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Abstract

The existence and the explicit form of the minimal
Markov process which contains as a component a given
stationary process are established. It is shown in
particular that the future/past splitting subspace of the
multivariate stationary process is finite-dimensional if
and only if the process has a rational spectral densities
matrix.

The property of being stochastically continuous is
obtained as the condition for continuation of the oc-algebras
associated with a process with independent increments which
usually represents a stochastic disturbance of the system
considered. This property gives us the left-side continu-
ation of the c-algebras in the case of the arbitrary
process in a metric space.
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On Two Selected Topics Connected

with Stochastic Systems Theory*

Yu. A. Rozanov

I. Markov state Representation

For control of a stochastic system it is desirable to
choose a phase-state such that the system evolution in time
forms a Markov-process. Of course this is not always possible
if one is restricted to using a state-space only of a certain
type (say, a finite-dimensional vector space); when it is
possible, then there are many ways of doing so. In [1] to [#]
some relevant problems were considered from the viewpoint of
systems theory.

Let us consider the situation in a case of Gaussian station-
ary processes. Let x(t) = {Xa(t)} be an arbitrary family of
univariate Gaussian stationary processes Xa(t); ~o < t < o,
Ht(x) a linear closure of all variables Xu(t); H_t and Ht+ a

linear closure of all subspaces HS(x), respectively; s < t, and

HS(x), s > t, in a Hilbert space of random variables with the
usual inner product (h1,h2) = Eh1h2.
Let p—t(x) be the orthogonal projector onto H_t(x). The
process x(t) is Markovian if
-t t+
P UIH (%) = v (x) . ‘h

Let us say that the Markov process x(t) gives a Markov

* S
. Thls paper was 1initiated by personal discussion with
G. Picci and S.R. Mitter at Padova in December 1975.




state representation for a stationary process y(t) if

t

Ht(y) C H (x) . ’ (2)

In a case of finite dimensional vector processes this means that
y(t) = Cx(t) (2').

where C is a constant matrix.

There is a feeling that for any given y(t) there must be an in
some sense minimal process x(t) that provides the Markov state
representation. How can we describe this minimal Markov process
if it exists?

Let us consider a class of all Markov processes x(t) satis-

fying the condition (2) with the same "innovation" as y(t) namely

such that
Htx) = by = nt o (3)
We have
Ht(y) - utix) Ht+(y) c H (x)
and
P Y (y) € PR (%) = 1t (%)
where P—t = P—t(x) = P—t(y). Thus for the Markov process x(t) .
P (y) < 1Y (x) (4)
where P—th+(y) is the subspace "splitting" the future Ht+(y)

and the past Q(Hy) of the process y(t), -« < t < o,

Let us form a stationary process Y (t), -» < t < o, with

ut(y) = P'tﬂt+(y)

-
’

say



Y(t) = {v,h, h € P %1%y}, (5)

where V -0 < t < », means a family of unitary operators in our

tI

Hilbert space, generated by equations
xa(t+s) =V, x (s); -» < s, t < =

Obviously

t

H (y) € H t

Enatty) cutn (6)

and the stationary process Y (t) has the same innovation as y(t):

Let us show that Y(t) is a Markovian process. Indeed, for

any h €ZHO(Y) there is htEZHO+(y) such that

P °ht =h h*-h | 5°°
and so
v, (h*-h) = v,n* - v,n | B C
t t t '
H°c 't v.nt - v.n | 5 ° t >0
t t =
We have
-0 + _
P"%(v,h v.h) =0
P %w.h) =P °w,h") € 1 (V)
t t
because for t > O
Vth+ c 1% (y) if nt € B°Y (v)
Thus
P %1% (v) = v®(v) ,
P Y (y) = by




which we needed to prove.
As a result we obtain the following.
Theorem 1. There is the Markov process Y(t) whose space Ht(Y)

coincides with the minimal subspace splitting the future Ht+

(y)
and the past H_t(y) of y(t). This process y(t) gives the minimal
Markov state representaticn for y(t) in the sense that

t

Ht(Y)g; H™ (%)

for any other Markov process x{(t) if relation (2) holds.

Let us now find a condition for existence of finite-dimen-

sional Markov state representation. We consider a finite-dimen-
sional Markov vector process x(t). In a case of discrete time
t=0, *+1,... we have

x(t) - Ax(t-1) = ou(t) (7)

where A, o0 are constant matrices of a proper size and u(t)
means the corresponding innovation process. The spectral transfer

matrix function can be found as

_ i\ -1
Seu = (e™'1 A) o , (8)
and if y(t) = Cx(t) then ¢yu = C¢xu' so the spectral densities
*
matrix = . of process t) must be a rational func-
TR by T Py T Oy OF P y(e)
tion of 2z = elx.

Similarly in a case of continuous time t we have
dx(t) - ax(t) = odu(t) (7")
and

6 = (ir1 - a) o , (8")



* .
so ¢yu = C¢_, and the spectral density fyy = ¢yu¢yu 1s a

rational function of z = il.

As is well known, for this type of stationary process y(t)
there is the explicit finite-dimensional Markov state represen-
tation. For example the corresponding Markov process x(t) can

be taken as follows. Let

and let

be a spectral representation of y(t) upon its multi-dimernsional
innovation process u(t) with ¢yu as the maximal (rational) factor

in the factorization

yu yu Yy
see [5]. Let
n
k
o(z) = ] qpz
k=0

be a polynomial with a non-degenerate coefficient 9, (det dg # 0),

such that

is also a polynomial matrix. Say if ¢Yu is polynomial itself

then one can take Q = I. Let us set




i
x_(t) = J Mo T ae o
-7
and
x(t) = {xk(t)}
where
Xk(t) = xo(t - k) : k=0,1,..., r=-1 (r = max m,n) .

Obviously the process x(t) is Markovian because the equation of

type (7) holds:

n-1
_'] -
xo(t) = ag’ T . % (t=1) = gl u(e)
k=0
xk(t) - xk 1(t—1) = 0 ; k =1, , r=1
T
m < mo i -
L o, (t) = J elht [-X c.e lx%]Q( 1hy -1 ae ()
k=0 k=0
—TT ——
i
A A
= J e oy eT ae () = y(e)

which gives us t representation (2').

One can proceed similarly in a case of continuous time t.

As an additional result we obtained the following.

Theorem 2. The minimal subspace splitting of the future and
the past is finite-dim=nsional if and only if the process y(t)

has the spectral densities matrix with rational components.1

1-Compare with [6] where a similar result was obtained for

univariate processes in a quite complicated analytical way.



As is well known, for univariate process y(t) with

spectral density
f = |g|2
Q

(where £ = g 1s the outer factor) the minimal splitting subspace

is generated by functions
eiA(t—k)
—a k=0,...,r-1 (9)

in a case of discrete time, and
k 1At
e
0

(iX)

H k=0,...,r-1 (9")

for continuous time where r is a maximal degree of the poly-
nomial P, Q (see for example [6]).

The explicit description of minimal splitting subspace for
multidimensional processes with rational spectrum still seems
to be an open problem. Another open problem concerns analysis
of the Markov state representations by means of processes x(t)
with different innovations u(t), -« < t < «©, i.e., such

that

-t t

H (x) DH “(y)

(Note that the innovation type and the richness of the past

H_t(x) can be characterized completely by the inner factor in

%
the corresponding factorization £ = . .
p g vy ¢yu ¢yu )

Note that some results similar to theorem 1 can be obtained for

non-stationary processes.




II. 1Innovation Continuity

Let x(t) be a random process on an interval of the real
line, and;ﬁ% a complete o-algebra generated by the variables
x(s), s < t. The o—algebras.ﬁ% grow as t increases. We con-
sider the question of continuity of theLWL growth, which is quite
important for different approaches to stochastic optimal control
as well as for the general theory of random processes (see for

example [7]).

Let H, = L% (.o

N be the subspace of all random variables h,

t)

Eh2 < =, measurable with respect to the o-algebra dft. It is

convenient to treat Ht as the subspace in the Hilbert space of
all random variables h, Eh® < =, with the inner product E(h,+h,).

Because of the obvious correspondence between Avt and Ht we

consider mainly the family Ht treated as a function of t

Let us set

the former means the closure of all subspaces HS, s < t.

We have

Hiio € He € Heig

and there can be a gap between H___ and H  as well as between Hy

and Hiyo- Say this occurs if t is a fixed point of discontinuity
o

of the random process x(-). So considering conditions for the

family H, to be continuous we assume that the process x(t) in

t

a metric phase-space R is stochastically continuous:

lim P{o(x(s), x(t)) > €} =0 (10)
st



for any € > O; here p(x,,%X,) means the distance between points
x1,x2-€ R.
One can verify that under this assumption
H = H . (11)

To clarify this, let us recall that a probability distribution

in a metric space is regular; namely for any measurable set B,

inf P (B\F) =0
FCB

where inf is over all closed sets F, F € B. For any closed set

F we have

inf P (G\F) = 0
GOF

where inf is over all open sets G, G D F, with boundaries §G of
zero probability P(8G) = O. Say one takes the proper

G:{x; Q(XIF) <r} ’ r - 0O ’ |
with the boundaries

§G C {x: op(x,F) = r}

which are disjoint for different r; then P(8G) = O except for not more
than a countable number of r. Thus any event {x(t) € B} can be
approximated by a proper event {x(t) € G} with P{x(t) € §G} = O.
Event {x(t) € G} itself can be approxiinated by events

{x(s) € G}, s < t. Indeed,
P{x(t) € G, x(s) Q‘G}

< plx(t) € G\F}+Plp(x(t),x(s)) > e} >0 ,
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if we consequently take

F = {x: p(x,R\G) > e} .,

and s > t-o, € > o. Applying this to the other open set

G' = R\(C U 8§ G) with the same boundary §&7' = &G, we obtain
P{x(t) € G, x(s) € G} < P{x(t) € G', x(s) &€ G'} ~ 0 .

Thus the o-algebra AVt generated by the events {x(s) € B}, s < t,
coincides with the og-algebra ‘W£—o generated by the events
{x(s) € B}, s < t.

Let us now consider the right-continuity of the family Ht:

Ht+o = Ht . (12)

Generally this property does not hold even for a very smooth
process x(t); moreover it can be an arbitrary type of discontinuity
(see for example [8]). But it holds for a case of stochastically
continuous processes with independent increments (which are more
and more used in the martingale approach to stochastic optimal
control). Apart from the Wiener process case, we don't know where
this phenomenon is described, though it looks like one of the
classical results of probability theory, being the direct general-

ization of the famous 0-1 low.

Theorem. For a stochastically continuous process with independent

increments,

The proof of the theorem is based on the following

Lemma. The orthogonal complement Hu<:>Ht in Hu to the subspace

Ht’ t < u, is a linear closure of variables
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) =«+ h, (A ) , (13)
n

t
h (a)) =1 - E1
tk k Ak Ak
(1A are indicators of the events
k
A = Ix(ty) - x(t ) € B )i £ =t <ty <eer< k< u)

Indeed the subspace Hu coincides with the linear closure

of elements

(where Ak are the events of the type Ak = {x(tk) € Bk};

tq <s++< t < t) together with elements of type (13), and the

last are obviously orthogonal to the subspace Ht.

As was actually shown in the case of a stochastically con-

tinuous process by the proof of the equation (11), any event
A = {x(t,) - x(t) € B}

can be approximated by the event
A' = {x(t;) - x(t+é) € B} , 6§ >+ 0

and therefore any element h of type (13) can be approximated

by a similar element h' which is obtained from h by the substitution

of the second factor:

h A'
t1(A1) - ht (A'")
1
Th
us any element ht+o from the orthogonal complement Ht+OC:)Ht
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in Ht+o to the subspace Ht as an element of the subspace HuCZDHt

can be approximated by the linear combination of the proper
elements h'. According to the lemma they belong to the subspaces

Hu@:DHt+6, so they are orthogonal to Ht+o - Ht+6' Because the element

h belongs to H

t+0 we conclude that ht+o = 0 and thus H = H

t+o t+o t’
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