically driven cycles if ecological and

evolutionary time scales are truly separated). In some cases, however, coupling of the

ecological and evolutionary time scales is essential for sustaining the evolutionary

cycles (Abrams, 1992) or even for the persistence of the community (Van der Laan and

Hogeweg, 1995; Doebeli, 1997). Other ecogenetically driven cycles involve switches

between different population dynamical attractors such that the direction of evolution

changes when the population densities settle on another attractor (see Doebeli and

Ruxton (1997) for an example).

In their classification, Khibnik and Kondrashov (1997) assumed that the number of

coevolving strategies (or species) is constant. This, however, need not be the case.

Strategies may go extinct during coevolution. New strategies may also arise through the

process of evolutionary branching, when a single ancestral strategy gradually splits up

into two distinct strategies under disruptive selection (Metz et al., 1996; Geritz et al.,

1997, 1998). If evolutionary branching and extinction alternate, then evolutionary

cycles may result with changing levels of polymorphism.

In this paper, we use the theory of adaptive dynamics as developed by Dieckmann and

Law (1996), Metz et al. (1996) and Geritz et al. (1997, 1998, 1999) to demonstrate that

cycles of evolutionary branching and extinction indeed represent a generic evolutionary

pattern. The simplest case of such cycles is the following. A monomorphic population

evolves towards larger trait values until it reaches an evolutionary branching point,

where it experiences disruptive selection and splits into two phenotypes separated by a

widening gap. After evolutionary branching gave rise to a dimorphic population, the

two coexisting strategies undergo parallel coevolution towards smaller trait values.

Finally one of the two strategies goes extinct, and the remaining strategy evolves up

again to the branching point. In the first part of the paper, we show that this scenario can

be obtained as a generic outcome in the framework of adaptive dynamics. (For easy

reference, we also recapitulate the necessary theoretical elements of adaptive dynamics

using the graphical approach of Geritz et al. 1998, 1999.) In the second part, we

construct an example based on a Lotka-Volterra competition model; this example

allows us to verify the conclusions by a direct simulation of the evolutionary process.

Repeated evolutionary branching and extinction have been found in several models,

most of them using simulation experiments only (Van der Laan an Hogeweg, 1995;

Doebeli and Ruxton, 1997; Koella and Doebeli, 1999; Doebeli and Dieckmann, in

press; Mathias and Kisdi, in press). There are several mechanisms which can lead to

such cycles. Reversal of the direction of evolution may be caused not only by the

changing level of polymorphism but also by a periodic change in the biotic environment
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due to coevolution with another species, or by switching between multiple population

dynamical attractors. Extinction can occur either deterministically or due to

demographic stochasticity when population size is relatively small. It is often difficult to

identify the cause of cycles in the simulations without an analytical investigation of the

model. In this paper, we focus on the conceptually simplest case, where the changing

level of polymorphism alone produces evolutionary cycles in a fully deterministic way.

In order to exclude the alternative mechanisms of coevolution and multiple population

dynamical attractors, we construct a model with a single species that always has a

unique population dynamical attractor. Population size is assumed to be infinite such

that extinction is deterministic. We compare the alternative mechanisms for cycles of

evolutionary branching and extinction in the Discussion.

Cycles of evolutionary branching and extinction

Let us start with a monomorphic resident population of strategy x . A new, rare mutant

strategy, y , may invade the population only if its long-term logarithmic growth rate (or

"fitness"), )( ysx , is positive (Metz et al., 1992). The mutant’s growth rate depends on

the resident strategy because the resident population sets the biological environment of

the mutant (e.g., the abundance of resources or the satiation of predators) as well as on

the mutant’s own strategy. We assume that for each strategy x  the resident population

has a unique population dynamical attractor and that mutations occur infrequently such

that the resident population has settled on its population dynamical attractor before the

next mutant appears. In this case the resident strategy (or strategies) fully specify the

biological environment of the mutant.

We can represent which mutants are able to invade populations with different resident

strategies graphically on a so-called pairwise invasibility plot (PIP): In the space of

strategy pairs ),( yx , the parts where 0)( >ysx  correspond to strategy pairs such that

the mutant can invade, whereas in the parts where 0)( <ysx  the mutant goes extinct

(Fig. 1; Geritz et al., 1998 gives a more detailed account on the methods used). There is

no a priori constraint on the functional form of )( ysx , and consequently on the shape of

the PIP other than the resident strategy must have zero long-term growth, i.e., 0)( =xsx

and the main diagonal xy =  of the PIP is always a border line between ’invasion’ and

’noninvasion’ parts. Hence the PIP shown in Fig. 1 is generic (a specific ecological

example yielding this PIP will be presented in the next section).

If mutations have only small phenotypic effect ( δ<− xy , where δ  is a small positive

number called the mutation radius), then only a narrow band along the main diagonal of
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the PIP is of immediate interest. If mutants somewhat above the diagonal )( xy >  can

invade, then smaller mutants )( xy <  go extinct for almost every resident x . By

successive invasions and substitutions, the population undergoes directional evolution

towards larger trait values. In the reverse case, directional evolution proceeds towards

smaller trait values (Fig. 1).

Directional evolution stops at the so-called evolutionarily singular strategies, where the

main diagonal and the second border line between ’invasion’ and ’noninvasion’ areas

intersect. An evolutionarily singular strategy is convergence stable (Eshel, 1983;

Christiansen, 1991) if directional evolution starting from its neighbourhood approaches

it. In Fig. 1, brx  is convergence stable; repx , in contrast, is convergence unstable and

hence acts as an evolutionary repellor.

An evolutionarily singular strategy is a local ESS if no mutant within the mutation

radius can invade it. The convergence stable singularity brx  in Fig. 1, however, is not

evolutionarily stable: Both larger and smaller mutants are able to invade the resident

population of brx . Convergence stable strategies that nevertheless lack evolutionarily

stability are evolutionary branching points, where two distinct strategies evolve in the

population (Metz et al., 1996; Geritz et al., 1997, 1998).

In order to see what happens after the population has reached the branching point brx ,

we need to construct a two-dimensional trait evolution plot (TEP), which allows us to

investigate the simultaneous evolution of two coexisting strategies. First we have to

establish which strategy pairs can coexist in a dimorphic resident population. Assume

that all dimorphisms are protected. Then 1x  and 2x  can coexist if and only if both

1x and 2x  can spread when rare, i.e., if both )( 21
xsx  and )( 12

xsx  are positive. The pairs

of coexisting strategies thus can be obtained by superimposing the PIP and its mirror

image taken along the main diagonal: The overlapping parts of the ’invasion’ areas on

the original )0)(( 21
>xsx  and on the mirror image )0)(( 12

>xsx  correspond to the

strategy pairs ),( 21 xx  that can coexist (Fig. 2). The overlapping parts of ’noninvasion’

areas represent strategy pairs where neither strategy can invade the other, i.e., the rare

type always goes extinct )0)(( 21
<xsx  and )0)(( 12

<xsx .

Notice that the area of coexistence reaches the main diagonal only near the branching

point )( brx . As the monomorphic population evolves along the diagonal and approaches

brx , then sooner or later a mutant and its progenitor resident strategy will fall inside the

area of coexistence. The mutant then does not substitute the resident, but instead the two

very similar strategies form a protected dimorphism.
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Fig. 1. Pairwise invasibility plot (PIP). Shaded area: the mutant can invade )0)(( >ysx ;

clear area: the mutant cannot invade )0)(( <ysx ; arrows: directional evolution by

invasions and substitutions. The lower evolutionary singularity )( repx  is convergence

unstable and hence a repellor (directional evolution leads away from it), whereas the

higher singularity )( brx  is an evolutionary branching point (convergence stable but

evolutionarily unstable, i.e., can be invaded by both smaller and larger mutants and thus

is not a final state of evolution). - The Lotka-Volterra model yields this PIP with

parameter values 5.11,12.12,5.4 === γβα  and 1=δ .

The two resident strategies of a dimorphic population undergo directional coevolution.

Similarly to the monomorphic case, let )(
21 , ys xx  denote the long-term logarithmic

growth rate of mutant y  in the resident population of 1x  and 2x . Since the resident

strategies have zero long-term growth, )( 1, 21
xs xx  and )( 2, 21

xs xx  must be zero. If )(
21 , ys xx

is positive for y  somewhat larger than 1x  (and thus generically negative for y

somewhat lower than 1x ), then larger mutants of 1x  can invade the population and

substitute 1x , therefore 1x  undergoes directional evolution towards larger trait values.

Directional evolution of 2x  can be established analogously. In the TEP (Fig. 2),

horizontal and vertical arrows indicate the direction of evolution for 1x  and 2x ,

respectively. Since the labelling of the resident strategies is arbitrary, the TEP is always
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symmetric along the main diagonal. For convenience, we assume that 21 xx < , i.e., we

restrict the analysis to the upper left half of the plot.

In the vicininity of the branching point brxxx == 21  the two strategies always undergo

divergent coevolution, i.e., 1x  evolves downwards while 2x  evolves upwards (see Eshel

et al., 1997 and Geritz et al., 1998 for proof). As a consequence, the initially very

similar coexisting strategies become phenotypically clearly distinct. When coevolution

has left the neighbourhood of the branching point, however, the direction of evolution

may change. The area of coexistence thus consists of parts with different directions of

evolution of )( 21 xx ; the lines separating these parts, on which directional evolution in

)( 21 xx  ceases, we call the 1x - ( 2x -) isoclines (Fig. 2).

There is one more constraint on the function )(
21 , ys xx , and consequently  on the possible

structure of a TEP (Geritz et al., 1999). To investigate this, first consider the boundary

of the area of coexistence. The boundary consists of two parts: One part is derived from

the ‘invasion-noninvasion’ boundary of the original PIP where 0)( 21
=xsx , and the

other part is derived from the ‘invasion-noninvasion’ boundary of the mirrored PIP

where 0)( 12
=xsx . On the first part of the boundary the frequency of 2x  is zero,

therefore we refer to this part as the 2x -extinction boundary; the second part is the 1x -

extinction boundary . As we approach, say, the 2x -extinction  boundary from inside the

area of coexistence, the frequency of 2x  decreases to zero, and on the boundary it

undergoes a transcritical bifurcation (i.e., it remains zero outside the area of

coexistence). [Other types of bifurcations through which the dimorphism could be lost,

such as a fold or a Hopf-bifurcation, imply that zero frequency of 2x  is a population

dynamical attractor already inside the area of coexistence, and thus they are excluded by

the assumption that all dimorphisms are protected.]

Since on the 2x -extinction boundary the frequency of 2x  is zero, we have that

)()( 121, ysys xxx →  as we approach the boundary, with the two becoming equal on the

boundary itself. If 1x  coincides with the monomorphic evolutionary singularity, then

directional evolution of 1x  ceases in a population monomorphic for 1x , and therefore

also in the ‘dimorphic’ population on the 2x -extinction boundary. The 1x -isocline thus

must connect to the 2x -extinction boundary vertically above the monomorphic

singularity (point 1P  in Fig. 2). By the same argument, the 2x -isocline connects to the

1x -extinction boundary horizontally to the left of the monomorphic singularity (no such

point exists in Fig. 2).
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xrep xbr
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(b)

-0.19 0.19

Fig. 2. Trait evolution plot (a), and the area of coexistence enlarged (b). Shaded area:

the area of coexistence, where 1x  and 2x  can coexist in a protected dimorphism (both

0)( 21
>xsx  and 0)( 12

>xsx ); dotted area: the rare strategy goes extinct whichever it is

(both 0)( 21
<xsx  and 0)( 12

<xsx ); thin dashed line: 1x -extinction boundary; thin

continuous line: 2x -extinction boundary; thick dashed line: 1x -isocline; thick

continuous line: 2x -isocline; horizontal and vertical arrows: direction of evolution in

1x and in 2x , respectively; 1P  and 2P : connection of the 1x - and 2x -isoclines to the

boundary of the area of coexistence; Q : intersection of the extinction boundaries. By

evolutionary branching the population enters the area of coexistence near brx .

Dimorphic evolution first proceeds in the direction up and to the left until the population

gets inbetween the two isoclines; then it goes down and to the left. At point Q , one of

the two residents dies out and the population falls back to monomorphism either at )(1 Qx

or at )(2 Qx . - The Lotka-Volterra model yields this TEP with parameter values as in Fig.

1.

Directional evolution of 2x  always leads away from the 2x -extinction boundary: On the

boundary the population is equivalent with a monomorphic population of 1x , and such a

population can be invaded by a mutant of 2x  that is inside the area of coexistence. As a

consequence, the evolution of 2x  must change its direction, and thus the 2x -isocline
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must connect to the 2x -extinction boundary where the 2x -extinction boundary has a

vertical tangent point ( 2P  in Fig. 2). Analogously, the 1x -isocline connects to the 1x -

extinction boundary where it has a horizontal tangent point (no such point in Fig. 2; see

the Appendix of Geritz et al., 1999 for a more elaborated demonstration of these

assertions).

Curiously, the TEP shown in Fig. 2 has only one regular connection point to the

boundary of the area of coexistence for each isocline: The isoclines must go through

these points, but then they must stay within the area of coexistence as they may not

connect to any other regular point of the boundary. The intersection of the two

extinction boundaries (point Q  in Fig. 2) is, however, an exceptional point. Here both

0)( 21
=xsx  and 0)( 12

=xsx , and the two strategies )(1 Qx  and )(2 Qx  can coexist in a

neutrally stable equilibrium at any frequency. To see this, consider different paths

leading to Q  within the area of coexistence. The frequencies of the two resident

strategies in population dynamical equilibrium are different along different paths and

they also converge to different limiting values as the paths approach Q . For example,

the frequency of 1x  is low along a path near the 1x -extinction boundary whereas it is

almost one along a path near the 2x -extinction boundary. Provided that the equilibrium

frequency is a continuous function of the trait values, any resident frequency is a

limiting value for some path when it approaches Q . In the point Q  thus all frequencies

represent neutrally stable equilibria of the population dynamics.

Since the resident dimorphic population of )(1 Qx  and )(2 Qx  does not have a unique

population dynamical attractor, )(
21 , ys xx  is not defined in Q . As the extinction

boundaries intersect in Q and the isoclines must stay between them, the isoclines also

converge to Q  but are undefined in point Q ; in other words, Q  belongs to the closure

of both isoclines (see the Appendix for a formal proof in the example below). Despite

the exceptional nature of point Q , its existence is generic because it depends only on

the shape of the arbitrary ‘invasion-noninvasion’ border line of the PIP.

Inside the area of coexistence, the shape of the isoclines cannot be derived from generic

constraints on )(
21 , ys xx . For example, the isoclines may intersect. At the intersection of

the two isoclines directional evolution ceases in both resident strategies; analogously to

the monomorphic singularity, the population has either attained a dimorphic

evolutionarily stable coalition or undergoes evolutionary branching again (Metz et al.,

1996; Geritz et al., 1998). However, it is also a generic possibility that the isoclines do
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not intersect and thus there is no dimorphic singularity in the area of coexistence (Fig.

2).

The PIP and TEP shown in Figs. 1 and 2, respectively, conform only with the universal

constraints described above, and therefore represent an evolutionary scenario fully

generic in the framework of adaptive dynamics. Let us now deduce the expected course

of evolution starting with a monomorphic population inbetween the two monomorphic

singularities. As we have seen in Fig. 1, the monomorphic population undergoes

directional evolution towards the branching point )brx , where it becomes dimorphic.

Initially, the two coexisting strategies undergo divergent coevolution (Fig. 2). However,

as the population approaches the 2x -isocline, the evolution of 2x  slows down. The

reason for this is that in the vicinity of the 2x -isocline the invading mutants of 2x  have

only slightly positive growth rate, and therefore are easily lost due to demographic

stochasticity while rare (Dieckmann and Law, 1996). The prevailing direction of

evolution is thus to the left, whereby the population crosses the 2x -isocline. Once the

population is inbetween the two isoclines, both strategies evolve towards smaller trait

values. Slow evolution of )( 21 xx  near the )(
21 −− xx isocline keeps the population

inbetween the two isoclines as coevolution continues towards the intersection of the

extinction boundaries (point Q ).

Extinction happens when the population has arrived at the neighbourhood of Q  such

that the distance to the extinction boundaries is comparable to the size of mutations )(δ

The next invading mutant of 1x , for example, may ‘overshoot’ the 2x -extinction

boundary, i.e., 2x  may not be able to coexist with the invading mutant. As the mutant

substitutes 1x , it drives 2x  extinct. The remaining monomorphic population is near

)(1 Qx  and therefore is inbetween the monomorphic repellor singularity, repx , and the

branching point, brx  (Fig. 2). The monomorphic population thus will undergo

directional evolution towards larger trait values until it reaches the branching point

again, starting a new cycle of evolutionary branching and extinction (cf. Fig. 1).

It also may happen that an invading mutant of 2x  overshoots the 1x -extinction

boundary such that 1x  goes extinct, and the remaining monomorphic population is near

)(2 Qx . Similarly to the previous case, the monomorphic population evolves upwards to

the branching point. The difference between these two possibilities is that )(2 Qx  is

nearer the branching point than )(1 Qx , hence it takes less time to complete the cycle. The

invariable pattern of evolution is (i) directional evolution towards larger trait values in
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the monomorphic population, (ii) evolutionary branching, (iii) parallel coevolution

towards smaller trait values in the dimorphic population, and (iv) falling back to

monomorphism by the extinction of one of the strategies. Which strategy goes extinct

is, however, random, and there is a difference in the length of the cycle depending on

which strategy remained in the monomorphic population after extinction.

A specific example based on a Lotka-Volterra competition

model

In this section, we construct a specific example that exhibits cycles of evolutionary

branching and extinction. Consider the Lotka-Volterra competition model

1
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where 
ixN  is the population density of strategy ix . For simplicity, we assume that the

intrinsic growth rate and the carrying capacity are independent of the trait value such

that (after approporiate scaling of time and density) r x( ) ≡ 1 and K x( ) ≡ 1. Let the

competitive coefficient between strategy ix  and jx  be of the cubic form

))((1),( 22 δγβα −+−−−= jjiiijji xxxxxxxxa (2)

Since the growth rate of a particular strategy is a linear function of all densities (cf. Eq.

1), for a given set of resident strategies the population dynamics always have a unique

fixed point, and all polymorphisms are protected (i.e., each strategy increases in

frequency when rare). As 1),( =xxa , the equilibrium density of a monomorphic

resident population of any strategy x  is $ ( )N K xx = = 1. From Eq. 1, the growth rate of

a rare mutant strategy y  in the equilibrium population of strategy x  is given by

s y
N

dN
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r y

a y x N

K y
a y xx

y

y x( ) ( )
( , ) $

( )
( , )= = −









 = −1

1 1 (3)

With parameter values 5.4=α , 12.12=β , 5.11=γ  and 1=δ , the PIP corresponding

to Eq. 3 is identical to the one shown in Fig. 1.

For obtaining the TEP (Fig. 2), we need the growth rate of a rare mutant y  in the

dimorphic resident population of strategies 1x  and 2x . Analogously to Eq. 3,
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[ ]s y a y x N a y x Nx x x x1 2 1 2
1 1 2, ( ) ( , ) $ ( , ) $= − + (4)

where the equilibrium densities of the two resident strategies are

[ ] [ ]$ ( , ) ( , ) ( , )N a x x a x x a x xx1
1 11 2 1 2 2 1= − −  (5a)

and

[ ] [ ]$ ( , ) ( , ) ( , )N a x x a x x a x xx2
1 12 1 1 2 2 1= − − , (5b)

respectively. The resident strategy )2,1( =ixi  can be substituted by its mutant

ε+= ixy  if the mutant’s growth rate, εε
ixy

xx

ixxixx y
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xsxs

=
∂
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)()( 21

2121

,
,, , is

positive. Since the resident strategies have zero growth rate in equilibrium

)0)((
21 , =ixx xs , a larger mutant )0( >ε  can invade if the fitness gradient 
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y
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=
∂
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21 ,

is positive; if the fitness gradient is negative, then a smaller mutant )0( <ε  can invade.

The direction of evolution of strategy )2,1( =i  in the dimorphic population of strategies

21 , xx  is thus given by the sign of the fitness gradient
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The TEP derived from Eq. 6 supplemented with Eqs. 2 and 5 with the parameter values

as above is shown in Fig. 2. The horizontal and vertical arrows in Fig. 2 indicate the

sign of the fitness gradient for 1x  and 2x , and hence their direction of evolution,

respectively. On the 1x -, 2x -isocline the corresponding fitness gradient is zero; across

the isocline, the sign of the fitness gradient reverses.

Having a specific example enables us to perform a direct simulation of the evolutionary

process independent of the adaptive dynamic analysis presented above. The simulation

provides a numerical test of the predictions made by the theory. In the simulation, we

did not constrain the population to be strictly monomorphic or dimorphic. Instead, we

iterated the population dynamics of all strategies present by Eq. 1.



12

-0.3 0.7
0

1

x1

x2

1

(b)

0
time

de
ns

it
y

(c)

(a)

-0.3 0.7-0.19 0.19 0.51

ti
m

e

trait value (x)

xbrx1(Q) x2(Q)

Fig. 3. (a) Simulated evolutionary tree (parameters as in Fig. 1). Strategies present were

recorded each 2⋅105 years; total time span is 1.2⋅109 years. (b) Evolutionary trajectory in

the area of coexistence superimposed on the contourlines of the equilibrium density of

strategy 1x  (density of 2x  is not shown for clarity). Dashed lines: contourlines of 
1xN  at

0, 0.2, 0.4, 0.6, 0.8, and 1; continuous lines: evolutionary trajectories in eight cycles

(data from the simulation shown in (a)). Dimorphic evolution proceeds from the

branching point ( BP ) to point Q . (c) Changes in population densities 
1

ˆ
xN  (thick line)

and 
2

ˆ
xN  (thin line) during the dimorphic part of the first three cycles of the simulation.

New strategies were generated by small mutations of the residents. Adding new

strategies to the population involves two kinds of stochastic processes (Dieckmann and

Law, 1996). First, each strategy was allowed to produce a mutant with a probability
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proportional to its population density. The mutant differed from the resident by a small

mutation stepsize 002.0±=ε  with equal probability in either direction. Second, since

the mutant is present initially in low numbers, it is subject to demographic stochasticity.

The probability of avoiding extinction due to demographic stochasticity is proportional

to the growth rate of the mutant provided that the growth rate is positive; otherwise the

mutant dies out with probability 1. In the simulation, the mutant ε+ix  was added to

the population at a low initial density with probability ]0),(max[ ,...,1
ε+ixxx xskN

ni
, with

333.0=k . Strategies were considered extinct and were removed from the simulation if

their frequency dropped below the (arbitrarily chosen) extinction threshold of 0.005.

During the simulation, we periodically recorded which strategies were present in the

population. The resulting evolutionary tree (Fig. 3a) shows the predicted cycles of

evolutionary branching and extinction. The initial monomorphic population first evolves

to the branching point at 51.0=brx  (cf. Fig. 1). After evolutionary branching, the two

coexisting strategies undergo parallel coevolution towards smaller trait values until they

reach the vicinity of point Q  in the TEP (Fig. 2), i.e., 19.0)(1 −=Qx and 19.0)(2 =Qx .

Here one of the two strategies dies out (the smaller one in the first, second, fourth, and

seventh cycle in Fig. 3a, and the larger one in the remaining cycles). After extinction,

the remaining monomorphic population evolves fast towards larger trait values until it

reaches the branching point again.

Since either of the two residents may go extinct, there are two kinds of randomly

alternating cycles with short and with long monomorphic periods, respectively,

depending on whether the resident nearer to or further away from the branching point

remained in the population after extinction. In this example, however, directional

evolution is so fast in the monomorphic population that the difference in length between

the two kinds of cycles is barely noticeable. Another source of variability in cycle

length is the stochastic occurrence of successful mutants. The speed of evolution is

slowest as well as most variable during evolutionary branching (Table 1). This is so

because fitness differences are small near the evolutionary branching point such that the

advantageous mutants have only a slightly positive growth rate and are often lost due to

demographic stochasticity. The waiting time for the next successfully invading mutant

has thus both a large expected value and a large variance. Another cause for low speed

(but not for variable speed) near the branching point is that the substitution of the

resident by the invading mutant is slow due to the small fitness differences, such that it

takes a long time before the spreading mutant itself becomes the source of a new

mutation. In monomorphic populations the fitness differences are large when the

population is away from evolutionary singularities: Monomorphic evolution is the
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fastest between )(1 Qx  and )(2 Qx , the range covered by long cycles but missing from short

cycles. This explains why the average speed of monomorphic evolution is greater in the

long cycles than in the short cycles (Table 1).

Evolutionary time (105 years)

Monomorphic evolution

in short cycles in long cycles

Evolutionary

branching

Dimorphic

evolution

average 14 24 54 69

standard  deviation   0   1 12 4

Time / unit trajectory length

average 43 27 468 84

standard deviation   4   1 111   5

Table 1. The speed of evolution during monomorphic directional evolution,

evolutionary branching, and dimorphic directional evolution. Data from the simulation

shown in Fig. 3, time resolution 2·105 years. Trajectory length is measured on the TEP;

branching includes evolution within a distance of 0.05 from the branching point on the

main diagonal of the TEP (monomorphic evolution, 21 xxx == ) or inside the area of

coexistence (dimorphic evolution).

This example was constructed such that population density is constant throughout

monomorphic evolution. In dimorphic populations, however, the equilibrium densities

of the two residents change in a characteristic way as the trait values evolve (Fig. 3b,c).

Dimorphic evolution proceeds along a stochastic broken-line trajectory within the area

of coexistence: Each invading mutant brings the population further by a small but finite

step into horizontal or vertical direction, depending on which resident is being

substituted. Stochasticity stems from the random order in which the two residents

produce successful mutants (and, in general, from the random size of mutations; in the

present simulation, however, mutation size was constant). Near the branching point the

equilibrium densities of the two residents are very sensitive to the exact trait values

(Fig. 3b), therefore the small-scale stochasticity of the evolutionary trajectory results in

wide random changes in the densities at the beginning of dimorphic evolution in each

cycle (Fig. 3c). When the population has evolved away from the branching point but is

still evolving roughly perpendicularly to the density contourlines (Fig. 3b), population
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density changes in a smooth way. Next, the evolutionary trajectory turns to a much

smaller angle with the density contourlines. In this phase of the cycle the stochastic

variation of the trajectory is perpendicular to the contourlines, which results in more

variation in the equilibrium densities. Shortly before extinction, when the population is

near point Q , the densities are again sensitive to the exact trait values such that they

vary strongly along the  stochastic evolutionary trajectory (Fig. 3c).

A tenfold increase in mutation stepsize (from 002.0=ε  to 02.0=ε ) makes directional

evolution hundred times faster (simulation data not shown). This is due to two effects.

First, each substitution brings about ten times as large change in phenotype. Second, the

favourable mutants have larger fitness advantage and therefore a higher chance to

escape extinction due to demographic stochasticity. The latter effect is also

approximately proportional to the size of mutations as long as mutations are small and

the population is away from evolutionary singularities. The effect of increasing

mutation stepsize on the speed of evolutionary branching is even larger, because at the

branching point the fitness of a mutant attains a minimum as a function of the mutant

phenotype (see Geritz et al. 1998) and due to the curvature of the fitness function larger

mutants have an aproportionally larger fitness advantage. Besides the quantitative effect

on the speed of evolution, increasing the size of mutations also causes a qualitative

change in evolution: In five out of twenty cycles, the smaller strategy of the dimorphic

population underwent a second branching event yielding three distinct strategies in the

population. Secondary branching is possible near the x1-isocline (Geritz et al., 1998,

1999). Two factors may promote secondary branching when mutations are large

enough. First, the deviations of the stochastic evolutionary trajectory from the expected

mean path laying inbetween the two isoclines increase when the individual mutational

steps are larger, and hence there is a higher probability that the actual trajectory comes

near to the x1-isocline. Second, when the size of mutations is increased, evolutionary

branching speeds up relative to directional evolution, which makes it more likely that

branching can take place before the evolution of x2 moves the population away from the

1x -isocline (cf. Fig. 2). After the detour to trimorphic states, the population falls back to

monomorphism and cyclic evolution continues.

Discussion

In this paper we demonstrated evolutionary cycles with alternating levels of

polymorphism. There are two key factors necessary to obtain such cycles. First, the

direction of evolution must reverse between different levels of polymorphism: For

example when monomorphism is alternating with dimorphism, directional evolution in

at least one strategy of the dimorphic population must be opposite to directional
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evolution in the monomorphic population. Second, the monomorphic population must

have an evolutionary branching point where it becomes dimorphic, and directional

evolution in the dimorphic population must lead to extinction whereby the population

falls back to monomorphism again. If the monomorphic population that remains after

extinction is in the basin of attraction of the branching point where dimorphism evolved

in the first place, then repeated branching and extinction results in sustained

evolutionary cycles.

Our model exhibits cycles of evolutionary branching and extinction under the

conceptually simplest circumstances. The direction of evolution switches solely due to

the different levels of polymorhism. Extinction of one of the two strategies happen with

certainty when the evolutionary trajectory leaves the set of strategy pairs that are able to

coexist. There exist, however, other mechanisms as well that may cause changes in the

direction of evolution or may lead to extinction, and therefore may result in

evolutionary cycles phenomenologically similar to the one we demonstrate. Below we

review these alternative mechanisms.

(1) Chance extinction.  Consider a population that undergoes evolutionary branching

and then evolves towards a singular coalition (an intersection of the isoclines) inside the

area of coexistence, where directional evolution ceases. In a deterministic model, this

population would not fall back to monomorphism. If, however, one of the two resident

strategies has only a low equilibrium frequency when the trait values are near the

singular coalition, then in a population of finite size, this strategy will be prone to

extinction due to demographic stochasticity. Provided that the remaining monomorphic

population evolves back to the branching point, repeated cycles of evolutionary

branching and chance extinction follow.

As evolution proceeds towards the singular coalition and the equilibrium density of one

resident declines, the probability of extinction increases. Due to the random nature of

extinction by demographic stochasticity, the cycles have variable length: Extinction

may happen when the population is still relatively far from the singular coalition, but in

other cycles the rare resident avoids chance extinction longer and thus the population

evolves nearer the dimorphic singularity before falling back to monomorphism. (In

simplified deterministic simulations where strategies are considered extinct once their

frequency becomes smaller than a low extinction threshold, extinction occurs always at

the same pair of trait values, and the cycles have approximately the same length. A

small variation in length may occur due to variable waiting time for successful new

mutations; but with small mutations and therefore many mutational steps, or when

mutations are not limiting the speed of evolution, total evolutionary time will be very

near its expected value.) If chance extinction occurs only rarely, then the population can
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reach an evolutionarily stable coalition of strategies and spend a variable length of time

there before extinction restarts the cycle.

In stochastic environments, fluctuating population numbers can result in chance

extinction. In a model exhibiting evolutionary cycles of germination rate with repeated

branching and extinction, Mathias and Kisdi (in press) found that the population

evolved towards a dimorphic evolutionarily stable coalition after evolutionary

branching. The strategy with higher germination rate, however, fast declined in number

if a series of years occurred with unfavourable above-ground conditions. In large

populations, the high-germination strategy died out only after a long run of bad years;

since such a long series of bad years occurred only with low probability, extinction

happened after a period of stasis at the evolutionarily stable coalition. In a smaller

population, however, the high-germination strategy went extinct after a shorter run of

unfavourable years, and the population could not reach the evolutionarily stable

coalition before falling back to monomorphism.

(2) Multiple attractors of population dynamics.  The direction of evolution may change

due to a switch in the population dynamical attractor. Assume, for example, that the

monomorphic population has two attractors, 1A  and 2A , such that 1A  exists for trait

values 1xx <  and 2A  exists for 2xx >  with 12 xx < . For 12 xxx <<  the population

dynamics are bistable, and the growth rate of a mutant depends not only on the trait

values of the resident strategy but also on the specific population dynamical attractor of

the resident population (cf. Rand et al., 1994). With small mutations, the population

remains on the same attractor during directional evolution as long as the attractor exists

(see Geritz et al., in prep. for proof). Thus if on attractor 1A  directional evolution

proceeds towards larger trait values, then the population evolves up to strategy 1x  where

1A ceases to exist and the population switches to attractor 2A . If on 2A  the direction of

evolution is opposite, then the population evolves towards smaller trait values down to

strategy 2x  where it switches back to attractor 1A  and starts to evolve upwards again,

resulting in cyclic evolution of the monomorphic population (Khibnik and Kondrashov,

1997; Doebeli and Ruxton, 1997).

Essentially the same cycles may involve an ‘excursion’ to dimorphic populations.

Assume that while on attractor 1A , the population undergoes evolutionary branching.

The evolution of the dimorphic population leads to the extinction of the smaller

strategy, and the monomorphic population of the remaining larger strategy continues to

evolve towards larger trait values still on attractor 1A . The cycle is closed by switching

to 2A , directional evolution downwards, and switching back to 1A  as before.
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Alternatively, extinction through a ‘catastrophic’ bifurcation (e.g. when the dimorphic

attractor is lost at a fold bifurcation) may bring the population to attractor 2A

immediately when it falls back to monomorphism. Though monomorphic and

dimorphic population states are alternating in these cycles, switching the attractors  is

essential in reversing the direction of evolution and hence in producing closed cycles.

(3) Coevolution with another species.  Evolutionary cycles often occur in coevolving

monomorphic species (‘genetically driven’ systems of Khibnik and Kondrashov; see

e.g. Marrow et al., 1992, 1996; Dieckmann et al., 1995; Abrams and Matsuda, 1997;

Doebeli, 1997; Gavrilets, 1997; Law et al., 1997 for examples). Similarly to the case of

attractor switching, these coevolutionary cycles may also include an ‘excursion’ to

dimorphism, and thus exhibit repetitive evolutionary branching and extinction.

In a dimorphic population, divergent and convergent evolution may alternate due to

cyclic coevolution with another species. During divergent evolution, the two strategies

become more and more widely separated. This evokes an evolutionary change in the

interacting species, which in turn switches the dimorphic population from divergent to

convergent evolution. Convergent evolution then reverses the direction of evolution in

the interacting species as well, which after some time causes divergent evolution again

in the dimorphic species.

During convergent evolution, the two strategies approach a single evolutionarily stable

strategy. If convergent evolution continues long enough such that the two strategies are

within the mutation radius from the ESS, then the population falls back to

monomorphism as the ESS (or a very similar strategy) takes over the population (Geritz

et al., 1998). When selection becomes disruptive again, then the ESS bifurcates into a

branching point and dimorphism is restored. Monomorphism is thus alternating with

dimorphism during the cycle. This scenario, however, is not essentially different from a

cycle where the two strategies approach each other but no extinction occurs: The

population of two similar strategies closely resembles a population with a single

strategy. Evolutionary cycles of this type (involving two prey and two predator species

and a circular phenotype space) were found by Van der Laan and Hogeweg (1995).

Without the analysis of adaptive dynamics, it is often not possible to ascertain the

cause(s) leading to evolutionary cycles of branching and extinction in simulations.

Nevertheless, the simulations may provide hints for the underlying mechanisms. Cycles

of stochastic length may be due to chance extinction. Extinction after stasis at the

evolutionarily stable coalition, found for example in the individual-based simulations of

Doebeli and Dieckmann (in press), also suggests chance extinction; the same could be

suspected if extinction occurs at different trait values as the cycle repeats. The abrupt
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changes in population dynamics found by Koella and Doebeli (1999) hint to possible

attractor switches.

The cycles described in this paper involve deterministic extinction in the sense that

extinction happens with certainty and always at the same trait values. Which resident

strategy goes extinct is, however, random. Consequently, short and long cycles occur in

random order (although the probability of extinction of one or the other resident may be

unequal, and a short simulation may show the same cycle each time). Apart from the

two kinds of cycles, and apart from some variability due to the stochastic occurrence of

successful mutants, the cycles are regular. There is no isolated abrupt change in

population density as in case of an attractor switch. Shortly before extinction, however,

the equilibrium population densities show characteristic random fluctuations during

evolution (Fig. 3c).

Throughout this paper we assumed clonal inheritance, but our results can be generalized

to diploid sexual populations as well. Consider first a trait controlled by a single locus

with a continuum of potential alleles or by a number of tightly linked loci inherited

effectively as a single locus. Though in sexual populations phenotypes are not

transmitted from parents to offspring as in case of clonal inheritance, alleles are: The

adaptive dynamics of alleles can be analyzed similarly to the adaptive dynamics of

clonal strategies (Kisdi and Geritz, 1999). In particular, evolutionary branching in allele

space results in two distinctly different allele, and hence in genetic polymorphism, in an

initially monomorphic population. When evolutionary cycles of branching and

extinction occur in allele space, then the population is alternating between genetic

polymorphism and genetic monomorphism.

If heterozygotes are intermediate in phenotype, then they are selected against during

evolutionary branching (Geritz et al., 1998). This favours the evolution of assortative

mating between the emerging branches (Dieckmann and Doebeli, 1999; Kisdi and

Geritz, in press; Geritz and Kisdi, in prep.) or the evolution of dominance (Van Dooren,

1999). With reproductive isolation between the branches or with full dominance (e.g. if

alleles for larger trait values are always dominant over alleles for smaller trait values)

adaptive dynamics exactly coincide with the clonal model.

Multi-locus quantitative genetic models of trait evolution are largely compatible with

the clonal models of adaptive dynamics as long as directional evolution is concerned

(Taper and Case, 1992; Abrams et al., 1993a; Dieckmann and Law, 1996). Evolutionary

branching is strongly hindered by recombination between loci such that the evolution of

randomly mating populations gets stuck at the branching point (Abrams et al., 1993b).

With assortative mating, however, evolutionary branching happens readily in multi-

locus simulations; moreover, assortative mating does evolve in these simulations if not



20

yet in place when the population arrives at the branching point (Doebeli, 1996;

Dieckmann and Doebeli, 1999; Doebeli and Dieckmann, in press). The evolution of

reproductive isolation by assortative mating converts within-species genetic

polymorphism arisen by branching in allele space into two separate species.

Evolutionary cycles of branching and extinction thus represent cycles with alternating

level of species diversity.
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Appendix

In this Appendix we show that the intersection of the two extinction boundaries (point

Q  in Fig. 2) necessarily belongs to both the 1x - and 2x -isoclines extended to the

closure of the area of coexistence in the Lotka-Volterra competition model with an

arbitrary smooth function ),( ji xxa .

For ),( 21 xx  in the closure of the area of coexistence let us define

)(),()(),(),()(
~

221121, 1221 xsxyaxsxyaxxDyS xxxx −−= . (A1)

where ),(),(1),( 122121 xxaxxaxxD −=  denotes the determinant of the matrix of

competitive coefficients. Using Eqs. 3, 4 and 5 we can rewrite the growth rate of a

mutant in a dimorphic population in the form
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~
 =                  
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(A2)

Inside the area of coexistence ),( 21 xxD  is positive; at the intersection of the two

extinction boundaries (point Q  in Fig. 2), however, 0),( )(2)(1 =QQ xxD . To see this,

notice that 0
~

)(
~

)(,1, 22121
== xxxxx SxS  for all ),( 21 xx  in the closure of the area of

coexistence  because 0)()( 2,1, 2121
== xsxs xxxx  for all ),( 21 xx  inside the area of

coexistence and )(
~

21, yS xx  as defined by (A1) is smooth. At point Q , which is on the

extinction boundary of both 1x  and 2x , 0)( )(2)(1
=Qx xs

Q
 and 0)( )(1)(2

=Qx xs
Q

; taking

either )(1 Qxy =  or )(2 Qxy =  in Eq. (A1) implies that 0,( )(2)(1 =QQ xxD .

The points of the 1x -isocline ( 2,1=i ) are given by

0
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i.e., the line that satisfies 0
)(

~
21, =

∂
∂

= ixy

xx

y

yS
 coincides with the 1x -isocline inside the

area of coexistence and extends the isocline to the extinction boundary. From Eq. (A1)

we get
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Since in point Q  both 0)( )(2)(1
=Qx xs

Q
 and 0)( )(1)(2

=Qx xs
Q

, 0
)(

~

)(

)(2)(1 , =
∂

∂

= Qi

QQ

xy

xx

y

yS
 for

2,1=i . This point thus belongs to both isoclines extended to the closure of the area of

coexistence.


