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Abstract

The evolution of cannibalistic traits in consumer populations is studied in this paper with the ap-
proach of Adaptive Dynamics theory. The model is kept at its minimum complexity by eliminating
some environmental characteristics, like heterogeneity and seasonalities, and by hiding the size-
structure of the population. Evolutionary dynamics are identified through numerical bifurcation
analysis, applied both to the ecological (resident-mutant) model and to the canonical equation of
Adaptive Dynamics. The result is a rich catalogue of evolutionary scenarios involving evolution-
ary stable strategies and branching points both in the monomorphic and dimorphic dynamics. The
possibility of evolutionary extinction of highly cannibalistic populations is also ascertained. This
allows one to explain why cannibalism can be a transient stage of evolution.
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Evolution of Cannibalistic Traits: Scenarios Derived from
Adaptive Dynamics

Fabio Dercole
Sergio Rinaldi

1 Introduction

Cannibalism, defined as intraspecific predation, is a behavioral trait found in a wide variety of
animals, ranging from protozoa and rotifers to birds and mammals (Fox, 1975). The most impor-
tant studies based on field and laboratory data have been surveyed by Polis (1981, 1988) who has
shown that pronounced cannibalism is a frequent feature of population dynamics in species that
grow through a wide size range. Often cannibalism develops at ecological time scale as a reaction
of adult individuals to food scarcity (Fox, 1975). However, besides the evidence for dietary induc-
tion several types of data indicate that, for many species, there is a strong genetic component to
cannibalism (see Polis (1981) and references therein).

The aim of this note is to show how a few characteristics of the evolution of phenotypic can-
nibalistic traits in consumer populations can be derived from general and formal principles. The
approach we follow is that of Adaptive Dynamics Theory (Hofbauer and Sigmund, 1990; Metz
et al., 1992; Geritz et al., 1997). It is based on a transparent conceptual framework (small and
rare random mutations followed by natural selection) and allows one to describe the dynamics of
the traits in a purely deterministic way, through an ODE called canonical equation (Dieckmann
and Law, 1996; Champagnat et al., 2001). The method is also capable of explaining the transition
from monomorphism to dimorphism (Geritz et al., 1997).

However, the derivation of the canonical equation poses some problems if the resident and
mutant populations are described with high dimensional models. On the other hand, cannibalis-
tic consumer populations naturally call for relatively complex age/size-structured models (Polis,
1988). Thus, in order to easily derive the canonical equation we have used a strongly simplified
population model. Our choice has been to hide the size-structure of the population as well as all
environmental heterogeneity and seasonalities, which are known to enhance cannibalism in many
species (Fox, 1975). Thus, both the resident and the mutant populations are described with a first
order ODE with constant parameters. Although the model on which the entire study is based is
only a caricature of the real world, it contains the basic ingredients for a sound discussion of adap-
tation. In fact, the cannibalistic predation rate and the searching efficiency of the common resource
depend upon a phenotypic trait from now on called cannibalism. Moreover, the functional form of
the model and the ranges of its admissible parameter values have been carefully selected in order
to fit a paradigmatic case, namely that of the Eurasian perch (Perca fluviatilis), recently described
in great detail (Claessen et al., 2000). Thus, at least from this point of view, the model is quite
realistic.

The paper is organized as follows. In the next section we describe the resident-mutant model
and the dependence of the demographic parameters upon the adaptive trait. In the third section we
derive the monomorphic canonical equation and study the evolutionary dynamics of the trait. In
particular, we show that an evolutionary stable strategy (ESS) (Maynard Smith and Price, 1973;
Maynard Smith, 1982) characterized by a low value of cannibalism is always guaranteed if the
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environment is not too rich, and that dimorphism is a possible evolutionary option in populations
with wide size range. Then, in the following section we explore dimorphic dynamics by studying
a second order canonical equation derived, once more, from the resident-mutant model. The
most interesting result is that dimorphic evolution can have a halt in an ESS characterized by
the coexistence of two populations, one with low and one with high cannibalism. Assuming
that body size of adult individuals and cannibalism are positively correlated, this dimorphic ESS
explains the coexistence of dwarfs and giants. Our findings are therefore consistent with one of
the conclusions of Polis (1988) who assessed “the possible evolutionary options of large entities
living among hordes of smaller entities”.

2 The resident-mutant model

Assume that a cannibalistic consumer population is characterized by a phenotypic trait indicated
by x. Since we do not want to refer to a particular population or species, we can not specify what x
is. However, in order to facilitate the interpretation of our results, we take the liberty of assuming
that the size of adult individuals is positively correlated with the cannibalistic trait. Thus, x can
be simply identified with a suitable measure of body size, so that the coexistence of two sub-
populations, one with low and one with high cannibalism, should be revealed by the presence of
dwarfs and giants in the same environment.

The derivation of the canonical equation of Adaptive Dynamics requires two things: (i) the
knowledge of the interactions occurring at ecological time scale between all sub-populations; (ii)
the dependence of the demographic parameters of the sub-populations upon the traits. All this
can be specified through a resident-mutant model composed of (N + 1) populations. The first N
populations, with biomass densities ni and traits xi, are the resident populations, while the last
population, with biomass density nN+1 and trait xN+1, is the mutant population. The interactions
between all sub-populations are described by the following ODE’s

ṅi = ni




N+1∑
j=0

eij aij nj

1 +
N+1∑
j=0

hij aij nj

−
N+1∑
j=1

aji nj

1 +
N+1∑
k=0

hjk ajk nk

−
N+1∑
j=1

cij nj


 i = 1, . . . , N+1 (1)

where the index 0 refers to the common resource and the indexes 1,. . . ,N+1 to the consumer sub-
populations. Notice that the densityn0 of the common resource, from now on called environmental
richness, is assumed to be constant, i. e. seasonalities are ruled out. The three terms at the right-
hand-side of eq. (1) are natality due to food intake, mortality due to cannibalism and mortality
due to competition. The first term is written in the form of a type II functional response and
takes into account that each individual has two alternative food sources: the common resource and
the individuals of the same species. In the case of the Eurasian perch, which has motivated the
present study, the common resource is zooplankton on which all perch feed, at least in the first
stages of their life (Holcik, 1977). Thus, rich environment are those in which young perch have
more access to food. The parameter eij is a conversion factor transforming food intake of type
j into new biomass of type i. The parameter hij is the handling time of the i-th sub-population
associated with the food source of type j and cij is a coefficient specifying the extra-mortality
due to competition. Although all demographic parameters depend upon various traits, in order to
obtain a tractable problem we limit the analysis to the case in which only two parameters depend
upon the trait we have called cannibalism. Our choice has been to assume that the parameters eij
and cij are constant (recall that ni is biomass density), while the attack rates aij and the handling
times hij depend upon the traits. But other choices would also be justifiable.
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Figure 1: The cannibalistic attack rate aij as a function of the traits xi and xj (see eq. (3)). The thick line
indicates the restriction of aij on the ray xj = p xi. Parameter values: Aij = 1, β = 2, γ = 4, δ = 2,
x = 0.3, x = 0.9, p = 0.4.

The attack rate ai0 specifies the consumption of the common resource and is assumed to be a
bell-shaped function of the trait xi, because a consumer performs better when its body size is well
tuned with the size of the local resource. The trait value at which the attack rate is maximum is
supposed to be the same for all sub-populations and is indicated by x0. In the analysis we use the
following bell-shaped function

ai0 =
2Ai0(

xi
x0

)α
+
(
x0

xi

)α (2)

where Ai0 is the maximum attack rate and α > 1 specifies the sharpness of the bell.
As for the cannibalistic attack rate aij , we assume it is shaped as in Figure 1. Along each ray

xj/xi = const the attack rate is bell-shaped and vanishes for xi tending to zero and to infinity.
Similarly, aij is a bell-shaped function of the ratio xj/xi, since the predation rate is higher when
the body size of the victim is in a suitable ratio with that of the predator, i. e. when xj = p xi,
p < 1. The function we use in our analysis is

aij = Aij


 2(
pxi
xj

)β
+
(
xj
p xi

)β


(
xγi

xγ + x
γ
i

)(
1− xδi
xδ + xδi

)
(3)

where Aij is the maximum attack rate and β > 1, γ > 1, δ > 1 and x, x are suitable parameters
specifying the bell-shaped functions. The parameter x is a sort of threshold indicating the body
size at which cannibalism becomes physiologically significant, while the second threshold x is the
body size at which predation starts to be limited by habitat morphology (see Figure 1). In order to
allow the survival of populations with negligible cannibalism (xi < x)we assume in the following
x0 < x. Small values of β imply high values of the cannibalistic attack rate aii (see eq. (3) with
xi = xj), i. e. great possibilities for individuals of trait xi to predate individuals of the same trait.
In the real world such a population would be characterized by a substantial change in size from
juvenile to adult, so that adult individuals can easily predate young ones (Polis, 1981, 1988). For
this reason the parameter (1/β) is a sort of surrogate for the size range of the individuals in the
population and will, indeed, be called size range in the following.
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Finally, the handling times hij , which can be estimated from feeding experiments performed
under excessive food conditions (Byström and Garcia-Berthóu, 1999), are assumed to depend
mainly upon the trait xi through the function (see Claessen et al., 2000)

hij = w1 x
−w2
i (4)

For this reason, in the Appendix the functions hij are substituted by hi.

3 Monomorphic dynamics

We now use model (1-4) with N = 1 to study the monomorphic evolution of cannibalism. Con-
sistently with the Adaptive Dynamics approach we assume that the resident population with trait
value x1 is at its equilibrium n1(x1) when a mutant appears. The uniqueness of this equilibrium
can be easily ascertained from the formulas presented in the Appendix. Moreover, we also assume
that the trait x2 of the mutant is only slightly different from x1 (i. e. x2 = x1 + ε, with small ε)
and that the mutant population density n2 is initially very small. Under these conditions, model
(1-4) written in the form

ṅ1 = n1 f1(n1, n2, x1, x2)
ṅ2 = n2 f2(n1, n2, x1, x2)

(5)

can be used to establish the fate of the mutant and resident populations. Generically, an invading
mutant replaces the former resident so that, in the end, the system is composed of a single popula-
tion with trait x1+ε. In the opposite case, i. e. when the mutant population does not invade, it goes
extinct so that the trait of the population remains unchanged. This process of mutation and selec-
tion can be further specified by making suitable assumptions on the frequency and distribution of
small mutations (Dieckmann and Law, 1996) and the conclusion is that the rate at which the trait
x1 varies at evolutionary time scale is given by the following ODE (called canonical equation of
Adaptive Dynamics)

ẋ1 = k n1(x1)
∂f2(x1, x2)

∂x2
|x2=x1 (6)

where k is proportional to the frequency and variance of small mutations and f2(x1, x2) is the
fitness of the mutant, i. e.

f2(x1, x2) = f2(n1(x1), 0, x1, x2) (7)

Equation (6) always admits the trivial solution x1 = 0 because n1(x1) and ∂f2/∂x2|x2=x1
are zero for x1 = 0 (the proof can be easily derived from eqs. (A1,A3) of the Appendix, by taking
into account that a10 vanishes for x1 tending to zero (see eq. (2))). Moreover, the trivial solution
x1 = 0 is always unstable (i. e. ẋ1 > 0 for small x1 > 0) since n1(x1) and ∂f2/∂x2|x2=x1 are
positive for small and positive values of x1. Since k > 0 and n1(x1) is positive for any positive
x1, eqs. (6,7) say that x1 is stationary (monomorphic equilibrium) when the fitness of the mutant
is stationary with respect to x2. In generic conditions, the non-trivial monomorphic equilibria are
either one or three, as shown in Figure 2 for three different combinations of environmental richness
(n0) and size range (1/β) (see the Appendix for a qualitative analysis of eqs. (6,7)). In the case
of Figure 2B two stable equilibria x′1 and x′′′1 (filled circles on the x1 axis) are separated by an
unstable equilibrium x′′1 (empty circle). Thus, in this case the cannibalistic trait can evolve either
toward a low value (corresponding to a very dense population of dwarfs) or toward a high value
(corresponding to a scarce population of giants). In the other two cases there is only one stable
equilibrium: a low value x′1 with high population density in case A, and a high value x′′′1 with
low population density in case C. The transition from B to A [C] is characterized by the collision
of x′′1 with x′′′1 [x′1]. The parameter conditions characterizing such collisions can, in principle,
be detected through extensive simulations of model (6,7). However, they can be detected much
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Figure 2: The equilibrium density n1(x1) of model (1-4) and monomorphic dynamics on the horizontal
axis, where circles indicate equilibria of model (6,7). (A) n0 = 10, β = 2.5. (B) n0 = 10, β = 1.5. (C)
n0 = 500, β = 1.5. Other parameter values: Ai0 = 1, Aij = 10, x0 = 0.1, x = 0.5, x = 5, p = 0.2,
α = 2, γ = 8, δ = 2, c = 1, e = 0.6, w1 = 0.1, w2 = 0.25, i=1,2.

more accurately through numeric bifurcation analysis (Kuznetsov, 1998), which is, indeed, the
technique used in this paper.

Once monomorphic dynamics have found a halt at a stable monomorphic equilibrium (x′1 or
x′′′1 in our case), one should look at the higher order terms in the Taylor expansion of the fitness
function (7) to establish if the equilibrium is an ESS or a branching point (Geritz et al., 1997).
More precisely, at a stable monomorphic equilibrium, the following correspondence holds

∂2f 2(x1, x2)

∂x22
|x2=x1 < 0 ESS

∂2f 2(x1, x2)

∂x22
|x2=x1 > 0 branching point

(8)

In the first case all small mutations of the resident population fail to invade, while in the second
case small mutations invade but do not replace the former resident. Thus, branching points are the
origin of dimorphism. For example, in Figure 2 the low equilibria x′1 are ESSs, while the high
equilibria x′′′1 are branching points (see Appendix). But other combinations are possible for other
values of environmental richness (n0) and size range (1/β).

The study of monomorphic dynamics has been completed by performing the bifurcation anal-
ysis of model (6,7) with respect to (n0) and (1/β), thus producing the diagram shown in Figure 3.
In such a diagram, the two curves merging at the cusp point C are the combinations of parameter
values (n0, 1/β) for which the unstable equilibrium x′′1 collides with x′1 or x′′′1 . By contrast, the
remaining curve represents the values (n0, 1/β) for which ∂2f2/∂x

2
2|x2=x1 evaluated at x′′′1 is

zero, i. e. the values (n0, 1/β) separating evolutionary stable strategies from branching strategies
(see eq. (8)). Thus, the space (n0, 1/β) is subdivided into four regions, each characterized by one
or two stable monomorphic equilibria and by a different mix of ESSs and branching points. In
particular, Figure 3 shows that in poor environments an ESS always exists and that dimorphism
(due to branching points) is a possible evolutionary option only in populations with wide size
range (actually it is the only option in very rich environments). Through Figure 3 one can also
identify the conditions under which a population will evolve toward high degrees of cannibalism.
Indeed, in the regions with wide size range the presence of a branching point and the fact that
its associated cannibalistic trait is high (see point x′′′1 in Figure 2B) guarantees the possibility of
a monomorphic evolution toward high degrees of cannibalism (followed by a subsequent phase
of dimorphism discussed in the next section). However, populations characterized by small size
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Figure 3: Bifurcation diagram of model (6,7) with respect to n0 and 1/β. The curves identify four re-
gions characterized by one or two stable monomorphic equilibria which can be either evolutionary stable
strategies (ESS) or branching points (BR). Parameter values as in Figure 2.

ranges can also develop high degrees of cannibalism, because it can be shown through numerical
analysis that the cannibalistic trait associated to the ESS is high for very rich environments. All
this is in good agreement with Polis (1981, 1988), who has noticed that pronounced cannibalism
is often present in populations growing through a wide size range.

4 Dimorphic dynamics

We now focus on the evolution of the cannibalistic traits x1 and x2 of two coexisting sub-populations
with densities n1 and n2. The aim of the analysis is twofold. First we want to investigate the long
term evolution of the traits and establish, in particular, if dimorphism is the final state of evolution
or can turn into polymorphism or even back to monomorphism (Matsuda and Abrams, 1994a,b;
Dieckmann et al., 1995). Second, we want to show that a sort of catalogue of all possible outcomes
can be identified by performing, once more, a bifurcation analysis with respect to parameters.

The study of dimorphic dynamics must be limited to the coexistence region, which is the region
of all pairs (x1, x2) for which model (5) has a stable and strictly positive equilibrium. Such a region
can be computed by performing the bifurcation analysis of model (5) with respect to the traits x1
and x2 interpreted as constant parameters. Since dimorphic dynamics, i. e. trajectories in the space
(x1, x2), are symmetric with respect to the diagonal x2 = x1, we limit the analysis to the region
x1 < x2 and call populations 1 and 2 dwarf and giant populations, respectively. An example
of this bifurcation analysis is shown in Figure 4, where the upper part reports all bifurcation
curves which identify seven regions (I-VII), while the lower part reports the corresponding state
portraits of model (5). Since only in the state portraits IV and VII there is a stable and strictly
positive equilibrium, the region of coexistence is the union of regions IV and VII. The points E,
U and B on the diagonal x2 = x1, where various bifurcation curves merge, correspond to the
monomorphic equilibria, i. e. E ≡ (x′1, x′1), U ≡ (x′′1, x′′1), and B ≡ (x′′′1 , x′′′1 ). Since Figure 4
has been obtained for the same parameter settings used in Figure 2B, the equilibria x′1, x

′′
1, and
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Figure 4: Bifurcation diagram of model (5) with respect to cannibalistic traits x1 and x2. Parameter
values as in Figure 2B. Upper triangle: bifurcation curves and regions I-VII (squares indicate codimension-
2 bifurcation points). Lower triangle: state portraits of model (5) for each region I-VII (circles indicate
equilibria of model (5)).

x′′′1 of model (6,7) are ESS, unstable, and branching, respectively. The nature of a bifurcation
curve separating two nearby regions can be understood by comparing the two corresponding state
portraits. For example, the bifurcation curve separating region IV from region VI is characterized
(see state portraits IV and VI) by the collision of a stable node with a saddle on the n1-axis. Thus,
if a dimorphic trajectory in region IV moves toward and finally hits this bifurcation curve, the giant
population goes extinct. In such a case the bifurcation curve corresponds to what is properly called
evolutionary murder. In fact, approaching this curve, ẋ2 vanishes (see forthcoming eq. (10)), i. e.
it is the evolutionary change in the dwarfs that kills the giants, thus marking the transition from
dimorphism to monomorphism.

We now use model (1-4) with N = 2 and denote by n1(x1, x2) and n2(x1, x2) the densities
of the stable and strictly positive equilibrium of model (5) in the region of coexistence. As for
monomorphic evolution, we assume that the resident populations are at equilibrium when a mutant
appears. Moreover, the mutant population is initially very scarce and its trait x3 is only slightly
different from that of the resident population (i. e. x3 = xi + ε, with small ε and i = 1 or 2). If
model (1-4) is written in the form

ṅ1 = n1 f1(n1, n2, n3, x1, x2, x3)
ṅ2 = n2 f2(n1, n2, n3, x1, x2, x3)
ṅ3 = n3 f3(n1, n2, n3, x1, x2, x3)

(9)

the dimorphic canonical equation turns out to be given by

ẋ1 = k1 n1(x1, x2)
∂f3(x1, x2, x3)

∂x3
|x3=x1

ẋ2 = k2 n2(x1, x2)
∂f3(x1, x2, x3)

∂x3
|x3=x2

(10)

where k1 and k2 are proportional to the frequency and variance of small mutations in the resident
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populations and f3(x1, x2, x3) is the fitness of the mutant, i. e.

f3(x1, x2, x3) = f3(n1(x1, x2), n2(x1, x2), 0, x1, x2, x3) (11)

Moreover, if dimorphic dynamics find a halt at a stable equilibrium (x1, x2), such an equilib-
rium is an ESS if

∂2f3(x1, x2, x3)

∂x23
|x3=xi < 0 i = 1, 2 (12)

Conversely, if condition (12) does not hold, then the dimorphic equilibrium is a branching point.
Three examples of dimorphic dynamics are shown in Figure 5 for different values of environ-

mental richness (n0) and size range (1/β). The coexistence region is partitioned in white and
dark subregions. Trajectories starting in the white region tend toward a dimorphic equilibriumD
which can be either ESS or branching. By contrast, trajectories starting in the dark region hit the
boundary of the coexistence region where an evolutionary murder occurs.

In Figure 5A, the trajectories starting close to the branching point B where dimorphism
originates, tend toward a dimorphic stable ESS D ≡ (x1, x2), characterized by n1(x1, x2) >
n2(x1, x2). This result is in agreement with Polis (1988) observation on the possible coexistence
of an abundant population of small individuals with a scarce population of large and highly canni-
balistic individuals.

Figure 5B corresponds to populations with a wider size range (1/β). The cannibalism of the
monomorphic population at the branching point is so high that point B is now on the boundary
of the dark region, so that dimorphic dynamics end with the evolutionary murder of the giant
population at point X∗ ≡ (x∗1, x∗2). After that (i. e. after the sudden transition from X∗ to X∗∗

in Figure 5B) the dwarf population evolves, starting with a trait x1 = x∗1 in accordance with the
monomorphic canonical equations (6,7). Thus, in the end, the system settles at the monomorphic
ESS x′1 (see point E of Figure 5B). In other words, starting from any ancestral monomorphic
condition the final outcome of evolution is a low cannibalistic population of dwarfs. However,
if the ancestral conditions are characterized by a sufficiently low cannibalistic trait (i. e. x1 <
x′′1 , see point U in Figure 5B), the evolution is purely monomorphic, while ancestral conditions
x1 > x

′′
1 give rise to three distinct evolutionary phases: first a monomorphic evolution toward

the branching point B, then a dimorphic evolution implying the temporary presence of a highly
cannibalistic population of giants (from B to X∗) and, finally, after the extinction of the giant
population, a monomorphic evolution toward an ESS (fromX∗∗ toE). All this can be summarized
by saying that in evolutionary systems different but very close initial conditions can generate
completely different evolutionary paths, ending however in the same final state (see also Geritz
et al., 1999). This property (which does not hold in generic dynamical systems) might be crucial
for understanding controversial results based on field or laboratory data concerning the evolution
of adaptive traits.

In the case of a richer environment (see Figure 5C) the trajectories starting close to the branch-
ing pointB tend toward a stable dimorphic equilibriumD ≡ (x1, x2), as in the case of Figure 5A.
However, at point D condition (12) holds only for i = 1, so that at D the giant population under-
goes a branching. Of course, the procedure we have followed to construct the monomorphic and
dimorphic canonical equations can be extended to the general polymorphic case. In particular, for
the parameter values of Figure 5C, numerical simulations show that the trajectory of the polymor-
phic canonical equation with N = 3 starting from (x1, x2, x2 + ε), tends toward a polymorphic
stable ESS characterized by a scarce population of giants, a crowded population of dwarfs and a
population of individuals with intermediate body size. Also this result is not in conflict with the
observations described in Polis (1988).

The complete bifurcation analysis of model (10,11) is out from the scope of this paper. How-
ever, by looking at Figure 5 we can make the following considerations. The transition between
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Figure 5: Examples of dimorphic dynamics. (A) n0 = 10, β = 1.9. (B) n0 = 10, β = 1.5. (C) n0 = 50,
β = 1.9 (a small part of the coexistence region attached to point U and not connected to the rest of the
coexistence region is not shown). Other parameter values as in Figure 2.
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the state portraits of Figures 5A and B is a global bifurcation (called heteroclinic bifurcation) in
which the unstable manifold of pointB coincides with the stable manifold of the saddle S, while
the transition between the state portraits of Figures 5A and C is slightly more complicated. In
fact, two characteristics of the state portrait of Figure 5C are qualitatively different from those of
Figure 5A: first point U does not belong to the coexistence region, and second there is a small
dark region in which the dimorphic dynamics are characterized by the evolutionary murder of
the dwarf population. Starting from Figure 5A and increasing n0, at a first critical value n′0 the
coexistence region looses the contact with point U . This implies that, for n0 slightly bigger than
n′0, the border of the coexistence region on the left of point B is characterized by the absence of
the dwarf population. This first bifurcation can be identified by a straightforward condition on the
fitness (7). At a second critical value n′′0 the equilibria R, S1 and S2 appear contemporarily at a
single point of the border of the coexistence region. For a further increase of n0 the three points
split: the repellor R enters into the coexistence region, while the saddles S1 and S2 remain on its
border, thus giving rise to the small dark region of Figure 5C. The bifurcation at n0 = n′′0, called
pitchfork bifurcation, can be easily identified with the condition n1(xR1 , x

R
2 ) = 0, where (xR1 , x

R
2 )

are the coordinates of R. Finally, at a third critical value n′′′0 the dimorphic ESS D becomes a
branching point. Strictly speaking, this critical value is not a bifurcation of model (10,11). How-
ever, it implies a discontinuity in the evolutionary dynamics, i. e. the birth of polymorphism with
N = 3, so that it is justified to consider it as a special bifurcation.

All the bifurcations described above and others not involved in the transitions between the
state portraits of Figure 5 can be continued in a two parameter space, e. g. (n0, 1/β). However,
this poses nontrivial technical problems. In fact, the continuation of global bifurcations requires
to solve specific boundary-value problems for model (10,11) in which n1(x1, x2) and n2(x1, x2)
are not known in closed form. Thus, the bifurcation analysis of model (10,11) must be performed
by considering differential algebraic systems of the form

ẋ1 = k1 n1
∂f3(n1, n2, 0, x1, x2, x3)

∂x3
|x3=x1

ẋ2 = k2 n2
∂f3(n1, n2, 0, x1, x2, x3)

∂x3
|x3=x2

0 = f1(n1, n2, 0, x1, x2, 0)
0 = f2(n1, n2, 0, x1, x2, 0)

(13)

for which algorithms for the numerical solution of boundary-value problems are hard to develop
(see, however, Ascher and Spiteri (1994)).

5 Discussion and conclusions

The problem of evolution of cannibalistic traits in consumer populations has been investigated in
this paper. The approach has been purely abstract (Adaptive Dynamics theory) and based on a very
simple model. Important environmental features like heterogeneity of the habitat and seasonalities,
have not been taken into account, while a great deal of attention has been given to ‘environmental
richness’. In order to keep the model at the minimum degree of complexity, we have also hidden
the size-structure of the population, which has been, however, indirectly taken into account through
a specific parameter called ‘size range’.

The study has been performed through extensive bifurcation analysis of both the ecological
model and the evolutionary model. The result is a rich catalogue of possible evolutionary scenar-
ios. In poor habitats, population with small size range remain monomorphic and tend to an ESS
characterized by a dense population of dwarfs in which cannibalism is practically absent. The
characteristics of the monomorphic ESS change smoothly with the richness of the environment
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until for very rich environments the ESS is characterized by a scarce population of giants, namely
a population of large and highly cannibalistic adult individuals. By contrast, monomorphic pop-
ulations with wide size range can converge to a branching point which is the starting point of a
dimorphic phase, which depending upon the cases, can be of various form. First of all, we can
have convergence to a dimorphic ESS, characterized by a dense population of dwarfs and a scarce
population of giants. In this case, dimorphism is the final state of evolution. But dimorphism
can be also a transient stage of evolution. This happens when dimorphic dynamics converge to a
branching point, from which a new mutant population invades, thus giving rise to a higher order
polymorphism. Surprisingly, also the opposite transition (from dimorphism to monomorphism)
can occur through the evolutionary murder of the giant population. In other words, for suitable
demographic and environmental conditions we can have a rather interesting evolutionary path: a
monomorphic population first increases its degree of cannibalism thus becoming a population of
giants when approaching a branching point; then, after branching, the giant population becomes
more and more scarce (at evolutionary time scale) until it goes extinct; finally, the remaining
monomorphic population settles at an ESS characterized by a huge number of dwarfs. In con-
clusion, our analysis shows that depending on the ancestral conditions and on the demographic
and environmental parameters, cannibalism in consumer populations can not only monotonically
decrease or increase, but also temporarily peak before being eliminated by the mechanisms of
mutation and selection.

The complexity of the evolutionary scenarios identified in this study by varying a couple of
environmental and demographic parameters, explain why it is difficult to extract a general verbal
theory of the evolution of cannibalism from the many available studies performed on different
species. However, it is worth to notice that some of the conclusions drawn by Polis in his remark-
able papers on cannibalism evolution (Polis, 1981, 1988) are consistent with our findings.
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6 Appendix: Analysis of the monomorphic canonical equation

In this Appendix we analyze the monomorphic canonical equation (6,7) to show that for suitable
values of the parameters three equilibria can exist: a stable ESS x′1, an unstable equilibrium x′′1
and a stable branching point x′′′1 .

Define aij(xi, xj) = ai(xi) σ(xi/xj), for i, j > 0 (see eq. (3)), where

ai(xi) = Aij
x
γ
i

xγ + x
γ
i

(
1− xδi
xδ + xδi

)
σ(z) =

2

(pz)β + (pz)−β

Thus, from eqs. (1, 5, 7) it follows that

∂f2(x1, x2)

∂x2
|x2=x1 =

e20
da10
dx1
n0 + e21

∂a21
∂x2
|x2=x1n1

1 + h1a10n0 + h1a11n1

− e20a10n0 + e21a11n1

(1 + h1a10n0 + h1a11n1)
2[

dh1
dx1
(a10n0 + a11n1) + h1

(
da10
dx1
n0 +

∂a21
∂x2
|x2=x1n1

)]

−

∂a12
∂x2
|x2=x1n1

1 + h1a10n0 + h1a11n1

(A1)

∂2f2(x1, x2)

∂x22
|x2=x1 =

e20
d2a10
dx21

n0 + e21
∂2a21

∂x22
|x2=x1n1

1 + h1a10n0 + h1a11n1

− 2
e20
da10
dx1
n0 + e21

∂a21
∂x2
|x2=x1n1

(1 + h1a10n0 + h1a11n1)
2[

dh1
dx1
(a10n0 + a11n1) + h1

(
da10
dx1
n0 +

∂a21
∂x2
|x2=x1n1

)]

+ 2
e20a10n0 + e21a11n1

(1 + h1a10n0 + h1a11n1)
3[

dh1
dx1
(a10n0 + a11n1) + h1

(
da10
dx1
n0 +

∂a21
∂x2
|x2=x1n1

)]2

− e20a10n0 + e21a11n1

(1 + h1a10n0 + h1a11n1)
2[

d2h1
dx21

(a10n0 + a11n1) + 2
dh1
dx1

(
da10
dx1
n0 +

∂a21
∂x2
|x2=x1n1

)

+h1

(
d2a10
dx21

n0 +
∂2a21
∂x22

|x2=x1n1
)]

−

∂2a12
∂x22

|x2=x1n1

1 + h1a10n0 + h1a11n1

(A2)

where
∂aij
∂xi
|xi=xj =

dai
dxi
σ(1) + ai

dσ

dz
|z=1

1

xj

∂aij
∂xj
|xj=xi = −ai

dσ

dz
|z=1
1

xi
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∂2aij
∂x2i
|xi=xj =

d2ai
dx2i
σ(1) + 2

dai
dxi

dσ

dz
|z=1

1

xj
+ ai
d2σ

dz2
|z=1

1

x2j

∂2aij
∂x2j
|xj=xi = ai

[
d2σ

dz2
|z=1 + 2

dσ

dz
|z=1
]
1

x2i

Then, assume p = 0.2, w1 = 0.1 and w2 = 0.25 (as in Figures 2-5). Thus, σ(1), dσ/dz|z=1
and d2σ/dz2|z=1 are positive and small (order 10−1). Moreover, h1 � w1 for all sufficiently high
values of x1 (see eq. (4)), so that dh1/dx1 and d2h1/d2x1 can be neglected when x1 is sufficiently
high.

Let us now study the function n1(x1). From eq. (1) with N = 0 it follows that n1(x1) is the
positive root of the second order equation

e10a10n0 = c11n1(1 + h1a10n0) + (1− e11)a11n1 + c11n21h1a11 (A3)

If x1 < x, then a11 � a10, since a1(x1) and σ(1) are small. Thus, the second and third terms at
the righthand side of eq. (A3) can be neglected, i. e.

n1(x1) �
e10a10n0

c11(1 + h1a10n0)
= ñ1(x1) (A4)

More precisely, ñ1(x1) is greater that n1(x1) for any positive x1. Thus, n1(x1) is bell-shaped as
a10 but peaks at a value of x1 greater than x0 and increasing with n0 (notice that the parameter
A10 can be scaled to 1, since it is always multiplied by n0).

Then, consider eqs. (A1,A2) for x1 in a neighborhood of x0. Taking into account that x0 < x,
that σ(1), dσ/dz|z=1, d2σ/dz2|z=1 are small, and using (A4)we can neglect in eqs. (A1,A2) all
terms containing aij and their derivates with i, j > 0, so that

∂f2(x1, x2)

∂x2
|x2=x1 �

e20
da10
dx1
n0

1 + h1a10n0

(
1− h1a10n0
1 + h1a10n0

)

∂2f2(x1, x2)

∂x22
|x2=x1 �



e20
d2a10
dx21

n0

1 + h1a10n0
− 2
e20h1

(
da10
dx1

)2
n20

(1 + h1a10n0)
2



(
1− h1a10n0
1 + h1a10n0

)

For sufficiently small values of n0, i. e. when (h1a10n0)/(1 + h1a10n0) � 1, the two above
expressions can be further simplified to

∂f2(x1, x2)

∂x2
|x2=x1 � e20

da10
dx1
n0

∂2f2(x1, x2)

∂x22
|x2=x1 � e20

d2a10
dx21

n0 (A5)

Since da10/dx1|x1=x0 = 0 and d2a10/dx21|x1=x0 < 0, the approximations (A5) imply that (for
suitable values of the parameters) model (6,7) has a stable ESS at x′1 close to x0.

The approximations (A5) do not hold for higher values of x1, since for such values a10,
da10/dx1|x1=x0 and d2a10/dx21|x1=x0 are small. In particular, in eq. (A1) ∂a21/∂x2|x2=x1 is
negative for x1 sufficiently high, due to presence of the threshold x (see eq. (3)). This can lead to a
negative sum of the first two terms in eq. (A1) which can balance the third term which is positive.

By contrast, for intermediate values of x1, and in particular for x1 close to x, ∂a21/∂x2|x2=x1
is positive and can give rise to a positive ∂f2/∂x2|x2=x1 . This implies the presence of two other
equilibria of model (6,7), namely an unstable equilibrium x′′1 and a stable equilibrium x′′′1 . The
sign of ∂2f2/∂x

2
2|x2=x′′′1 is more difficult to assess. However, for the parameter settings used
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throughout the paper, the first term of eq. (A2) is dominant and can be positive when evaluated at
x′′′1 , so that x′′′1 is a branching point for suitable values of the parameters.

Finally, it is worth to remark that qualitative analysis is useful for understanding if a cer-
tain phenomenon can occur. For confirming the results achieved through this qualitative anal-
ysis we have performed extensive numerical analyses, mainly based on continuation techniques
(Kuznetsov and Levitin, 1997; Doedel et al., 1997) (see Figures 3,4).
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