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Abstract

It is assumed that traffic jams have negative environmental effects. This implies an
overlap between transportation policy and environmental policy. This paper quantifies
the relative energy effects of congested traffic. By comparing these effects to the energy
costs of construction and maintenance of roads, it is possible to balance those effects.
The paper determines how fast and to what level the road infrastructure should expand,
under the condition that life cycle energy consumption of the transportation system is
minimized. By using the Pontryagin maximum principle, it is shown that optimal
control theory can provide the solution that minimizes energy use. The paper concludes
that the level of final expansion depends on the highest construction effort possible.
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Applying optimal control to minimize energy use of
road infrastructure expansion
Sander M. Lensink (S.M.Lensink@fwn.rug.nl)

1.� Introduction�

1.1.� Global�energy�issues�

As global warming manifests itself, a global effort is launched to reduce the emissions
of greenhouse gases, prominently among which the gas carbon dioxide CO2. The main
sources of CO2-emissions are fossil fuel combustion and cement production. Two ways
of reducing the fuel related carbon dioxide emissions are to reduce the amount of fossil
fuel burnt and to shift energy sources from fossil fuel to renewable sources. The
Netherlands has committed itself in the Kyoto-treaty to reduce CO2 equivalent
emissions in the period 2008-2012 to 6% below the 1990 level. Energy is being used
throughout every sector of the economy, as shown in table 1. Also every sector is
expected to contribute to some extent to the needed emission reductions. These
necessary reductions of which half is to be implemented in the Netherlands, are
estimated at 50 Mton CO2-equivalents in 2010 compared to unchanged policy, and are
for 50% to be achieved by inland measures. The national Dutch transportation sector
has to see its greenhouse gas emissions levels drop by 3 Mton in 2010, thus relatively to
unchanged policy.

Table�1�Emission�reductions�in�the�Netherlands�as�implementation�of�the�Kyoto-treaty.��Of�the�total�
reduction� of� 50� Mton,� mechanisms� of� Joint� Implementation� and� the� Clean� Development�
Mechanism�will�achieve�25�Mton.�Therefore,�only�25�Mton�reduction�has�to�be�achieved�inside�the�
Netherlands.��Source:�The�climate�policy�implementation�plan�(Min.VROM,��1999)�

Sector

Estimated emissions in
unchanged policy

(Mton CO2-eq in 2010)

Projected reduction

(Mton CO2-eq in 2010)

Industry 89 10.0

Energy companies 61 8.0

Agriculture 28 2.0

Transportation 40 3.0

Households 23 2.3

Other 18 1.0
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1.2.� Mobility�policy�

The Dutch National Traffic and Transport Plan does not contain explicit policy aims to
combat greenhouse gas emissions or to reduce energy use. It does point to the Climate
Policy Implementation Plan for the measures to reduce emissions from the
transportation sector. However, the Traffic and Transport Plan offers the framework for
the expansion of the transport infrastructure. If expansion is carried out in such a way
that all traffic jams in the Netherlands are resolved, an environmental benefit will form
of 0.3 Mton CO2 emissions prevented (Veurman et al., 2000). This computation has
been a secondary result of a research that did not include the emissions of the road
construction and road maintenance nor the formation of generated traffic or any adverse
modal shift. Generated traffic is the traffic that results from the attractive influence of
improved road capacity on road transport demand. The existing policy intentions in the
two mentioned policy plans make it difficult to judge the desirability of the impact of
specific road construction projects. Instead, this paper offers a mathematical framework
to quantify the energetic impacts of road network expansion by comparing the energy
consumption of construction works to the energy use related to fuel consumption. More
over, in none of the policy measures any account is given of the relationship between
infrastructure expansion and vehicle use. Table 2 shows the policy measures that are in
effect or are to become in effect before 2010.

The fuel use of vehicles causes most of the emissions in the total transportation sector
(Bos, 1998). Most sources of greenhouse gas emissions in the transportation sector are
therefore mobile sources. It is generally believed that mobile energy consumers are
more difficult to shift into renewable energy consumption than static ones. For that and
other practical reasons, this paper does not look at the emissions patterns, but looks at
the total energy consumption of the transportation sector. Since 90% of the emission of
the transportation sector is a result of road transportation, the examples in this paper are
examples in the road sector.

Table�2�Policy�measures�to�reduce�greenhouse�gases�in�the�Dutch�transportation�sector�with�its�
contributions.�Source:�Climate�Policy�Implementation�Plan�(Min.VROM,�1999).�

Policy measure

Estimated effect

(CO2-eq savings in 2010)

Efficiency improvement of new vehicles 0-0.4

Changes in vehicle ownership tax (on efficiency grounds) 0.6

Tax on kilometer use (levy) 0.2

Changes in tax system for commuter and business traffic 0.1-0.3

Stricter upkeep of speed limits 0.3

Increase the use of fuel measuring devices in vehicles 0.5

Increase of tire pressure 0.3

Miscellaneous plans 0.2-0.3

Lowering N2O emissions of combustion catalysts 0.5
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1.3.� Research�framework�

This paper fits into a broader PhD-research project conducted at the University of
Groningen on analyses of the energy use of transportation systems. That project aims to
perform a life cycle analysis of the transportation systems of road and rail traffic. The
main subsystems are for each modality the infrastructure and the vehicles. This paper
only looks at the modality of road traffic and does not take every life stage of every
subsystem into account. Figure 1 shows which system elements are included in this
research document.

Figure�1�Inclusion�of�the�specific�elements�in�this�research�project.�The�energy�use�of�the�transport�
sector�is�the�general�topic�of�the�PhD-project,�while�this�paper�specifically�looks�at�the�road�system.�
From�the�subsystem�of�the�vehicles,�the�life�stages�that�are�directly�connected�to�the�amount�of�
vehicles�are�ignored,�since�it�is�assumed�that�there�is�no�immediate�relation�between�the�amount�of�
existing�vehicles�and�the�construction�of�specific�road�project.�From�the�subsystem�of�the�vehicles,�
the�demolition�phase�is�not�looked�at,�since�the�relative�contribution�of�this�phase�to�the�total�energy�
use�of�the�infrastructure�is�small�and�the�demolition�phase�is�mostly�far�in�the�future.�

The PhD-work aims to study in depth questions on the allocation of energy resources
for the expansion of the Dutch road infrastructure in the past and in the future; and into
questions on the timing and desirability of applying capacity improving measures, like
new roads and their location, and capacity improving measures on existing road
sections.

This project is conducted as part of the Young Scientist Summer Program 2002. Its
contents fits to the current research aim of the Dynamic Systems group, both to improve
the environmental context of the research and to focus on developing optimization
methods for large scale systems. The contents of this research project can also be seen
as part of a PhD-project on “analyzing the energy and material use of future transport
infrastructure expansion.”

SOCIETY VEHICLES
sector TRANSPORT�SECTOR life�stages
industry modality Production
energy companies air Operation (Fuel use)
agriculture water Maintenance
household rail ROAD�SYSTEM Demolition/recycling
transport road subsystem
other vehicles INFRASTRUCTURE

infrastructure life�stages
Construction
Operation
Maintenance
Demolition/recycling
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2.� Problem�definition�

2.1.� Research�question�

The project researches the possibilities to minimize the energy resource requirements in
infrastructure expansion. It will both include the energy requirements necessary for the
physical infrastructure (construction, maintenance and operation), as well as energy
requirements for the fuel consumption due to the use of that infrastructure by the
vehicles. Given the relations between them, is it possible to use an optimal control
model to minimize the sum of energy needed for construction, operation, maintenance
and use during lifetime? If so, the model can be applied to the question: how and how
fast should infrastructure expand, given the expected traffic growth, on an energetic
criterion.

More general questions that may be answered by applying the results of this project,
include the question under what circumstances – like expected traffic growth rate – will
it be energetically beneficial to implement measures that increase capacity only
slightly?

The underlying PhD-project looks specifically at Dutch transport infrastructure. This
project narrows that focus to Dutch state roads. Therefore, any case in this project will
also be subjected to this focus. Briefly stated, two conditions are valid for the
Netherlands that cannot automatically be extrapolated to any other country. The first is
the lack of major grades on state roads due to the absence of hills or mountains. The
second is the already dense road network, which makes the construction of new roads
through virgin land very rare. Still, the general concept that will be applied in this work
can be made valid for cases in other countries as well.
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2.2.� Translating�the�problem�into�management�terms�

The direct effect of constructing new roads or improving existing roads is the increase
in road capacity. Since a vehicle in a traffic jam uses more energy than in unperturbed
traffic (Veurman et al., 2000) and since most traffic jams are caused, directly or
indirectly, by insufficient capacity as shown by table 3, the energy use is treated as
function of, among others, the capacity.

Table�3��Reported�causes�for�traffic�jam�formation�in�the�Netherlands�in�2000.�The�bottleneck�jams�
can�also�be�seen�as�a�capacity�related�cause.�Source:�Ministry�of�Transport�and�Public�Works�
(Min.V&W,�2001).�

Reporting cause Number of traffic jam reports in 2000

Intensity vs. capacity 12%

Bottleneck 69%

Maintenance works 4%

Accidents 12%

Jams caused by watchers to accidents 1%

Other causes 2%

The dependence of energy use on the available road capacity is important. Thus,
changes in capacity will influence the energy use. Supplying adequate capacity will
therefore minimize energy use.

2.3.� Applying�optimal�control�to�find�a�suitable�solution�

One can minimize the energy use, or manage the system, by controlling the capacity.
The problem can therefore be regarded as a management problem. On one hand we
have a relation between the capacity x and the applied control u. It is of the form:

,...)(1 ufx =& .

On the other hand, the energy use J depends in its turn on the capacity x:

,...)(2 xfJ = .

The definitions of the various parameters and variables are given in section 2.4. In short,
one should supply at a certain moment in time a certain capacity, guaranteeing the
minimum use of energy. Finding the optimal control u� is therefore a part of this
research.
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2.4.� Concepts�and�definitions�

The time unit in this research is hour. This corresponds to the practice in traffic
management. The capacity of a road tells something about the number of vehicles that
can use the road in a certain amount of time. A distinction is possible between the point
capacity or flux – the number of vehicles possible passing one point in a certain amount
of time – and the section capacity. The latter stands for the highest possible transport
performance on a road section in a certain time span. Where the first is measured in
veh/h, the latter is measured in vehkm/h.1

Furthermore, the capacity can indicate either the theoretically highest value, or the
highest value given the specific circumstances like weather, road conditions and other
traffic conditions. In this paper, the capacity x is the highest possible transport
performance on a certain road section in a certain amount of time, with dimension
veh⋅km/h. In this capacity x it is assumed that the traffic is moving at the optimal
velocity and that no exogenous parameters – like the weather – have any influence.

Another important parameter that presumably influences the energy use is the actual
traffic y. For compatibility with future studies, this paper uses the term 'transport
demand'. The transport demand is principally only the demand for transportation, thus
the transportation that people want to see performed. If other connections are left out of
consideration, and thus route choice problems are ignored, one can state that the actual
traffic is less than or equal to the transport demand. This paper supposes them to be
equal, with the same dimensions as the capacity: veh⋅km/h.

The overall energy use J of the system, of which the specific boundaries are described
in section 3.1.3, is the combined energy use of the infrastructure under consideration
and the vehicles using that infrastructure. The infrastructure system needs energy for the
construction of new roads and the maintenance of existing roads, thus for construction
activities u. But it also requires energy, mostly electricity, for operation activities, like
lighting, opening bridges and electronic signaling. The energy use of the vehicles is
predominantly determined by the fuel consumption. The energy is measured in MJ.

1 veh stands for 'vehicles'. The transport performance can have – depending on its context –dimensions in
ton⋅km (cargo), pass⋅km (passenger) or veh⋅km (vehicles).
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3.� Background�

3.1.� Expansion�of�infrastructure�

The expansion of an infrastructure system, in this paper specifically the road
infrastructure, is synonymous with the enlargement of the capacity of an infrastructure
system. The infrastructure system fundamentally is a collection of connections. Such a
system can be improved both by enlarging the collection of connection, and by
improving the functionality of one existing connection. In other words, the capacity of
the infrastructure can be improved by building new roads and by improving existing
roads.

Consider a road network between three cities A,�B and C. Two roads connect these
cities: road 1 from A�to C, and road 2 from A�to B. The respective roads have capacities
1x and 2x. Figure 2 shows two ways of improving the network.

Figure�2�The�left�picture�shows�the�initial�state�of�the�road�system�x0.�The�system�can�either�be�
improved� through� building� a� new� road� between� cities� B� and� C� (middle� picture),� or� through�
improving�the�existing�roads�1�and/or�2�(right�picture).�

The complications in the form of complex system analyses in the case of the
construction of new roads are not essential for the theoretical work of this paper.
Therefore, it is considered to be sufficient to look only at the improvement of existing
connections.

3.2.� Dynamics�of�expansion�relation�between�infrastructure�and�use�

The initial state of the system x0 in figure 2 is defined by the capacities of the roads. Let
the capacities be symmetrical in direction, thus the capacity of the road from A to C is
equal to the capacity of the road from C to A: xA,C=xC,A=½⋅(1x). The total capacity of the
system can therefore be represented by:


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The transport demand y, averaged over a certain period of time, can also be assumed to
be symmetrical, as shown by:
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Transport between the cities B and C is not directly possible, since there is no direct
road between these two cities (xB,C=0). Therefore, the load on the other connections
between A and B, and between A and C, will be greater than the theoretical transport
demand between those cities. In a complex system, it is far from clear which routes will
be used to accommodate the transport demand. Finding the best composition of the
matrix x to accommodate the matrix y with the lowest amount of energy possible
requires therefore a solid routing model. In this paper, this problem will be avoided by
only looking at upgrading a single road connection.

3.3.� System�boundaries�

An important issue in transportation science is the phenomenon of generated traffic.
"Generated traffic is the additional vehicle travel that results from road improvement.
Generated traffic consists in diverted traffic (trips shifted in time, route and destination,
and induced vehicle travel (shifts from other modes, longer trips and new vehicle trips"
(Litman, 2001). Particularly estimations of the induced travel are hard to quantify.

Many of these problems are not addressed in this paper, due to the chosen system
boundaries. The focus on only a single connection makes the research insensitive for
changes in route or destination choice. As far as this research will average out the
temporary peaks in transport demand, shifts in time form no complication. The research
also looks only at a specific modality, the road transport. Therefore, modal shifts are not
included. Although all these phenomena play an important role, they are not included in
this research. The concept that is laid out in this paper does enable the future inclusion
of these effects.

This paper looks at the improvement of a single road connection, where the transport
demand is supposed to be constant in place, mode and time of the day. The road section
should be of considerable length, so that any expansion can be considered continuous in
time. The amount of latent transport is also considered absent.

It is assumed that the absence of grades in the research topic will have the following
consequences: in hilly regions the relative fuel use of vehicles and the production
energy for new infrastructure will be underestimated, while in mountainous areas the
capacity will be overestimated as well.
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3.4.� Types�of�expansion�

The capacity of a road section is not only dependent upon the number of lanes and the
width of the road, but also on velocity, velocity distribution and lighting. Therefore,
more measures exist to improve the capacity of a road than merely by 'laying down
more asphalt'. Out of a list of 31 published capacity improving measures, a selection is
shown in table 4. This selection is only meant to give an impression of the kinds of
measures possible.

Table�4�Capacity� improving�measures�as�are�under�consideration� in� the�Netherlands.� �Source:�
Ministry�of�Transport�and�Public�Works�as�published�in�(Alberts,�2002).�

Measure Implementation
level

Jam type

Dynamic change in number of lanes Road section Intensity/Capacity

Dynamic change in speed limits Road section Intensity/Capacity

No overtaking for trucks Road section Intensity/Capacity

Shoulder use in rush hour Road section Intensity/Capacity

Closing junctions Network Intensity/Capacity

Dynamic Route Information Panels Network Intensity/Capacity

Incident management Road section Accident

Additional measures at Work in Progress Road section Maintenance

It should be noted that every measure requires a measure-specific amount of energy for
construction and maintenance. The environmental cost-benefit ratio can be no means
assumed to be equal for all measures. In this paper, the measure investigated is the one
in which the capacity of a road section will be improved in the most straightforward
way, by laying down more asphalt and creating additional lanes.

3.5.� The�Netherlands�

Both the length of the road network and the transport demand is rising in the beginning
of the 21st century, but the growth rate is slowly decreasing. It is possible to estimate a
saturation level of both network length and transport demand (Grübler and Nakićenović,
1991). Figure 3 shows that the saturation level for traffic in the Netherlands is not yet
achieved. Figure 4, however, indicates that the road system hardly expands at all in
mere length2. So, improving the network in other ways than increasing the length is in
the last decades mostly responsible for accommodating the growth in traffic. This is also
some qualitative justification of the choice to look only at road improvements.

2 The length of the road is the length of the physical connection. It should therefore be noted that in the
context of this paragraph, the addition of new lanes to the road does not lead to an increase in length.
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Figure�3�The�Dutch�road�traffic�is�increasing�fast,�but�it�seems�that�the�rate�of�growth�is�slowing�
down�in�the� last�decade.�Using�the� least� squares�method�to�fit�a� logistic�curve�to� the�data,� the�
saturation�level�can�be�determined�at�approximately�250⋅109�pass⋅km/year.�
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Figure�4�The�length�of�the�Dutch�state�roads�has�almost�reached�saturation�levels.�The�logistic�curve�
is�fitted�to�the�data�with�an�additional�constraint�that�the�curve�should�intersect�with�the�latest�data�
of�the�year�2000.�Should�this�constraint�not�have�been�imposed,�than�the�saturation�level�would�
have�been�below�the�length�of�the�year�2000.�
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3.6.� Life�cycle�analysis�

The concept of life cycle analysis is well developed. The main idea is to assess the
impacts of a product from cradle to grave. In essence, the impacts from all the different
life stages of the product are added together, commonly – most products have a relative
short lifetime – without time discounting. There is no default set of impacts that are
assessed in the analysis; the impacts can in principle range from economical and
sociological to environmental ones. As discussed previously, this paper looks
specifically at the energy use. It is therefore better to talk about 'energy analysis' (IFIAS,
1974).

The life stages of any product are the production phase, the usage phase and the discard
phase. This chain is depicted in figure 5.

Figure�5�The�life�chain�of�a�product.�Some�feedback�loops�exists�in�this�chain.�They�represent�the�
recycling�options.�

For an energy analysis, one has to collect data about the amount of materials needed for
production of the product, and energy needed for assembly; for the usage phase as well,
one needs to know the amount of materials and direct energy use. The materials
represent a certain amount of energy needed to extract, to manufacture and to transport
the materials. This specific energy use is called the Gross Energy Value of a material,
commonly expressed in MJ/kg, and values for GER can be found in literature (Kok et
al., 2001). These include assumptions on recycling rates. By knowing the amount and
type of materials needed, one can calculate the total embodied energy in the materials.
For transportation systems, this calculation can be used as a good approximation of the
total production energy. This can be deduced from the thesis of Bos (Bos, 1998).

An energy analysis on the transportation system follows basically the same scheme as
figure 5. The mobility system should, however, be seen as a system consisting of
several rather independent products. Firstly, any transportation system consists of an
infrastructure system and a collection of vehicles. Secondly, the mobility system
consists of several modalities. In most cases, the infrastructure and vehicles are not
shared between modalities. A single modality system, as is the case in this paper, is the
simplest form of a transportation system. The infrastructure can in this case be seen as a
collection of roads. The usage phase of the system requires special attention. Usage
includes both the direct energy consumption and the maintenance requirements, like
repair materials. For the infrastructure subsystem, the energy in the usage phase is
mostly needed for the asphalt requirements for repair and electricity use for operation
(bridges, lighting and electronic devices). For the vehicles subsystem, the fuel
consumption of the vehicles is the dominant process in energy consumption.3

3 A golden rule for many products is that the direct energy requirements form 85% of the total life cycle
energy requirements. The indirect requirements (for production, maintenance and removal) equal 15%.

Dumping

Burning

Usage�of�product

Secundary materials

Production�of�
product

Material
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Product
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End�phase
Extraction�of�raw�
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4.� Theory�

4.1.� State�equation�

The state of the transportation system under consideration is represented by the capacity
of it. The capacity x is therefore describing the state of the system. Suppose the
infrastructure can be treated as a production-inventory system. For a description see
(Sethi and Thompson, 2000).

The system can be improved by new production with a production rate p: )()(1 tptx =& .

This production rate depends on time. The system also looses quality at a constant rate δ
in time: )()(2 txtx ⋅−= δ& . The total deterioration depends linearly on the existing

capacity. The deterioration rate δ is constant in time. The autonomous deterioration can
be, at least partially, counteracted by conducting maintenance at rate m(t):

)()()(3 txtmtx ⋅=& . Combining these effects together, we get a first form of the state

equation:

( ) )()()()( txtmtptx ⋅−−= δ& . (4.1)

As the capacity is measured in vehkm/h, the dimensions of p are vehkm/(yr⋅h), and
those of δ and m are yr-1. The initial state of the system is given by x(0) = x0�> 0.

Other constraints on the system are:

p(t)�≥�0 for all t�>�0;�δ�>�0; 0 ≤ m(t)�≤�δ�for all t > 0. This upper bound on m is
necessary, since the maintenance (i.e. repair of damage) cannot lead to completely new
capacity.

The total construction effort u(t) is defined as the sum of the production and
maintenance activities: u(t)=p(t)+m(t)⋅x(t).� Substituting in equation (4.1) gives a
relation with a single control parameter u:

)()()( tutxtx +⋅−= δ& . (4.2)

The construction effort is limited by the maximum construction effort:

0 ≤ u(t)�≤�umax�.
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4.2.� Production�and�maintenance�

It is difficult to give a precise definition of both production and maintenance. Both are
construction works, but often the construction work for new production is combined
with necessary maintenance. A uniform classification of maintenance does not exist, but
some distinction in road maintenance and improvement work is possible (Paterson,
1987):

Routine maintenance m Localized repairs (typically less than 150m in continuous
length) of pavement and shoulder defects, and regular
maintenance of road drainage, side slopes, verges and
furniture.

Resurfacing m Full-width resurfacing or treatment of the existing pavement
or roadway (inclusive of minor shape correction, surface
patching or restoration of skid resistance) to maintain surface
characteristics and structural integrity for continued
serviceability.

Rehabilitation m�or p� Full-width, full-length surfacing with selective strengthening
and shape correction of existing pavement or roadway
(inclusive of repair of minor drainage structures) to restore
the structural length and integrity required for continued
serviceability.

Improvement p Geometric improvements related to width, curvature or
gradient of roadway, pavement, shoulders, or structures, to
enhance traffic capacity, speed or safety; and inclusive of
associated “rehabilitation” or “resurfacing” of the pavement.

Reconstruction p Full-width, full-length reconstruction of roadway pavement
and shoulders mostly on existing alignment, including
rehabilitation of all drainage structures generally to
improved roadway, pavement and geometric standards.

New construction p� Full-width, full-length construction of a road on a new
alignment, upgrading of a gravel or earth road to paved
standards, and provision of additional lanes or carriageways
to existing roads.

Choosing the rehabilitation to be part of m implies that m(t)=δ in normal maintenance
conditions. The Dutch administrative maintenance practice is to make a distinction
between continuous preventive maintenance m and discreet rehabilitation maintenance
would be included in p.�In this case m(t)�<�δ. The former has theoretical, mathematical
advantages, while the latter has the benefit of the possibility to research decision to let
additional capacity construction coincide with necessary rehabilitation.

In the case that it is possible to use one expression for all the construction works, thus
the usage of the construction effort u(t), the choice in classification between p(t)�and
m(t) becomes arbitrary.
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4.2.� Deterioration�

The following formulas are taken from a publication of the World Bank (Paterson,
1987). The deterioration of the road surface can be measured in the International
Roughness Index (IRI). A specific definition of IRI can be found in the World Bank
publication. Roughness itself can be defined as “the deviations of a surface from a true
planar surface with characteristic dimensions that affect vehicle dynamics, ride quality,
dynamics loads and drainage.” An empirical formula to predict the roughness R�is:

[ ] tetLSRtR 0153.0
4

0.5
0 )()1(725)( ⋅⋅+⋅+= − . (4.3)

The roughness R(t)�in m/km IRI, at age t�in year since construction depends on two
major parameters (R0 is typically between 1 and 3 for new roads):

Li(t) is the cumulative traffic loading at time t, in million ESA (assuming that the load
damage increases with power i). Mostly it is predicted that i=4. ESA is the number of
equivalent 80 kN single axle load.

S is the so-called modified structural number of pavement strength. It can be calculated
using the formula:

∑ −⋅−⋅+=
i

ii BBhaS 43.1)(ln85.0)ln(51.304.0 2

ai�:�material and layer strength coefficients;

hi�:�layer thickness in mm (Σh�≤ 700 mm);

B: in situ California Bearing Ratio of subgrade in %.

Table�5�Emperical�values�for�ai�and�CBR�to�be�used�in�formula�above.�

Pavement layer Strength coefficient ai�

Surface�course

Asphalt concrete 0.30-0.45

Base�course�

Granular materials 0.0-0.14

Cemented materials 0.075+0.039⋅UCS-0.00088⋅UCS2

Subbase�and�subgrade�layers

Granular materials 0.01+0.065⋅ln(B)

Cemented materials UCS>0.7 Mpa 0.14

UCS: unconfined compressive strength in MPa after 14 days.

Typical values for S are between 2 and 6. Let, for argument sake, S=2.4;�R0=1.5.
Formula (4.3) would then lead to (with t�in years):

R(t)�≈�[1.5+1.60⋅L4(t)]⋅e0.0153t.

The cumulative traffic loading L4 can be computed as: ∑ 





⋅=

a

n

an

a
NL

80
with Na�the

number of passing axle loads a. For n the figure commonly used is n=4. The commonly
used dimension is ESA.
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Also, a relation needs to be established between v and R. (Paterson, 1987) gives a
graphical representation of such a relation. The velocity is a slowly decreasing function
of R, see figure 6.
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Figure� 6� The� relation� between� R� and� v.� The� function� shown� in� gray� is� given� by:�
v(R)=166.5/(1+0.162⋅R(t)).�

The assumption that the capacity of a road decreases proportionally to the velocity
allows an estimation of the autonomous deterioration of the capacity possible. So:
x(t)/x0=v(t)/v(0). It follows that:

)(

1

)6.1(162.01

5.166
)(

0
0153.0

40 RvetLR
tx

t
⋅

⋅⋅++
= �x0.

If the transport demand y is constant in time, than L4(t) is constant in time. Now, using
the state equation (4.2) and setting p=0 and m=0, it is possible to determine the

autonomous deterioration rate δ,�since
t

x

tx
txtx

d

(t)d

)(

1
)()( ⋅−=⇒⋅−= δδ& . In figure 7

this is numerically determined for R0=1.5 m/km and L4�= 1 ESA. It shows that R is not
constant in time, but – for traffic densities common in the Netherlands – mostly ranges
between 0 and 0.3.

The maintenance standards in the Netherlands state that roads with IRI<2.6 do not
require maintenance. Roads where 2.6 ≥ IRI <3.5 need maintenance planning, since
roads with IRI ≥ 3.5 require immediate maintenance. In the Netherlands, 0.2% of the
state roads have IRI ≥ 3.5, while 98.7% have IRI < 2.6 (MinV&W, 1999).
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Figure� 7� The� deterioration� rate� δ  declines� as� a� function� of� time.� Regular� maintenance� in� the�
Netherlands�is�conducted�every�6�to�8�years�(Alberts,�2002).�
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Figure�8�The�deterioration�rate�after�2�years�for�several�cumulative�axle�loads�L4�(horizontal�axis)�
and�values�of�roughness�R0�(vertical�axis).�

As maintenance is conducted every 6 to 8 years, then it follows, if maintenance m is
defined such that m(t)≈� δ, that 0.13 yr-1<δ < 0.17 yr-1 for normal Dutch road
conditions. The conclusion is that on average: δ=0.15 yr-1.
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4.3.� Objective�function�

The objective function J representing the time discounted life cycle energy use of the
system is in its core the summation of the energy use of the different life stages:

[ ]∫
∞

− ++⋅=
0

),(),()( dtyxFxmHpEeJ tρ . (4.4)

The three utility functions E,�H and F represent the energy use of – respectively – the
production phase of the infrastructure E, the maintenance and operation phase of the
infrastructure H, and the operation phase of the vehicles F. These functions are all
positive: E(p)≥0 for all p≥0; H(m,x)≥0 for all m≥0, x≥0; F(x,y)≥0 for all x≥0, y≥0.

E(p) is a function representing the energy use for the construction of new capacity.
Every capacity increasing measure on a road has a specific influence on the increase in
capacity, with a specific energy requirement. All capacity increasing actions exist of one
or more distinctive engineering measures. For most measures i, the relationship will be
of a linear type: Ei(p)=αi⋅p. The parameter αi� is assumed to be constant, but might
decrease slowly in time as technology improves. For some measures, the relation
between the energy use E and the production rate p might be less than linear in p, as
initial installation costs may be high (lighting, electronic traffic regulation). For asphalt
construction, is it presumably more than linear in p. The reason for the latter is that a
third lane on a highway has less effect than a second one, and a fourth less then a third,
etcetera, while the energy needs are largely determined by the amount of asphalt that is
equal for every lane. Similar relationships will also exist in maintenance requirements:
Hi(m,x)=ßi⋅m⋅x. The parameter ßi� has a similar function as parameter αi in the
production energy function. There does not exist a clear correlation between αi�and ßi.
Some measures with low α will have a high ß. (One should think about measures which
require large continuous electricity supply in the operation phase).

So it is assumed that most relations can be characterized by:

E(p(t))=αi⋅p(t),�αi > 0;

H(m(t),x(t))=ßi⋅m(t)⋅x(t),�ßi>0.�

A thorough analysis for the whole life cycle of infrastructure is carried out by Bos
(Bos, 1998). This study results in energy for total production of a standard freeway of
64⋅106 MJ/km. This accounts for αroad = 8.0⋅103 MJ⋅h⋅veh-1⋅km-1. The materials are
accountable for most of the energy requirements, both for the construction and the
maintenance phase. If one assumes that at one point in time all the materials will have to
be replaced (*), the assumption α ≈ ß is valid. However, the current data suggests that
maintenance requirements are substantially lower than construction requirements. The
current data looks at the material requirements during the functional lifetime of the road.
That is, until the road subbase (sand bed and lower asphalt layers) and the concrete
artworks (bridges) need replacement. Therefore, only asphalt renewal in the top layers is
included. Taking data from current Dutch studies (Bos, 1998; Alberts, 2002), one can
estimate ß at 150-500 MJ⋅h⋅veh-1⋅km-1. For the reason (*) mentioned above, this value of
ß is an underestimation. Therefore, with the assumption α=ß and only taking traditional
road construction into consideration, part of the objective function can be expressed in
terms of the total construction effort: E(p)+H(m,x)=α⋅p(t)+ß⋅m(t)⋅x(t)=α⋅u(t).
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4.4.� Main�utility�function�

4.4.1.�Estimating�transport�demand�

The energy function that relates to the vehicular fuel consumption F(x(t),y(t)), however,
is determined by a more complicated relationship. Suppose an exogenous function y(t)
exists that forecasts the transport demand. See figure 9 for an example. The flux of
traffic Φ at one point is, on average, given by: l/)()( tytΦ = . With the case of figure 9,
in which the length ℓ=54.3 km, the average throughput for 2010 is given by:

veh/h5065veh/day10120 3
3.54

106.6A12
2010

A12
2010

A12 6 =⋅=≈= ⋅lyΦ . Note that this formula

does not include rush-hour peak traffic. In this paper, the transport demand is
considered constant in time: y(t)=y. For the answer to the question to which extent the
transport infrastructure should grow, is it best to use the value of y(t)=ymax in the
equations.

0

0.5

1

1.5

2

2.5

3

1985 1990 1995 2000 2005 2010 2015 2020

Year

T
ra

ns
po

rt
pe

rf
or

m
an

ce
y

(1
09

ve
h·

km
/y

r)

Figure�9�The�transport�performance�on�the�Dutch�highway�A12,�The�Hague-Utrecht,�including�an�
extrapolation�until�2020.�The�baseline�of�t�in�years�is�t=0�for�the�year�1986.�The�extrapolation�curve�
is�given�by�A12y(t)�=�A12ymax/(1+e-0.136⋅t+0.258),�with�ymax=2.48·109�vehkm/year.�The�curve�is�fitted�using�
numerical�least�squares�methods,�but�it�should�be�noted�that�the�form�of�the�outcome�of�the�figure�
is�subjective�to�the�chosen�fit�curve.�

4.4.2.�Determining�flux�for�two�traffic�states�

The flux Φ(t)�represents the actual number of vehicles that are passing one point in a
certain amount of time. The flux cannot exceed the point capacity, or:

Φ(t)≤ x(t)/ℓ.
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The actual flux Φ(t) on a road section determines the velocity v(Φ). For this purpose an
experimental function is created to establish a relationship between the velocity and the
flux. It should be noted that the traffic flow on a road can exists in two different
regimes: the 'normal' free flow state, and the 'congested' forced flow state. The system
can almost instantaneously jump from one state to the other. An article by Wahle et al.
shows an example of such an occurrence (Wahle et al., 1999).

The maximum possible flux approaches the theoretical capacity of a road at the
optimum velocity v̂ : ll /ˆor/)max( x)vΦ(xΦ(v) == . Αccording to literature, the
optimum velocity lies commonly between the 50 km/h and 75 km/h, depending on the
architecture of the road (Kreuzberger and Vleugel, 1992).

For the forced flow system, it is assumed that all the vehicles are queued. The vehicles
in this case have to maintain a safe distance between them to avoid collision. This safe
distance is ∆safe=c1+c2⋅v+c3.v

2.�The flux is given by:

vv
vcvcc

wvΦ(v) ˆfor
2

321

<
++

⋅= . (4.5a)

The variable w is the width of the road in the number of lanes. For low speeds, the
velocity and the average distance between vehicles determine the flux. c1 is the
minimum distance between vehicles, set at 7.5⋅10-3 km/veh (Wahle et al., 1999); c2 is
the reaction time of an individual driver, thus c2⋅v is the approximate safe distance to
avoid collisions. c3 is a higher order term, since the braking distance increases slightly
more than linear with velocity. c3 is determined by stating that 0dd =vΦmax at the

turning point of v̂ =60 km/h; this implies that:

/kmh1008.2ˆ 26

km/h)60(
km105.72

13 2

3 −⋅ ⋅=== −
vcc . c2� is set by the constraint on the highest

possible flux of a single lane of ( ) veh/h.2000ˆ =vΦ It results in an average reaction time
of 0.25⋅10-3 h = 0.9 seconds, if w=1 and y/ℓ=2000 veh/h. See figure 10 for a graphical
representation.
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Figure�10�The� solid� line�represents� the�highest�possible� flux�at�given�velocity.�The�dashed� line�
indicates�the�density�that�results�from�given�combinations�of�flux�and�velocity.�

The second part of the graph is part of a Gauss-curve. The idea is that the more vehicles
are driving on a road, the likelier it is that they will interact resulting in reduction of
velocity. So, it is chosen that this should be a probabilistic curve of form:

vvcΦ(v) ccv ˆfore 6
2

5 /)(
4 ≥⋅= − . (4.5b)

The parameters of this curve are c4=Φmax=x/ℓ=2000 veh/h (for a single lane road);
c5= v̂ =60 km/h and c6�that performs a similar function as the deviation in the standard
distribution curve. c6=3929 by demanding that Φmax(120)=800 for a single lane road, or

l
x

max fvΦ ⋅= ~
)~( with 5

2~ =f in general. These figures are valid for Dutch highways with

a maximum speed allowed of 120 km/h.

4.4.3.�Determing�velocity�

For the free flow system y/ℓ<Φ( v̂ )=2000 veh/h, the velocity is – following equation

(4.5b) – given by: 65 )ln(
4

ccv c
Φ ⋅+= . For high transport demands y/ℓ�≥ 2000 veh/h, it

is assumed that all cars want to move at the optimum velocity of v̂ =60 km/h. Now the
amount of vehicles per kilometer, or the density d (veh/km) is determining the velocity.
A certain flux Φ implies, at 60 km/h, a necessary average density of cars of d=Φ/60
(veh/km). Thus, higher throughputs imply higher densities. However, judging by
figure 10, a certain density correlates to a specific velocity. As one can see, at a flux of
more than the maximum of 2000 vehicles per hour, the velocity will drop below the
optimum velocity. Therefore, the road will accommodate even less than 2000 vehicles.
The remaining vehicles will either have to change route, or will be put on a ‘waiting
list’. In this paper, it is assumed that they will be accommodated elsewhere on the
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network with the same relative energy efficiency. Let d*=d/(w⋅ v̂ )�denote the theoretical
density. For Φ�≥�2000 veh/h, the velocity is given by:

.
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It is now possible to rewrite some constants following the explanations of those
constants as mentioned in section 4.4.2. Equation (4.6) shows the final formula to
determine the velocity.
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The parameters used in (4.6) with their default values in this paper:

c,�c>0 Effective length of vehicle at rest 7.5⋅10-3 km⋅veh-1

v̂ , 0< v̂ < v~ Optimum velocity (velocity with highest capacity) 60 km⋅h-1

v~ , v~ > v̂ Arbitrary velocity: 1~
)~( −⋅⋅=Φ lxfv 120 km⋅h-1

f
~

, 0< f
~

<1 Arbitrary fraction: 1~
)~( −⋅⋅=Φ lxfv 0.4

ℓ>0� Length of road (network) km

w≥1� Width of road (network) (#�lanes)�
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4.3.2.� Relation�between�energy�consumption�and�velocity�

The velocity v can be used to calculate the average fuel consumption of the traffic. The
curve in figure 11 is a result of the equations of section 4.3.1, and shows the dependence
of velocity on flux.
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Figure�11�This�curve�shows�the�relation�between�flux�Φ�and�velocity�v.�The�discontinuity�in�the�first�
derivative�at�Φ=2000�veh/h�is�where�the�system�jumps�from�the�free�flow�state�to�the�forced�flow�
(jam)�state.�In�reality,�there�exists�a�range�of�fluxes�in�which�there�is�a�certain�probability�that�the�
system�will�jump�between�the�states.�Velocities�higher�than�legally�permitted�should�be�excluded�of�
course.�

As mentioned earlier, the actual flux at low speeds differs from the theoretical flux,
since at low speeds not all throughputs can be accommodated. As said, an
approximation is to assume that those throughputs beyond capacity will be
accommodated at some other place without interfering with any other transport or traffic
system, but with the same efficiency as the throughput that is accommodated. Thus, the
energy use of the traffic F(x(t),y(t)) would be given by the relative energy use g(v) and
the traffic y(t):

F(x(t),y(t))=g(v)⋅y(t).
The formula of g(v) can be approximated in interpolating some empirical data of the
actual energy consumption in congested traffic in the Netherlands
(Veurman et al., 2002). The empirical data was divided into classes. Between the
classes, the interpolation is made. See figure 12 for the resulting curve.

The curve in figure 12 is presented by�g(v)=-0.730⋅(1-9.29⋅e-0.0101v-1.86⋅10-6⋅v3). The
third order is related to the aerodynamic resistance of vehicles at high speeds. In the low
regions, a fit with an exponential curve is made. The total energy use of all the vehicles
is thus:

F(x,y)=y(t)⋅{-0.730⋅(1-9.29⋅e-0.0101v(x,y)-1.86⋅10-6⋅v(x,y)3)}. (4.7)
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Figure�12�An�interpolation�is�made�of�the�empirical�class�data�as�presented�by�the�solid�dots.�The�
open�dots�indicate�the�range�of�the�classes.�At�the�high�end,�velocities�above�90�km/h,�a�third�order�
power�becomes�dominant.�The�fit�is�made�using�the�least�squares�method.�

In the next graph, figure 13, the total energy consumption of traffic is illustrated.
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Figure�13�The�final�energy�curve�is�presented�by�the�dashed�line;�the�energy�use�is�shown�in�MJ�per�
km⋅h.�The�velocity�curve�is�the�solid�line.�Note�that�the�velocity�is�limited�to�120�km/h.�
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4.3.3.� Discount�rate�ρ�

The objective function has a discount factor of e-ρt. This model chooses the discount rate
such that ρ-1 the mean expected lifetime of a road is. Since it is not clear how the
infrastructure will function after the end of the roads existence, there is reason to
include a discount factor. It is a factor that is associated with uncertainty in time.
Discount rates in an economic context describe "the inter-temporal preference structure
of the economic agents." (Haurie, 2001). In this case, the discount rate ρ�associated with
uncertainty about the functionality of the infrastructure during the usage period, induces
the discounting process. In the case of a discount factor of e-ρt, one could consider ρ�a
killing rate, since ρ� dt is the elementary probability that "death occurs" in the
elementary time interval [t,t+dt], given that the construction survived up to time t. A
discount rate of 1.25% (t�in years) corresponds to a random life duration with expected
value 1/0.0125=80 years.

Only for later consideration, this paper suggests another type of discount factor. An
alternative discount factor could be formulated on ground of allowed greenhouse gas
emissions. It would be a factor that is associated with uncertainty in sustainable energy
consumption. Considering that the transportation sector is fully dependent on fossil
fuels throughout the present century, and considering that the emissions of greenhouse
gases have to be reduced significantly in the same period, one could formulate a
discount factor, which is based on the highest emission rate allowed. That would be of a
form 1* )1( −−+=∆ tte , with t* the time at which half of the emissions should be reduced.
This would be a rising discount rate.

A proposed discount factor of te ρ−=∆ can be based on the speed of transition to clean
energy in the transportation sector. The discount rate ρ�would then typically be defined
as the inverse of the time at which half of the transportation energy is clean energy. The

combination of both factors:
tt

t

e

re
−

−

+
⋅=∆
*1

ρ

, r being the reduction rate to be achieved at

time t*, would include both a reduction path for greenhouse gas emissions and a
transition path to clean energy. The function meets the requirement of:

0
1

limlim
*
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⋅=∆ −
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tt e

re ρ

, for all ρ>0, 0<r<1, t*>0.�

Nevertheless, the current paper uses the discount rate of e-ρt in which ρ�corresponds
with the average lifetime of the construction.
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4.3.4.� Summary�

The objective function of the life cycle energy consumption of a specific road should be
minimized. The final form of the function was deduced in the following steps:
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The energy consumption of the vehicles is described by:

F(x(t),y(t))=y(t)⋅{-0.730⋅(1-9.29⋅e-0.0101v(x,y)-1.86⋅10-6⋅v(x,y)3)}

in which the velocity is dependent on the traffic system being in forced-flow or free-
flow mode:
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One aims to minimize energy use. The minimization of the objective function J leads to
a minimization of the energy use of one road during lifetime. Consider now the
superscript j that indicates that the variables are related to road j. For a road system, or
infrastructure consisting of N roads, thus 1 ≤ j ≤ N, the objective becomes:

Minimize ( [ ]∫ ∑
∞
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Due to possible interrelations between ix(t)�and�jy(t)�for all 0<i≤N,�0<j≤N,�the optimal
value of the objective function J for the whole system is not necessary the same as the
sum of optimal values of objective functionals,

( ) [ ] min))(),(()(),(
0

→+= ∫
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t
j

jαρ ,

minimized independently.

For practical purposes, this project looks at one specific road, while any interaction with
the surrounding road system is neglected. The road should be long enough to be able to
regard production and maintenance energies E and H as continuous functions in time.
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5.� Optimal�control�methodology�

5.1.� Optimal�control�problem�

Consider the following optimal control problem (P):

];,0[, auxux ∈⋅−= δ& (5.1)

;)0( 0xx = (5.2)

( ) [ ] .min),()(),(
0

→+= ∫
∞

− dttxFuetutxJ t αρ (5.3)

Here x∈ �R1,�u∈ �R1,�δ�>�0,�a�>�0,�x0�>�0,�ρ�>�0,�α�>�0;�F(x,t) is a continuously
differentiable function on [0,∞) × [0,∞); The class of admissible controls consists of all
piecewise continuous4 functions u(t)� for all t∈ [0,∞) with u(t)∈ [0,a]. The trajectory
corresponding to the admissible control u(t) is a piecewise continuously differentiable
solution x(t) of (5.1) with initial condition (5.2). u(t),�x(t) is an admissible pair. The
function F(x,t)�must meet several assumptions:

(H1) 1),( κ≤txF for all x∈ [0,∞) and all t∈ [0,∞);

(H2) 0
),( <

∂
∂

x

txF
for all x∈ [0,∞) and all t∈ [0,∞);

(H3) 2
* ),( κ<

∂
∂

x

txF
for all t∈ [0,∞);

(H4) )()0,0( δρα +>
∂
∂
x

F
;

(H5) 0),(
2

2

>
∂
∂

tx
x

F
for all x∈ [0,∞) and all t∈ [0,∞);

(H6) 0
),(

lim =
∂

∂
∞→ x

txF
x

for all t∈ [0,∞).

Physical parallels of these assumptions are the next: (H1) tells that the total energy
consumption of the traffic cannot exceed a certain maximum. (H2) says that only too
small capacities are energetically inefficient, but too large capacities do not cause
greater fuel consumptions. In reality, large capacities will lead to higher and thus more
inefficient velocities and might cause the real function to rise again slightly at large
capacities. As for (H5), as velocities are already at their peak value – and the velocities
cannot increase further – there is no change in fuel consumption if the capacity is
already much greater than necessary.

4 Piecewise continuous functions have a limited number of discontinuities on each finite time interval
[0,T], T�> 0. It is assumed that in each point of discontinuity, the function is continuous from the left.
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It is easy to see that due to the system state equation (5.1) and the assumption x0>0, the
state variable x(t) is strictly positive and bounded for all t�≥ 0. Thus there exists a
constant b > 0 such that 0 < x(t) < b for all t�≥ 0.

Now, it is proven that in a problem like problem (P), there exists an optimal control
u*(t).�See theorem 3.6 in (Balder, 1983).

5.2.� Pontryagin’s�maximum�principle�

The main tool in the study of problem (P) involves looking for the necessary optimality
conditions in the form of the Pontryagin maximum principle (Pontryagin et al., 1962).
The theory involves two closely related functions:

H [ ]),()(),,,( txFueΨxuΨuxt t +−−= − αδ ρ is the Hamilton-Pontryagin function.

],0[
max),,(

au
ΨxtH

∈
= H(t,x,u,Ψ) is the Hamiltonian.

The next result is a specialized version of the Pontryagin maximum principle for
problem (P).

Theorem�1.�Let�u*(t),� x*(t)�be�an�optimal�pair� in� (P).�Then� there�exists�an�adjoint�
function�Ψ̃(t),�with�the�following�properties:�

1)� );),((
~~

* ttx
x

F
eΨΨ t

∂
∂+⋅= −ρδ& �

2)� =))(
~

),(,( * tΨtxtH H ));(
~

),(),(,( ** tΨtutxt �

3)� 0)(
~ >tΨ �for�all�t∈ [0,∞);�

4)� ∞→→ t�astΨ 0)(
~

.�

The proof of this result is similar to the proof of Theorem 2 from (Aseev et al., 2001)
and Theorem 3.2 from (Aseev et al, 2002).

Corollary.� ∞→→ ttΨtx as0)(
~

)( .�

Proof.� As x(t) is bounded, there is a constant b:�b�>�0, such that x(t)<b for all t>0.

Hence, we have )(
~

)(
~

)( tΨbtΨtx < for all t>0. According to condition 4) of Theorem 1,
we can write:

.0)(
~

lim)(
~

lim)(
~

)(lim ==≤
∞→∞→∞→

tΨbtΨbtΨtx
ttt

■

Corollary.�There�exists�a�constant�κ3>0�such�that� ttΨtx ρκ −≤ e)(
~

)( 3* for�all�t∈ [0,∞).�

Proof.�To find an upper bound for )(
~

)(* tΨtx one differentiates, remembering the state
equation )()()( tutxtx +⋅−= δ& and using condition 1) of Theorem 1:
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The combination of these equations and condition (H2) gives:
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Now for ∞→T and remembering the transversality condition 4), the upper bound is:

tetΨtx ρκ −≤ 3* )(
~

)( for all t∈ [0,∞).

■

Let us introduce a new adjoint variable: ).(
~

)( tΨetΨ tρ=

Then the following result is a reformulation of Theorem 1 in terms of Ψ(t).

Theorem�2. Let�u*(t),� x*(t)�be�an�optimal�pair� in� (P).�Then� there� exists�an�adjoint�
function�Ψ(t)�such�that:�

1)� Ψ(t)�is�a�solution�of�the�adjoint�system� );),(()( * ttx
x

FΨΨ
∂
∂++= δρ& �

2)� ( ) ( );)(max)()(
],0[

* αα −⋅=−⋅
∈

tΨutΨtu
au

�

3)� 0)( >tΨ �for�all�t∈ [0,∞);�

4)� 3* )()( κ≤txtΨ �for�all�t∈ [0,∞).�

5.3.� Construction�of�the�associated�Hamiltonian�system�

We consider (starting from this place) only the case of F(x,t)≡F(x). From the maximum
condition 2) of Theorem 2, we have:

.)(if,],0[)(

;)(if,

;)(if,0
)(
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

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tΨa

tΨ
tu

Let us introduce sets G,�G0, G1, G2 in R2.�
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Let us introduce a multi-valued function r(x,Ψ) and a scalar function s(x,Ψ) by the
following way:
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Lemma. Let� u*(t),� x*(t)� be� an�optimal� pair� in� problem� (P)� and�Ψ(t)� be� an�adjoint�
function� corresponding� to� u*(t),� x*(t)� due� to� Theorem� 2.� Then� x*(t),� Ψ(t)� solve� the�
following�Hamiltonian�system�by�inclusion:�

);,( Ψxrx ∈& (5.4)

).,( ΨxsΨ =& (5.5)

Moreover, 3* )()(and),0[allfor0)( κ≤∞∈> txtΨttΨ .

Proof. Indeed due to Theorem 2:
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Hence x*(t),�Ψ(t) is a solution of the Hamiltonian system (5.4), (5.5).

Due to Theorem 2 3* )()(and),0[allfor0)( κ≤∞∈> txtΨttΨ .

■
Remark. Obviously the Hamiltonian system (4),(5) is single-valued in G0 and G1. In G0

it takes the form:
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In G1 it takes the form:



30









∂
∂++=

⋅−=

).()(

;

x
x

FΨΨ

xax

δρ

δ

&

&

Consider the set G2={ (x,α) : x > 0 } and introduce a function γ(x):

).(
1

)( x
x

F
x

∂
∂

+
−=

δρ
γ (5.6)

Due to assumptions (H1)-(H4) γ(x) is a decreasing function and

.if0)(

;)0(

∞→→
>

xxγ
αγ

Hence there exists a unique x0 for which 2
00 ),(i.e.)( Gxx ∈= ααγ .

5.4.� Necessary�and�sufficient�conditions�for�optimality�

The following result is the Arrow (Arrow and Kurz ,1970) type sufficient condition of
optimality.

Theorem�3. Let�u*(t),�x*(t)�be�an�admissible�pair�satisfying�to�the�condition�of�Theorem�
2�with�an�adjoint�function�Ψ(t).�Then�the�pair�u*(t),�x*(t)�is�optimal.�

Proof. Due to the convexity of F(x), see assumption (H5), the following inequality takes
place for arbitrary t ≥ 0 :

))(())(())()(())(( *** txFtxFtxtxtx
x

F −≥−⋅
∂
∂

,

where u(t),x(t) is an arbitrary admissible pair.

Indeed, for arbitrary x* and x, and all 0 < η�< 1, we have:
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If we let η→0, we derive
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Due to condition 1) of Theorem 2, we have
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Due to the system dynamics (5.1), we have
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Now we can write the inequality as
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Due to the maximum condition 2) of Theorem 2 we have
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By integrating on the time interval [0, t], we have
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Condition 3) of Theorem 2 tells that for all t>0: 0)()( >txtΨ . The inequality can
therefore be written as
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From condition 4) of Theorem 2 follows:
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Taking the integrals now over infinite time, we have:
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The admissible pair x*(t),u*(t) is therefore the optimal pair that minimizes the objective
function. ■

As a consequence of Theorems 2 and 3 we have the following

Corollary. The�maximum�principle�(Theorem�2)�is�a�necessary�and�sufficient�condition�
of�optimality�in�problem�(P).�
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6.� Results�

6.1.� Stable�curves�in�Hamiltonian�system�

Formula (5.6) described the form of the function γ(x)�in terms of the first derivative of
F(x). The theoretical formula for F(x) that was deduced in section 4 does, in the form as
it is presented in section 4.3.4., not meet the criteria for F(x) that are laid down in
section 5. The first derivative of F(x) shows a discontinuity at x=y that has to be
resolved first, see figure 14.
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Figure�14�Example�of�the�curve�of�the�total�energy�use�for�fuel�consumption�F(x).�The�thick�black�
line�shows�the�main�function�F(x),�the�thin�line�of�F'(x)�exhibits�a�spike�at�x=y=495.5��

To resolve the problem of the spike in F'(x) at x=y�– or at the point where the system
jumps between the free flow and the forced flow regime – let us compare the curve of
the free flow system (at x�≥�y) with the theoretical curve of the forced flow (for all x). In
the interval 495 ≤ x ≤ 1050 (vehkm/h), the change in curves is no more than 5.5% for
y=495. Due to the low thus induced error, the curves are interchangeable, compare with
figure 15.

5 The total area of Dutch state roads (67.75 km2) and their total length of 5678 km give an average width
of 11.9 m (one-directional road for freeways, bi-directional for other state roads). An assumed average
lane width of 3.5 m (also valid for the shoulder), gives and average number of lanes of 2.4. Therefore, the
Netherlands have approximately 13.7⋅103 km of single lanes. The total transportation of 5.15⋅106 vehkm/h
gives an average use of 376 vehkm/h. An expected rise in transportation of 30% (see figure 3) gives a
final lane occupancy of 495 vehkm/h. This figure is only used for illustrative purposes. No sensitivity
analysis is carried out. (MinV&W, 1999; CBS, 1995)
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Figure�15�The�difference�between�both�curves�is�relatively�small�in�the�region�between�495�and�1050�
vehkm/h�(≤5.5%).�The�first�attempt�is�to�use�from�the�left�the�(thin�line)�forced�flow�curve�until�the�
point�of�equal�and�positive�derivatives.�From�that�point�on,�the�(thick�line)�free�flow�curve�is�used.�

Consider the two curves of figure 15. Denote Ffree as the free flow curve, defined for
x>y and denote Fforced the forced flow curve, defined for all x. The point xjump is the
'jump point': F=Fforced for x�≤�xjump and F=Ffree for x>xjump. Suppose this jump point is

defined as: )()(and0)( jump
free

jump
forced

jump x
x

F
x

x

F
x

x

F

∂
∂

=
∂

∂
>

∂
∂

, then the function F(x) will

have a form as depicted in figure 16.

To prevent any conflict with condition (H2), also positive derivatives have to be
excluded. Therefore, in regions with a thus far positive slope, the function is kept almost
constant at the lowest level. It cannot be fixed at a constant level, as this is excluded by
assumption (H5). Suppose a capacity level xmin where the minimum of F in x lies:

0)( min =
∂
∂

x
x

F
. This point, as can be seen in figure 16, is defined as following the

formula of Fforced in above rules.�The final form of F is now defined as:
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xxxxF
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The very small and positive function ε(x)�meets the assumption (H2), (H3) and (H5) on
F concerning the derivatives. The version of F used in the final part of this paper, does
not always meet all the conditions for x<x0. It can be proven that this does not
compromise the result.
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Figure�16�Schematic�overview�of�construction�of�the�final�form�of�F(x).�Note�that�in�this�graph�the�
option� of� velocities� greater� than� 120� km/h� is� disallowed.� The� approximation� to� avoid� positive�
derivatives�is�indicated�by�the�dotted�line.�

6.2.� Defining�regions�with�different�control�

Three different sets, linked to three regimes, were defined in section 5.3: G0,�G1�and�G2.
Figure 17 shows the curve γ(x), the stable line inΨ, a arbitrary vertical line at x=a/δ
representing the highest maintainable capacity level possible, and a horizontal line at
Ψ=α, where the control variable can take values in the range [0, a]. Above the
lineΨ=α, the regime V connects to set G1.�Below this line, thus Ψ�<α, the regime W
links to set G0.
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Figure�17�Graph�representing�the�stable�lines�in�the�vector�diagram.�The�thick�black�curve�is�γ(x),�
along�which�dΨ/dt�=�0.�This�graph�is�created�for�y=1500�vehkm/h.�

Inside this chart, it is possible to indicate the vector field of the Hamiltonian system by
the direction of the vectors. The notation has the form: <regime><change�in�x><change�in�Ψ>.
For example, the vector field in the top right corner (high x, high Ψ) can be indicated by
V-+, since .0and0 >< Ψx && Figures 18 and 19 use this notation.

6.3.� Optimal�control�values�

The solution to finding optimal control values follows from Theorem 2. The final
optimal steady state can be deduced used the theory of section 5.3. The rest points in the
Hamiltonian system can exist at the intersections of either γ(x) and the line Ψ=a, or γ(x)
and the line x=a/δ. Which intersection is representative of the equilibrium situation
depends on the value of the maximum construction effort a. Figure 18 shows a case
with limited resource (a/δ=1500) and figure 19 shows one with sufficient resource
(a/δ=3000). In both figures the optimal transition paths towards these rest points are
depicted by back casting, using the rest points as starting points.

As example, let us look at figure 18. One of an infinite number of possible trajectories
starts at (x0=10, Ψ(0)=100�000). Initially, this system moves in figure 18 to the right,
thus with an increase in x. At the same time, it also shows a tendency to move
downwards. This behaviour continues until the system reaches the line x=α, from where
x will be decreasing. Shortly after, the system drops below the line Ψ=0, and the system
will violate condition 3) of Theorem 2. Therefore, a trajetory starting at (x0=10,
Ψ(0)=100�000)� is not an optimal trajectory. Also, the paths starting at large x� (e.g.
x0>2000) and large Ψ�(e.g. Ψ(0)>100 000) would rise sharply, and thus conflict with
condition 4) of Theorem 2. Therefore, those paths are also not optimal.
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Figure�18�Hamiltonian�system�of�the�low�resource�case.�The�rest�point�is�at�x=a/δ.�The�vector�field�
shows�that�the�intersection�of�Ψ=α�is�not�a�stable�point,�since�at�that�point�dx/dt<0.�

�

Figure� 19� The� Hamiltonian� system� for� a� case� with� sufficient� resources.� The� rest� point� is�
at γ(x)=α. The�capacity�x0�of�this�point�can�be�maintained�since�x0�<�a/δ.�As�is�proven�in�chapter�5,�
the�transition�path�is�unique.�
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6.4.� Case�of�average�Dutch�highway�

The current expenditure on road infrastructure management is taken as starting point. In
2000, 1.0⋅109 /year was spent on production of new state road capacity, while
0.5⋅109 /year on state road maintenance. The conversion rate from monetary values to
energy, the energy intensity I, is calculated for the Dutch construction sector by (Kok et
al., 2001): Iroad�= 9.06 MJ/ . The energy expenditure for the Dutch state roads was:

α⋅p�=�9.06⋅103 TJ/yr;

ß⋅m⋅x = 4.53⋅103 TJ/yr.

According to Bos (Bos, 1998), the total indirect energy costs on freeways amount to
90 TJ/km, of which 26 TJ/km are used for 50 years of maintenance. The 64 TJ/km are
for the production. Since a default freeway has 2x2 lanes, one kilometer of it has
therefore a capacity of approximately x = 8000 vehkm/h. The relative energy costs for
production is therefore α�= 8000 MJ/(vehkm⋅h-1).

The 26 TJ/km are for 50 years maintenance; it implies an life time average energy
expenditure of 0.52 TJ/yr, or ß⋅m⋅x=0.52 TJ/yr; assuming m=δ=0.15 yr-1, and
remembering x=8000 vehkm/h, it is possible to resolve the value of ß:
ß�=�433 MJ/(vehkm⋅h-1). This still defies the assumption of section 4.3, since α�≠�ß.
However, that might still be because high energy requirements for maintenance at roads
of high age are not included in the current maintenance expenditures (basically, because
the roads are not old enough). Nevertheless, these values of α and ß can be used for the
calculation of the maximum construction effort at current expenditure levels.

The value of the production effort is p=9.06⋅109/8000 vehkm/(yr⋅h) =
1.13⋅106 vehkm/(yr⋅h). A default freeway has, as said, a capacity of 8.0⋅103 vehkm/h.
Therefore, the production rate is comparable to 142 km of new freeway per year. Figure
4 showed an increase in total length of roughly 20 km/year; therefore most of this
production is used for broadening of existing roads.

Similarly, the maintenance effort is m⋅x� = 4.53⋅109 / 433 vehkm/(yr⋅h) =
10.5⋅106 vehkm/(yr⋅h). The current production effort is thus
u=p+m⋅x=11.6⋅106 vehkm/(yr⋅h). With x=u/δ, we get: x�= 77.3⋅106 vehkm/h. The
current length of the network is 13.7⋅103 km(lane). Very roughly, for one kilometer of
lane the maximum construction effort at current expenditure levels is around the a/δ =
5600 vehkm/h.

Finally, one has to determine the transport demand of the average Dutch highway. This
has been done and – including an expected rise of 30% - estimated at 495 vehkm/h. In
reality, the transport demand shows daily recurring fluctuations. Figure 20 shows two
curves of γ(x): γ1(x)�shows the curve at which dΨ/dt=0 for the case of the transport
demand evenly distributed over the day; γ2(x) shows the curve where a distinction is
made between transport demand during day times, night times and rush hours. For this,
the following assumptions are made: rush-hours last for 4 hours per day with an
intensity of 4 times the day intensity; night traffic last for 8 hours per day with an
intensity of 25% of the day intensity. Therefore, the daytime intensity lasts for 12 hours
per day.
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Figure�20�Hamiltonian�system�for�one�kilometer-lane�of�average�Dutch�state�road.�The�thin�line�
represents�the�situation�with�a�constant�transport�demand�throughout�the�day.�The�black�line�is�
more�in�agreement�with�reality,�since�it�distinguishes�into�quiet�night�hours,�normal�day�hours�and�
busy�rush�hours.�The�stable� intersection�point� shifts� from�approximately�700�vehkm/h� to�1000�
vehkm/h�due�to�the�energy�inefficiency�during�rush�hours.�The�line�of�maximum�capacity�lies�above�
the�x=5000�vehkm/h,�so�far�to�the�right�of�the�graph.�
The stable capacity level lies at 1000 vehkm/h. By definition, the capacity of one
kilometer of single lane is 2000 vehkm/h. Therefore, even with inclusion of the rush
hour inefficiency, the Dutch state road infrastructure is on�average�overdimensioned
from an energetic point of view.
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6.5.� Examples�of�other�possible�cases�

Although the Dutch road system is overdeveloped on average, it does not mean that no
specific road project should be undertaken anymore. A more detailed analysis per road
section might reveal other conclusions. Consider for example the road section of the
freeway A4 between Roelofarendsveen and intersection Burgerveen. In the year 2000,
this section saw more than 100 traffic jams. Traffic is expected to increase significantly
in the future on this section as is shown in figure 21. It can be shown that even from an
energy point of view, this section needs to be expanded – if one does not take network
effects into account. The methodology proposed in this paper can in this case provide an
adequate answer to which extent this road section should be widened.
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Figure� 21� Recorded� and� expected� transport� demand� on� a� section� of� the� freeway� A4,�
Roelofarendsveen-Burgerveen.�In�2025�the�transport�demand�will�reach�on�average�to�capacity.�At�
least�from�a�transportation�point�of�view,�the�section�needs�to�be�upgraded.�

Another interesting case might be one in which there are insufficient funds to increase
the capacity of the infrastructure. Two situations are easily identifiable. One is the case
in which a small municipality does not have enough funds to improve the local
transportation system adequately, the other relates to a poor country, in which the total
road network system cannot be expanded and maintained at an appropriate level due to
insufficient funds again.
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7.� Conclusion�

7.1.� Applicability�of�methodology�

The methodology of optimal control theory can successfully be applied to the problem
of minimizing the energy use of the transportation sector. There exists a unique
transition path that leads towards the optimal solution. Theoretically, two stable
situations exist, depending on the available resources. If analysis shows that the
infrastructure has to expand, then the theory shows that the infrastructure has to expand
as fast as possible either to the optimal capacity or to the highest reachable capacity
level. Should, however, the transport demand not be constant in time, then further
analysis is necessary in other to determine the transition speed.

To use the described methodology, it was necessary to construct a function that
represents the fuel consumption of traffic as function of the transport demand and the
road capacity. It shows that transportation inside traffic jams at low velocities uses more
energy than normal traffic on highways.

The methodology is applied towards the issue of reducing energy consumption. Other
utility functions, for example those who describe economic damage due to traffic jams,
can help formulate solutions on how far infrastructure should expand on to economic
criteria.

7.2.� Relevance�of�case�situations�

The two cases, one for sufficient resources and another for insufficient resources, are
theoretically deduced. These resources can be bound by financial or material
constraints, but also a resource limitation due to available workforce or permitted road
closures is possible. Road authorities in the Netherlands will presumably have sufficient
financial and material resources. For the case of the average Dutch road network, the
methodology is not suitable. On average, the road network is overdimensioned. The
averaging over all kind of roads makes the provided solution too straightforward.

The presented methods can be applied internationally. It is conceivable that some
countries do not have sufficient means to expand the network to the desired level. Also
congested small communities in Western countries can face problems of insufficient
resources. To define an upper bound for the available resources has been found to be
difficult if not impossible.
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8.� Discussion�
A crucial element in the beginning of this project was the development of a formula to
describe the adverse environmental effect of a traffic jam. It is chosen to take the
capacity of the road as starting point and to find a relation between the energy
consumption of road traffic and the available relative capacity. As road traffic is a very
dynamic phenomenon, one can argue about the validity of such a function. The function
presented here is primarily used to enable the investigation into the applicability of the
methodology of optimal control theory. For future research it should be noted that some
distinction into vehicle types, like passenger cars and freight vehicles, is recommended.
This might lead to a stochastic approach of defining the utility functions.

The utility function F(x) does not meet all the conditions everywhere as required by the
maximum principle. Future research might try both to make the conditions less strict,
and to approximate F(x) carefully in such a way that it does meet all the conditions
everywhere.

This paper used a constant value for the deterioration rate of the infrastructure. For a
case of the Netherlands, where maintenance is provided at an adequate and frequent
level, this is true by approximation. One can consider to make the deterioration rate also
time dependent by including a differential equation for the deterioration.

It is not uniformly clear which physical actions are considered production activities and
which are maintenance activities. One can either establish a clear definition of those, or
redefine them on a case-by-case basis. The relative energy use for production activities
and the relative energy use for maintenance are, for most capacity improving measures,
not equal. The redefinition of production and maintenance can for a specific case rescale
those relative energy investment figures. Another option to avoid the problem of these
non-equal relative energy investment figures might be to see the maintenance no longer
as control variable. The statement that the maintenance rate must equal the deterioration
rate, would resolve into a different set of equations.

Future research should try to include a time dependent transport demand, which gives a
more detailed insight in the speed at which the transport network should grow. More
geographical detail in the case studies is necessary, but calls for inclusion of network
relations. Not only does a change in capacity of one road effect the traffic on other
roads, but also might a capacity increase lead to induced traffic. For a single road, it is
still possible to modify the utility function only slightly to include this latter
phenomenon.
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