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Preface

This is the second part of a two-part report for
application of the Kalman filter to cyclone forecasting in
which hurricane experiments and further typhoon experiments
are presented. The first part was published as RM-76-0,.
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Abstract

This is the second part of a report on application of the
Kalman filter to cyclone forecasting. Following the preliminary
experiments of typhoon forecasting, this paper presents the
results of hurricane experiments and further typhoon experiments.

The 12 and 24 hour forecasting NHC72 model and the 24 hour
forecasting SNT model developed by the National Hurricane Center,
NOAA, USA and the Japan Meteorological Agency, respectively, were
examined. The improvements obtained by using the Kalman filter
over the original models were found to be roughly 10% for
hurricane forecasting and 20% for 24 hour typhoon forecasting,
on the average, in terms of vector errors.

The conclusion drawn by the previous experiments was
reconfirmed. That is, the application of the Kalman filter to
utilize better simple linear regression models is effective
when the original regression model gives consecutively biased
forecasts for a considerably long time; it is not effective
when the performance of the original model is poor, yet its
residual errors are not highly correlated.

In addition to this conclusion, a statistical test of the
validity of forecasting regression models showed that the
structure of the model should be further improved before con-
sidering application of the Kalman filter.
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I. INTRODUCTION

In the previous report of this study (Takeuchi, 1976},
which will hereafter be referred to as Part I, the Arakawa's
12 hour SFC.700 mb model and the 24 hour SNT model were
examined. Application of the Kalman filter to both of these
models showed very successful results. The conclusion reached
was that the Kalman filter is a powerful tool to make the simple
linear regression model applicable to a nonstationary process,
provided that the residual errors of the regression model are
highly correlated.

Since the number of cases examined in the previous paper
was limited, i.e., only to typhoons formed in the northern Pacific
in August of 1974, it was necessary to examine further other
cases.

The purpose of this paper is, then, to apply the same
technique for hurricanes and other typhoons. The KNHC 72 model
developed by the National Hurricane Center, NOAA, in the USA,
and the SNT model by the Japan Meteorological Agency were used
in the experiment. The hurricanes formed during the period of
1345 through 1973 and the typhoons during the period of June
through September of 1974 were used as data; the types obtained
are listed in Table 3 of Part I. Not all of the available data
were used; but those of cyclones which lasted for relatively
long periods were arbitrarily chosen to reduce the computational
burden. This included eight hurricanes (about 55 days all to-
gether) and seven typhoons (about 60 days). 1In the hurricane
analyses, both 12 hour and 24 hour forecasts were examined, but
in the typhoon analyses, only 24 hour forecasts were examined.
This is because a large number (over 30) of 12 hour typhoon
forecasts were examined in Part I, whereas the number of cases
for 24 hour forecasts processed was only 10. Furthermore the
formula used to obtain 500 mb gph values that were used as predic-

tors of the 24 hour SNT model were later found inadequate and




a revised calculation was necessary.

Section II presents the results of the hurricane analysis;
the typhoon results follow in Section III. In Section II some
modification to the original methodology described in Part I was
added. This is an approach to compute the initial error covari-

ance matrix P of state variables in the Kalman filter directly

from the orig?igl data set. A slight improvement was achieved
by this approach. During the hurricane analyses, it was found
that the original forecasting model, formulated as a regression
eguation, did not adequately represent the dynamics of cyclone
advancement and that standard statistical tests did not justify
the validity of the model. The discussion of this test is also

included in Section II.

IT. HURRICANE FORECASTING

The U.S. National hurricane Center model NHC-72 was developed
for four stratified data sets according to the initial motions
of hurricanes. Two characteristics of initial storm motion, the
direction 9 and the speed v were considered, where 6 was measured

in degrees clockwilise from the north and v was measured in knots.

Let x = v sin 6 and y = v cos 6. Compute Y1 = % X + 6 and
Y2 = - % X - 3. Storms were then classified into 1, 2, 3 and 4
quadrants, respectively (Neumann et al., 1972, p. 8) when

y 2 Y, and y > Y, ,
Yy £ Y, and y 2 Y, ,
y < Y1 and y < Y2 , Or
y 2 ¥ and y <Y .

The hurricanes examined in this study are only those in
the first quadrant. Roughly speaking, their initial motions are
north-~easterly in direction. The twelve hour and twenty-four
hour forecasts were examined. The models used are described in
Table 1.



Results Using the Same Procedure Described in Part I

Initial experiments were conducted using the unknown error
covariance matrices Q, R, P0|0, as described in Part I; namely,
the variance was assumed to be proportional to the magnitude of
the coefficients. This assumption can also be referred to as
an equal coefficient of the variation assgmption. This 1s because

) . . i
the variance O? of the initial estimate XO\O was assumed to have

a coefficient of variation Y for all i, or

ol
f{l
0]0

= Y4 for all 1 . (1)

Using this assumption and the shaping filter only for the
system disturbances, in other words, using the filtered model A
(Part I, p. 19), some improvement of forecasts was found. For
the 12 hour forecasts, 19% improvement in longitudinal motion {A)
and none (1%) in latitudinal motion (¥). For 24 hour forecasts,
they are 9% and -1%, respectively. The vector error reductions
were 9% for 12 hour forecasts and 4% for 24 hour forecasts.
Prediction of some hurricanes was improved by the magnitude of
40% in one of the two components, but in some cases the filtered
model forecasts were -15% worse than the original forecasts.
Table 2 shows the summary of results. Also note that the sig-
nificant improvement in the HUR‘I3L11 is decisive for average
improvement. Therefore, a glance only at the average improve-
ment is somehow misleading. The optimal coefficients a, B, Yqr
and Y, were found in some cases, quite similar to and, in other
cases, considerably different from those identified for typhoon
studies in Part I.

The results obtained were unsatisfactory. What follows is
the report of the efforts made to improve the forecasts and the

analyses of the reasons why a greater improvement was not obtained

by using the Kalman filter.




Further Analysis of Error Covariance Matrices

The assumption of equal coefficient of variation seems
reasonable under an intuitive judgement. However, how reliable
is it? How reasonable is the assumption of zero cross corre-
lations? There is only one way to examine this assumption; this
is to compute the error covariances of the state variables using
the given observation data. The state variables are made up of
two different sets of variables. One is the coefficient of the
Given regression model and the other is the system disturbances.
Their covariance matrices are P1 and P
P

= (2)
10 0 P,

While P2 and the covariance matrices Q of the system disturbances

cannot be estimated from the given observation data, it is possible

o1 forming a large matrix

0|0 as

Pa

to estimate the P,i and R of the measurement noise.
The original forecast model has a simple linear regression

form:
y = xp + e (3)

where y 1s the predictant, the displacement of a cyclone eye;

X is the vector of the predictors; B is the corresponding
coefficient vector and e is the noise. In the Kalman filter
model, the coefficient B is treated as the state variable. The

error covariance of the initial state variables is, therefore,

T

E(B -~ B)(B - 8) (4)

where é is the estimate of E. Let Y and X be the observation
vector and matrix whose components are realization of y and x.
Then

Y = X8 + € (5)



where € is now an error vector. The least squared error estimate

of B is

B = xTx) Ty . (6)

~ «
The error covariance associated with B, or the expression (4)

becomes

1 1

E(B - B)(B - £)T = (X°x) 'xTE@EeT) X (xTx) ~ (7)

If each component of noise € is considered independent and dis-

tributed identically with variance 02,

E(ee’) = o°1 (8)

where I is an identity matrix. Then (7) becomes

E(B - B)(B - BT = o2 (xTx)" " . (9)

02 may be estimated by

(Y-XB)

52 _ (v-xB)? (10)
n-p
where p is the dimension of vector B and n is the number of
observations. Instead of assuming the equal coefficient of
variation Yqr {(9) can be used for the initial estimate of error
covariance P1 in (2). Since the regression model (3) is used
as the measurement equation in the Kalman filtering model, the
measurement error R can also be replaced by 82. Strictly speaking,
this is not quite correct, because R is the measurement error
variance after considering the dynamic changes of state variables.
The estimate of 02 using (10) may, however, be postulated to be
not very different from R. It should be noted that the artificial
coefficients Y4 and B are now set equal to unity, which greatly

reduces the optimization procedure.




The next task is to assume the P2 and Q. They are assumed

to be similar to the procedure described in Part I; namely
2
Py = Y2P
(11)
Q0 = a2P

1

where Yo and o are the parameters to be optimized under the
criterion described in Part I (p. 16). Another assumption for
consideration is the off-diagonal elements of P1. In Pl' the
off-diagonal elements are used as they are estimated. However,
in P2 and @, they are set equal to zero. In other words, only
the diagoral elements of P1 are introduced into P2 and Q. This
procedure was introduced because P2 and Q were actually unknown

and, above all, the off-diagonal elements of POiO’ other than

P1 and P?, are arbitrarily set to zero, or
. _{P1 0
[
00 iJ P2
which introduces additional errors. P0|O can, of course, be
set cut as
2
Py Y3 By
P =
0lo 2 2 )
Y3Fq YoPy

But this assumption was not selected. The estimate of P1 would,

afterall not be so reliable as to be used intensively, and therefore

creating a cumbersome optimization procedure for Y3 is useless.
Table 3 lists the summary of results for 12 hour forecasts,

17% (19%) in X and 8% (11%) in ¢ were improved. The vector

error reduction was 11% (15%). For 24 hour forecasts, 11% (13%)

in A, -0.5% (0.7%) in ¢, and 5% (8%) in the vector error. The

figures in parentheses are‘the improvements in terms of root

mean squarcs whereas the preceeding values are improvements in

terms of ths mean cf the absolute errxrors.



The improvements of this trial over the previous trial are
not great, but undoubtedly positive. A slight decline in the
improvement of X component of the 12 hour forecasts can be
explained due to the incomplete optimization of the parameters
o and Yy e In fact, only the cases o = Y, are examined; altogether
only five cases. A case such as o < Y, should certainly have

been examined.
At any rate, the improvement was not satisfactory and the

next task is to analyze the reason.

Performance of Filtered Forecasts

Figure 1 shows the X displacements of HUR72 of which the
24 hour filtered forecasts showed the worst decline of the entire
24 hour forecasting cases. From Figure 1a one can see that the
overall NHC72 forecasts are not unreasonable. The first part
is unsatisfactory, but in the latter part, from the time point 4
and up, the original forecasts are excellent. The filtered
forecasts, on the other hand, are not at all good, especially
at the time points 4 and 5.

Figure 1b illustrates the reason why this extraordinary

misprediction occurred. For the time point 3, the NHC72 had
forecast 120 n.m. to the east (B). In fact the observed dis-
placement was 100 n.m. to the west (A). The filtered forecast

was 70 n.m. to the east which realized a 190 n.m. easterly error
(C). At this point, the forecast for the time point 4 should be
made. The NHC72 indicates this should be 120 n.m. to the west (B').
Now, it is time for the filtered model to make the forecast based
on the scheme of the NHC72 model. The NHC72 forecast indicates
about a 220 n.m. westerly change as compared to the previous
forecast. This is obviously due to the drastic change in
meteorological synoptic conditions. Without having knowledge of
the meteorological dynamics, it is necessary to rely on the

NHC72 models' forecasting scheme. Namely, the filtered model
also considers a 220 n.m. westerly change from its previous
forecast, which leads to point C1. This is because the filtered
model does not have any mechanism to check whether the meteoro-




logical change observed really leads to such a large change in
the hurricane motion. However, the filtered model can adjust
itself by improving predictions based on the previous experience
of the error. The previous error was 190 n.m. to the east; this
is extremely important. The filtered model had been adjusting
itself based on the preceeding errors. It had 190 n.m. biased
to the east at time point 3. Naturally, the filtered model
postulates that the current forecast may also have an easterly
bias. 1In other words, the filtered model should adjust itself
to foracast a displacement slightly more west than predicted.
The Kalman filter indicates how much adjustment should be made--
it is not 190 n.m. but 65 n.m. This figure is calculated by

the Kalman gain vector based upon the error covariances P, Q

and R. As a result, the new forecast of the filtered model is

65 n.m. west of point C or point C”. Unfortunately however,

the displacement was nol at all easterly but in fact, westerly.
Therefore, a 65 n.m. adjustment created more errors than would
have been created with no adjustment.

One may saggest a lesser adjustment. This is not appro-
priate, however, .f the cases at the time points 1, 2 and 3 are
examined. 1In these cases, the adjustments are insufficient.

In fact, the adjustment at time point 5 is also insufficient.
The rate of adjustment should be based on an average. This rate
0|O' Q and R.2

From the examination of Figure 1 it may be obvious that

1s coatroliled by the assumptions of P

the RKalman filter can adjust the forecasts correctly only when
the original model gives consecatively biased forecasts in the
same direction. In other words, if the errors of the original
forecasts are highly correlated, the Kalman filter works well.
This fact is most clear in the HUR134 in which the NHC72 giveé
easterly biased forecasts almost all of the time. Furthermore,
as seen in Table 3, the 12 hour forecasts are improved more than
the 24 hour forecasts. This is simply because the former has a
higher seguential correlaticn of the forecast errors, since the
time increment is shorter.

What the Kalman filter essentially does is to remove the
pias of the errors by adjusting the state variables of a system

"

to their short-terwm current mean values. If the errors are



originally white noise, the Kalman filter cannot reduce them.
This is clear from the fact that if the system performance 1is
optimal, the innovation sequence is white noise as mentioned
in Part I (p. 15). The Kalman filter is therefore often used
to detect gradual or sudden changes in the system structure
when the change extends over a considerable time period, e.gq.
space ships and aircraft controls. It is a powerful tool in
such cases.

Figures 2 and 3 show all of the hurricane forecasts where
only the prediction errors are plotted. It will be seen that
any single forecast error can be explained by the rule described
above. The hurricane tracts and the forecasts for HUR72 and
HUR134 are plotted on maps, Figures 4 and 5. The HUR72 is an

example of the worst case and HUR134 of the best case.

Examination of the NHC72 Model

It has been pointed out that application of the Kalman filter
to better utilize a regression model is useful only when the
errors of the original regression model show consecutive biases
over considerably long tiime periods. It has also been pointed
out that the NHC72 model produces errors which do not have
properties mentioned above, although they are not necessarily
white noises. Based upon these facts, it may be concluded that
the Kalman filter is not very useful for hurricane forecasting,
at least by the method applied in this analysis. There is,
however, another task left. That is to consider why the NHC72
model has less correlated errors. An answer to this question was
previously mentioned; namely, the underlying system structure of
hurricane motions is not made up of gradually changing components
or components which may change suddenly from time to time but last
a long time once changed. Although this is quite possibly true,
there may be other reasons. One of them may be the poor construction
of the NHC72 model. This possibility is quite conceivable.3 As
seen in Figure 1, it often happens that while the hurricane moves a

great distance in a particular direction, say to the north, the
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forecast indicates an opposite movement, or a southerly displace-
ment. It also frequently happens that while a hurricane speed
is accelerating to the north, the corresponding forecast indicates
a southerly acceleration. In fact, the forecasts fluctuate by
and large more than the real hurricane motions. If the situation
is the cpposite; namely, if forecasts do not fluctuate as much
as the actual hurricane motions, the forecast errors would show
a consecutively biased structure. The following is the result
of re-examination of the NHC72 models.

Using 104 data which was used in forecasting analyses, the
regression models were recalculated and the results were found
to be extremely interesting. Table 4 lists the comparison
between the original coefficients and the recalculated coefficients.
The predictor number corresponds to the number of Table 1. The
values in parentheses are the standard deviations of the esti-
mated coefticients. Considerably large differences between the
originally given coefficients and those recalculated can be
observed. 1In some cases, even the signs are different. These
differences are not strange at all if one considers the corre-
sponding standard deviatrons. In many cases the standard devi-
ations are large enough %c question the validity of the coeffi-
cients.

Given the standard cdeviations, the confidence limits of
coefficients can be calculated. 1In the general linear regression
model {5) the least square estimates é = (XTX)_1XTY are normally

2(XTX)-1
pcnent of € in (5) is independently identically distributed with

distributed with the mean B and variance o if each com-
N(O,oz). Joint 100(1-0)% confidence region for all the components

B ar= then obtained from the equation

(8 - 8)TxTX(B -8)/p

— < F(p,n-p,1-a) {12,
g2

where F{p,n-p,1=-0) is the (1-a) point of the F{(p,n-p) distri-
bution, p is ithe number of components of 8 and 32 is as defined
by (10). This inequality provides the equation with an ellip-
tically-shaped centour in a space of p dimensions. Individual

confidence intervals for the various compons=nts separately,
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however, can be obtained from the formula

~ 1 ~
B; + tn-p,1=5a) - o (13)

where Ei is the ith component of é and 8i is the square root of
the ith diagonal element of 52 matrix (=02(XTX)_1) and
t(n—p,r—%a) is the (L—%a) point of the t distribution with
(n-p) degrees of freedom. Roughly speaking, 95% confidence
limits for Bi are given by éi + 28i. These confidence limits
can also be thought of as a hypothesis test. If the zero point
lies in between the confidence limits, then the hypothesis that
Bi = 0 cannot be rejected at the 100a% failure level. 1In Table 4,
the coefficients which have no * at the end correspond to such
cases. These coefficients are not significantly different from
zero. The coefficients with * are significant in the sense that
the hypothesis m = 0 is rejected with a 5% probability of fail-
ure. In other words, the predictors with *'s are the only
variables worth including in the regression model. It is sur-
prising to see that so many predictors are insignificant. These
predictors contribute to reduction of the error variances for
the data sets used for the model construction, but do not con-
tribute to better forecasts for the independent data.

This finding leads to another question. How good are the
regression models without those insignificant predictors? The
third and forth columns in Table 4 give the estimates of
coefficients when only the variables with * are included in
the regression model. With fewer predictors, the error variances
naturally increase. 1In the 12 hour ¢ model for example, five
variables out of a given 13 variables are considered and the
standard error is increased from 52.6 n.m. to 54.8 n.m. It is
now necessary to check whether or not the model with all 13
variables, namely the original model, is significantly better
than the new model with only five variables. For this purpose
an F test was conducted, considering the new model as the null

hypothesis and the original model as the alternative hypothesis;
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namely;

H.: UCocerficients of variables 1,6,7,8,9,10,12 and 13 are
all zerc.

Mot all of these eight coefficients are zero.

s

ity
poe v JBH3 T 5) L g gy (14)

follows the V-distribution with degrees of freedom 8 and 99.

-
~ ~2

oé and ui3 a:: the error variances of the model under HO and
H1, respectively. The total number of observations is 104.
The F va'u~ toxr ¥5% confidence is 1.98 as indicated in parentheses
in Table #4a. This means that the F value is in the 95% confidence
limits and that the null hyrothesis cannot be rejected. In other
words, this tes+ suggests that it is of no value to include an
additionel eicht variables in the regressicon model. All the
coafficients of the selected five variables are statistically
significantly different from zero and accordingly, recalculation
of the regression coeitficients is terminated.

The same procedure was applied for all four models. In
general ovly five variables were recognized as significant.
The 24 hour ¢ model was an exception, where only the two
variables {(8th and 10th) remained at the final stage. But in
this case, the F-test rejected, at the 95% confidence level, the
null hypotuesis that the variables without * are all zero. This
is an example of how a univariate t-test misleads an inference.
The reason for this failure would he that the confidence region
of coetficients were irregularly-shaped in this case, which
would not ke exceptional in multivariate distributions. A more
sophisticated reason is that the variables under examination are
selected by variocus screening tests. In general, the standard
statisticais tests are not necessarily applicable to thes variables

fnat have alr=ady becn screened through pretesting. Nevertheless,
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the many predictors are hardly justifiable in all the models.
The second and third predictors are recognized in all models
except in the 24 hour ¢ model, which coincides with the fact
that they were reported to be the most reliable in the sense
that they reduced the variance of the prediction errors more
than the lower ordered predictors (Neumann et al, p. 12). A
conclusion that could be drawn from this test would be that the
predictors selected by the NHC72 model were not necessarily
appropriate, at least for the data set used in this analysis.
If the same test is applied to the original set of data that
was used for the development of the NHC72 model, and if all of
the predictors were found significant, such a large sampling
variation would be surprising.

The last task is to examine how well the Kalman filter
works for the new model using only the significant predictors.
Unfortunately, the results were not better than the previous

ones and the errors left were not correlated to a great extent.

Concluding Remarks

The following is a list of conclusions and subsequent

remarks which are not necessarily mentioned in the text:

(1) By replacing the equel coefficient of variation assumption
with the estimate of error covariance matrix of the initial
estimate of state variables, some improvement can be
achieved. If data are available to estimate the error
covariance matrix, it should by all means be used. By
doing so, the number of parameters to be specified are also
reduced from four to two.

{2) Application of the Kalman filter to a given regression
model allows the regression coefficients to vary slowly
and a significant improvement in performance of the model
can be expected if the original errors of the regression
model are from time to time highly biased consecutively.
This is the case for typhoon forecast models. If, however,
the original errors are not biased and close to the white
noises, little improvement may be achieved. This is the

case for all the hurricanes with the exception of HUR134.
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(3) The RHC72 model was found to include many insignificant
predictors, at least with respect to the data used in this
analysis. The 12 hour ¢ model, for 1instance, was found
to have only five significant predictors whereas 13 predictors
were originally considered. The use of only the signifi-
cant predictors, however, could not improve the performance
of the filtered model. The validity of the original
regression model and the utility of the Kalman filter are
two different matters.

(4) Nonetheless, the Kalman filter showed its improvement
potential up to 10% on an average, both at 12 and 24 hours.
The use of this technique to predict hurricane movement
should be seriously considered. One possible utilization
would be the combination of filtered forecasts with the
forecasts obtained through other models. The combination
may lead to better performance since the Kalman filter
forecasts include new information independent of other

forecasts.

I1T. ADDITIONAL TYPHOON FORECASTING

As mentioned in the Introduction, only the 24 hour SNT
forecasting model was examined. This model was fully described
in Table 2 of Part I. Two kinds of predictors are used in this
model: ons is the persistence data and the other is the prog-
nostic 500 mb gph data obtained from the numerical solutions of
2 three layer balance model of the atmosphere in the entire
northern hemisphere. These numerical solutions are given only
for 250, 550 and 850 mb gph values. In the previous analyses,
500 mb gph was computed using a simple linear interpolation
formula (Part I, p. 27):

500mbgph=%-550mbgph+%—-250mbgph ) (15)

Later, however, this formula was found to give biased height
values. Formula (15) may be suitable for some purposes but not

for use of the SNT model. As a result, the SNT forecasts using
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this formula appeared biased, as seen in Figures 7, 8 and 9 of
Part I. Since biases were favorable to the Kalman filter, an
incredible 70% improvement was achieved in the ¢ forecasting,
which was not a fair comparison between the original and
filtered forecasts.

Formula (15) was replaced by the following static eguation

of the atmosphere:

3 P, K )
°p” 3p (Po) 99p (1e)

where p is pressure (mb) at the geopotential heignt z(m), Py is

1000 mb, cp is specific heat of dry air under constant pressure

(1004 m2/secz/deg), § is potential temperature (deg), g 1is
gravitational constant (9.8 m/secz) and « = R/c_ with R being
gas constant (287 m2/sec2/deg). P

Assuming the potential temperatures at 2200 (500 mb gph)
and z to be the same as ©

550 550"
by differencing, as

equation (16) can be rewritten,

2 = g + SE 9 (Eégg)K - (EEQQ)K
500 500 T g ’500 P, P,

= 2500 t 2-315 0., - (17)

This formula gives better estimates of Zc00 than equation (15).

Results Using the Same Procedure Described in Part I

Using formula (17) for computing 500 mb gph, the 24 hour
SNT forecastings were conducted for TYPHOS5, 08, 14, 16, 18, 21
and 22. The same model was also run through the Kalman filter;
The improvements of the filtered forecasts over the original
forecasts are summarized in Table 5 and appear substantially
different from Table 8 of Part I, which is the counterpart of
Table 5, by using formula (15) instead of (17) for 500 mb gph

values. The ¢ forecasting improvement dropped from 70% to 27%.
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The original ¢ error was 3.74 degrees in Table 8 of Part I, but
is now 1.82 degrees. As the large biases disappeared from the
original forecasts, the extremely favorable condition for apply-
ing the Kalman filter also disappeared. However, Table 5 shows
a significant improvement. In terms of the mean of absolute
errors, the A errors improved from 1.46° to 1.20° (18%) and
errors from 1.82° to 1.32° (27%). The vector errors improved
from 264km to 206km {22%). In terms of root mean squared errors,
the improvements are slightly less but still substantial.

The parameters of error covariances, a,B,y1 and Y, were
set as indicated in Table 5 from the first trial and never ad-
justed because the performance was satisfactory. For this
reason, alli the cases listed are considered independent cases.

Exampl2s of typhoon tracks with both the original and
filtered forecasts are plotted in Figures 6 through 10. The
reason .oi the greater improvements in predicting typhoons than
in hurricanes are obvious from these figures. The consecutive
biases are still presernt, although their magnitudes are not as
great as in Figures ! through 9 in Part I. These biases are
sometimes east:rly and sometimes westerly. Northern biases
are more dominant than southern biases, which may be the result
of the iimitved numb:esr ¢f samples.

Before concluding the typhoon analyses, it should be further
clarified why the typhcon experiments with the Kalman filter
showed fmore improvement than the hurricane experiments. As was
mentioned, this is because the original forecasting errors of
the typhoon models are more highly correlated than those of the
hurricane forecasting models. The reason for the high corre-
lations present in the prediction errors in typhcon forecasting
models is more difficult to explain. One probable answer to
this question may be that the typhooin forecasting models are not
developed for stratified data sets, whereas the hurricane models
are separated into four classified equations, depending upon the
initial hurricane aoction. The typhoon forecasting models are
therefore less specific to any particular atmospheric circum-
stances. As a result, & single model is applicable to all
typhoons regardless of their origins or their initial motions.

However, it may produce the estimates biased in a certain direc-
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However, it may produce the estimates biased in a certain direc-
tion peculiar to each typhoon, depending upon the particular
atmospheric conditions governing its motion.

It is important to note, nevertheless, that this fact alone
does not necessarily justify the methodology of stratification.
This is because the stratification of data is equivalent to
including more parameters; these contribute to an explanation
of the historical data, but do not necessarily provide more
accurate forecasts. Tco little evidence is available, however,
to tell whether or nct the NHC72 model is an example of -such
cases. All one can say is that if a stratification of data were
used in a forecasting model to get rid of biased forecasts appear-
ing in different directions from one cyclone to another, it would
be better to avoid this and to try the Kalman filter as a means

of filtering the biases out.

Concluding Remarks

(1) Pormula (17) was used to obtain better estimates of 500 mb
gph, replacing formula (15). The 24 hour SNT forecasts using
the data obtained through this formula were found to be less
biased. The Kalman filter, however, still improved the
forecasts to a significant extent: 18% in A and 27% in ¢.
The improvement in vector errors was 22%, which roughly
corresponded to an error reduction from 260km to 210km, on
the average.

(2) The accuracy of SNT forecasts is not substantially different
from that of the NHC72 model, at least for the data examined
in this analysis; but the SNT model was found to produce
more highly-correlated forecasting errors than the NHC72
model, which formed an advantageous basis for the appli-

cation of the Kalman filter.

(3) If consecutive biases in the forecasting errors develop in
different directions from one cyclone to another, the
Kalman filter would be a better means of decreasing them,
rather than including additional parameters to a forecasting

model.
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Table 1 Description of NHC-72 Model

12 hours forecast for Quadrant 1

Meridional Motion (¢) Zonal Motion (X\)
Predictor Coefficient Predictor Coefficient
1 constant 84.1900 1 constant -3217.2300
2 H5(51) -0.6326 2 H5(37) 0.7910
3 H5(54) 0.2085 3 DH10(97) -0.9214
4 H5(76) 0.2869 4y DH5 (56) 0.2531
5 DH10(102) 0.2973 5 H7(91) -0.4460
6 H10(9) 0.2186 6 H10(38) 0.3125
7 DH7(10) -0.1621 7 H10(8) -0.1768
8 DH7(7) -0.1692 8 H10(83) -0.2890
9 DH5(65) ~0.3486
10 H7(69) 0.3920
11 H7(120) -0.5247
12 H10(105) 0.2602
13 H7(92) 0.3609
24 hours forecast for Quadrant 1
Meridional Motion (¢) Zonal Motion (A)
Predictor Coefficient Predictor Coefficient
1 constant -1318.7000 1 constant -4437.6900
2 DH5(51) -0.6721 2 H5(37) 1.8303
3 DH10(71) 0.8779 3 H7 (84) -0.7772
4 DH7(92) 1.2525 4 DH5(56) 0.5491
5 DH5(65) -0.7716 5 DH10(97) -1.8328
6 H10(9) 0.3690 6 H10(38) 0.6131
7 H5(85) 0.3597 7 H10(106) -1.0959
8 H7(51) -1.2913 8 H5 (66) -0.6457
9 H7(69) 0.9108 9 H10(8) -0.2473
10 H5(62) 0.4436
11 DH7(10) -0.1280
12 DH7(7) -0.2227
13 H7(120) -0.6741
Note: H5, H7, H10 : 500, 700, 1000 mb gph (m)
DH5, DH7, DH10 : 24 hrs change of 500, 700

1000 mb gph (m)
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Table 2 Improvements of the Filtered Forecasts

over the NHC 72 Forecasts: equal c.v.

a = 0.001 a = 0.0005
B = 0.5 B = 1.0
12 hrs forecast Yy = 0.01 Yy = 0.001
Y2 = 0.001 Y2 = 0.0001
HUR No. A error ¢ error Vector error
2 26% -1% 15%
8 -5 19 4
17 9 -5 -2
54 -11 14 17
72 15 9 9
96 -3 -3 -3
112 3 -15 -7
134 42 -8 21
Average 19 1 9
o = 0.001 a = 0.001
B = 1.0 B8 = 2.0
24 hrs forecast y1 = 0.01 y1 = 0.01
Y2 = 0.001 Y2 = 0.001
HUR No. A error ¢ error Vector error
2 5% -3% 0%
8 -2 0 -1
17 9 -1 3
54 11 2 5
72 -4 -2 -3
96 -2 -1 -2
112 -1 0 -1
134 16 -1 12
Average 9 -1 4y

Note: mean of the absolute errors are compared.
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Table 3 Improvements of the Filtered Forecasts
over the NHC 72 Forecasts: estimated Pgp|o
o = 0.01 o = 0.0003
B = 1.0 B = 1.0
12 hrs forecast yi = 1.0 Yy = 1.0
Y2 = 0.01 Y2 = 0.0003
HUR No. A error ¢ error Vector error

2 20% (18%) 0% (-2%) 11% (13%)

8 3 (-10) 12 (13) 4 (1)

17 -2  (4) 1 (1) -6 (2)

54 2 (6) 13  (8) 13 (7)

72 -1 (10) 18 (17) 7 (14)

96 -15 (-25) -4 (-3) -8 (-11)
112 1 (-10) 2 (7) -3 (2)
134 51 (43) 7 (12) 33  (30)

Average 17 (19) 8 (11) 11 (15)
[u = 0.003 a = 0.0
B = 1.0 B = 1.0
24 hrs forecast 1= 1.0 y1i = 1.0
Y2 = 0.003 Y2 = 0.0
HUR No. A error Y error Vector error
2 12% (7%) -9% (-3%) -1% (1.3%)
8 4  (2) -1 (-2) 0 (0)

17 20 (11) 11 (4) 9 (6)

54 10  (9) 7 (1) 8 (5)

72 -17 (-5) 1 (5) 9 (0)

96 -1 (-7) 0 (-4) -6 (-5)
112 -7 (-13) -7 (-6) -7 (-8)
134 34 (24) 3 (4) 27  (18)

Average 11 (13) o (1) 5 (8)
Note: 1. Values outside of the parenthesis are based on

the mean of the absolute errors.

2. Values in the parenthesis are based on the
root mean squared errors.

3. a = Y2 =0 (24 hrs ¥ model) corresponds to the
model without shaping filter.
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Table 5

Improvements of the Filtered Forecasts Over the SNT Forecasts:

24 hours
o = 0.001
B =1.0
Y1 = 0.01
Yy = 0.001
TYPH Number of A error error Vector error
forecasts

05 6 37%(36%) USE(L1%) 38%(38%)

08 10 -2 (=1) 12 (20) 6 (15)

14 13 12 (3) 26 (10) 18 (8)

16 6 22 (22) 6 (8) 6 (0)

18 4 0 (12) 26 (26) 7 (16)

21 8 41 (35) 38 (38) 42 (36)

22 8 -5 (-1) 33 (10) 20 (7)
Average 55(total) 18 (15) 27 (19) 22 (18)
Mean of the absolute
error 1.46° 1.82O 264km
is reduced to 1.20° 1.32° 2065™
Note: 1. Values outside of the parenthesis are based on

the mean of the absolute errors.

2. Values in the parenthesis are based on the

root mean squared errors.
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FGOTNOTES

The validity of the data during the time of this hurricane
(Oct. 10~18, 1972) was carefully checked.

It can easily be seen from the Kailman filter formulation
described in Part I (p. 9) that an adjustment is large if

diagonal elements of P and Q are large compared to R and

olo
it is small if R is larger. In the current case, the param-
eters are only a and 1o which control the lower part of the

diagonal elements of P and diagonal elements of Q. There-

0]0
fore, the rate of adjustment is large as a and 9, increase.
An intuitive explanation is given below. The large P

1nplies that the error involved in the original estimng

B of & in 13) is large. Then the Kalman filter does not
believe the value of é; and once the error is observed, the
Kalman filter changecs the é a great deal to adjust the system
to the observed vaiue. The large Q implies the same, that is,
if the rate ©f systen disturbances is large, it tends to
adjust B to a 'arge extent. The large R, on the other hand,
implies the cpposite effect. This 1s the variance in the
observation noise. 1f the variance of observation noise is
large compared to Q 2nd P, then the Kalman filter considers
that the prediction error or the difference between the
ostzserved and the predicted is not due to the system error

but due to the measurement error. Therefore, the Kalman
filter tends to believe the state variables estimated so far
and does not change them much, even when a large prediction
error is present.

It rmust be clear now what small P Q and R imply. The

:
smaller P0|0 and Q compared to R S$gly that the estimated
state variables are reliable so that the Kalman filter will
not adjust the state variables. The small R implies the
small observaticon error and the Kalman filter fully under-
stands the prediction errors due to the system error,

according to large changes to the state variable estimates.
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C. Neuman (personal communication, April 1976) pointed out
that the hurricanes in the first quadrant were the most
erratic of all cyclones in behavior. This in turn would
imply that the NHC72 model for gquadrant 1 was the least
accurate model for forecasting.
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