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Optimization Models of Transportation Network
Improvements: Review and Future
Prospects

(Abstract)

The paper briefly reviews the alternative approaches to spatial
improvements in transportation networks from the early linear programming
attempts to the more recent discrete programming approaches; the more
analytical geometrical and optimal control methods; narrow cost mini-
mization models and the more comprehensive attempts to incorporate a
broad range of economic and social impacts. Finally some personal remarks
are made concerning the most promising areas of future research with
respect to practical relevance, computational feasibility and theoretical

interest.

Ross D. MacKinnon
University of Toronto
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OPTIMIZATION MODELS OF TRANSPORTATION NETWORK
IMPROVEMENTS : REVIEW AND FUTURE PROSPECTS*

Ross D. MacKinnont

Investments in the transportation system represent a major component
(frequently the largest share) of a country's public capital expenditures.
These investment decisions can, of course, strongly influence how the
transportation system will be used for decades to come. In.particular,
transportation investments may affect subsequent decisions of individuals
and firms regarding the type and volume of their activities and ultimately
even their locations. Thus, not only the magnitude of capital expenditures
in transportation, but also their strategic economic, social and environ-
mental ramifications would seem to make the study of them a practically
important and intellectually challenging area of research. It is the purpose
of this paper to review the applications of optimization methods to this
research question and make some tentative prescriptions regarding the most
promising and relevant areas of future research. (A review of research is
particularly appropriate in view of the many disciplines and interest groups
making contributions to this area of research. They include engineers
(primarily civil, electrical and industrial), opefations researchers,
economists, mathematicians, geographers, regional scientists, urban planners,
and perhaps others. Although the volume of research 1s managable, its far-
flung distribution makes the task of keeping informed of current develop-

ments a difficult one.)

*
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self and Professor G. Barber of Northwestern University. His contributions

to this paper, both direct and indirect, are gratefully acknowledged.
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The study of transportation is pre-eminantly a spatial problem. The
use of a transportation system manifests itself as a set of spatial
flows; the most important investment and control decisions are of a
spatially specific nature; the consequences of these investments can be
highly differentiated spatially; the transportation system is one of the
crucial mechanisms which gives rise to locational variations and speciali-
zation in economic and social activities. It is these spatial or locational
aspects which are emphasized in this review.

Approaches to optimize such investments can be categorized roughly
and somewhat arbitrarily into two groups. The first and largest is ultimately
concerned with numerical optimization procedures. These approaches frequently
attempt to incorporate significant theoretical relationships, but they are
devised to provide computationally feasible solution methods for real
planning problems. Most of these methods arise directly from the mathematical
programming literature. Finally, they deal exclusively with discrete space
problem formulations. That is, locations are represented by discrete fhodes
and the network improvement decision is whether two nodes should be directly
connected, and, if so, what the capacity of the link should be.

The second class of optimization methods is more analytical, theoretical
and is frequently concerned with space as a continuous variable. It has
its roots in analytical geometry and differential calculus. Rather than
attempting to solve real plamning problems, this approach aims to provide
theoretical, general, and essentially qualitative insights on limited
aspects of the transportation investment problem. These two approaches, while
in principle complementing one another have developed largely independently

with minimal influences on one another.



Numerical Models of Optimal Network Improvement

1.1 Linear Programming Models

There are, of course, many formulations of optimal network
improvement problems, reflecting differing initial conditioms,
system behaviour, primary objectives and constraints. Perhaps the
most obvious formulation is a simple extension of the capacitated
Hitchcock - Koopmans Transportation Problem as presented by

Quandt (1960):

I J
Minimize % I C. X (1)
i=1 j=1
J
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j=1
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1] 1] H (route capacity)
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The objective is to minimize the total cost of shipments of a
homogenous product subject to specified supply constraints and
demand requirements without violating the capacity of any link {old
capacity (Kij) + added capacity (AKij)] and not exceeding the budget
available for transportation investment expenditures (B).

One of the most interesting aspects of this formulation,-as with

all linear programming problems, is the dual problem:
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All of the dual variables have the standard interpretation of the change
in total costs associated with a unit change in the right hand side of the
associated constraint in the primal. Thus, in particular, the.dual variable
t is the decrease in costs arising from an additional dollar expended on
increasing the capacity of the transportation network. This imputed rate
of return can be compared to the rate of return for expenditures from
other investments in order to assess the wisdom of making more (or less)
money available for transportation system improvements.

Quandt presents two alternative formulations of the same problem.
One of them minimizes construction cost expenditures, completely ignoring
transfer costs. A tolerable level of total transportation costs could be
incorporated into this version of the model as a constraint.) The other
formulation minimizes the joint costs of operations and investments with
the latter costs being amortized on an annual basis using appropriate
interest rates.

In a paper which was published earlier but which derives from Quandt's
analysis, Garrison and Marble (1958) formulate perhaps the first network
generation problem which attempts to incorporate the economic consequences
of transportation investment. The objective is to minimize the sum of

operating and investment expenditures subject to supply, demand and
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transportation capacity constraints:

I J I J
Minimize ¥ T C.. X.. + T I r.. AK,. €))
i=1 5=1 3 q=1 =2 N H

subject to:

J

X, < L I a AKX + S, (supply) (10)
j=llJ K q ikq kq i

TX,, »z & b, ° AKk + D, (demand) (11)
it Tk o i@ e ]

Xij < Kij + AKij (link capacity)(12)

In inequalities (10) and (11) aiﬁq and bjkq are empirically determined
coefficients which measure the effects of capacity increments on route

kq on the supply capacities and demand requirements at i and j respec-
tively. The difficulties of measuring suéh coefficients at any one time
are rathér formidable. More important, perhaps, it should not be expected
that they would remain constant as the transportation system, the way it
is used, and the distribution of economic activity change over time. It
would seem clear that the sensitivity of demands and production to changes
in system structure cannot be assumed to remain constant and linear as

the system itself undergoes changes. Another apparent flaw in the model 1is
that the "optimal" solution may result in less than optimal transportation
investments since low capacities will discourage demands and supplies from
increasing and thus total flows will be less than they would be with
higher investment levels. Thus, a cost minimizing objective may result in
a stifling of economic development, which would of course, be contrary to
the objective of most national governments. Having said all this, it must
also be emphasized that as one of the first applications of optimization

methods to the network generation problem, the Garrison - Marble paper




represents an ambi tious initial effort to go beyond the more familiar
narrowly defined formulationms.

Kalaba and Juncosa (1956) have presented another early paper in this
research area. Although nominally concerned with a telephone rather than a
physical transportation network, many of the principles are similar. In
this formulation both nodes (switching centres) and links have capacities
which can be increased. Interstation demands are given. The optimal
routing problem is defined to be one of maximizing a performance criterion
function which is the ratio of satisfied demands to those predicted
exogenously. For the design problem, the authors choose to minimize the
total cost of adding to existing link and switching capacities subject
to constraints on link and switching capacities as well as a constraint
on the performance criterion ratio index just mentioned. Thus agéin we see
the flexibility of mathematical programming methods — objectives may appear
in the objective function or in the constraints. To a large degree the
choice is the modeller's although theoretical principles and practical
requirements may provide some guidance.

All of these linear programming formulations can be modified so as
to include the possibility of transhipment or can be put into an arc-chain
format to accommodate any generalized transportation network. An arc-chain
formulation of a network synthesis problem can be expressed in the
following way:

I J Q q q (13)
Minimize L z z Ci' Xi.
i=1 j=1 ¢=1 3 H

subject to:l

Q 7 q
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The decision variable Xij is the flow from node i to node j over the
qth chain (qth shortest path) from i to j. The decision variable Akl

is 1link- or arc-specific - i.e. the increase in capacity of the Zth

Lq

link. The coefficient aij

is defined so that it equals unity if link £
is on the qth shortest path between nodes i and j and equals zero other-

wise.

1.2 Discrete Programming Models

One of the major shortcomings of linear programming representations
of the network improvement problem is that increases to the capacity of
any network link are assumed to be continuously valued variables. More
realistically, these capacity improvements might be limited to a set of
indivisible entities, such as the addition of entirely new lanes of
traffic on the link. Alternatively, the potential changes to a network arc
might be restricted to a set of mutually exclusive design possibilities;
in this case the variables may be limited to the values zero and one.
Integer valued variables, then, emerge very naturally from the typically
rather lumpy investment decisions arising in many transportation planning
situations. In principle, either cutting-plane methods or tree-searching
procedures may be used, but for most problems of interesting size only the
latter are feasible.

A typical mixed integer programming model of network improvement

could closely resemble the previous linear programming formulation:
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The flow ~ blocking constraints (21) ensure that the total flow on any
link £ 1s less than or equal to the capacity of the link (the product
of the capacity kl of one unit e.g. a lane and the number of units
(AQ) e.g. the number of lanes). The coefficient r, is the cost of con-
structing one unit of capacity on link &. The investment decision variables
AQ may be restricted to the binary set, zero and one, and be interpreted
as the decision to add or not to add 1link % to the system. Mixed integer
programming models of thils type have been applied in & large number of
different situations including intercity highway networks (Bergendahl
(1969) and, Morlok et al (1969)), intra-urban traffic systems (Ochoa-Rosso
(1968) , Ochoa-Rosso and Silva (1968), and Hershdorfer (1965)), and national
transport systems (Taborga (1968) and Kresge and Roberts (1971)).

One form of network generation problem has received considerable
attention - so much that it is frequently referred to as "the optimal net-
work problem'. The "optimal network" is that set of arcs linking together

a given set of nodes such that the sum of the shortest paths over the net-

work between every pair of nodes is minimized with the restriction that



the total length of the network does not exceed some upper bound.

The solution to this problem consists of the binary incidence matrix
specifying which pairs of network links are to be constructed. The
number of different potential solutions quickly becomes enormous as M,
the number of potential links,increases. In general, there are 2M
potential solution networks. This problem can be solved by ény method
which is capable of restricting the total number of link combinations
that must be examined to some manageable size. Many algorithms have
been developed for this purpose - backtrack programming, branch and
bound methods and heuristic programming. (See Scott (1971) for a review
of these algorithms and some applications.)

All tree searching algorithms are especially flexible solution
procedures in that they can be used to solve a variety of mixed integer -
real linear or even non-linear programming problems so long as they
retain the property of monotonicity i.e. the objective function may be
non-linear provided the deletion of a link consistently decreases (or in-
creases) its current value.

In spite of this flexibility, improvements in exclusion operators
and bounding procedures and the increasing capabilities of computers, none

of these algorithms can be used to obtain solutions to very large problems.*

In this event, heuristic methods varying from simple random sampling and

trial and error to elaborate search procedures may have to be used.

*In order to avoid the computationally cumbersome combinational programming
methods, Hodgson (1972) develops a linear programming formulation by assuming
an extensive two lane highway network already exists; the investment problem
consists of determining where the network should be upgraded to a four lane
facility. The decision variable in this case is the number of miles of four
lane roadway between two adjacent nodes. Partially upgraded links are thus
permissible and meaningful. This formulation enables the researcher to take
advantage of the extensive software and powerful computational methods

of mathematical programming systews to be brought to bear on large network
improvement problems with large numbers of constraints.
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The models offer the potential of providing feasible solutions with

only a minimum of computational effort. Although many of these algorithms
converge toward the globally optimal solution, they can terminate with

a locally optimal solution which differs from the global optimum by some
unknown margin of error. An example of such heuristic algorithm is presented
in Scott (1969) and applied to a system of 32 cities in MacKinnon and
Hodgson (1970). Various special heuristic algorithms have been developed

by Steenbrink (1974) and Barbier (1966) and applied to optimal network
problems.

Another category of heuristic procedure consists of methods which take
into account the hierarchical structure of transportation networks solving
problems first at the most aggregate level, substituting a single link for
many which perform similar functions. As the algorithm proceeds a network
disaggregation procedure is implemented giving more detailed investment
prescriptions. (See,for example, Manheim (1966), Chan (1969) and Chan et al
(1968)). More simply, large regions can be decomposed into smaller sub-
regions within which network optimization is independently undertaken. The
overall solution network is generated as an aggregation of the optimal

solutions of the smaller regions.

Finally, interactive programming can be used. With this procedure,

the modeller interacts directly with a computer terminal, responding to
the interim solutions generated by the program. Links may be added or
deleted by the modeller as the computer solves and evaluates each of the
proposed networks. Stairs (1968) suggests this method for the network im-
provement problem and Schneider (1971) uses it to provide quite reasonable

results to related public facility location allocation problems.



- 11 -~

Interactive programming in its many guises represents the least
rigorous of all approaches to network optimization. At its best, it can
effectively harness the subjective intuitive understanding that experienced
planners can bring to bear on complex, ill-structured problems. At its
worst, heuristic programming generates plausible guesses at solutions to
specific problems and offers few if any general insights into the problem

of transportation network improvement.

1.3 Optimal Control Methods

Radically different are the attempts to apply control theoretic methods
to the network generation problem.

Wang, Snell, and Funk (1968) assume a given rectangular network
geometry, and a given generation, distribution and direction of traffic
(all converging on a single CBD). They formulate a problem which jointly
minimizes the time costs of flow and investment costs; simultaneously
assigning flows and improving the network. Flows can be generated re-
cursively because of the assumed directionality and the well defined simple
geometric structure. Travel times are assumed to be a non-linear function
of traffic volumes and investment on a link. State variables are defined
in terms of flows, iﬁvestments, and travel time costs. The Hamiltonian
function for a typical interior node is generated. Initial conditions for
the state variables are of course zero (no flows or antecedent costs
beyond the limits of the urban area.) The boundary conditions for the
adjoint variables are thus readily determined. An application of a
discrete version of the maximum principle then generates a solution of

some generality to this network improvement problem. It is suggested that
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the special case where upper and lower bounds (1.e. inequality conditions)
on investment levels in different parts of the network be handled by a
search procedure guided by current values of the adjoint and state variables
and the partial derivatives of the Hamiltonian function. Two hypothetical
numerical examples are presented — the first a pure network generation
problem, the second a network improvement problem. The ability of this

type of approach to deal with non-linear functions certainly recommends it.
Whether it can be extended to model more realistic problems is still un-

known.

2, Theoretical Models of Optimal Network Improvement

Quite different in style from the models outlined in the previous
section are the approaches which attempt to isolate and rigorously analyze
a smaller set of factors and where the ultimate'aims, stated or not, are
theoretical principles and analytical elegance rather than specific numerical
solutions to practical planning problems. Although this literature is rather
small, a detailed review of all the models is nevertheless impractical. In
this section, the problems are enumerated and the general flavour of the
approaches are indicated.

The "Steiner problem' is the most widely studied of all these problems.
The continuous space analog to the minimal spanning tree problem (Prim, (1957)),
the Steiner problem determines the network of minimal length which connects
a given set of points to each other. The solution to this problem is of
particular relevance in cases where flow costs are insignificant compared
to construction costs (eg. communications networks and economies where
capital is in very short supply) and where the construction cost surface

1s uniform and thus Fuclidean measures of distance are relevant. The Steiner
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network provides a lower bound on network length for systems which are
to connect a given set of regions or cities.

The solution to the three point Steiner problem has been known for
many years - a simple ''vee'' network if the triangle joining the three
points has an angle of more than 120°; otherwise a "wye" network with
the three links meeting in the interior of the triangle, forming three
120° angles. The general n-point case has proven to be more resistant to
solution, but methods have been developed to solve n-point cases for any
specified network topology. (Gilbert and Pollak, 1968 and Werner, 1969).
As the number of topologies increases geometrically with n, it may seem
that these methods are severely limited; however, in most situations,
many topologies can be discarded as implausible candidates. Thus, even for
large values of n, networks which are close to the overall minimal length
can be generated.

Instead of ignoring flow costs completely, it would be possible to
emphasize them to the exclusion of construction costs. The solution to this
problemn is the trivial network which connects each pair of points directly.
Considerably more interesting are those network models which attempt to
include the trade-off between construction and flow costs. One version of
this problem is the three point Weber problem. One raw material source Pi
is to be connected by a transportation network to two markets P2 and P3 so
that the joint costs of construction and flow are minimized. Working in
Euclidean space and assuming flow and construction costs are linear,
homogeneous functions of distance, the problem reduces to that of finding

the location coordinates (X, Y) of an interior point such that

2 2.5
c = [c+(f12+fl3)k] [(Xl—X’) +(Y1-Y) 12
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2 2 L
+ [c+f12k] [XZ—X) +(Y2—Y) 1°

Ny 2.5
+ [c+f13k] 1X3 X) +(Y3 Y) 7]

is minimized where (Xi’ Yi) are the given location coordinates of point
Pi’ fij is the flow between 1 and j, and c and k are the known per mile
costs of construction and flow respectively. Werner (1968a) solves this
formulation, re-interpreting the problem in trigonometric terms. With more
than three points, the problem of specifying the appropriate network
topology again arises. Werner develops a method by which a "first design"
network is decomposed and a sequence of cost minimizing adjustments are
made by applying the methodology developed for the three point case. Only
locally optimal solutions can be derived as the order of the adjustments
affects the network to which the procedure converges. The specification
of optimal network topology can be solved for a few special cases, but
Werner states that "...up to now, practically all essential problems
concerning topological network design are unsolved."

It is interesting to note that the network which jointly minimizes
construction and flow costs is a minimum length network (i.e. a Steiner tree)
if we assume that flows linearly decline with distance. This should provide
a strong warning against using such models as planning devices. Clearly
flows will decline with increased charges, but the primary purpose of a
transportation system is not to minimize costs. One must be cautious in

defining the objective function and constraints of network improvement

models. This comment is closely related to the criticism of the Garrison -
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Marble model in the previous section.

Another case where demand is specified at a finite number of
discrete locations is a trunk-line problem studied by Beckmann (1967)
and Hauer (1972). Hauer considers the case of a single origin (eg. place
of work) and multiple destinations located at discrete points in
Euclidean space (eg. places of residence such as apartment blocks). The
problem is to distribute the homeward bound travellers to points close
to their destination taking into account the inconvenience th;t diversions
impose on travellers bound for different destinations. More specifically,
the objective is to minimize some composite of walking distance, travel
time for passengers and travel time of the vehicle. (Although nominally
a routing problem, it is, with slight modifications, applicable to the
location of fixed facility such as an intercity freeway or a waste dis-
posal facility.) A number of general properties regarding the geometric
shape of the optimal route are derived and a graphical method of con-
structing a route for any set of points is developed. As usual, the order
in which the points are to be served, the ﬁetwork topology, must be
specified; thus some experimentation may be necessary.

Other approaéhes relax the assumption regarding the discreteness of
the location of transportation demand. For example, one can attempt to
derive the optimal transportation network to serve a spatially continuous
population distribution. Tanner (1968) develops a methodology to evaluate
alternative networks of this type but avoids the more difficult problem
of network synthesis.

To make the network generation problem tractable, these formulations

focus on a major trip destination such as the CBD to which all trips
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are assumed to be destined. A homogenous transportation surface is
generally assumed, superimposed on which is to be a new arterial
network on which transportation costs are to be some specified fraction
of "normal" costs. Friedrich (1956) uses a calculus of variations
approach to determine the optimum trajectory of a single arterial route
servicing a variable trip generating density within a rectangular sector
of a city. Werner et al (1968) and Sen (1971) develop extensions and
special cases of this approach. Sen generates an arterial network with
multiple branches (a herring-bone topology) to serve a uniformly
distributed population. For this specified network topology, it is
possible to derive general statements about the relationship between the
dimensions of the region, the transportation cost differential, the angle
of incidence and the spacing of the branch lines with the main stem of
the network.

Another continuous space problem is the minimum cost route connecting
two points where the costs of construction, because of physical con-
ditions or land acquisition costs, vary with location. The general problem
can be formulated as a calculus of variations problem (Werner and
Boukidis, n.d.) but in this form can be solved only for spzacial cases.*
Where flow costs can be ignored and the cost surface can be approximated
by a set of polygonal homogeneous cost regions, Werner (1968) shows that

the problem can be solved as a multivariate extension of the law of

refraction.

*
M.J. Hodgson of the University of Alberta is currently working on numerical
applications of these methods in cases where the costs can be described by
analytical spatial functions.
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Newell (1974) comments on why the optimal network problem is
under-researched. Not only is it typically at the last stage of trans-
portation planning process, but it is characterized by difficulties which
naturally arise out of two characteristics of the mathematical functions
relevant to such problems. The first, the fact that many of the decision
variables are integer valued has already been discussed at some length. The
second is that the relationship between joint flow and construction costs
on the one hand and flows is not in general a convex function. This non-
convexety arises from the economies of scale achieved by large transportation
facilities. Thus, total costs on any link rise in a convex fashion for any

fixed facility (as congestion levels are encountered) but as flows rise,

larger scale facilities can reduce average flow costs on any route. The
relevant cost curve then is the individual cost curves' envelope, which
very roughly, can be said to be concave. Concave programming problems are
difficult to solve, but in qualitative terms, if the cost curve is concave,
then flows between any two destinations will be routed over a single path
because of tﬁe economies of scale. That multiple path routing arises in
reality can be attributed to the fact that the cost curve is not strictly
concave, but piecéwise convex.

Another observation arising from Newell's discussion is that perfectly
symmetrical networks (eg. square grids, non-hierarchical networks, etc.)
are almost certain to be suboptimal even if the underlying demands are
perfectly symmetrical. This follows directly from the above mentioned

economies of scale.
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Although Newell is modest in evaluating his contribution, it is
possible that these sort of qualitative findings are more significant than
the more technical and supposedly operational results of mathematical
programming methods. More important than evaluating the relative merits of
these approaches, it is apparent that mathematical programming formulations

should attempt to incorporate the theoretical findings of Newell and others.

3. Perspectives on Future Research Priorities

Having provided a brief but hopefully representative review together
with an extensive if not comprehensive bibliography on optimization approaches
to the network improvement problem, it is appropriate to ask what are the
most interesting remaining research tasks which could be undertaken. The
answer to such a question is necessarily subjective and selective. In this
section, no attempt is made to provide an objective comprehensive list of
research problems. It is nevertheless hoped that participants of the workshop
will make suggestions regarding additional focal points for research as well
as concrete proposals regarding appropriate research strategies to resolve
remaining problems.

The first and perhaps overriding research priority is a rather general
one and, in a sense, all others are special cases of it - how to imbed
optimal network improvement models into broader transportation planning and
even broader urban and regional socio-economic planning contexts?

Transportation planning is typically decomposed into the following sub-
problems: (a) prediction of the distribution of population, land use and

economic activities; (b) trip generation; (c) trip distribution; (d) modal
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split; (e) traffic assignment; (f) network analysis, evaluation and
modification. Although feedback loops are recognized, in practice the
planning process tends to follow this sequence. For simplicity let us
ignore the modal split component. Some approaches to network generation
assume trip generation is known and the model simultaneously distributes
trips, assigns traffic, and generates network improvements. The simple
extensions of the capacitated Transportation Problem in either tranship-
ment or arc-chain form are models of this type (eg. Quandt (1960), Carter
and Stowers (1963).

More numerous are those which assume internodal demands are specified
and independent of network structure. These models assign the known trips

to the transportation network while adding links or upgrading the quality

of the current network (eg. Ridley (1968), Scott (1969), Boyce, Farhi and

Weschiedel (1973), Bushell (1970), Hodgson (1972), Bergendahl (1969b), and
many others.) Hutchinson (1972) argues that this is a reasonable strategy
for improvements to an already well-developed transportation system. But of
course in general the new system configuration will influence future
distribution of demands. Even for a given distribution of population and
economic acti?ity, better transportation service will induce individuals
and firms to increase their utilization of the transportation system. Thus
the integration of the network generation problem with trip distribution and
generation models is certainly desirable. This has been done very crudely
by MacKinnon and Hodgson (1970) by incorporating an unconstrained gravity
model into the objective function. More recently Boyce and hils assoclates

have developed a method which minimizes the costs of a trip set which 1is
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distributed by a doubly constrained interaction model.* This approach,
of course, assumes that trip generation is insensitive to transportation
service characteristics. Even the same number of people with the same
spatial distribution may make more trips as costs decrease and the quality
of service improves in other ways. More importantly, perhaps, changes in
the transportation system will in the longer run induce households, firms,
and other decision making units to change the location of their activities
and therefore the spatial structure of their transportation requirements.
The relationships between transportation improvements and the location
(and re-location) of other economic and social activities is not very
well understood. [See for example Holland (1972), Straszheim (1970) and
Putnam (1975)] Models which identify the location of both transportation
link improvements and production levels of economic activities such that
the joint costs of transportation and production are minimized may be
appropriate in some instances. Conceptually and operationally this is a
rather simple integration of an interregional input-output model with
location-allocation and network improvement models. Given a total
schedule of exogenously predicted "final demands', exports, and imports
by sector, the cost minimizing location of industry and transportation
investments can be determined. Barber (1973, 1975) has applied such a
model to interregional systems in Indonesia and Colombia. (In the
Indonesian context, see also 0'Sullivan et al 1975.) With less than
rigidly and centrally planned economies, such formulations may have only
heuristic value, setting a lower bound on one criterion of merit, re-

cognizing that firms may make location decisions which do not result in

*
Source: personal communication with D. Boyce, University of Pennsylvania.
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cost minimization for the system as a whole. Even in rigidly planned
economies, other goals may be important yet difficult to incorporate in
the model. Also for any type of economy, input-output coefficients are
not stable and more importantly they will be affected by changes in the
transportation cost structure. A cost-sensitive interregional input-
output submodel could be incorporated into the larger model, but this
would give rise to difficult nonlinearities.

Location factors other than transportation costs should be included
within the model. Straszheim (1970) and many others would suggest this
is particularly true for more advanced economies where the sensitivity
of location decisions to transportation costs is rather low because of
the relative homogeneity of the transportation cost surface and the
typically small proportion of value added accounted for by transportation
costs in many of the fastest growing sectors in such economies. Trans-
portation effects on spatial development would appear to be most striking
at two extremes of development - on an interregional scale, transportation
can be an effective tool to shape development in economically less advanced
countries where transportation service is at a low level and the economy
is dependent on transportation-intensive activities; on a local scale,
transportation can shape the future spatial structure of urban areas.

Dickey (1972) and Dickey and Azola (1972) have provided a valuable
first step in broadening the focus of normative urban transportation
planning by imbedding an econometric model of land use development (the
"Empiric'" model) into an optimization framework. The decision variables

are interzonal travel times and the goals are stated in terms of desired
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future social and economic land use patterns. The constraints are com-
posed largely of the equations of the Empiric model. Thus, "future land
use changes that take place are constrained to do so in the way the
Empiric model says they will."*

Dickey rightly characterizes this approach as exploratory and preliminary
Not only 1s the econometric model subject to some skepticism, but also the
decision variables themselves (exponentially transformed travel times) are
not in a form which 1s necessarily directly translatable into action by
transportation planners. For one thing, it would not be difficult to
generate combinations of "optimal" travel times which were inconceivable
since changing times between one zonal pair will change the times between
another pair if the first link is on the path between the second pair. Even
if this difficulty is not encountered, the costs of changing travel times
and the means by which this is to be done are not specified. Given the variety
of means and costs (and our imperfect knowledge) this vagueness is perhaps
a desirable characteristic. The model suggests directions and approximate
magnitudes of actions implied by the goals, not the precise means of
implementation. |

Lundqvist (1973) presents an even more ambitious model which uses
hierarchical decomposition to jointly determine the optimal expansion and
use of transportation and other land uses within an urban area. The need
for a "recursive dialogue between optimization and simulation techniques" is
stressed. The solution to the non-linear combinatorial problem is based on

heuristic tree searching methods.

*
One set of non-linearities which naturally arises in the constraints is

accommodated by using e~ BCj;(t+l)as a decision variable rather than the
travel times Cij (t+l) themselves (8 is a distance friction parameter
estimated in the econometric model.) Multiplicative non-linearities are
handled by assuming one set of variables is constant and searching over
their known range of values for their best settings.
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Within this general prescription of broadening the scope of
optimal network improvement models, two categories of difficulties
typically arise - first, data on system inputs, goals, and past behaviour
are scarce, costly and/or of poor quality; second, theoretical deficiencies
are generally just as severe. Thére is an apparent need for models which
are implementable, relevant, and about which we have some confidence
regarding their validity.

Three categories of special problems relating to these models are
those aspects related to system dynamics, risk and uncertainty, and
specification of objectives. Each of these will be considered in turn.

For the most part, only relatively crude models have thus far been
formulated to optimize improvements to transportation systems over time.
Most of these approaches consider the network addition problem within a
dynamic programming framework. Funk and Tillman (1968) and de Neufville
and Mori (1970), for example, explicitly make the simplifying assumption
that the benefits and costs arising from each link addition project are
independent of each other, and can thus be specified numerically at the
outset. More precisely, the interdependencies are only the relatively
trivial ones arising from the fact that building a link in an earlier
period may preclude the construction of others in subsequent periods -

a sequence which, taken as a whole, could result in higher net benefits
than one which simply maximizes the net benefits for each period taken
separately.

Of considerably more interest (and difficulty) are models which

recognize the flow interdependencies between different links. That is, the



- 24 -

opening of a new link will divert traffic from other links and may even
change the flow of traffic between origin - destination pairs in both

a relative and absolute sense. Thus the value of adding a particular
link will be dependent on what other links have already been added to
the system. For example, the construction of a link in time period t may
affect the value of adding a nearby link in period t+1 - positively if
traffic generated and/or diverted as a result of the first link causes
congestion on the network in this area, and negatively if one of the
system objectives is to encourage regionally equitable balance of trans-
portation services and investments.

Behavioural responses to network changes should be an important part
of the network link sequencing problem. Changing the network will result in
a different assignment distribution, and generation of traffic. Ultimately
transportation investments can result in different geographical patterns
of population, economic and recreational activities - patterns whigh will
be passed on to subsequent stages of the spatial development process.

Some of these behavioural responses are relatively easy to model.
Bergendahl (1969b) assumes that transportation demands between all pairs of
points are predictable exogenously‘and that traffic need only be assigned
to the network in each period. He assigns traffic using a linear programming
multicommodity flow model. Incorporating link congestion costs, (Bushell (1970)
uses a similar approach.) Other network assignment algorithms could be used,
but this one provides a measure of the maximum savings in flow costs resulting
from transportation investments. The optimal investment sequence is then
determined by minimizing a recursive function which is a composite of

discounted operating and investment costs:
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0t+l(St+l)= m%f'}l[R'Et+l(St+l)+C(St,St+l) + R ¢t(St)]
S

pTHis mi%[RaT(sT)—v(sT)J

s
0,.0
g~ (s7)=0
where S* is the state of the system at time t (a list of the
transportation links and their characteristics)

st .t . . . t
Zt(S ) the minimum operating costs associated with the state S

+
C(St, St 1) the investment costs of changing the system from
+
St to St 1
v(ST) the "scrap value™of the system (eg. the future_ operating

costs associated with the "horizon" network S~
R and R' appropriate discount factors.

Bergendahl's model is operational and has been applied to highway invest-
ment decisions in Sweden. The computational task has been reduced by
eliminating many of the implausible link combinations and sequences.
Although more ambitious than other efforts Bergendahl does not
attempt to incorporate the traffic re-distribution and generation effects
of network improvements. Even though our theoretical knowledge is relative-
ly weak on this subject, it is of interest to.note how such relationships
could be incorporated. Hodgson (1974) uses a simple gravity model to re-
distribute and generate intercity traffic estimates over time in response
to network changes. Traffic is assigned by the simple shortest path
method. Transportation flow estimates are maximized over time subject to
investment in each period and the specification of a terminal network which
was generated in MacKinnon and Hodgson (1970) using a single stage

optimization method. This latter condition is clearly artificial, but it
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is likely that considerable experimentation with crude approximations
is going to be necessary before well-structured solutions to the
temporal sequencing problem emerges.

In an important paper Frey and Nemhauser (1972) model the optimal
timing of network expansion as a convex programming problem where flows
are non-linear functions of service characteristis which in turn are
functions in part of flows. The interdependencies between augmenting
capacity on different links is fully taken into account and the conditions
under which a myopic decision strategy is optimal are delimited. Un-
fortunately the general nature of these findings are tempered somewhat by
the statement that "...although these results may be extendable to large
serial networks, it does not seem possible to generalize them to networks
with more complex topologies.”

Each of the four responses to network change - assignment, distribution,
generation, and spatial re-structuring - takes time. The specification of
these lags should ultimately be an integral part of a transportation in-
vestment model. Although it would be tempting to claim that they are in
ascending order of response lags, even this is not clear. Spatial re-
structuring (e.g. plant re-location) may be initiated in response to
anticipated transportation improvements whereas traffic generation and
other "operational" responses must await the actual construction of the
facility. The characteristics and timing of these responses are not well
understood; much research needs to be done, particularly in terms of the
spatial restructuring impacts as these often swamp the short term savings
in transportation costs which are frequently used to provide the nominal

justification for transportation investments.



- 27 -

In view of this current ignorance, an explicit consideration
of transportation improvements within the context of risk and un-
certainty would appear to be appropriate. Not only is there uncertainty
about the interaction effects between the transportation system and its
socio—-economic environment, but the environment itself is subject to
exogenously generated changes, some of them slow trends, others quite
abrupt shocks. Is it possible to generate network structures which
perform well under a wide variety of future conditions? Extensive sen-
sitivity analyses with networks generated by the optimizing approaches
outlined in previous sections of this paper would be the most obvious
way of dealing with this problem. Compromise networks could emerge which
are best for no single future condition, but are tolerable or good for a
wide variety’of conditions. Whereithe probability distributions of
exogenous changes are known (e.g. weather conditions, travel demands, etc.),
some aspects of these problems may be formulated using stochastic mathe-
matical programming (Kalaba and Juncosa, 1956 and Midler, 1971) and
stochastic optimal control approaches.

Measures of system flexibility or adaptability would be useful to
include as terms in an objective function or constraints. MacKinnon (1968)
and Vuccic (1970) have introduced some issues related to transportation
system flexibility, but they have not been formalized. This problem area
is closely related to the problems of system resilience and option fore-
closure which have received considerable attention at ITASA over the
past two years. These problems in turn are closely associated with trans-

portation plan development as a learning process, perhaps capable of being
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modelled within a Bayesian framework. (See,for example, Hutchinson
(1970) and Kahn (1971).

Another weakness in all of the models of network improvement is
related to the specification of an appropriate objective function. In
the absence of something approximating a social welfare funtion, it is
clear that there is a degree of arbitrariness associated with any
objective function. Nevertheless, it is equally clear that it may be
useful to determine networks which minimize costs or environmental impacts,
maximize profits or accessibility, or optimize some other measure - not
because these measures represent widely accepted, justifiable and over-
riding indicators of social merit - but rather because the results would
demonstrate the implications of assuming they are such indicators. Thus
a number of alternative network configurations may be developed, com-
pared and evaluated in some detail.

Multiple objectives can be handled simply by incorporating some of
them in the constraint set and some in the objective function or alter-
natively by using the recently developed multicriteria methods of
mathematical programming. (Kapur, 1970). With considerable experimentation,
sensitivity analysis, and interaction with pﬁblic officials and even citizen
groups, optimization approaches may result in a clarification of social
objectives, an indication where conflicts are likely to arise, and facili-

tation of compromise solutions by being able to demonstrate the implications
of a variety of objectives.

4. Closure

It should be clear by now that the author views optimization methods

not as ways of generating well-defined and rigorously justifiable solutions
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to transportation network improvement.problems. Because of our ignorance
regarding many of the important system relationships and the potentially
far—reaghing implications of these decisions, the interpretation of the
results of optimization models of network improvement cannot be
similar to the interpretation of optimization models of, say, machine
replacement in a factory even though the techniques may be exéctly
the same. In a network improvement context, optimization models are
best regarded as heuristic frameworks within which to genmerate, in
rough outline, some alternative investment programs. The ultimate
evaluation, specification and adoption of these programs will have to be
based on (1) more detailed analyses which capture the multivariate
nature of urban and regional transportation systems operations and
impacts and/or (2) quite subjective qualitative judgements made by
experienced planners, policy makers and perhaps even the general public.
Viewed in this light, optimization models become inputs to the decision
making process rather than the decision making process itself. The models,
for the reasons already stated, are not credible candidates for the latter
role. It is only with these more modest claims that optimization methods
will be widely adopfed in developing transportation investment programs.
They may be useful not only in directly indicating what type of investment
programs should be undertaken, but also in clarifying objectives and
identifying where additional research would be rewarding.
In the debate regarding the relevance of these methods to transportation

system planning, a fundamental question is whetber rigorous optimization
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methods can be applied creatively,'honestly and effectively in

situations where the systems are relatively poorly understood. It can

be argued that an approximate solution to an important problem may be
more useful than an exact solution to a relatively unimportant problem.
Many operations research models are of the latter type. In one sense,
this emphasis is admirable and indicative of a conservative scientific
honesty,not claiming to be able to deliver more than is possible. However
these exact solutions to narrowly defined, well understood problems, can
result in suboptimal solutions in a broader context and an exacerbation
of more important problems. Nowhere is this more apparent than in trans-

portation system planning.
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