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Abstract 

The paper analyzes some generic features of industrial dynamics whereby innovative 
change is carried, stochastically, by new entrants. Relying on the formal representation 
suggested in Winter, S.G., Kaniovski, Y.M., Dosi, G., 1997. A Baseline Model of Industry 
Evolution. [Interim Report IR-97-013/ March, International Institute for Applied Systems 
Analysis, Laxenburg, Austria], it studies both the asymptotic properties of such processes 
and their appropriability to account for a few empirical stylized facts, including persistent 
entry and exit, skewed size distributions and turbulence in market shares . © 2000 Elsevier 
Science B.V. All rights reserved. 

KcJlrnrds: Evolution; Competition; Learning: Stochastic entry; Entrepreneurial startups; Expanding set 
of technological opportunities; Industrial dynamics 

1. Introduction 

In this work we explore the dynamic features of industries characterized by the 
persistent arrival of innovative entrants. The models which follow build upon and 
modify the baseline model presented in Winter et al. (1997). In an extreme 
synthesis, in the latter we develop a framework of analysis of the competitive 
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dynamics of industries composed of heterogeneous firms and continuing stochastic 
entry. There, we show that despite the simplicity of the assumptions, the model is 
able to account for a rather rich set of empirical 'stylized facts', such as: (i) 
continuing turbulence in market shares; (ii) persistent inflows and outflows of firms; 
(iii) 'life cycle' phenomena - including, in particular, nearer the birth of an 
industry, relatively sudden 'shakeouts', yielding distinctly different industrial struc
ture thereafter; and (iv) skewed size distributions of firms 1

• 

The 'heroic' simplicity of Winter et al. (1997) goes as far as assuming that the set 
of technological options among which entrants draw - as a formal metaphor of 
their diverse capabilities - is given from the start and is invariant throughout the 
unfolding evolution of the industry. While this assumption is certainly in tune with 
the spirit of most evolutionary game-theoretical set-ups, it is also at odds with an 
overwhelming empirical evidence highlighting the role of innovators as carriers of 
technological and organizational discoveries. Typically, these discoveries happen to 
be tapped at some point in the history of an industry on the grounds of the 
available knowledge base at that time, but would not have been possible earlier on, 
given the knowledge base at that earlier time. 

More formally, this implies that what is commonly called the 'production 
possibility set' endogenously shifts, due to the cumulative (but stochastic) effects of 
exploration by potential innovators2

• 

The model which follows studies the properties of industrial dynamics which 
correspond to that archetype of industrial evolution which some authors call 
Schumpeter Mark I regime (cf. Dosi et al. , 1995; Malerba and Orsenigo, 1995). In 
short, while of course both incumbents and new entrants empirically attempt to 
explore - to varying degrees - yet unexploited opportunities of innovation, here 
we focus upon the properties of that extreme archetype whereby only entrants have 
a positive probability of advancing the current state of technological knowledge. 
(Hence the name of such a 'regime', in analogy with the emphasis of Schumpeter 
(1934) upon novel entrepreneurial efforts as drivers of change.) 

Compared with the cited 'baseline model' discussed in Winter et al. (1997), in the 
following we shall try to disentangle those properties which appear to be generic 
features of a wide class of processes of industrial dynamics simply resting upon 
persistently heterogeneous agents and market selection and, conversely, those 
properties which depend upon more specific forms of innovative learning, such as 
the Schwnpeter Mark I regime considered here3

. As we shall show below, some of 
the emerging 'stylized facts' of the modeled dynamics appear to robustly hold in 

1 This evidence is discussed at much greater length in the special issues of Industrial and Corporme 
Change, 5, 1997 and of The I111erna1ional Journal of Industrial Organi::ation, 4, 1995. See also Baldwin 
(1995); Carroll and Hannan (1995); Davis et al. (1996); Dunne et al. (1988); Dosi et al. (1995); Geroski 
(1995); Hannan and Freeman (1989). • 

2 For more detailed empirical corroborations of these points, cf., among others, Dosi (1988) and 
Freeman and Soete ( 1997). 

3 See Winter et a l. ( 1997) also for some comparative assessment of somewhat germane models of 
industrial dynamics based on much more stringent assumptions of individual forward-looking rationality 
and collective equilibrium, such as Jovanovic (1982), Hopenhayn (1992), and Ericson and Pakes (1995). 
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both set-ups, with or without innovative entry. Other features, including 
some path-dependence properties, interestingly, appear only when 'open
ended' dynamics on technological opportunities is accounted for, as we do in this 
work. 

Section 2 sets out the basic structure of the model, in a first specification with 
innovative learning by entrants directed at increasing capital productivity, and, 
conversely, in Section 3, we study the properties of a symmetrical assumption of 
(stochastically) increasing labour efficiencies. 

2. The basic framework of the model: a first setting with increasing capital 
efficiencies 

Let us assume an industry evolving in discrete time t = 0, 1, .... At t = 0 there are 
no firms ready to produce, but k firms arrive to the industry, ready to start 
manufacturing at t = 1. Techniques are capital-embodied and firm-specific. So, the 
model which follows can be interpreted as a vintage capital model, with heteroge
neous techniques across firms also within each vintage. 

At time t 2 1 the industry consists of n, firms which are involved in production 
and a number of new firms that enter at t and will participate in manufacturing 
from t + 1 onward. Uniformly for the whole industry we have: 

v - price per unit of physical capital, v > 0, 
d - depreciation rate of the capital stock, 0 < d:::; 1. 
In the first version of the model which follows the output is produced by capital 

alone. The competitiveness of any firm represented in the industry is ultimately 
determined by its capital per unit of output. Let us designate the latter by a; for the 
i-th firm. As time goes on, the 'best' capital/output ratio (in real terms) attainable 
in the industry stochastically decreases. 

Let us further assume the following endogenous stochastic mechanism of learning 
by entrants. Take a random variable ( with positive mean E ( and a finite variance 
nr Set ( for a random variable distributed over [a, b ], 0 <a< b < ro . For each 
time instant t 2 0 we allow for the industry to have k 2 1 new firms whose levels of 
capital per unit of output are randomly determined as exp{ - A,}(;, tk + 1 :::; i:::; 
(t + l)k. Here A,+ 1 =A,+ (1 + 1, t 2 0, A0 = ( 0 Also, (', t 2 0, and (;, i 2 1, are 
mutually independent collections of realizations of ( and (. Thus, all capital ratios 
feasible for newcomers at time t belong to [exp{ -A,}a, exp{ -A,}b] . Their 
distribution within this interval is governed by a realization of exp{ - A,}(. 
Consequently, A, characterizes in a probabilistic way the highest productivity of 
capital attainable to newcomers in the industry at time t. Note that by construction 
in this competitive environment only newcomers learn to improve the productivity of 
capital. 

It is important to notice that the assumption of a fixed number of entrants is just 
made here for expositional simplicity. The qualitative results do not change if one 
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allows stochastic entry (as we in fact do in Winter et al., 1997) and if entry 
probabilities were made dependent upon some state variable of the system, for 
example, the current level of profitability in the industry: see Remark 2.2. below. 

The productive capacity of the i-th firm is Q; = K;(t) /a;, where K;(t) stands for 
the capital of the i-th firm at time t. The total productive capacity of the industry 
involved in manufacturing at time t is 

QI= f Q;. 
i= I 

We assume a decreasing continuous demand function p = H(q) , mapping [O, oo) 
in [O, H(O)] such that H(O) < oo and H(q)-+ 0 as q-+ oo, where as usual , p stands 
for the price and q for demanded quantities. [Thus, the price at time t equals 
H(Q 1 ).] The gross profit per unit of output at t is also H(QJ since, without loss of 
generality we may also assume zero variable costs. The gross investment per unit of 
output at t is a share of the gross profit, i.e. J.H(Q 1 ), where the constant ). captures 
the share of the gross profit which does not leak out as the interest payments and 
shareholders' dividends, and can be considered to be a measure for the propensity 
to invest. The total gross investment per unit of capital for the i-th firm at time t 
reads i. H(Q1 )/1x1;. 

For each capital ratio generated at t we shall allow a single entrant. Entrants' 
initial capitals are independent realizations O;, i ~ l , of a random variable 0 
distributed over [c, h], 0 < c < h < oo. (It is assumed that the realizations of ¢, ( and 
0 are mutually independent random variables.) 

To complete the description of the competitive environment we need some death 
mechanism. A firm is dead at time t and does not participate in the production 
process from t + 1 onward if its capital at t is less than EX, eE(O, 1]4 

We assume that all random elements are given on a probability space {Q, :F, P}. 
In order to study the long run behavior of this industry, let us give a formal 

description of its evolution. 

2.1 . A dynamical setting of the model 

Let firm i be manufacturing during time t. Our investment rule implies that at the 
end of this production period its capital is 

If this value does not drop below the death threshold ec, the firm continues to 
manufacture during time instant t + l. Otherwise it dies. To capture these possibil
ities, we introduce 

4 The situation without mortality can be thought of as a limit case when i; = 0. Conversely, for a 
possible refi nement of the above mortality rule see Remark 2.3 below. 
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the indicator function of the event that the firm continues to manufacture. As 
usual, for a relation s1 we set that 

1, if s1 is true, 
xst = {o , otherwise. 

Now the evolution of the i-th firm (in terms of productive capacity) reads 

Q; + 1 = Q;[1 -d + ~ H(Q,)JxQJ1-d+ _!__ H(Q,l] 2:cc/a." 
~ L ~ I 

(2.1) 

These equations are not handy for analysis. Mortality implies that n,, the number 
of firms in business, changes over time. Thus, we have a system with a variable 
dimension. Moreover, these equations do not incorporate the entry process: hence 
Eq. (2.1) only captures a part of the evolution of the industry. In order to handle 
entry and variable numbers of incumbents one needs a dynamic representation of 
the model that leaves room for all feasible development paths. ·It is nested in an 
infinite dimensional space. 

The intuition is the following. Even if at each time one assumes, quite naturally, 
a finite number of entrants, as time goes to infinity, one must allow for an infinite 
number of firms to visit the industry. Moreover, the number of firms is normally 
changing over time as the joint outcome of entry and selection (entailing mortality). 
Somewhat similar considerations apply to the input coefficients (i.e. the productiv
ities) which the system explores. The rather novel formal machinery developed 
below is precisely aimed to rigorously capture these properties. 

Introduce a space R 70 of vectors with denumerably many coordinates. Set 

where @ stands for the direct sum of a real line R and 2k-dimensional real vector 
spaces R;. i 2: I. Th us , for every q E K~0 

q = q@[ ®qi] 
1= I 

with qER and q;ER;, i 2: I. Define an automorphism DO on Kn such that 

D(q) = D'(q)@[~2 D;(q)l 

where D'(-): K,.}~R@R 1 @R2 and D;(·): R Cl')-+R;, i'2. 3. Let 

(2.2) 

DJ(q)=q, D;(q)=O, 2:::;s:::;2k+l, DL+1 + 1(q)=q)exp{-q}x-"' '<q>' 
J 
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qk +J[ 1 -d + ~ H(t [ qk +s exp{q} /ql + ;~2 qk+ s/q~J) exp{q} /q) Jx.<>'j (q); 

Dj(q) = qJx""';<ql ' 
J 

DL iq) = q~ +J[I - d + ~ H( f [qk +s exp{q }/q1 + ~ qf +sfq~J)jqJ]xs1~(q)' 
V s =l p=2 1 

where 1 ~j ~ k, i 2 2, d )(q) designates the relation 

qk+J[ 1 - d +~He t
1 

[ qL s exp{q} /q 1 + ;~2 q~ + s/q~J) exp{q} /q) J 2 cc 

and d /q) stands for the relation 

qk +J[I - d + ~ H(t
1 

[ qk +s exp{q} /ql + P~2 qf + sfq ~J) I qJ] 2 f.C. 

We restrict ourselves to vectors q defined by Eq. (2.2) belonging to 

R~ = [O, 00 ) @ [~1 Rj J 
and set H( oo) = 0 for the case when the iterated sum involved m the above 
expressions is infinite. Here 

R j ={q;ER;: qj>O,qL 1 20,j=l , 2, .. . ,k}, izl. 

Also, n;o and q; stand for the s-th coordinates of D;O and q;. 
Define infinite dimensional random vectors Y', t 2 0, setting 

Y\= ¢ 1
, Y~ + i=Ck+ i, Yi+ ;+ 1 =8'k +i, i=l,2, ... , k, Yj=O 

)2 2k+ 2 .. 

(Note that here we number coordinates linearly rather than in terms of cohorts as 
above.) 

The evolution of the industry is as follows 

q(t + 1) = D(q(t)) +yr+ 1, t 2 0, q(O) = Y 0
, (2.3) 

Since Y' are independent in t, this expression defines a Markov process on Rto. 
Moreover, since the deterministic operator DO as well as the distribution of Y' do 
not depend on time, the process is homogeneous in time. 

Conceptually, this phase space is formed by the value characterizing the highest 
productivity which is potentially attainable at any time in the industry (the first 
coordinate), capitals per unit of output (the first k coordinates in each cohort, that 
is, a 2k box in the above structure) and individual capital stocks (the last k 
coordinates in each cohort: that is, to a capital ratio placed at the j-th position 
corresponds the capital placed at the (k + j)-th position) of all firms that stay alive. 
Therefore, if q'k + ;(t) > 0 for some i = 1, 2, .. . , k and n ~ t, then a firm with q~'(t) as 
capital per unit of output came to the industry at t - n, has been alive until t, that 
is, has manufactured n - 1 times, and continues to produce during the t-th time 
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period. The representation via a direct sum seems to be a handy way of explicitly 
capturing the dynamic of cohorts. 

The formulas for D;(-), i ~ 2, reflect our investment rule together with the 
assumption that the capital ratio remains constant through the life time of a firm. 
In analogy with Eq. (2.1), they are capturing the dynamic of capital stocks (but 
more precisely Eq. (2.1) refers to productive capacities). The indicators are needed 
because of the death rule5

. The relation Jdj(q) gives the criterion that a firm from 
the i-th box placed at the j-th position continues to manufacture given the state of 
the industry q. As from above, the first coordinate carries the value determining the 
highest productivity attainable in the industry. The further 2k block is zero to host 
newcoming firms. The next k ones reflect the learning rule on improvement of 
productivity adopted by newcoming firms. Finally, the last k coordinates of D\) 
are defined according to our investment rule . 

Given this formal description of this process of industry evolution, let us proceed 
to the analysis of its long run behavior. 

2.2. Asymptotic properties of the industry 

Define ~x the minimal c7-field in R 00 generated by sets of the following form 

Jd = A @ [ @ A 1], 
j=l 

(2.4) 

where A designates a set from the c7-field of Borel sets ~ on the real line, and A J 

being a set from the c7-field of Borel sets ~1 in Rp For every such set Jd one step 
transition probability of process Eq. (2.3) reads 

(2.5) 
i= 2 

Here Y* stands for the (2k + !)-dimensional vector whose coordinates coincide with 
first 2k + 1 coordinates of a generic vector Y having the same distribution as Y 1

, 

t ~ 0. 
To study the ergodic properties of process (2.3) , we need the following condition 

which is due to Doeblin (see Doob, 1953, p. 192). 
There is a finite positive measure </JO with </J(R to ) > 0 and a positive number J 

such that for all qER ~p 1 (q, Jd):::;; 1 -J if </J(Jd):::;; J . 
For a set Jd as in (2.4) let </J(Jd) = P{Y*EA@A 1}. From (2.4) it follow thatp 1(q, 

d ):::;; </J(.w'). Since </J(R to ) = P{Y*E[O, co)@Rt} = 1, restricting ourselves to J:::;; 1/ 
2, we get that, if </J(Jd):::;; J then p 1(q, Jd):::;; J:::;; 1 - J. Thus, Doeblin's condition 
holds for this choice of </JO and all J E (0, 1 /2]. 

Now, by Theorem 5.7 from Doob (1953) (p. 214), we see that 

5 In particular, applied to the first k coordinates in a cohort, they prevent from carrying over the 
capita l ratios of firms that have died . However, the use of the death indicators to the first k coordinates 
is basically a matter of taste: without relevance for the conclusions, dropping them implies that the 
capital ratios of dead firms are in the structure of the model forever. 
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1 II 

n(q, .s.1) = lim - L p'(q, .s.1) 
n~ w l11=l 

defines for each q ER~ a stationary absolute distribution. Here p '(x, -) stands for 
the transition probability in t steps, that is, 

p '(q, .s.1) = I p'- l(y, .s.1) dpl(q, y), t ~ 2. 
JR~ 

The stationary distribution n(q, ·) turns out to be the same, that is n£0 for all q 
belonging to the same ergodic set£ (see Doob, 1953, p. 210). It has the following 
generic property 

l p 1(x, .s.1) dnr(x) = n£(.s.1) . 

In general, it is not possible to find an explicit expression for n£0 from this 
relation. 

Thus, we may only obtain the following result concerning ergodicity of process 
Eq. (2.3). 

Theorem 2.1. For every set .s.1 given by Eq. (2.4) with probability one 
1 II - L p'(Y0

, d)-> n(Y0
, .s.1) (2.6) 

n I= I 

as n--> oo. Here n( Y0
, ·) is a stochastic probability measure (since it depends on Y0

), 

H'ith nA·) for any elementary outcome wEQ \\'hereby Y0 belongs for this elementary 
outcome to an ergodic set £. 

Consider the implications of this result in terms of path dependency. On the one 
hand, Doeblin's condition implies that events occuring at t and t + n are getting 
more and more statistically independent as n increases. Thus, the impact of the 
initial state vanishes as time goes on. Should one be able to prove that there is a 
single ergodic set, then the limit of time averages in Eq. (2.6) would not depend on 
the initial state, and hence the lack of path-dependency. On the other hand, the 
limit in Eq. (2.6), in general, does depend on the initial state. But the dependency 
acts in a way that such limit turns out to be the same for all initial states belonging 
to the same ergodic set. Therefore, there might indeed be some path-dependency 
which is governed by a partition of n. Note also that this partition, in general, 
turns out to be less fine than the one given by Y0

. 

Theorem 2. I implies that, for every uniformly bounded characteristic of the 
industry, its time averages converge with probability one to a limit which is a 
deterministic function of the initial state in the sense given above. Unfortunately, 
unlike for the model considered by Winter et al. ( 1997), some of the most important 
dynamic characteristics such as, for example, the total productive capacity, here are 
not uniformly bounded. Hence, Theorem 2. I does not allow for immediate concep
tual conclusions analogous to the ergodicity result presented in the foregoing work. 
On the other hand, one is still able to establish convergence of time averages of 
other aggregate variables such as the gross profit rate. Set 
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cc k 

I I q~+/O 
i= I j= I 

for the gross profit rate at t ~ 1. Since there is no production at t = 0, r0 = 0. As a 
consequence of Theorem 2.1 we have the following statement. 

Corrollary 2.1. If xH(.x) ~ const for x ~ w, then with probability one 

~ i r; ~ j Q~y)~(Q(y)) dn(Y0, dy) 

n i= I JR+ " " · 
""- L... L... Yk-+1 

i = I J= I 

as n ~ ifJ . Here for a vector y of the form Eq. (2.2) 

Q(y) =st [Yk +1 exp{y} /y1 + J/~+s/Yj 
Indeed, Q,H(Q,) ~ const by hypothesis. Also 

oc k k 

I I q~ +/t)~ I e(l - l)k+i ~kc, 1~1. 
i= I s= I i= I 

(2.7) 

Hence r, ~ const/kc < w. Which implies that Eq. (2.7) follows from Eq. (2.6). 
Note that if limx~ o:- xH(x) = H , then 

~ " . l dn(Yo, y) I l;~H cc k • 

ni = I Ri; " " i 
- L... L... Yk+J 
i= I j= I 

As mentioned, the total productive capacity of this industry unboundedly m
creases as time goes on. More precisely, we have the following statement. 

Lemma 2.1. The total productive capacity Q, of the industry goes to infinity ll'ith 
probability one as t ~ w. 

The lemma is proved in the Appendix. 
Now let us study the mortality of firms in this competitive environment. 

Theorem 2.2. If c > 0, then every firm dies in a finite random time ll'ith probability 
one. 

The proof is given in the Appendix. The argument exploits the fact that the total 
productive capacity of the industry grows without bound, essentially due to the 
increasing capital efficiency embodied - in probability - in the new capital 
vintages, which implies that every firm with a fixed capital per unit of output starts 
shrinking from a finite random time with probability one. 
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Having shown the unbounded increase of productive capacity as time goes on, let 
us now characterize its rate of growth. 

Theorem 2.3. With probability one exp { - ext} Q,-+ oo as t-+ oo for every ex < EC,. 
Moreover, if 

Jim H(x)x = 0, (2.8) 
x- co 

then with probability one exp { - ext }Q,-+ 0 as t-+ oo for every ex > EC,. 

The theorem is proved in the Appendix. 

Remark 2.1. The same result obtains if, instead of Eq. (2.8), we require that 

. kvca 
hi;i_s~p H(x)x < d ).b . (2.9) 

Now, if for a positive number Ha demand function decreases as H /x for x-+ oo, 
then, keeping all other parameters of the model involved in the right hand side of 
Eq. (2.9) fixed, one can ensure Eq. (2.9) just increasing k. Thus, for such demand 
functions the second statement of Theorem 2.3 always holds true if the number of 
newcoming firms is large enough. 

We have showed that the productive capacity of the industry always grows faster 
than exp{tex} for every a< E(. If, additionally, the demand function declines fast 
enough (see Eq. (2.8) or Eq. (2.9)), then the productive capacity always grows 
slower than exp{tex} for every or ex> E(. Consequently, the threshold value E( is the 
only candidate for the growth rate in the class of exponential functions of time. This 
growth is entirely due to the increasing efficiency of newcoming firms, and is not 
dependent upon the investment mechanism employed in the model. · Interestingly, 
one is not able to prove that exp{ - tEO Q, converges to a limit as t increases. 
Indeed, here we are facing with a variety of growth regimes. Each of them is 
determined probabilistically by the development path (i.e. also a particular 'techno
logical trajectory') and is deviating from the main trend, exp{tEO, by a value 
vanishing as t-+ oo faster than exp{ - tP} for every p > 0. Hence, these deviations 
are not detectable if we restrict ourselves to the class of exponential functions 
of time. To understand why this happens, let us consider the asymptotic behavior 
of the value V, giving the lower bound for the total productive capacity since 

Q, + I 2': V,. 
The random variable V, is a product of the two other ones: exp{A,} and 0'. The 

latter, 0' does not contribute to the growth rate since its distribution does not 
depend on t, being a convolution of k copies of() g. Hence, let us focus on A,. We 
have that 

I I 

A,= L (i = (t + l)E( + L ¢~ , 
i=O i=O 

where ( ~ = (; - E( ;' i 2>: 0. The law of iterated logarithm (see Loeve, 1955, p. 260) 
implies that 
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P{lim sup It <•I ~ 1} = 1, 
1- 00 J2D!;(t+ l)lnlnD((t+ I) 

taking into account that the random variables ( and ( - El; have the same 
variance. Consequently, there are subsequencies t;;, n ~ 1, and r;;, n ~ 1, such that 
with probability one 

and 

t,t 
" e L.. - * 

Jim i =O = 1 
11 - ro J 2D!;(t;; + 1) In In D!;(t;; + 1) 

lfl" 

I <:~ 
Jim i=O = 1. 

11 - "° J 2D!;(t;; +I) Jn Jn D!;(r;; + 1) 

Consequently, as n--> oo 

exp{A
1
,; - (t;; + 1)£0,..., exp{j2D<;(t;; +I) Jn Jn D!;(t;; + ·1)} 

and 

exp{A
1
,;- - (r;; + 1)£0,..., exp{ - J 2D!;(r;; +I) Jn Jn D!;(t;; + l)} (2.10) 

with probability one. Thus, what remains in exp{A 1 } if we remove its main part, 
exp{(l + 1)£( }, can be converging (along certain sequencies) with probability one 
to both infinity and zero. Hence, the remaining value does not have any definite 
rate of growth as time goes on. Also, Eq . (2.10) shows that there is no hope to find 
a finite limit for exp{ - tEO Q, as t--> oo. Indeed, since Q1 + 1 ~ V1, by Eq. (2.10) we 
get that with probability one 

exp{ - r ;; £0 Q
1
,; ~exp{ - t;; EO V

1
;; _ 1 --> oo as n--> oo . 

Hence, we find here a path-dependency property of the model. While we have 
proved that the threshold value of the rate of growth is exponential, it is history 
which selects the exact value of such rate. 

Remark 2.2. With the foregoing setting one may easily endogenize the entry rate by 
making it stochastically dependent on some system variable, e.g. current profitabil
ity, without qualitatively affecting the results. Let k be the maximum number of 
entrants. Fix positive numbers p0 , p 1, ••• ,Pk• 

Let <P(-) be a decreasing function mapping [O, oo ) to [0,1]. For example, <P(x) = 

exp( - <Px), <P > 0. The random variable y1(Q1 ) governing the number of firms that 
enter the industry at t can be as follows 
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{

O, 
y'(x) = 

s, ll'ith 

ivith probability p0<P(H(x )), 

probability---1?..!._ [1 - p0<l>(H(x))], 
1 -Po 

where I ~ s ~ k . For any deterministic x,, the random variables y'(x,) are assumed 
to be stochastically independent in t. They also do not depend upon (, ( and 0. 

Remark 2.3. Also death rules can be endogenized in this basic framework. For 
example, one could make them dependent on the total productive capacity of the 
industry at each t: that is, a firm is dead and does not participate in the industry 
evolution thereafter if its productive capacity is less than £Q,, where £E(0, I) denotes 
some critical threshold value. Somewhat related, as we show in Winter et al. (1997), 
the model withholds also extensions whereby the investment rates depend upon 
some threshold profit margins. 

2.3. Different time-scales of technological learning 

So far one has assumed that production, entry and learning (by entrants) all take 
place on the same time-scale (i.e. at each 'period'). However, the model can be 
extended to account also for a timing of innovative 'events' asynchronous vis-a-vis 
production and entry. Suppose, for example, that the enlargement of innovative 
opportunities occurs at a slower pace. 

This phenomenon may be formalized in the following way. 
Let T"' n ~ 0, be an increasing sequence of positive integers such that T0 = 0 and 

T11 + 1 - T11 ~ 1. Also, let 

A11 + 1=A11+("+1, n~O, 

and the levels of capital per unit of output of all firms to be coming during the time 
interval (T,,, T11 + 1) from the distribution concentrated on [exp{ - A 11 }a, exp{ -
A11 }b]. So, capital ratios of the k-firms coming at time t are determined as 
exp{ -A 11 }C, tk +I~ i ~ (t + I)k provided that T11 ~t<T11+ 1 • Here(", n ~ 0, and 
( ;, i ~ I , are mutually independent collections of realizations of ( and (. 

The sequence T,,, 11 ~ 0, characterizes the slower pace of generation of potential 
innovations as compared to the timing of manufacturing 'periods'. Hence the main 
component of the rate of growth of capital productivity for individual entrants and 
for the whole industry (under some additional assumptions, cf. Theorem 2.3 and 
Remark 2.1) as t-> oo is determined by the function exp { T- 1 

( t) · E(}. Here T- 1 
( ·) 

designates an inverse function to T(-): 11-> Tw For example, if T,, = s · n for an 
integer s > I, then 

1
. exp{T- 1(t) · EO 
,:~ {£( } = 1. 

exp -t 
s 

Similarly, if T11 equals to the integer part of exp{a · 11} for a real a> 0 (and for 
sufficiently large 11 ) , then 
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Jim t - E<o" /" exp{T- 1(t) · EO = 1. 
r- ro 

Clearly, asynchronous (and slower) paces of expansion of innovative opportunities 
will imply also slower rates of growth of output of the industry under 
consideration. 

2.4. A computer simulation 

To illustrate some quantitative properties of the model, let us consider a 
computer simulation6

. The run presented here has the following parametrization: 
k = 12, v = 1, d = 0.3, ). = 0.6, a= 2, b = 6, c = 0.02, h = 0.04, e = 0.5. The demand 
function is H(x) = 4.1667 exp( - O.lx). The random variable ( is uniformly dis
tributed over [a, b], ( is uniformly distributed over [O, 0.01], and the capitals of 
newcoming firms are uniformly distributed over [c, h ]. 

Figs. 1 and 2 present the dynamic of prices. While prices decline to 0 with 
persistent fluctuations, the total productive capacity grows over time with qualita
tively similar fluctuating patterns, whereby the amplitude of fluctuations themselves 
does not dampen out over time (in fact, in absolute terms, they increase): see Figs. 
3 and 4. 

0 10 20 30 40 

Fig. I. Price H(Q1 ) for Is ts 50. 

6 A lot of simulations of this kind has been undertaken based on a program from the laboratory for 
simulation development (LSD), a package providing an environment for implementation of simulation 
models developed at the International Institute for Applied Systems Analysis (IIASA). It is publicly 
available via Internet (see also Valente, 1997). We have tried several runs with the same parametrization 
(since each 'history' is a particular sample path of the stochastic process defined by the above model) and 
\\'C also experimented with different parametrizations. Even if we did not perform any more rigorous 
sensitivity analysis , the qualitative feature of the example which follows hold throughout all the 
performed experiments. 
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0 100 200 300 400 

Fig. 2. Price H(Q,) for I::;; t::;; 500. 

0 10 20 30 40 

Fig. 3. Productive capacity I ::;; t ::;; 50. 

Fig. 5 illustrates the dynamic of the number of firms in the industry. After an 
initial period of growth it declines, and then fluctuates around a fixed level. As 
already noted in Winter et al. (1997), phenomena looking like 'shakeouts' at some 
point in the early history of an industry appear to be a rather generic property 
plausibly associated with a changing selection regime. At the start, the 'carrying 
capacity' of the market exceeds the effective supply. So, in a sense, there is 'room 
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for everyone' . At some point, as total supply increases, competitive conditions 
become more stringent and market selection rather quickly starts affecting growth 
and survival of lower-efficiency firms7

• This change in 'market selection regime' is 
illustrated also by the dynamics of the concentration measures of the industry (see 

60 

50 

40 

30 

20 

10 

0.&-~~~~~~.--~~~~~---.~~~~~~-.--~~~~~~-.-~~~~~~ 

0 100 200 300 400 

Fig. 4. Productive capacity for I ::; t::; 500. 

0 100 200 300 400 

Fig. 5. Total number of firms 0::; t::; 500. 

7 In many respects, the phenomenon recalls the 'density dependent selection' emphasized in 'organiza
tional ecology' models (cf. among others Hannan and Freeman, 1989 and Carroll, 1997). 
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0 100 200 300 400 

Fig. 6. Equivalent number of firms from the Hirfindhal index I $; t $; 500. 
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Fig. 7. Size distribution for t = 50. 

Fig. 6 for the 'equivalent number' associated with the Hirfindhal index of 
concentration8

: concentration falls (i .e. the equivalent number increases) up to the 
'shake out' phase and then increases thereafter. Figs. 7 and 8 provide two 

8 Calling s;( t ) the ma rket share of the i-th firm at t , the concentra tio n index is 

'" H(t) = I s;(t)1
. 

; = I 

The 'equivalent number' I/ H(t) corresponds to the number of firms of equal size which would yield the 
same value of H(r). 
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snapshots, measured in terms of productive capacity for t = 50 and t = 500, where 
firms are ranked according to their size. What is observed here is something rather 
close to the Pareto Jaw (see, for example, ljiri and Simon, 1974)9

. Fig. 9 provides 
the life time distribution of firms for I ::;; t ::;; 500 which died before t = 500. Life 
time here means the number of production cycles the firm performs before it dies. 

3.5 

3 

2.5 

2 .. 
N 
'iii 

1.5 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

rank 

Fig. 8. Size distribution for t = 500. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 

Fig. 9. Life time distribution of firms for I :::; t:::; 500. 

9 Namely, in one of its versions, for a sample of firms ranked according to their size, the size s and 
the rank r of a firm are related in the following manner: srf' =A, where P and A are positive constants. 
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0 100 200 300 400 

Fig. 10. Turbulence index for 1 :::; t:::; 499. 

(So for example, in Fig. 9, around 18% of all firms which were born and died before 
t = 500 did die when they were 6-periods old, etc.) Again, the mortality patterns 
appear to be quite in tune with the evidence, with high mortality rates shortly after 
birth and a (relative thin) tail of firms with much higher longevity (more on this 
type of evidence in Hannan and Freeman, 1989; Baldwin, 1995; Geroski, 1995; 
Carroll, 1997). As known, this survival patterns are sometimes interpreted -
especially in the 'organizational ecology' perspective - as the outcome of the 
differential adaptation of subsets of firms in the population. Notwithstanding the 
likely importance of the latter phenomena, our results here seem to suggest that a 
distribution of mortality rates which peaks in the early infancy, with a long but thin 
tale of old survivors might be a rather generic property of a large class of 
evolutionary processes characterized by heterogenous entry and market selection 
(cf. also the simulation results in Winter et al., 1997)10

• 

Finally, Fig. 10 vividly illustrates the evolutionary proposition that whatever 
persistent regularity emerges in the aggregate, that is likely to be the collective 
outcome of an ever-lasting microeconomic turbulence. Define a 'turbulence index' 

~ k 
T(t) = L Is;(!) - s;(t + l)I + L exp{A1}B'k+Jgrk+J. 

i= I J= I 

that is, the sum of the absolute values in the changes of market shares from one 
period to the next (including gross entry at t). As Fig. 10 shows, market turbulence 
persists - and, if anything tends to increase, throughout the history of the 
industry. 

10 A fortiori, one should expect this property to apply also to those circumstances wherein also 
incumbents are allowed to learn, as in a forthcoming model by the authors, currently in progress. 
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3. An alternative dynamic setting: increasing productivity of labor 

3.1. Main assumptions 

Now we turn to symmetric opposite assumptions compared to the model above 
and assume that learning concerns only labor productivity11

• As above, we have an 
ind us try evolving in discrete time t = 0, 1, .... At t = 0 there are no firms ready to 
manufacture, but k firms come to the industry. They will start producing at t = 1. 
At time t z I the industry consists of n, firms which are involved in manufacturing 
and new firms that enter at t and will participate in the production process from 
t + 1 on. As in the earlier version of the model we have uniformly for the whole 
industry: 

v - price per unit of physical capital, v > 0, 
d - depreciation rate, 0 < d::; 1, 
C - capital per unit of output, C > 0. 
Here, however, the competitiveness of any firm in the industry is determined by 

its variable costs per unit of output. Let us designate it by mi for the i-th firm. In 
this competitive environment only newcomers learn how to improve .(in probability) the 
productivity of labor. As time goes on the lowest variable costs present in the 
industry decreases. In particular, we have the following stochastic mechanism 
defined endogenously. 

Consider a random variable ( with positive mean E (and a finite variance Dr 
Set ( for a random variable distributed over [a, b] , 0 <a< b < oo. For each time 
instant t z 0 allow for the industry to have k z 1 new firms whose variable costs are 
randomly determined as exp{ -A 1 }t tk +I::; i::; (t + I)k . Here A,+ 1 =A,+ ( 1 + 1

, 

t z 0, A0 = ( 0
. Also,(', t z 0, and t , i z 1, are mutually independent collections of 

realizations of ( and (. One sees that all variable costs feasible for newcomers at 
time t belong to [exp{ -A,}a, exp{ -A,}b]. Their distribution over this interval is 
governed by a realization of exp{ - A,} (. Thus A, characterizes in a probabilistic 
manner the highest productivity of labor attainable by newcomers in the industry at 
time t . 

Alike the model above there is a decreasing continuous demand function 
p = H(q ), mapping [O, oo ) in [O, H(O)] such that H(O) < oo and H(q) ~ 0 as q ~ oo . 

Set Q; for the productive capacity of the i-th firm and m; for its variable costs. 
Then 

Q,= ~Qi L, I' t z I, Qo=O, 
i = I 

is the total productive capacity involved in manufacturing at t. The gross profit per 
unit of output at t for the i-th firm is obviously H(Q1) - m;. Its total gross 
investment per unit of capital is). max[H(Q1)- m;, O] /vC. As above, the constant). 
captures the share of the gross profit which is re-invested. 

11 An assumption, which, together with the constancy of capital/output ratios, seems nearer the 
empirica l evidence. 
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For each value of variable costs generated at t we shall allow a single entrant. 
The initial capitals of entrants are independent realizations O;, i?::. I, of a random 
variable 0 distributed over [c, h], 0 < c < h < w. It is assumed that the realizations 
of ~, ( and 0 are mutually independent random variables. 

Again, as above, the death mechanism implies that a firm is dead at time t and 
does not participate in manufacturing from t + 1 onward if its capital at t is less 
than EX, eE(O, I]. The situation without mortality corresponds to the limit case when 
e = 0. 

3.2. A dy namic balance equation for industry evolution 

Consider a firm i that is manufacturing at time t. Our investment rule implies that 
at the end of this production period its capital reads 

. { ). } Q;C I - d + vC max[H(Q,)- m;, O] . 

If this value does not drop below the death threshold ec, the firm continues to 
manufacture at t + 1. Otherwise it dies 12. Hence 

Where X Qi{l _ cl+ ;. / l" C ma x[H(Q,) _ 111 • O]} "2 r.c/ C is the indicator function Of the event that 
the firm continues to manutacture given the above death rule and the total 
productive capacity of the industry involved in manufacturing. 

This equation describes the evolution of a single firm in business. In analogy with 
the formalization of the foregoing section, let us proceed to a dynamic representa
tion of the modei that reserves room for all feasible development paths of the 
industry. 

For the space R"' introduced in Section 2, define an automorphism D(') on R 'l) 
such that 

D(q) = D1(q)@[¥2 D;(q)J 

with D 1
(·): R""1-->R@R1 @R2 and D;('): Rx,1-->R;, i?::. 3. Set 

Dl(q)=q, D1(q)=0, 2::;;s::;;2k+l, D1k+J+ 1(q)=q)exp{-q}x.o/ 1Cql' 
J 

Djk+J+ 1(q) = 

{qL+{I -d+ v~ max[ H(~1 stl qf+s)-q) exp{ -q}, 0 ]]}x.<YJ<ql' 

12 In a possibly more realistic setting one could add a sort of bankruptcy rule stating that firms die, 
even when their size is greater than ec, if their gross profits are negative (i.e. [H(Q,) - m;] < 0). However, 
this modification would not qualitatively change the results that follow: rather it would simply affect 
death rates of 'uncompetitive' firms. 



S.G. Winter et al. / Structural Change and Economic Dynamics 11 (2000) 255- 293 275 

D )(q) = q}x.~,r;J.. ql ' 
J 

• . { ). [ ( OCJ k ) . ]} 
D/_.+/q)=q/_.+; 1-d+ vCmax H~~is~i qf+s -qj,O X-"'j<q>' 

where 1 ~j ~ k, i?: 2, .d)(q) designates the relation 

qL +;{ 1 - d +:~max[ H(~1 sti qf +s)- q) exp{ - q}, 0 ]} ?: t:e /C 

and .dj(q) stands for the relation 

ql +;{ 1 -d +).~max[ H(~1 sti qf+s)- qj, 0 ]} ?: Ec/C. 

We restrict ourselves to vectors q defined by Eq. (2.2) belonging to 

R~ = [O , w)®L~1 R i J 
and set H( w ) = 0 for the case when the iterated sum is infinite. 

The conceptual interpretation of the automorphism is very similar to the one 
given earlier on. The 2k boxes contain data concerning cohorts, that is groups of 
firms which were born simultaneously. The only exception is the first box contain
ing two cohorts and additionally (its first coordinate) the value capturing the 
highest productivity of labor attainable in the industry. In each cohort the first k 
coordinates are the variable costs and the last k coordinates represent productive 
capacities of corresponding firms . The adjustment rule for productive capacities is 
the same as in Eq. (3. 1 ). (Again, the indicators prevent from carrying over the data 
related to dead firms.) The relation .dj(q) means that a firm which is placed at the 
j-th position of the i-th cohort continues to manufacture given the state of the 
industry q. 

Define infinite dimensional random vectors Y', t?: 0, setting 

Yk +i+ I= g1k+i, i= 1, 2, ... , k, 

The evolution of the industry is as follows 

q(t+l)=D(q(t))+Y1 + 1
, t?:O, q(O)=Y0

, (3.2) 

Since Y1 are independent in t, this expression defines a Markov process on Rto . 
Moreover, it is homogeneous in time since the deterministic operator DO as well as 
the distribution of Y 1 do not depend on time. 

This phase space is formed by the value characterizing the highest productivity 
which is potentially attainable so far in the industry, variable costs and productive 
capacities of all firms that stay alive. 
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3.3. Long run behavior of the industry 

As above, Doeblin's condition holds here if we set ¢> (d) = P {Y* EA @Ai} for a 
set d given by Eq. (2.4). Here Y* designates a (2k + !)-dimensional vector whose 
coordinates coincide with first 2k + 1 coordinates of a generic vector Y having the 
same distribution as Y', t;::: 0. The following result establishes the ergodicity of 
process Eq. (3.1). 

Theorem 3.1. For every set d given by Eq. (2.4) with probability one 

1 11 

- L p'(Y0
, d)--+ rr(Y0

, d) 
n,=, 

(3.3) 

as n--+ oo . Here n(Y0
, ) is a stochastic probability measure (since it depends on Y0

), 

being nd)for an elementary outcome wEQ as long as Y 0 belongs for this elementary 
outcome to an ergodic set£. Moreover, p'(, ) designates the transition probability in 
t steps of process (3.2). 

The implications of this theorem in terms of path-dependency (or lack of it) are 
identical to those discussed above with reference to Theorem 2.1. 

Theorem 3.1 implies that for every uniformly bounded characteristic of the 
industry its time averages converge with probability one to a limit which is a 
deterministic function of the initial state in the sense given above. 

Let us now show that the total productive capacity of the industry is uniformly 
bounded. Since the minimal size of a firm is bounded by the death threshold, this 
implies uniform boundedness of the total number of firms in business (if s > 0). 
Hence, we shall be able to derive relations similar to those given in Winter et al. 
(1997) on convergence of time averages regarding some important characteristics of 
the industry. 

Set Q = H- '(dvC/2J.) and Q = max(Q, 2kh / Cd), where H- 'O designates the 
inverse function. 

Lemma 3.1. With certainty Q,::; Q.for t;::: 1, where Q* = Q[l + AH(O)/vC] + kh / C. 

Proof Notice that Q1 ::;kh / C::; Q*. Eq. (3.1) and the assumption concerning the 
entry process imply that 

The lemma is proved. 
As a simple consequence of Theorem 3.1 and Lemma 3.1 we have the following 

result. 
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Corollary 3.1. With probability one 

1 n ( oo k 

;:;1~1 Q1-JR :(' i~lp~/~+pdn(Yo,y) 

and, if 8> 0, 

1 /1 ( 00 k 

;:;1~1 v1-JR !l"' i~lp~1 XA;<Y>dn(Yo,y) 

as n - co . Here v1 designates the number of firms in business at t. Also, for a vector 
q given by Eq. (2.2) 

R~ = {qER ~ : l~l pt q~+p ~ Q*} 
The relation A ~(y) is defined as above. 

Indeed, the infinite sum involved in the first limit is bounded by Q * by Lemma 
3.1. The sum involved in the second limit does not exceed CQ */Ex< oo if 8 > 0. 

Let us turn to the death process. 

Theorem 3.2. If c: > 0, then each firm dies in a finite random time with probability one. 

The proof is given in the Appendix. The intuition is the following. 
For simplicity let c:< 1. (If 8= 1, we need a more complicated argument.) Each 

firm comes with a capital that exceeds c. If it dies, at the moment when this 
happens its capital does not exceed 8C. Since firms with lower variable costs per unit 
of output have higher investment rates, a notional firm that lives infinitely long 
would shrink at least 8 times during the lifetime of a generic firm characterized by 
the lowest variable costs per unit of output at some particular time (which 
nonetheless dies in a finite time). Consequently, to prove that no firm can live 
infinitely long, it is enough to show that: (a) the capital of every alive firm is 
bounded from above by a constant; and (b) for every level of variable costs per unit 
of output there is an infinite chain of firms with lower variable costs that are 
coming and dying one after another. 

The capital of an alive firm is bounded from above by the total capital of the 
industry which, in turn, is bounded with certainty. Thus, (a) holds. The capital of 
an alive firm is bounded from below by the death threshold and the total capital of 
the industry is bounded with certainty. Hence the total number of alive firms is 
bounded with certainty. Consequently, starting from a finite random time r every 
newcoming firm dies in a finite time. According to the postulated learning rule, for 
every given level of variable costs per unit of output, all newcoming firms have 
lower variable costs starting from a finite random time r'. Thus, from max( r, r') 
onward we have the chain required by (b). 

Interestingly, in this model the total productive capacity can be indefinitely 
growing if we drop the assumption that limx- oo H(x) = 0. Namely, let 
Jim,_ v:. H(x) =Hand l.H /vC> d. Then, every firm whose variable costs are less than 
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H - vCd/J. will unboundedly grow. Hence, starting from a finite random time with 
probability one every newcomer will never die, but rather unboundedly grow. The 
intuition behind this property is the following. As H(x) approaches its asymptotic 
value, demand elasticities grow and so does the 'carrying capacity' of the market. 
Correspondingly, selective pressures get weaker. Since output prices have a positive 
lower bound, if gross margin are high enough (that is if variable costs are low 
enough) as to sustain positive net investments, then firms which fulfil these 
conditions will indefinitely survive (and indeed grow), irrespectively of the fact that 
an infinite number of even more efficient firms will enter thereafter. One will still 
observe a dynamic on market shares (with all firms having eventually their shares 
tending to zero), but given an infinitely expanding market, the number of firms will 
also be allowed to infinitely grow, and mortality will cease to operate as a selection 
device. Moreover, the total productive capacity of the economy will also grow in 
the foregoing circumstances faster than y1 as t ~ oo for every 0 < y < 1 - d + A.H /vC 
but slower than (! - d + ),H /v C)1. In these circumstances, (1 - d + ),H /vC)1 estab
lishes the upper bound of all feasible rates of growth, with history selecting among 
them. Hence, some (bounded) path-dependency property of industrial dynamics 
reappears, as soon as the size of the market is allowed to endlessly grow. 

3.4. A numerical run of the model 

Let us turn again to an illustration with a computer simulation (for details cf. 
footnote 6, above). 

The run presented here has the following parametrization: k = 12, v = I, C = 2, 
d = 0.3, }. = 0.6, B = 0.5. The demand function is H(x) = 4.1667 exp( - O. lx). The 
random variable ( is uniformly distributed over [2, 6]; ~ is uniformly distributed 
over [O, 0.01], and. the capitals of newcoming firms are uniformly distributed over 
[0.02, 0.04] . Figs. 11 and 12 present the price dynamics, while Figs. 13 and 14 show 

0 100 200 300 400 

Fig. 11. Price H(Q,) for I~ t ~ 500. 



S.G. Winter et al. / Struc111ral Change and Eco110111ic Dy11a111ics 11 (2000) 255- 293 279 

0 100 200 300 400 500 600 700 800 900 

Fig. 12. Price H(Q1 ) for I s t s 500. 

0 100 200 300 400 

Fig. 13. Total productive capacity Q1 for I s t s 500. 

for the same time interval the dynamics of the total productive capacity. The 
evolution of the total number of firms is shown in Figs. 15 and 16, with Figs. 17 
and 18 depicting size distributions at t = 50 and t = 500. (For prices, productive 
capacity and number of firms we report also longer simulation runs, with t = 1000, 
for a clearer illustration of the long term properties toward which the system tends 
to converge.) Fig. 19 provides the life time distribution for firms that die before 
I= 500. 
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Many qualitative properties of the dynamics are similar to those obtained earlier. 
For example, persistent fluctuations of prices and production capacities and persis
tent market share turbulence (Fig. 20) are a robust feature of both set-ups. And so 
are Pareto-type size distributions and skewed age profiles. Interestingly, however, 
no 'shake-out' seems to occur in the number of firms at some point in its infancy. 
In this set-up, notwithstanding the property - given appropriate demand condi-
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Fig. 14. Total productive capacity Q, for 1 ::;; t::;; 1000. 
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Fig. 15. Total number of firms 0::;; t::;; 500. 
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Fig. 16. Total number of firms 0::; t::; 1000. 
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Fig. 17. Size distributions at t = 50. 

tions that both productive capacity of the industry and the number of firms 
have upper bounds, the industry seems to approach them without any 
major structural discontinuities 13 with concentration falling in the long term (Fig. 
21). 

D A similar profile in the evolution of the number of firms is also obtained, under somewhat similar 
Sc'111111peter Mark I regimes of learning, in Dosi et al. (l 995). 
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Fig. 18. Size distributions at t = 500. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Fig. 19. Life time distribution for I ~ t ~ 500. 

4. Modeling learning on both capital and labour efficiencies 

The two foregoing models may also be combined to account for those (empiri
cally more plausible) circumstances whereby entrants are allowed to innovate, in 
probability, will respect to both capital and labour efficiencies. In order to define 
this set-up one needs four random variables: ~ 0 r; u ( 0 distributed over [a0 be], 
and (u distributed over [au bLl· Here Er;;> 0, D~; < oo, and 0 <a;< b; < oo, i = C, 
L. 
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Fig. 20. Turbulence index for I :s; t :S: 499. 
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Fig. 21. Equivalent number of firms from the Hirfindhal index for I :s: t :s: 500. 

Set, for t 2 0 

Allowing for k 2 l newcomers at each time, t 2 0 define their capital ratios and 
variable costs as exp{-A\cl}(~ and exp{-A\L>}(L tk+ l ~i~(t+ l)k. Here C, 
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t ~ 0, i = C, L, and ( f, j ~ 1, i = C, L, are independent (in all indexes) realizations 
of the corresponding random variables. 

For a firm i (whose capital ratio is a; and variable costs are m;) manufacturing at 
time t we have as above 

. ·{ ,t } Q; +I= Q; 1 - d + va; max[H(Q,) - 111;, O] XQi{I -d+ ~;"rnx[H(Q,)-111;. 01} ~re/a; 

Interestingly, in this set-up productive capacities of newcomers grow to infinity in 
the same way as in the model with increasing productivity alone. So unboundedly 
grows the total productive capacity of the industry. Hence, the limit behavior of 
this industry turns out to be similar to the growth pattern of an industry where 
newcomers learn how to improve the productivity of capital alone, as in the first of 
the foregoing models. 

5. Conclusions 

In this work we have explored some dynamic properties of industrial dynamics 
driven by an ever-lasting flow of entrants which might, in probability, be carriers of 
technological innovations (that is, in our simple model, more efficient techniques of 
production). 

Some properties of the ensuing industrial dynamics appear to be generic features 
of a wide class of evolutionary processes nested into microeconomic heterogeneity 
and market selection. In particular, (a) persistent fluctuations of aggregate variables 
- such as price, production capacity, total output - ; (b) turbulence in market 
shares; and (c) skewed size distributions of firms appear to be robust features of the 
competitive process, irrespectively of any more detailed characterization of the 
origins and the bounds upon microeconomic heterogeneity. (In this respect com
pare the results presented here with Winter et al., 1997.) Other properties -
corresponding to other empirically observable regularities - depend, on the 
contrary, upon more specific characterizations of the ways micro heterogeneity is 
generated . That includes whether and how innovations are generated along the 
history of the industry. 

First, and most intuitively, necessary (but not sufficient) condition for the 
industry to exponentially grow is the persistent enlargement of notional opportuni
ties of innovation. In the foregoing model the process is represented as an 
endogenous drift in the set of input coefficients stochastically attainable at each 
time, conditional on the best-practise knowledge already achieved at such a time. It 
is an 'open-ended' dynamic insofar as, in the limit, there is no bound upon the 
possibilities of discovery, even if at each time what is attainable is ultimately 
constrained by what has been learned up to that time. 

Second, as just mentioned, such open-endness in innovative opportunities is not 
sufficient to guarantee self-sustained growth. Rather, the latter stems from the 
interplay between learning opportunities and demand patterns. A significant impli
cation of the foregoing modeling experiments - where, on purpose, we did not 



S.G. Winter et al. / Structural Change and Economic Dynamics 11 (2000) 255-293 285 

allow any exogenous demand drift - is that notionally unbounded dynamic 
increasing returns may fully exert their impact upon output growth only insofar as 
they are not limited by the extent of the market, to paraphrase the old adagio by 
Adam Smith. In the set-up with learning about capital efficiency, the market 
indefinitely grows in real terms because technical progress provides, for its nature, 
also a corresponding possibility of expansionary investment in productive capacity. 
Given the hypotheses of that specification of the model, even if the demand curve 
does not shift (in nominal terms) over time, capital costs of production per unit of 
output progressively wither away as time goes on, and, as a consequence, the 
benefits of increasing returns to knowledge accumulation can be fully reaped 
throughout. 

Conversely, this might not be the case with learning occuring only with respect to 
labour efficiencies. Here, the long-term evolutionary outcomes depend upon the 
interplay between the shape of the demand curve and the level of fixed capital costs 
per unit of output. The latter obviously set a ceiling to the maximum expansion of 
production capacity from any t to t + 1 for whatever gross margin each firm is able 
to obtain . Whether such a ceiling to micro growth in any finite time carries over to 
the long-run system properties is, however, a quite different m~tter. As discussed 
above, under these circumstances, self-sustained growth of the industry cari. be 
attained only if the shape of the demand curve is such as to allow in the long-run 
an indefinite expansion of total gross surplus and of net investments in production 
capacity 14

• 

More generally, as both our analytical results and simulations show, the long-run 
dynamics of the industry depends also on the interplay between patterns of 
technological learning and demand conditions (this is a point emphasized also in 
more static set-ups by Sutton, 1998, which turns out to apply in our model even 
when disposing of any assumption of 'rational' consistency amongst 
microbehaviors). 

In this paper we focused upon a specific archetype of learning dynamics, which 
- in tune with earlier literature - we called Sclzampeter Mark I. In such a stylized 
learning regime, one restricted a positive probability of learning to entrants, with 
inputs coefficients fixed thereafter for all incumbents. While an obvious violence to 
a much more messy empirical evidence, this modeling framework allows an easier 
identification of the properties of that subset of learning processes whereby incum
bent knowledge is highly inertial and the dominant source of change is the arrival 
of new entrepreneurial trials. 

Given the formal Schumpeter Mark I set-up, we show as our third major 
conclusion that generally the process of competition and collective growth must be 
fueled by an unending process of entry and exit, with each individual firm dying 
with probability one in finite time and, whereby, paraphrasing Geroski, the life of 
each firm tends to be 'nasty, brutish and short' - cf. Geroski and Schwalbach 
(1991) and Geroski (1995). (The only exception we find is under some rather special 

14 Clearly, the condition would be more easily met if one allowed some positive drift over time in 
demand curves themselves (and plausibly also negative drifts for 'shrinking' industries). 
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demand patterns whereby an infinitely growing number of firms can survive, with 
non-decreasing absolute size, notwithstanding vanishingly small market shares, 
given exponentially growing markets). 

Fourth, with the open-ended innovative dynamics considered here, the role of 
history, i.e. more formally, path-dependence - more forcefully appears in the 
account of long-term dynamics. As already noted in Winter et al. (1997). even in a 
'closed' world of technological options, the expressions for long-term average 
statistics for the industry contains a possible dependence upon initial conditions 
(insofar as more than one ergodic set exists, determining the Markovian structure 
of industry evolution(s)). Here, however, path-dependency acquires much more 
straightforward implications. In essence, under all conditions whereby the industry 
unboundedly grows, what one is able to prove, in a history-independent fashion, is 
that a whole class of exponential functions may fit any pattern generated under 
these conditions. However, as we show above, path-dependence essentially affects 
which growth rate turns out to be selected also in the long-term. 
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Appendix A 

In the following, we provide the proofs omitted in the text. 

Lemma 2.1. The total productive capacity Q, of the industry goes to infinity with 
probability one as t--> oo. 

Proof We have to show that for every JE(O, 1) and every positive Q there is a 
finite time instant t(J, Q) such that 

P{Q,?. Q, t?. t(b, Q)}?. 1 - J. (al) 

By the strong law of large numbers (see, for example, Loeve, 1955, p. 239) 
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At= (t + 1)(£( + oJ(l)]. (a2) 

Here£(, designates the expected value of(. Also, o;(I) ~ 0 with probability one as 
r~ w. Fix a 6E(0, I) and a QE(O, ro). Since oJ(l)~O with probability one, there 
is a finite time instant t(6) such that 

P{loJ(l)I < ! £(, t ~ t(6)} ~ 1 - 6. 

This implies 

P{At ~ t ~ l £(, t ~ t(6)} ~ 1 - 6. 

Hence, capital ratios of firms coming from t(6) onward do not exceed 
exp{ - t + 1/2 £( }b with probability 1 - 6. Since initial capitals are always larger 
than c, the total productive capacity Vt= exp{At}0t of all firms coming at t ~ t(6), 
exceeds exp{[(t + 1)/2]E(}kc /b with probability 1 - 6. Here 

k 

0 t= I 0 rk + igtk+ i. 

i= I 

Notice that 

(a3) 

Hence, 

P{ Qr ~ expH £ ( }kc /b, t ~ !(6 )} ~ 1 - 6. 

Set tQ =mint: exp {(t /2)Enkc/b ~ Q. For t(J , Q) = max[t(6) , to] inequality (al) 
holds true. 

The lemma is proved . 

Theorem 2.2. If r; > 0, then ei·ery firm dies in a finite random time with probability 
one. 

Proof Assume on the contrary that there is a firm surviving infinitely long with 
positive probability. Designating by qt its capital at time t, we have 

P {qr~ cc, t ~ !0 } > 6 > 0. (a4) 

Here 10 ~ 0 stands for the time instant when the firm came to the industry. Also, 
take into account here that a firm stays alive as Jong as its capital does not drop 
below the death threshold r;c. 

Let Q =minx> 0: 1 - d + i.H(x)/va *:::;; 1 - d/2, where a* designates the capital 
per unit of output of the firm surviving infinite time. By Lemma 2.1 there is a finite 
time instant t(<5 /2, Q) such that 

P{Qr ~ Q, t ~ 1(15 /2, Q)} ~ 1 - 6 /2. (a5) 

For every pair of events A, BE .F 
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P{AnB} =P{A}-P{An(Q\ B)} zP{A}-P{Q\ B}. (a6) 

Taking this into account, we have by (a4) and (a5) that 

P{Qt z Q, qt z &e, t z t1} z P{Qt z Q, t z ti} - 1 + P{qt z EC, t z ti}> 6 /2, 

where t1 = max[t0 , t(b /2, Q)]. Thus, the event {Qt z Q, qt z cc, t z ti} occurs with 
positive probability. But, if it happens, then simultaneously 

qi+ I ~ ql(I - d/2) and qt z EX 

for t z t 1• These inequalities cannot hold simultaneously. Indeed, q
11 

1s a finite 
value, namely, 

IJ - I [ A J q1
1
=q1

0 
0 1-d+-H(Q;)/a*. 

i= to+ I V 

Since l-d/2E(0, I), the first inequality implies that from t 1 onward the sequence 
{q1 } is exponentially declining. The second inequality assumes that this sequence is 
uniformly bounded from below by 1x > 0. This contradiction shows that there 
cannot be a firm surviving infinitely long with positive probability. 

The theorem is proved. 

Theorem 2.3. With probability one exp { - ext} Qt-+ oo as t-+ oo for every ex < E~. 
Moreover, if 

Jim H(x)x = 0, 
x- oo 

then with probability one exp { - ext} Q1 -+ 0 as t-+ oo for every ex > E~. 

Proof The first statement holds by Eq. (a3). Let us prove the second one. Notice 
that 

t z 1. (a7) 

Recall that a; stands for the capital per unit of output of the i-th firm. Also. <ff 1 z 0 
designates the total outflow of productive capacity at t due to mortality of 
inefficient firms. Dropping <f1 in Eq. (a7), we get 

Q1+1~Q1l-d+~H(Qt);t, Q;!Qta;J+vt, tzl. 

Since H(') decreases, by Eq. (a3) this inequality can be further relaxed 

Qt+ 1 ~ Qll -d+~ H(V1-1) ;ti Q;!Qta;J + V1, t z 1. (a8) 

We have that 

f Q;/Q1a;~----
mm a; 

min a; z exp{ -A 1 _ i}a, 
i= I. 2, .. .. n1 i= I 

i=1.2 .... . n1 
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V, ~ exp{A 1 }kc /b. 

Consequently, 

n, . b 
I Q;/Q,a;~-k v,_1· 
i= 1 ca 

Thus, by Eq. (a8), we get 

[ 
).b J Q,+ 1 ~ Q, 1 -d+ kvca H(V1 _ 1)V1 _ 1 + V,, t ~ 1. 

By Eq. (a2), V, ~ oo with probability one as t ~ oo . Hence, taking into account that 
xH(x) ~ 0 as x ~ oo, the latter inequality can be rewritten as 

Q1 + 1 ~Q,[1-d+o7(1)]+V1 , t~l, (a9) 

where o?(l) ~ 0 with probability one as t ~ oo. 
Fix an a> E~,. Setting X, =exp{ - ca} Q, and W, =exp{ - a(t + l)} V,, we get by 

Eq. (a9) that 

X,+ 1 ~exp{-a}X,[1-d+o7(1)]+ W1 ~X1 [l -d+oi(l)]+ W,, t~ 1. 
(alO) 

We have to show that for every b > 0 and o-E(O, 1) there is a finite time instant 
t(b , o-) such that 

P{X, ~ b, t ~ t(b, o-)} ~ 1 - o-. (al 1) 

Fix some b > 0 and o-E(O, 1). Since o)(I) in Eq. (a2) converges to zero with 
probability one, there is a finite time instant t 1(o-) such that 

P {lo )(l)I ~!(a - EO, t ~ t 1(o-)} ~ 1 - o- /2. (a 12) 

Similarly, there is a finite time instant ti(o-) such that 

r{lo70)1~1 · t ~ ti(o-)} ~ 1 - o- /2. (a13) 

By Eqs. (a2) and (al2) we conclude that 

{ 
kh { (a-EC)(t+l)} } p w,~-;exp - 2 ,t~t1(0-) ~l-o-/2. (al4) 

Thus, setting t(o-) = max[t1(o-), ti(o-)] and taking into account Eqs. (alO), (al3) and 
(al4), we get by Eq. (a6) that 

r{x1 + 1 ~X,(1-d/2)+ ~ exp{-(a-Ei(t+ l)}, t~t(o-)}~ 1-o-, 

or, equivalently, for every finite n ~ 1 

r{x1+n~X1 (1-d/2Y+ k: exp{-(a-Ei(t+ l)} ~t~ (l-d/2y-i-I 

x exp{ - (a -
2
EOT t ~ t(o-)} ~ 1 - o-. 
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Since 

11-l { (:x-£¢)i} 11-l 
;~o (1-d/2)" -i- lexp - 2 5, ; ~o (l -d/2)" -i- 1 

2 2 
= d [1 - (I - d/2)"] < d, 

the latter unequality implies that for every finite n ~ 1 

{ 
2kh { (a - EC)(t + l)} } 

P X,+ 11 5, X,(l -d/2)11 + ad exp - 2 , t ~ t(Cl) ~ 1 - Cl. 

There is a finite t,; such that for t ~ t 6 

2klz { (a - EO(t + l)} s:;2 - exp - 5, u . 
ad 2 

Hence, by the previous inequality we get that for every finite n ~ 1 

P {X, +11 5, X,(1-d/2)" + <5 /2, t ~ t,;."} ~ 1 - Cl, (a 15) 

where t,; a = max[t(Cl) , tJ. By Eq . (a7) , the random variable Q, . is finite with 
certainty: Hence, X, . is also a finite random variable with certa'i.~ty . There is a 
finite number n,; .a st;'c11 that 

P{X, (I - d/2)" 5, <5 /2, n ~ 11 ,j_"} =I. 
r).a 

(a 16) 

Setting t(b, Cl)=t,;" +n,;"' by Eqs. (al5) and (al6) we get Eq . (all). 
The theorem is proved. 
Next, let us show that in the version of the model with growing labor productiv

ity each firm dies in a finite random time with probability one. 

Theorem 3.2. If 8 > 0, then each firm dies in a finite random time with probability 
one. 

Proof The death threshold implies that if a firm lives infinitely long, then its 
capital does not drop below cc. Since the total productive capacity of the industry 
is bounded with certainty, we conclude that starting from a finite random time r 
with probability one every newcoming firm dies in a finite time. Indeed, otherwise 
we would have infinitely many firms living infinitely long. This, by boundness from 
below of their capitals , would imply that the total productive capacity goes to 
infinity. 

At time t ~ r consider two firms: one with capital c, and variable costs per unit 
of output 111, the other with capital c; and variable costs per unit of output 111', 

111 > /11 '. Then 
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(al 7) 

Assume that there is a firm living infinitely long with positive probability. Set c, 
for its capital at t and 111 for its variable costs per unit of output. Then 

P{c,?; t:c, t?: r'} = J > 0, (al8) 

where r ' < r stands for the time instant when it comes to the industry. By Eq. (a2) 
there is a time instant t 1 such that 

P{A,>t;l Ec;,t?:t,}?:1-6 /2. 

Choose t2 such that exp{[(t + 1)/2]£; }/z < m for t?; t2 . Then with probability 
exceeding 1 - J /2 every firm coming after t* = max(t 1, t2 ) has variable costs less 
than 111. Consider a time instant t?: max(t*, r). There is a firm coming at t. Set c; 
for its capital and 111' for its variable costs. Since we are in the time domain where 
every entrant dies in a finite time, this new firm dies at a finite time instant t' > t 
with probability one. Since m' < m, by Eq. (al 7) we get that 

(al9) 

At t' another firm comes to the industry and, again, its variable costs are Jess than 
111. Similarly, it dies at t" and we obtain that c,..::; t:c,. or c,..::; t: 2c1• 

Let t: < 1. Since c,::; CQ * for t?: r ', we conclude that c1 ~ 0 as k ~ oo for some 
k 

sequence of finite time instants tk, k?; I, and this occurs with probability at least 
1- J /2. 

By Eqs. (a6) and (al8) we see that with probability at least J /2 both the sequence 
c,, t ?: r is bounded from below by cc> 0 and has a subsequence c, , k?; 1, 

k 

converging to zero. This is impossible. 
Let t: = I. There are two possibilities, namely, first, there is a sequence of finite 

time instants tk> k?: 1, such that ).H(Q1 )/vC - m?;d, or, second, ).H(Q,)/vC-m<d 
k 

starting from a finite time instant r" with probability one. 
In the first case by Eq. (a17) we see that for every firm coming at some 

tk?: max(t*, r) 

< C1k {l _ }:_ 111 - 111' } = C1k,. 
- I c ). I , 

c,k v 1-d+-' [H(0)-111'] c,k 
vC 

(a20) 
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where c; stands for the capital and m' for the variable costs of the newcomer. Since 
k 

we are in the time domain where every entrant dies in a finite time, this firm dies 
at t'1 > tk. By Eqs. (al7) and (a20) we see that 

C · C · I C +I Cr _r_1 < ~ < ... < _r_k_ < r __!;_ 

c; . - c; . _ 1 - - c; + 1 - c; 
I I k k 

Thus 

By Eq. (a19) we conclude that during the life time of any firm coming from max(t*, 
r) onward, the firm living infinitely long at the very least does not gain anything in 
terms of capital stock. But it shrinks r times during the life times of firms coming 
at tk;?:max(t*, r). This occurs with probability not less than 1-6 /2. Thus, with the 
same probability there is a sequence t~, k;?: 1, such that Cr · --+ 0 as k-+ oo. By Eqs. 

k 

(a6) and (al8) we conclude that with probability at least <5 /2 both the sequence cn 
t;?: r , is bounded from below by ix> 0 and has a subsequence Cr ·, k;?: 1, converging 

k 

to zero. This is impossible. 
Now let J..H(Qr) /vC-m < d starting from a finite time instant r" with probability 

one. Hence, from r " onward, the total productive capacity evolves in the domain 
where the notional firm surviving for infinite time shrinks. Consequently, we must 
have that J.H(Qr) /vC = d + m + oi(l) where or(I)-+ 0 with probability one as t-+ oo. 
This implies that with probability at least 1 - <5 /2 every firm coming after max(t*, 
r ") will be unboundedly growing (almost as (1 + m - m'Y for t-+ ro) in contradic
tion with the uniform boundness of the total productive capacity. 

Thus we have showed that assuming that there is a firm surviving infinitely long 
with positive probability yields a contradiction. 

The theorem is proved. 
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