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This paper presents a new method for modeling-induced technological learning and uncertainty in energy systems. Three related 
features are introduced simultaneously: (1) increasing returns to scale for the costs of new technologies; (2) clusters of linked 
technologies that induce learning depending on their technological "proximity" in addition to the technology relations through the 
structure (and connections) of the energy system; and (3) uncertain costs of all technologies and energy sources. 

The energy systems-engineering model MESSAGE developed at IIASA was modified to include these three new features. 
MESSAGE is a linear programming optimization model. The starting point for this new approach was a global (single-region) energy 
systems version of the MESSAGE model that includes more than 100 different energy extraction, conversion, transport, distribution 
and end-use technologies. A new feature is that the future costs of all technologies are uncertain and assumed to be distributed 
according to the log-normal distribution. These are stylized distribution functions that indirectly reflect the cost distributions of 
energy technologies in the future based on the analysis of the IIASA energy technology inventory. In addition, the expected value of 
these cost distributions is assumed to decrease and variance to narrow with the increasing application of new technologies. This 
means that the process of technological learning is uncertain even as cumulative experience increases. New technologies include, for 
example, fuel cells, photovoltaic and wind energy conversion technologies. 

The technologies are related through the structure of energy system in MESSAGE. For example, cheaper wind energy has direct 
and indirect effects on other technologies that produce electricity up-stream and on electric end-use technologies downstream. In 
addition, technologies are grouped into clusters that depend on technological "proximity." For example, the costs of all fuel cells for 
mobile applications are a function of their combined installed capacity weighted according to their expected unit sizes. This 
relationship depends on how closely the technologies are related. This varying degree of "collective" technological learning for 
technologies belonging to the same cluster is also uncertain. 

Each scenario of alternative future developments for a deterministic version of the global energy systems model MESSAGE 
requires approximately 10 min of CPU time on PC with Intel Pentium II 233 MHz and 128 MB of RAM. Therefore, it is simply 
infeasible to generate alternative future developments under uncertainty based on a simple Monte-Carlo type of analysis were one 
sequentially draws observations from the very large number of more than 200,000 cost distributions (100 technologies, 11 time steps, 
10 technological clusters with 22 technologies included) assumed here for modeling technological learning and uncertainty. Instead, 
the new approach proposed here starts with a large but finite number of alternative energy systems "technology dynamics" and 
generates in "parallel" another large but finite number of deterministic scenarios by sampling from the distributions simultaneously 
for each of these technology dynamics. In this application, about 130,000 scenarios were generated. There were 520 alternative 
technology dynamics each with about 250 alternative deterministic scenarios resulting from the simultaneous stochastic samplings. 
Both numbers were initially varied before deciding that about 500 is a sufficient number of different technology dynamics required for 
a wide spectrum of alternative technological learning possibilities and that about 250 different deterministic scenarios is a sufficient 
number to generate most of the interesting future energy systems structures for each of the technology dynamics based on the analysis 
that in total produced roughly one million different scenarios. These large numbers of scenarios represent a very small subset of all 
possible ones that is basically infinite. They were not chosen randomly, but are a result of applying adaptive global search technique to 
the formulated non-convex, non-smooth stochastic problem. 

From the 520 alternative technology dynamics, about 53 resulted in scenarios with very similar overall energy systems cost. They 
have fundamentally different technological dynamics and produce a wide range of different emergent energy systems but can be 
considered to be approximately equivalent with respect to "optimality" criteria (in this case simultaneous cost and risk minimization). 
Thus, one of the results of the analysis is that different structures of energy system emerge with similar overall costs, i.e., that there is 
a large diversity across alternative energy technology strategies. The strategies are path dependent and it is not possible to choose 
a priori "optimal" direction of energy systems development. 
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Another result of the analysis is that the endogenous technology learning with uncertainty and spillover effects have the greatest 
impact on the emerging structures of energy system during the first few decades of the next century. Over these "intermediate" periods 
of time these two processes create effective lock-in effects and increasing returns to adoption. In the very long run, however, all of these 
effects are not of a great importance. The reason is that over such long periods many doubling of capacity of all technologies with 
inherent leaning occur so that there are few relative cost advantages that result from large investments in some technologies and 
clusters. Therefore, the main finding is that under uncertainty the near-term investment decisions in new technologies are more 
important in determining the direction of long-term development of the energy system than are the decisions that are made later, 
towards the end of the time horizon. Thus, the most dynamic phase in the development of future energy systems occurs during the next 
few decades. It is during this period that there is a high freedom of choice across future technologies and many of these choices lead to 
high spillover learning effects for related technologies. 

One policy implication that can be made based on the emerging dynamics and different directions of energy systems development in 
this analysis is that future RD&D efforts and investments in new technologies should be distributed across "related" technologies 
rather than be directed at only one technology from the cluster even if it appears as a "winner." Another implication is that it is better 
not to spread RD&D efforts and technology investments across a large portfolio of future technologies. It is rather better to focus on 
(related) technologies that might form technology clusters. © 2000 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

Fundamental changes in global energy systems are 
slow. The substitution of traditional energy sources, e.g. 
wood, by coal with the advent of steam, steel and rail­
ways took most of the last century. The replacement of 
coal by oil and gas and associated technologies lasted the 
better part of this century. In contrast to these very slow 
processes of change, other parts of the energy system can 
be more dynamic, especially the evolution of end-use 
technologies. However, the fact that fundamental cha­
nges occur on the scale of 100 years rather than a few 
years mean that technological changes that have in­
herently shorter time constants need to be consistent 
with the overall, slower processes of change in the energy 
system. Thus, many generations of individual technolo­
gies that are replaced through the normal rate of capital 
turnover are a part of the overall slow change from older 
to newer sources of energy and other related structural 
changes in energy systems. This means that also in the 
future, it is likely that many generations of new technolo­
gies will come and go before the possible transition to the 
post-fossil era or to new-fossil systems is achieved. There­
fore, there is an infinite number of alternative scenarios 
that lead to all possible future energy systems. The direc­
tions of these future transitions are clearly also uncertain. 
Future energy systems could rely on renewable energy 
sources, on clean coal, on less carbon-intensive fossils 
such as natural gas, or on nuclear power. 

As was mentioned, replacement of primary energy 
sources has lasted for the better part of the last and the 
current century and implies that similar changes are 
conceivable during the next century. Climate change is 
characterized by long time constants just as energy sys­
tems are. It might take a few decades before the uncer­
tainty is resolved that surrounds the influence of human 
intervention in climate system due to emissions of 
greenhouse gases and aerosols. The main sources of emis­
sions for most of these gases are associated with energy 

activities. This and other environmental concerns are yet 
another reason why the direction of technological cha­
nges in the energy systems is important. Some policies 
that lead to radically lower future emissions would need 
to be implemented before the uncertainty about possible 
climate change is resolved so as to reach sufficient cumu­
lative experience with these technologies in time and so 
facilitate their future diffusion. 

One of the important motivations for developing this 
new approach for endogenizing technological learning 
and uncertainty in energy systems scenarios was to cap­
ture the different directions of possible future technolo­
gical change as a result of many technology replacements 
and incremental improvements. Our basic assumption is 
that endogenous learning is a function of cumulative 
experience measured by cumulative installed capacity 
and that this process is uncertain. Clearly, this is a strong 
oversimplification. There are many other indicators of 
technological learning but we chose this one because it is 
relatively easy to measure. Nevertheless, we feel that the 
oversimplification is warranted as a tool for analyzing 
the cumulative effect of incremental investments in new 
technologies on shaping alternative future directions of 
energy systems development. 

Energy services are expected to increase dramatically 
especially in the now developing countries during the 
next century. This also means that the installed capacities 
of energy extraction, conversion, transport, distribution 
and end-use technologies are going to increase accord­
ingly, perhaps at a somewhat lower rate due to the 
overall improvements of efficiencies throughout the en­
ergy system as older technologies are replaced by newer 
vintages. Here again, the alternative directions of energy 
systems development are important. They will determine 
to a large extent the eventual energy requirements that 
are needed to fulfill this increasing quest for energy servi­
ces. The actual energy requirements for a given provision 
of energy services can range from very high to extremely 
low compared with current standards. In a similar way, 
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Fig. 1. Global carbon dioxide emissions range for the full set of 130,000 
scenarios with endogenous technological change comprising some 520 
different technology dynamics against the range of more than 13,000 
"optimal" scena rios from 53 different technology dynamics. All scen­
arios share a given useful energy trajectory, emissions range in GtC. 

the future environmental impacts of energy systems 
would vary accordingly as well. For example, carbon 
dioxide emissions decreases from 10 times the current 
levels to virtually no net emissions by 2100 for scenarios 
in the literature. Fig. 1 shows the range of future carbon 
dioxide emissions for the full set of 520 technological 
dynamics (some 130,000 scenarios) against the set of 53 
"optimal" dynamics (more than 13,000 scenarios). In 
comparison Fig. 2 shows the range of emissions for some 
400 scenarios from the published literature collected for 
the new IPCC Special Report on Emissions Scenarios 
(Morita and Lee, 1998; Nakicenovic et al., 1998b). The 
emissions range from 7 to 41 GtC by 2100 compared to 
about 6 GtC in 1990. These figures illustrate that the set 
of scenarios developed for capturing endogenous techno­
logical learning and uncertainty covers most of this 
range. The scenarios from the literature span this range 
due to the variation of the driving forces of future emis-
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Fig. 2. Global carbon dioxide emissions for the range of some 400 
scenarios from the literature, emissions range in GtC (Morita and Lee, 
1998; Nakicenovic et al., !998b). 

sions such as the energy demand. In contrast, the set of 
scenarios with endogenous learning spans the range due 
to different technological dynamics alone. It is interesting 
to note that the "optimal" scenarios match quite closely 
the distribution of the scenarios from the literature but 
with a somewhat narrower range (they leave the extreme 
tails of the distribution uncovered). In contrast, the fre­
quency distribution of the full set of 520 technology 
dynamics is different from the other two with many more 
scenarios in the mid-range of the distribution. This 
means that the optimal or most "cost-effective" develop­
ment paths correspond quite closely to the scenario dis­
tribution from the literature. The "median" or "central" 
futures are underrepresented both in the literature and 
among the scenarios indicating that there appears to be 
a kind of "crowding-out" effect surrounding balanced 
and median type of scenarios. In any case, technological 
learning as specified in our approach leads to future 
energy systems that are marked either by high or low 
emissions ranges with one single useful demand traject­
ory demonstrating a kind of implicit bifurcation across 
the range of possible emissions. 

In order to simplify matters, we have assumed one 
single trajectory of global useful (end-use) energy require­
ments as an input assumption for all 130,000 scenarios 
considered in this analysis. What is varied endogenously 
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are technologies that comprise the energy system and 
their costs. Fig. 3 shows the single useful energy trajec­
tory that is common to all scenarios. It represents rela­
tively high useful energy demand compared with the 
scenarios in the literature. However, it is associated with 
the considerable variations of final and primary energy 
demand trajectories across the scenarios. It shows that 
a very wide portfolio of future energy systems character­
istics is consistent with one single end-use demand tra­
jectory. The scenarios map the higher part of the range of 
future primary energy requirements found in the scenario 
literature, but do leave the lower part of the range un­
covered (that is associated with very low demand scen­
arios in the literature). As mentioned, they do cover most 
of the emissions range. 

2. Increasing returns and uncertainty 

Time horizons of a century or more are frequently 
adopted in energy studies. Modeling energy systems de­
velopments over such long-time horizons impose a num­
ber of methodological challenges. Over longer horizons 
technological change becomes fluid and fundamental 
changes in the energy system are possible. Especially 
difficult has been to devise an appropriate representation 
of endogenous technological change and the associated 
uncertainties. In general, induced technological change 
and uncertainties are interconnected. It is widely recog­
nized that they jointly play a decisive role in shaping 
future energy systems. Many approaches to model these 
processes have included elements of increasing returns to 
scale and decreasing uncertainty to scale. This basically 
means that technologies improve with cumulative experi­
ence as expressed by the scale of their application. Costs 
and uncertainty are assumed to decline with increasing 

scale of application. Learning or experience curves are 
a characteristic representation of such processes. 

In contrast, the "standard" modeling approaches with 
diminishing returns do not allow for such consequences 
of technological learning processes. Despite this defi­
ciency, the diminishing returns dominate the standard 
economic theory. Perhaps, this is due to the very elegant 
and simple concept of equilibrium that can be achieved 
under those conditions. Diminishing returns to scale 
generate negative feedbacks, which tend to stabilize the 
system by offsetting major changes and produce inevi­
tably a unique equilibrium independent of the initial 
state of the economy. In mathematical terms, the models 
are convex and lead generally to unique solutions. 

Increasing returns on the other hand lead to disequi­
librium tendencies by providing positive feedbacks. After 
(generally large) initial investments in RD&D and early 
market introduction, the incremental costs of further 
applications become cheaper and cheaper per unit capa­
city (or as assumed here, per unit output). Thus, the more 
widely adopted a technology, the cheaper it becomes 
(with lower uncertainties, leading to lower risks to ad­
option). There are many incarnations of this basic prin­
ciple. One of the more well-known ones is the concept of 
"lock-in". As technology becomes more widely adopted it 
tends to increasingly eliminate other possibilities. Thus, 
the Jock-in. Another concept frequently used in empirical 
analysis is the so-called learning or experience curve. At 
the core of all of these processes is the technological 
learning - the more experience is gained with a par­
ticular technology, the larger are the improvements in 
performance, costs and other important technology 
characteristics. 

Despite the fundamental importance of technological 
learning, the modeling of these processes has not received 
the necessary attention in the literature. Several reasons 
may explain apparent lack of systematic approaches. 
Among them, the complexity of appropriate modeling 
approaches is perhaps the most critical one. Increasing 
returns to scale lead to non-convexities so that the stan­
dard optimization techniques cannot be applied. In con­
junction with the treatment of uncertainties, modeling of 
technological learning becomes methodologically and 
computationally very demanding. It requires the devel­
opment of the so-called global non-smooth stochastic 
optimization techniques. They are only now under devel­
opment (Ermoliev and Norkin, 1995, 1998; Horst and 
Pardalos, 1995). 

Fig. 4 gives learning or experience curves for three 
technologies that generate electricity. Costs of unit-in­
stalled capacity are shown against cumulative-installed 
capacity. The lowest curve shows the improvement of gas 
turbines. Today, they are the most cost-effective techno­
logy for electricity generation. This was certainly not 
the case three decades ago. The costs were high and it 
was by no means certain that the great technology 
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improvements would be achieved as that the curve sug­
gests. Until early 1960s, the technology can be character­
ized as "pre-commercial". The costs were very high and 
the improvement rates were particularly rapid, about 
20% reduction in unit costs per doubling of cumulative 
capacity. Thereafter, the improvement rate declined and 
has averaged to less than 10% per doubling. This devel­
opment phase was no doubt also associated with signifi­
cant reduction in uncertainties. In the early development 
phases, the investments in this technology were indeed 
risky as many accounts indicate. 

Fig. 4 also shows two relatively new electricity genera­
tion technologies. Wind power is becoming "commer­
cial" technology in many parts of the world especially 
where wind is abundant. Typical examples are wind 
application in Denmark. The cost reductions are impres­
sive with about 20% per doubling of cumulative capa­
city. However, wind is on an average significantly costlier 
than gas turbines as source of electricity. Risk is also 
higher. In contrast, photovoltaics portray equally im­
pressive performance improvements of about 20% unit 
costs reductions per doubling, but from a very high level 
of costs. They are about an order of magnitude more 
expensive than gas turbines per unit capacity. The future 
prospects are thus very promising but they are also 
associated with great risks for potential investors. 

The learning curves were used in stylized form in 
a number of energy modeling approaches to capture 
elements of endogenous technological change. At IIASA, 
Messner (1995) incorporated learning curves for six 
electricity technologies in the simplified version of the 

35 

30 

~ 25 
~ 

"' .:; 20 
> u 
a; 15 

" Cf .t 10 

5 

0 

600 

Nuclear (n = 34) 

1000 1400 1800 2200 2600 3000 3400 3800 4200 

Investment cost US (1990) $/ kW 

Fig. 5. Range of future investment costs distributions from the II ASA 
technology in ventory for biomass, nuclear, and sola r electricity genera­
tion technologies, in US(l990)$ per kW (Messner and Strubegger, 199 1; 
Nakicenovic et al., 1998a). 

(deterministic) energy systems-engineering model MESS­
AGE. This is a linear programming framework, so that 
integer programming was needed to deal with emerging 
non-convexities in the problem formulation. It was as­
sumed that the "new" energy technologies have a certain 
cost reduction per each doubling of cumulative installed 
capacity .1 The approach was very innovative and has led 
to a number of important insights for further modeling of 
endogenous technological change (Griibler and Messner, 
1996; Nakicenovic, 1996, 1997). However, the major 
drawback was the significantly higher complexity and 
very high computational demands. Another important 
deficiency of the approach was that the learning rates 
were deterministic. MESSAGE is a model with perfect 
foresight, so that early investments in new, costly tech­
nologies were always rewarded with increasing returns. 
Yet, it is clear that such reductions are possible on aver­
age but with a considerable degree of uncertainty. 

The next step at IIASA was to introduce uncertainties 
in the distributions of future costs. The basis for this 
approach was the IIASA technology inventory that now 
contains information on some 1600 energy technologies, 
on their costs, technical and environmental character­
istics (Messner and Strubegger, 1991). Fig. 5 gives an 
example of future cost distributions of three energy tech­
nologies from the inventory (Nakicenovic et al., 1998a). It 
illustrates that the distributions are not symmetric and 
that they have very pronounced tails with both very 
"pessimistic" and "optimistic" views on future costs per 

1 Cost reduction or the so-called learning rate may be quite different 
depending on how "learning" is measured. As mentioned, the learning 
rate for photovoltaics in Fig. 4 is about 20% per doubling of cumulative 
capacity. For example, Watanabe (1995) analyzed direct investment in 
photovoltaics in Japan indicating that the unit costs decreased by about 
50% per doubling of cumulative investment. Griibler (1998) estimates 
the learning rate at 30% per doubling of cumulative installed capacity 
based on the same data set from Watanabe (1995). 
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unit capacity. Such cost distributions were introduced 
explicitly in a simple, stochastic version of MESSAGE 
and have lead to spontaneous "hedging" against this 
uncertainty as an emerging property of the model (Go­
lodnikov et al., 1995; Messner et al., 1996). Finally, both 
approaches of endogenous learning and uncertainty were 
combined for a very highly stylized stochastic version of 
MESSAGE with increasing returns for "just" three "tech­
nologies" (Gri.ibler and Gritsevskyi, 2000). One was char­
acterized with no learning what so ever. Another 
technology displayed moderate learning of about 10% 
per doubling and the third with much more rapid 20% 
per doubling. The latter two learning rates were asso­
ciated with uncertainties that were based on the above 
future-cost-distribution functions. In this much more 
complicated approach, the diffusion of new technologies 
occurred spontaneously and displayed S-shaped patterns 
so characteristic for technological diffusion. This occur­
red without any other explicit technology inducement 
mechanisms other than uncertain learning and hedging. 
The disadvantage of the approach was that it was very 
computationally demanding and basically infeasible for 
application with many technologies as is required for 
development of long-term energy scenarios. 

Here we retain this basic approach and combine 
technological leaning with uncertain outcomes while 
significantly extending the application to a hundred tech­
nologies. This is possible due to the application of new 
global non-smooth stochastic optimization techniques in 
conjunction with "parallel" problem structure and com­
puting techniques. Cost reductions are assumed to be 
uncertain and are thus not specified by a given determin­
istic learning rate value. The learning rates are uncertain 
and are captured by assumed distribution functions. We 
assume that the generic cost reduction function has the 
following form: 

Cit = (2 -PtD" 
where C/1 is the cost reduction index, or the ratio between 
technology unit costs (or more precisely, the annual 
levelized costs) at time t and initial cost in the base year; 
N D1 is the number of doublings of cumulative output 
achieved by time t compared to the initial output; and 
f3 is the progress ratio that indicates the cost reduction 
rate per doubling of the output. f3 is a random variable 
with a known distribution function. We have assumed 
that f3 is normally distributed with known mean and 
variance. It is important to note that the suggested algo­
rithmic approach is not limited to the type of distribution 
assumed here, and, in fact, that it does not require any 
prior knowledge about type of the distribution function. 2 

2 We need to have ability to compute mean value for corresponding 
distribution and to produce random samples based on that distribu­
tion. Implementation in the form of "black box" is perfectly suitable. 
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Fig. 6. Uncertain cost reductions represented by the learning index as 
a function of number of doublings (of cumulative output). The expected 
value of f3 (the mean) learning index (rate), corresponds to 20% cost 
reduction per each doubling (of cumulative output). The numbers 
between the isolines of different learning indices indicate probability 
ranges. There is a small probability of no learning at all between any 
given doubling. 

Fig. 6 illustrates the uncertain learning index as a func­
tion of each doubling (of cumulative output). The ex­
pected value for the cost reductions rate is 20% per 
doubling in the example shown. The numbers between 
the isolines indicate the probability ranges of occurrence 
of different learning rates. For example, there is a 50% 
chance that the cost reductions rate falls between 14 and 
25% per each doubling. Please note that there is a small 
chance of 5% that the cost reductions would range from 
very small to actual cost increase and that there is a very 
small probability of 0.1 % that there would be significant 
cost increase per each doubling. This indicates a real 
possibility of negative learning or "induced forgetting" 
rather than learning. Such representation of uncertain 
learning illustrates the true risk of investing in new tech­
nologies. There is a high chance that technology would 
improve with accumulated experience, but there is also 
a small chance that it would be a failure and even a small­
er chance of a genuine disaster. 

We extend here the application_ of uncertain learning 
to many new technologies ranging from wind and photo­
voltaic to fuel cells and nuclear energy. In keeping with 
the earlier approaches to capture learning at IIASA, we 
assume that traditional, "mature" technologies do not 
benefit from learning (another interpretation is that cost 
reductions as the result of learning are insignificant com­
pared to other uncertainties that affect costs). Altogether 
there are 10 clusters of new technologies that benefit from 
induced learning. 

As already mentioned, we assume in addition that all 
technologies, traditional and new ones, have stochastic 
costs with known distributions in any given period 
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(similar to the distributions of electricity generation tech­
nologies used in Golodnikov et al., 1995). The difference 
is that we assume that cost distributions of traditional 
technologies are static over time and the costs in different 
time periods are independent random values. For new 
technologies, due to possible cost reductions to learning 
(as described above), the costs are defined by conditional 
probabilities that result from the realization of a particu­
lar value for the uncertain learning rate. Again just for 
reasons of simplicity, we assume that all initial cost 
distribution are log-normal with different mean and vari­
ance based on the empirical analysis of technological 
characteristics with the IIASA technology inventory (see 
Strubegger and Reitgruber, 1995). 

We assume that the cost distribution function for each 
of the new technologies at any given moment of time t, 
under the condition that N doublings of cumulative 
output have been achieved and that the realized value for 
random learning rate f3 is equal to b, is defined by the 
following expression: 

F,((IN D, = N, /3 = b) = F 0 (m,, s,), 

where F 0 ( ·, ·) is the initial log-normal distribution func­
tion with parameters m0 and s0 ; K, is the ratio between 
the standard deviation and the expected mean value and 
defines the compactness of the distribution. It is assumed 
to be a function of typical unit size (for bigger unit size 
K is bigger). We decided to keep K constant over time 
due to the lack of empirical data, so it can be obtained 
simply by solving the following equation: 

where 111 0 and s0 are derived empirically from statistical 
analysis.3 

A new feature of our approach (in addition to the 
uncertain learning rates) is that the future costs of all 
technologies are uncertain and assumed to be distributed 
according to the log-normal distribution. These are sty­
lized distribution functions that, as was mentioned, 
reflect indirectly the costs distributions of energy tech­
nologies in the future based on the analysis of the IIASA 
energy technology inventory. In addition, the mean value 
of these cost distributions is assumed to decrease and 
variance to narrow with increasing application of new 
technologies according to the generic cost reduction 

3 Suggested technique does not require or utilize specific relation 
between F, and initial distribution F 0 . It also does not need to keep 
K constant over time. In absence of better understanding of quite 
complex and non-linear relationship and due to the luck of empirical 
data we decided to use the most simple assumptions one can make 
- the type of distribution stays the same (distribution does not change 
its shape), mean value follows realized cost reduction curve, variance 
goes down proportionally to expected cost reduction. 

function (specified above) with normally distributed pro­
gress ratio. This means that the process of technological 
learning is uncertain even as cumulative experience in­
creases. The uncertainty of new technologies is character­
ized with the joint distribution of cost uncertainty and 
learning uncertainty. In summary, we assume both un­
certain future costs for all technologies and uncertain 
learning for new technologies. 

Another uncertainty considered here is associated with 
magnitudes and costs of energy reserves, resources and 
renewable potential and their extraction and production 
costs. Following the estimates by Rogner (1997), 
Nakicenovic et al. (1996) and others, we assume a very 
large global fossil resource base corresponding to some 
5000 Gtoe and accordingly large renewable potentials. 
We also assume that the energy extraction and produc­
tions costs are uncertain varying by a factor of more than 
five. Following the approach proposed by Rogner (1997) 
we formulated aggregate, global, upward-sloping supply 
curves with uncertain costs. Thus, the supply of fossil and 
non-fossil energy sources is characterized by expected 
increasing marginal costs and is one of the few areas 
where we have not assumed increasing returns, but we 
did assume uncertain costs. 

3. Technological spillovers 

Technologies are related to each other. For example, 
jet engines and gas turbines for electricity generation are 
related technologies. In fact, the latter were initially de­
rived from the former. These kinds of relationships 
among technologies are frequent. They imply that im­
provement in some of the technologies can be transferred 
to other related technologies. For example, improve­
ments in automotive diesel engines might lead to better 
diesel-electric generators because the technologies are 
closely related to each other. The improvements in one 
area that lead to benefits in other areas are often referred 
to as spillover effects. In case of related technologies this 
is a real possibility. For example, we consider the differ­
ent applications of fuel cells such as for stationary elec­
tricity generation and for vehicle propulsion. We also 
consider fuel cells that have the same end-use application 
but different fuels, e.g. hydrogen and methanol mobile 
fuel cells. These fuel cells are different but they are related 
in the technological sense so that improvements in one 
technology may lead to improvements in the other. In 
this new approach to model technological learning and 
uncertainty, we explicitly consider the possibility of such 
spillover effects among energy technologies. 

However, operational implementation of spillovers is 
not trivial. One of the important barriers is the lack of 
technology "taxonomy". Presumably, the possibility of 
positive spillovers from technological learning is higher 
for technologies that are similar compared to those that 
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Table 1 
Ten technology "clusters" that group new energy technologies that are assumed to benefit from spillovers associated with technological learning 
induced from one technology to another within the cluster 

Name Expected 
learning 
rate(%) 

Fuel cells in transportation b 20 

Decentralized fuel cells (Industrial and 20 
residential & commercial sectors)° 

Centralized fuel cells in energy sectord 20 

Solar photovoltaic 25 

Hydrogen infrastructure 10 

Solar to hydrogen 10 

Nuclear high-temperature 10 

Wind 15 

Synthetic fuels and hydrogen production 20 

Liquid hydrogen production 10 

Cumulative 
output at 
base year 
(GWyr•) 

0.01 

0.1 

0.2 

10 

2 

3 

0.5 

Typical 
lifetime 
(yr) 

10 

20 

30 

20 

40 

20 

40 

30 

30 

30 

Technologies 

Hydrogen-, liquid-hydrogen- and methanol­
based fuel cells (FC) in transportation, three tech­
nologies 

Hydrogen-based FC in Industrial and R&C sec­
tors, two technologies 

Natural gas- and coal-based large-scale FC, two 
technologies 

Solar panels in industrial and R&C sectors and in 
energy sectors, three technologies 

Hydrogen and liquid hydrogen transportation 
and distribution infrastructure, two technologies 

Solar to hydrogen production, one technology 

Nuclear high-temperature reactors with hydrogen 
output, one technology 

Wind power generators, one technology 

Synthetic fuels and hydrogen production from 
biomass, gas and coal, six technologies 

Hydrogen liquefaction, one technology 

•Part of model assumptions. In many cases, there is no reliable statistics for global cumulative output. 
bContribute to other fuel cells clusters with weight and accelerated by input from stationary units with weights 0.1 and 0.01 for decentralized and 

centralized installation correspondingly. 
ccontribute to other fuel cells clusters with weight 0.5 to centralized units and 0.1 to transportation and accelerated by input from centralized units 

with weight 0.1 and with 0.5 for transportation. 
dContribute to other fuel cells clusters with weight 0.1 to decentralized units and 0.01 to transportation and accelerated by input from decentralized 

and transportation units with weight 0.5. 

are not. Thus, some kind of measure or metric of techno­
logical "proximity" or "distance" is required even though 
a genuine taxonomy does not exist. A number of propo­
sals have been made that could conceivably lead to the 
development of a taxonomy in the future (Foray and 
Gri.ibler, 1990). Instead of venturing here in more com­
plex representations of technology relationships, we sim­
ply assume that there are basically two explicit types of 
spillover effects. One is indirect through the connections 
among energy technologies within the energy system. For 
example, cheaper gas turbines mean cheaper electricity 
so that ceteris paribus this could favor electricity end-use 
technologies for providing a particular energy service 
compared to other alternatives. The other effect is more 
direct. Some technologies are related through their 
"proximity" from technological point of view as was 
suggested by the example of hydrogen and methanol 
mobile fuel cells. We explicitly define "clusters" of 
technologies, which may lead to spillovers from learning 
in one technology to another. Within clusters, the spill-

over effects are assumed to be strong and weak across 
clusters. 

Technology clusters were explicitly pre-specified. 
Table 1 shows the groupings of technologies into 10 
clusters. Each cluster consists of technologies that are 
related either because they are technologically "close" 
(i.e., are similar) or because they enable each other 
through the connections among them within the energy 
system. 

The nature of the spillover effects within and across 
clusters is assumed to be different. Technologies from the 
same cluster share total cumulative output and are as­
sumed to have the same learning rate, but their actual 
costs are drawn independently from their respective dis­
tributions. 

Fig. 7 illustrates the spillover effects within one cluster 
of technologies. The shown example gives two density 
functions of technology costs in 2030 for centralized fuel 
cells. The density function with lower overall costs is for 
the case of spillover effects within the technology cluster 
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Fig. 7. Spillover effects within the cluster of decentralized fuel cell 
techno logies. Two density functions of fuel cell costs in 2030 are shown, 
in US( 1990)¢ per kw h without fuel costs. The density function with 
lower overall costs is fo r the case of spillover effects within the techno­
logy cluster and the one wiih higher overall costs is for the case without 
spillover effects. 

and the one with higher overall costs is for the case 
without spillover effects. The costs are given in US 
(1990)¢ per kWh of electricity generation without the fuel 
costs. Both the expected costs and their variance are 
substantially higher without the spillover effects. Thus, 
the costs are expected to be lower with spillover effects 
and as well as the uncertainty. The probability of lower 
costs is thus overall much higher with the spillovers. 

~· 

However, the high tail of the density distribution is pro­
portionally more pronounced in the case of the spillover. 
This is an interesting feature of these density functions. 
The expected costs are generally lower with spillovers, 
but the possibility of realizations of very high costs com­
pared with the mean are higher at the same time. Thus, 
spillovers also amplify somewhat the small chance of 
induced "forgetting." 

Spillover rates between clusters are proportional 
(weighted) to the technological "proximity'', e.g. how 
close the technologies are related to each other. Exam­
ples include additive learning from all kinds of fuel cells, 
e.g. stationary and mobile. Another factor is that station­
ary fuel cells can contribute significantly into the learning 
for the mobile ones due to large capacity (size), and wise 
versa, that experimenting with small-scale mobile units 
could be an important factor that helps early develop­
ment of stationary units. 

Fig. 8 gives a schematic diagram of the 10 technology 
clusters and indicates how they are related to each other 
with respect to the assumed learning spillover effects 
within the structure of the energy system. Two of the 
technology clusters (also shown in Table 1) are character­
ized by generally large "unit size" compared to other 
technologies - nuclear high-temperature reactors 
(HTRs) and infrastructure clusters. Consequently, very 
large cumulative output is required for achieving 
a doubling compared to other clusters. This leads to 
correspondingly high risks in induced learning. The ex­
pected learning rates are indicated for each cluster. The 
modular (smaller "unit size") technologies have generally 

--
Synthetic fuels and hydrogen fs,;1ar thennal to hydrogen 1 Solar radiation to H2 (thermal pr.) 

High risk associat 
with large unit si 

Ethanol or H2 from biomass 
Methanol or H2 from natural gas 1 O %, rredium size 
Methanol or H2 from coal/ 20% 

Nuclear HTR Hydrogen liqmfaction 

ed --·· Nuclear high temp . reactor for H2 Gaseous hydrogen to liquid 
10%, very large 10%, medium size 

ze 

~ Infrastructure 
Hydrogen transpldislr 
Liq. Hydrogen transp . and clistr. 
10%, large 

' FC In Transport 

I 
FC Decentralized FC Centralized 

i Hydrogen (liq. and gas) Hydrogen FC in Industry Natural gas 
! Methanol/Ethanol Hydrogen FC in Res/Comm Coal based 
120% reduction, small size I 20% reduction, meclium-te>-large 20% reduction, large 

: Sol..- PV I 
i Solar PV in Energy Sector 1· 

[ Industry, Res/Comm 
i 30%, small-to-medium I 

duste1' spillover 

....... J 

Wind PPL 
Wind power plant 

15%, small-to-medium 

Fig. 8. Schematic di ag ram of the 10 technology clusters and their relationships to each other with respect to the assumed learning spillover effects 
within the structure of the energy system. Technologies of each cluster are listed together with their assumed expected mean learning rates. 



916 A. Gritsevskyi, N. Nakicenovic / Energy Policy 28 (2000) 907-921 

higher mean learning compared to other technologies. 
The highest mean learning rate is indicated for the photo­
voltaics cluster, the lowest are shared by the solar­
thermal (hydrogen), nuclear (HTR) and infrastructure 
clusters. 

4. Model structure and implementation 

Any realistic policy in the presence of uncertainties 
bears risks, in particular, risk of underestimating or 
overestimating future technology costs. Explicit intro­
duction of these risks creates a driving force for the 
development of new technologies necessary for making 
the energy system flexible enough against possible in­
stabilities and surprises. Thus, uncertainty of future 
technology costs and characteristics in itself in­
duces technological change. When this uncertainty is 
broadened to include technological learning and spill­
overs, the complex interplay between all of these three 
mechanisms leads to patterns of technological change 
that are encountered in deterministic modeling ap­
proaches as well but under the conditions of exogenous 
constraints. The difference is that here this behavior is the 
result of induced technological change that occurs "spon­
taneously" due to stochastic nature of technological 
learning within the energy system. 

The conventional approaches of the control theory are 
applicable only in the case of small number of variables 
(e.g. for simple energy systems), since they deal with 
unrealistically detailed long-term strategies attempting 
to provide the best choice for every combination of 
uncertainties and designs which may occur before the 
given time moment. This "chess game"-type concept of 
solution is essential for application of standard dynamic 
programming equations. 

The same type of solution concept is used in multistage 
stochastic optimization models. Although the large-scale 
optimization techniques are used in such case instead of 
the recurrent equations, the actual size of solvable prob­
lems is small again. It is essentially connected with the 
concept of solutions, which requires the expansion of 
original finite-dimensional model to the model with infi­
nite number of variables. Both approaches seem to be 
meaningful only for "on-line'', or short-term energy 
planning problems. They are unrealistic for the analysis 
of long-term energy policies. 

Since it is impossible to explore all details of long-term 
energy developments, our approach is based on the so­
called two-stage dynamic stochastic optimization model 
with a rolling horizon. The concept of solution in this 
case depicts the ex ante path of developments, which is 
flexible enough for adjustments to possible ex post re­
vealed uncertainties ("surprises"). The concept of rolling 
horizon requires adjustments of ex ante strategies each 
time when essential new information is revealed. A par-

ticular type of this model was proposed by Ermoliev 
(1995) for the analysis of global change issues and is 
ideally suited for energy system-engineering analyses as 
represented in some applications of the MESSAGE 
model. Stochastic version of the MESSAGE (see Golod­
nikov et al., 1995) is also a two-stage dynamic stochastic 
optimization model. This model explicitly incorporates 
risks of underestimating costs, which leads to a convex, in 
general non-smooth, stochastic optimization problem. 

Overall approach is based on the idea of representing 
energy systems development as a dynamic network 
where flows from one energy form to another correspond 
to energy technologies such as electricity generation from 
coal or gas power plants. Fig. 9 illustrates the assumed 
reference energy system as composed of about 100 differ­
ent technologies. Five different stages of energy flows are 
shown - energy extraction from energy resources, pri­
mary energy conversion into secondary energy forms, 
transport and distribution of energy to the point of end 
use that results in the delivery of final energy, and finally 
the conversion at the point of end use into useful energy 
forms that fulfill the specified demands (as discussed 
above). All possible connections between the individual 
energy technologies are also specified in Fig. 9. Various 
demands for useful energy are shown for different sectors 
of the economy. Each technology in the system is charac­
terized by levelized costs, unit size, efficiency, lifetime, 
emissions, etc. In addition to various balance constraints, 
there are limitations imposed by the resource availability 
as a function of (uncertain) costs. The overall objective is 
to fulfill various demands by the utilization of technolo­
gies and resources with the minimal total discounted 
system costs.4 

In the case of known future costs, demands and other 
parameter values, it is possible to find a unique "optimal" 
solution for the evolution of the reference system shown 
in Fig. 9. It is obtained by solving the following determin­
istic, linear optimization problem 

T 

min L ds'(C, x1
), 

1=0 

B1x
1 ~ d', t = 0, 1, ... , T, 

I 

L Rkxk = r, t = 0, 1, ... , T, 
k=O 

T 

L Pkxk ~ e', t = 0, 1, .. . , T, 
k=O 

o ~ x1 ~ x', t = 0, 1, ... , T, 

where x' = (x1
1 , ... , x~) are activity levels of technologies 

and resources at time t; B1 is matrix of input and output 
relations among the technologies and d' is the demand 

4 Similar to many other models, a 5% discount rate was adopted. 
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Fig. 9. Schematic diagram of the reference energy system showing some hundred individual technologies. 

vector; R, is matrix for approximating the quadratic 
costs of resources and balances for resource use, r are 
corresponding quantities; Pk is the matrix of systems 
constraints, like market penetration constraints and 
maximum shares of specific resource and technology 
activities, e' are corresponding limits; and x' are the upper 
limits on technological activities. 

Such deterministic formulations of future energy sys­
tems development result in highly restrained possibilities. 
In addition, the dynamics of future developments are 
prescribed by the system of assumed constraints. In con­
trast, there is a wide possibility of alternative future 
developments of the energy systems especially in 
the long run, over the scale of a century. This is amply 
demonstrated in the enormous range of future energy 
requirements and carbon dioxide emissions across the 
range of energy scenarios m the literature (see 
Fig. 1 above). 

In contrast, the alternative formulation of the problem 
proposed here is highly unrestrained and "open." We 
assume tha t there is a priori "freedom of choice" among 
fundament ally different future structures of the energy 
system and possible future dynamics. The uncertainty is 
resolved through a simultaneous drawing from all distri­
butions from each particular technology dynamics (see 

the Boxes 1 and 2 on Terminology). In order to make 
a rational choice among alternative technology dynam­
ics, they are compared on a basis of expected system costs 
and risks associated with each particular technology dy­
namics. Risks or benefits are defined here as functions of 
the difference between the expected and realized costs of 
each technology dynamics. There are a number of alter­
native ways to do a risk quantification (see, for example, 
Markowits, 1959). We adopt a technique whereby the 
risk is represented by piece-wise linear functions of the 
following form: 

T 

min EL ds'(C'(w), x' ) + ER(C'(w), xi~) 
t=O 

T 

L ds'(EC'(w), x' ) 
t=O 

I 

+ ri L E max{O, ( C'(w) - EC'(w) - L1ci, xi~). 
i=O 

This, clearly asymmetric, form of the risk function has an 
obvious advantage over a more standard approach that 
is based on variance minimization. Splitting risk function 
into to two parts, that represent risk associa ted with cost 
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underestimation. 5 and the benefit associated with cost 
overestimation, i.e., a situation where costs turn out to be 
lower than expected, is a natural reflection of highly 
asymmetric risk perception of"loses" and "gains". More­
over, different "actors" (energy agents) may have quite 
different risk aversion. This approach allows, in principle, 
for the representation of different risks perceived by dif­
ferent decision actors or agents. 

This asymmetric treatment of "risk" and "benefit" sig­
nificantly increases the complexity of the problem - risk 
cannot be expressed just in terms of a functional relation 
of expected values and corresponding variances, like it is 
done in the case of a Markowitz's formulation. Formally 
speaking, the objective function specified above is non­
smooth and, obviously, highly complicated non-convex 
function defined on probabilistic space. In general form, 
it is analytically intractable problem even in case of 
relatively small system when just few technologies are 
considered. The problem could be solved by involving 
stochastic approximation technique (see Ermoliev and 
Norkin, 1995). This stochastic approximation approach 
is based on the idea of estimating solution of the original 
problem by solving another stochastic problem where 
original probabilistic space is replaced by finite (suffi­
ciently large) number of simultaneously generated "sam­
ples" according to the distribution function for uncertain 
parameters (see Griibler and Gritsevskyi, 2000). This 
approach is significantly different from conventional 
Monte-Carlo approach. All drawings are performed 
simultaneously and resulting policy conclusion is for­
mulated against all of considered outcomes. There are 
strong methodological similarities between the so-called 
exploratory modeling (see Bankes, 1993; Lempert et al., 
1996; Robalino and Lempert, 2000) and approach used 
here, although we are using a very different implementa­
tion and analysis technique. 

A systematic approach for the aggregation of scen­
ario-specific solutions into a robust solution is examined 
in Ermoliev and Wets (1988). These techniques require 
explicit characterization of scenario-specific solutions, 
which may lead to extremely large-scale optimization 
problems. Different stochastic optimization techniques 
deal with the design of robust solutions from a set of 
beforehand or sequentially simulated scenarios. In the 
latter case the stochastic optimization procedure can be 

5 There are more then one factor that could lead to underestimation 
of realized cost. For all new technologies (especially at early stage of 
development), even in case where cost reduction rate is equal or even 
better then expected, there is a significant cost fluctuation due to 
uncertainty associated with such cost distributions (high variance, 
heavy tails, and so on). High dependence on particular resource form, 
low level of technological diversification and strong linkage between 
system parts, all these factors largely contribute to increasing probabil­
ity of substantial cost underestimating. Such analysis would be close to 
impossibe to perform on a basis of simple cost-to-cost analysis for 
alternative energy supply chains. 

Box 1 on Terminology 

Scenario is a particular deterministic realization of a fu­
ture energy system. Here it specifies unique values for 
all activity levels such as energy flows, increases in 
capacities, total systems costs, energy extraction, etc. 
Technological dynamics denotes here a more generic 
characterization of future developments with inherent 
uncertainties surrounding, for instance, future costs. 
A resolution of these uncertainties inherent in technolo­
gical dynamics results in a given scenario. There is an 
infinite number of possible scenarios that share exactly 
the same technology dynamics. Thus, technology dy­
namics specifies a set of uncertain, generic relations. In 
particular, technological dynamics specifies here the set 
of uncertain costs reductions as a function of doublings 
of output, the cost distributions in any given period and 
possible spillover effects within and across the ten tech­
nology clusters within the reference energy system. Our 
approach to analyze and compare alternative technolo­
gical dynamics is to assume specific distribution func­
tions for uncertain parameters and relations. The 
uncertainty is resolved by a simultaneous drawing from 
all distribution functions for a given technology dynam­
ics that then results in a deterministic scenario. After 
many such drawings, expected costs and other charac­
teristics of the scenario sample for a particular techno­
logy dynamics and be estimated. The expected costs 
and other sample statistics and be used then for obtain­
ing risk estimates associated with each technology dy­
namics. Each scenarios within the set belonging to one 
specific technology dynamics can be characterized by 
relative (conditional) probability relatively to others 
scenarios from that set.6 Feasible technology dynamics 
are those that satisfy given energy demands and other 
systems constrains. A run of scenarios refers to all scen­
arios generated from a given set of technology dynamics 
through simultaneous drawings from all uncertain dis­
tributions. In this application we analyzed 520 alterna­
tive technology dynamics and have drawn some 250 
scenarios for each of them, resulting in a run of about 
130,000 scenarios. 

We call a given technology dynamics optimal (sub­
optimal) for given run if it is optimal (sub-optimal) in 
comparison to all other technology dynamics in the run 
of scenarios with respect to the weighted sum of its 
expected systems costs, and risk functions based on 
these costs, for all drawn scenarios. 

Or in more formal way, the problem is given in box 2. 

6 As we mentioned before each scenario has exactly zero probability 
of realization. It makes sense to talk about scenario probability under 
some conditions. For example, under conditions that from the set of 
N scenarios ONE should happened, it is possible to introduce and 
compare relative probability defined on this set of N scenarios. 
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Box 2. 

T 

min EL ds'<C'(xlb, w), x1
) 

t=O 

T 

+ ER(C'(xlb, w), x') = L ds'<EC'(xlb, w), x') 
t=O 

I 

+ r; L E max{O,<C'(xlb, w) 
i=O 

T 

~ L ds'<EC'(xlb, w), x') 

1 N ( I 

+ N s~I rii~O E max{O,<C'(xlb, W 5 ) 

- EC'(xlb, w) - tic;, x')) 

B,x' ;:::: d', t = 0, 1, ... , T, 

t 

L Rdws)Xk = r(w 5 ), t = 0, 1, ... , T 
k=O 

T 

L Pkxk ~ e', t = 0, 1, ... , T, 
k=O 

0 ~ x' ~ x', t = 0, 1, ... , T 

where xlb is (x 0
, x 1

, ... , x 1
); C'(xlb, w) are stochastic 

costs under condition that technology dynamics xlb is 
chosen and such that CI, = (C'(xlb 1,w)/C0 (w)), cost re­
duction index, has a distribution function described 
before (with number of doubling ND, calculated from 
xi~) and initial distribution function for C0(w) is equal 
to F 0 ( ); tic; are given "threshold" values for total 
cost deviations and Rk(w) and r(w) reflect uncertain 
quantity-to-cost relations. 

viewed as a sequential adaptation of a given initial en­
ergypolicy by learning from simulated history of its im­
plementation. 

In our test runs we used initially between 100 and 500 
simultaneously drawn scenarios from each technology 
dynamics specification as an approximation of, in theory, 
infinite number of possible realizations. These ranges for 
the appropriate number of scenarios were obtained as 
a result of practical experiments and represent optimal 
trade-offs between exponentially growing computational 
complexity and reasonable accuracy of obtained solu­
tions. Eventually, we decided that 250 simultaneously 
drawn scenarios are a sufficient number for a given tech­
nology dynamics. It is important to emphasize that it is 
not necessary to maintain high accuracy through many 

drawings during the initial calculation steps, when the 
value of the objective function is far from "optimal"­
differences between a solution value and the value of the 
new draw is much larger then errors due to "rough" 
stochastic approximation. However, at the final stage 
number of the drawing needs to be increased. At that 
stage, we use alternative drawing technique in order to 
get better estimates for error bounds. 

5. The solution technique and the computational approach 

As mentioned above, original stochastic global optim­
ization non-smooth optimization is approximated by 
solving a sequence of large-scale linear optimization 
problems. It is done by applying a two-level nested struc­
ture. Global optimization part, which defines technolo­
gical dynamics with respect to new unit installations for 
technologies with increasing returns to scale, is an imple­
mentation of adaptive global optimization random search 
algorithm specifically "tailored" to network flows optim­
ization problems. (For description of such kind of algo­
rithms see Horst and Pardalos, 1995; Pinter, 1996.) The 
inner algorithm is the interior-point method for linear 
optimization. The PCx and pPCx solvers were provided 
by the Argonne National Laboratory (Wright, 1996a, b; 
Czyzyk et al., 1997). These solvers are written in the 
C code, which we modified in order to increase computa­
tional efficiency for our specific problem formulation and 
to link them directly to the global optimization part. 

One of the big advantages of the adaptive random 
search algorithm is that it does not require strictly se­
quential updating of approximated solution. Rather it 
refines the approximated solution at the time when in­
formation is available. This allowed us to devise a "paral­
lel" adaptation of this technique. The inner linear 
optimization problem is relatively large and hard to 
solve. To find a solution for a given technology dynamics 
(with fixed uncertainty distribution parameters) by the 
global optimization algorithm requires approximately 
10-40 min of CPU time on PC with Intel Pentium II 233 
MHz and 128MB of RAM, depending on the number of 
simultaneous drawings from uncertain distributions, the 
number parameters to be considered and whether or not 
approximation of starting point is available (partial 
"hot" restart technique). 

The original problem implementation was done on 
a CRAY T3E-900 supercomputer at the National Energy 
Research Scientific Computing Center (NERSC), in the 
US. NERSC is funded by the US Department of Energy, 
Office of Science, and is part of the Computing Sciences 
Directorate at the Lawrence Berkeley National Labora­
tory. All initial feasibility runs and a number of 
experiments were performed using 32 to 64 processing 
units on CRAY T3E-900. Later on, the problem was 
reported to IIASA computer network environment and 
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re-implemented by using message passing interface 
(MPI) standard. We used public portable implementa­
tion of MPI - MPICH developed and supported by the 
Argonne National Laboratory and special implementa­
tion for Windows NT network clusters (WMPI) pro­
vided by the University of Coimbra, Portugal. Currently 
it is operational on a network cluster that contains from 
6 to 16 Intel Pentium II 233 MHz (as the number of PCs 
can be dynamically changed). Typical runs take from 22 
to 46 wall clock hours. Due to extended logging proced­
ure, calculations can be easily remotely operated, e.g., 
stopped and re-activated at any time. This technique 
allows utilization of computer "off-peak" and during the 
weekend hours. 

6. Major findings and the conclusion 

From the 520 alternative technology dynamics, about 
53 resulted in scenarios with very similar overall energy 
systems cost. They all fall within 1 % of the best values 
achieved. We designate this set of 53 technology dynam­
ics as "optimal" because they are approximately equiva­
lent with respect to the "optimality" criteria. Most of the 
statistical and other analyses here focus on these 53 
optimal technology dynamics. 

These 53 optimal, but fundamentally different, techno­
logy dynamics produce a wide range of alternative 
emergent energy systems. They all share the same useful 
energy demand trajectory but cover most of the range of 
carbon dioxide emissions found in the literature and 
unfold into all possible future energy systems structures. 
The underlying scenarios include futures that range from 
an increasing dependence on fossil energy sources to 
a complete transition to alternative energy sources and 
nuclear energy. Thus, one of the results of the analysis is 
that different structures of energy system emerge with 
similar overall costs, i.e., that there is a large diversity 
across alternative energy technology strategies. The 
strategies are path dependent and it is not possible to 
choose a priori "optimal" direction of energy systems 
development. 

The scenarios from the literature span a wide range of 
future energy requirements and emissions due to the 
variation of the driving forces of future emissions such as 
the energy demand. In contrast, the set of scenarios with 
endogenous learning spans the range due to different 
technological dynamics alone. It is interesting to note 
that the "optimal" scenarios match quite closely the 
distribution of the scenarios from the literature but with 
a somewhat narrower range (they leave the extreme tails 
of the distribution uncovered). In contrast, the frequency 
distribution of the full set of 520 technology dynamics is 
different from the other two with many more scenarios in 
the mid-range of the distribution. This means that the 
optimal or most "cost-effective" development paths cor-

respond quite closely to the scenario distribution from 
the literature. The "median" or "central" futures are 
underrepresented both in the literature and among the 
scenarios indicating that there appears to be a kind of 
"crowding-out" effect surrounding balanced and median 
type of scenarios. In any case, technological learning as 
specified in our approach leads to future energy systems 
that are marked either by high or low emissions ranges 
(with one single useful demand trajectory) demonstrating 
a kind of implicit bifurcation across the range of possible 
em1ss10ns. 

Another result of the analysis is that the endogenous 
technology learning with uncertainty and spillover effects 
has the greatest impact on the emerging structures of 
energy system during the first few decades of the next 
century. Over these "intermediate" periods of time these 
two processes create effective lock-in effects and increas­
ing returns to adoption. In the very long run, however, all 
of these effects are not of great importance. The reason is 
that over such long periods many doublings of capacity 
of all technologies with inherent leaning occur so that 
there are few relative cost advantages that result from 
large investments in some technologies and clusters. 
Therefore, the main finding is that under uncertainty the 
near-term investment decisions in new technologies are 
more important in deciding the direction of long-term 
development of the energy system than are decisions that 
are made later, toward the end of the time horizon. Thus, 
the most dynamic phase in the development of future 
energy systems will occur during the next few decades. It 
is during this period that there is a high freedom of choice 
across future technologies and many of these choices 
would lead to high spillover learning effects for related 
technologies. 

One policy implication that can be made based on the 
emerging dynamics and different directions of energy 
systems development in this analysis is that future 
RD&D efforts and investments in new technologies 
should be distributed across "related" technologies 
rather than be directed at only one technology from the 
cluster even if it appears as a "winner." Another implica­
tion is that it is better not to spread RD&D efforts and 
technology investments across a large portfolio of future 
technologies. It is rather better to focus on (related) 
technologies that might form technology clusters. 
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