
International Institute for Tel: 43 2236 807 342
Applied Systems Analysis Fax: 43 2236 71313
Schlossplatz 1 E-mail: publications@iiasa.ac.at
A-2361 Laxenburg, Austria Web: www.iiasa.ac.at

Interim Report IR-02-053

Ecological Bistability and Evolutionary Reversals under
Asymmetrical Competition
Fabio Dercole (dercole@elet.polimi.it)
Régis Ferrière (regis.ferriere@snv.jussieu.fr)
Sergio Rinaldi (rinaldi@elet.polimi.it)

Approved by

Ulf Dieckmann (dieckman@iiasa.ac.at)
Project Leader, Adaptive Dynamics Network

July 2002

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National
Member Organizations, or other organizations supporting the work.



IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 65

���

The Adaptive Dynamics Network at IIASA fosters the develop-
ment of new mathematical and conceptual techniques for under-
standing the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Adaptive Dynamics Network
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van
Heerwaarden JS: Adaptive Dynamics: A Geometrical Study
of the Consequences of Nearly Faithful Reproduction. IIASA
Working Paper WP-95-099 (1995). van Strien SJ, Verduyn
Lunel SM (eds): Stochastic and Spatial Structures of Dynami-
cal Systems, Proceedings of the Royal Dutch Academy of Sci-
ence (KNAW Verhandelingen), North Holland, Amsterdam,
pp. 183-231 (1996).

No. 2 Dieckmann U, Law R: The Dynamical Theory of Co-
evolution: A Derivation from Stochastic Ecological Processes.
IIASA Working Paper WP-96-001 (1996). Journal of Mathe-
matical Biology 34:579-612 (1996).

No. 3 Dieckmann U, Marrow P, Law R: Evolutionary Cy-
cling of Predator-PreyInteractions: Population Dynamicsand
the Red Queen. IIASA Preprint (1995). Journal of Theoreti-
cal Biology 176:91-102 (1995).

No. 4 Marrow P, Dieckmann U, Law R: Evolutionary Dy-
namics of Predator-Prey Systems: An Ecological Perspective.
IIASA Working Paper WP-96-002 (1996). Journal of Mathe-
matical Biology 34:556-578 (1996).

No. 5 Law R, Marrow P, Dieckmann U: On Evolution under
Asymmetric Competition. IIASA Working Paper WP-96-003
(1996). Evolutionary Ecology 11:485-501 (1997).

No. 6 Metz JAJ, Mylius SD, Diekmann O: When Does Evo-
lution Optimize? On the Relation Between Types of Density
Dependence and Evolutionarily Stable Life History Parame-
ters. IIASA Working Paper WP-96-004 (1996).

No. 7 Ferrière R, Gatto M: Lyapunov Exponents and the
Mathematics of Invasion in Oscillatory or Chaotic Popula-
tions. Theoretical Population Biology 48:126-171 (1995).

No. 8 Ferrière R, Fox GA: Chaos and Evolution. IIASA
Preprint (1996). Trends in Ecology and Evolution 10:480-
485 (1995).

No. 9 Ferrière R, Michod RE: The Evolution of Cooperation
in Spatially Heterogeneous Populations. IIASA Working Pa-
per WP-96-029 (1996). The American Naturalist 147:692-
717 (1996).

No. 10 van Dooren TJM, Metz JAJ: Delayed Maturation in
Temporally Structured Populations with Non-Equilibrium Dy-
namics. IIASA Working Paper WP-96-070 (1996). Journal
of Evolutionary Biology 11:41-62 (1998).

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy-
namics of Adaptation and Evolutionary Branching. IIASA
Working Paper WP-96-077 (1996). Physical Review Letters
78:2024-2027 (1997).

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ: Evo-
lutionary Singular Strategies and the Adaptive Growth and
Branching of the Evolutionary Tree. IIASA Working Paper
WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).

No. 13 Heino M, Metz JAJ, Kaitala V: Evolution of Mixed
Maturation Strategies in Semelparous Life-Histories: The
Crucial Role of Dimensionality of Feedback Environment.
IIASA Working Paper WP-96-126 (1996). Philosophi-
cal Transactions of the Royal Society of London Series B
352:1647-1655 (1997).

No. 14 Dieckmann U: Can Adaptive Dynamics Invade?
IIASA Working Paper WP-96-152 (1996). Trends in Ecol-
ogy and Evolution 12:128-131 (1997).

No. 15 Meszéna G, Czibula I, Geritz SAH: Adaptive Dynam-
ics in a 2-Patch Environment: A Simple Model for Allopatric
and Parapatric Speciation. IIASA Interim Report IR-97-001
(1997). Journal of Biological Systems 5:265-284 (1997).

No. 16 Heino M, Metz JAJ, Kaitala V: The Enigma of
Frequency-Dependent Selection. IIASA Interim Report IR-
97-061 (1997). Trends in Ecology and Evolution 13:367-370
(1998).

No. 17 Heino M: Management of Evolving Fish Stocks.
IIASA Interim Report IR-97-062 (1997). Canadian Journal
of Fisheries and Aquatic Sciences 55:1971-1982 (1998).

No. 18 Heino M: Evolution of Mixed Reproductive Strategies
in Simple Life-History Models. IIASA Interim Report IR-97-
063 (1997).

No. 19 Geritz SAH, van der Meijden E, Metz JAJ: Evolution-
ary Dynamics of Seed Size and Seedling Competitive Ability.
IIASA Interim Report IR-97-071 (1997). Theoretical Popu-
lation Biology 55:324-343 (1999).

No. 20 Galis F, Metz JAJ: Why Are There So Many Cichlid
Species? On the Interplay of Speciation and Adaptive Radi-
ation. IIASA Interim Report IR-97-072 (1997). Trends in
Ecology and Evolution 13:1-2 (1998).



No. 21 Boerlijst MC, Nowak MA, Sigmund K: Equal Pay
for all Prisoners/ The Logic of Contrition. IIASA Interim
Report IR-97-073 (1997). American Mathematical Society
Monthly 104:303-307 (1997). Journal of Theoretical Biology
185:281-293 (1997).

No. 22 Law R, Dieckmann U: Symbiosis Without Mutualism
and the Merger of Lineages in Evolution. IIASA Interim Re-
port IR-97-074 (1997). Proceedings of the Royal Society of
London Series B 265:1245-1253 (1998).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ: Sex and Size
in Cosexual Plants. IIASA Interim Report IR-97-078 (1997).
Trends in Ecology and Evolution 12:260-265 (1997).

No. 24 Fontana W, Schuster P: Shaping Space: The Possi-
ble and the Attainable in RNA Genotype-Phenotype Mapping.
IIASA Interim Report IR-98-004 (1998). Journal of Theoret-
ical Biology 194:491-515 (1998).

No. 25 Kisdi É, Geritz SAH: Adaptive Dynamics in Allele
Space: Evolution of Genetic Polymorphism by Small Muta-
tions in a HeterogeneousEnvironment. IIASA Interim Report
IR-98-038 (1998). Evolution 53:993-1008 (1999).

No. 26 Fontana W, Schuster P: Continuity in Evolution: On
the Nature of Transitions. IIASA Interim Report IR-98-039
(1998). Science 280:1451-1455 (1998).

No. 27 Nowak MA, Sigmund K: Evolution of Indirect Reci-
procity by Image Scoring/ The Dynamics of Indirect Reci-
procity. IIASA Interim Report IR-98-040 (1998). Nature
393:573-577 (1998). Journal of Theoretical Biology 194:561-
574 (1998).

No. 28 Kisdi É: Evolutionary Branching Under Asymmetric
Competition. IIASA Interim Report IR-98-045 (1998). Jour-
nal of Theoretical Biology 197:149-162 (1999).

No. 29 Berger U: Best ResponseAdaptation for Role Games.
IIASA Interim Report IR-98-086 (1998).

No. 30 van Dooren TJM: The Evolutionary Ecology of
Dominance-Recessivity. IIASA Interim Report IR-98-096
(1998). Journal of Theoretical Biology 198:519-532 (1999).

No. 31 Dieckmann U, O’Hara B, Weisser W: The Evolution-
ary Ecology of Dispersal. IIASA Interim Report IR-98-108
(1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 32 Sigmund K: Complex Adaptive Systems and the Evo-
lution of Reciprocation. IIASA Interim Report IR-98-100
(1998). Ecosystems 1:444-448 (1998).

No. 33 Posch M, Pichler A, Sigmund K: The Efficiency of
Adapting Aspiration Levels. IIASA Interim Report IR-98-
103 (1998). Proceedings of the Royal Society London Series
B 266:1427-1435 (1999).

No. 34 Mathias A, Kisdi É: Evolutionary Branching and Co-
existence of Germination Strategies. IIASA Interim Report
IR-99-014 (1999).

No. 35 Dieckmann U, Doebeli M: On the Origin of Species
by Sympatric Speciation. IIASA Interim Report IR-99-013
(1999). Nature 400:354-357 (1999).

No. 36 Metz JAJ, Gyllenberg M: How Should We Define Fit-
ness in Structured Metapopulation Models? Including an Ap-
plication to the Calculation of Evolutionarily Stable Dispersal
Strategies. IIASA Interim Report IR-99-019 (1999). Pro-
ceedings of the Royal Society of London Series B 268:499-
508 (2001).

No. 37 Gyllenberg M, Metz JAJ: On Fitness in Structured
Metapopulations. IIASA Interim Report IR-99-037 (1999).
Journal of Mathematical Biology 43:545-560 (2001).

No. 38 Meszéna G, Metz JAJ: Species Diversity and Popula-
tion Regulation: The Importance of Environmental Feedback
Dimensionality. IIASA Interim Report IR-99-045 (1999).

No. 39 Kisdi É, Geritz SAH: Evolutionary Branching and
Sympatric Speciation in Diploid Populations. IIASA Interim
Report IR-99-048 (1999).

No. 40 Ylikarjula J, Heino M, Dieckmann U: Ecology and
Adaptation of Stunted Growth in Fish. IIASA Interim Report
IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 41 Nowak MA, Sigmund K: Games on Grids. IIASA
Interim Report IR-99-038 (1999). Dieckmann U, Law R,
Metz JAJ (eds): The Geometry of Ecological Interactions:
Simplifying Spatial Complexity, Cambridge University Press,
Cambridge, UK, pp. 135-150 (2000).

No. 42 Ferrière R, Michod RE: Wave Patterns in Spatial
Games and the Evolution of Cooperation. IIASA Interim
Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ
(eds): The Geometry of Ecological Interactions: Simplifying
Spatial Complexity, Cambridge University Press, Cambridge,
UK, pp. 318-332 (2000).

No. 43 Kisdi É, Jacobs FJA, Geritz SAH: Red Queen Evo-
lution by Cycles of Evolutionary Branching and Extinction.
IIASA Interim Report IR-00-030 (2000).

No. 44 Meszéna G, Kisdi É, Dieckmann U, Geritz SAH, Metz
JAJ: Evolutionary Optimisation Models and Matrix Games in
the Unified Perspectiveof Adaptive Dynamics. IIASA Interim
Report IR-00-039 (2000).

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density
Dependence and Demographic Stochasticity. IIASA Interim
Report IR-00-035 (2000).

No. 46 Doebeli M, Dieckmann U: Evolutionary Branch-
ing and Sympatric Speciation Caused by Different Types of
Ecological Interactions. IIASA Interim Report IR-00-040
(2000). The American Naturalist 156:S77-S101 (2000).

No. 47 Heino M, Hanski I: Evolution of Migration Rate in
a Spatially Realistic Metapopulation Model. IIASA Interim
Report IR-00-044 (2000). The American Naturalist 157:495-
511 (2001).

No. 48 Gyllenberg M, Parvinen K, Dieckmann U: Evolution-
ary Suicide and Evolution of Dispersal in StructuredMetapop-
ulations. IIASA Interim Report IR-00-056 (2000). Journal
of Mathematical Biology 45:79-105 (2002).

No. 49 van Dooren TJM: The Evolutionary Dynamics of Di-
rect Phenotypic Overdominance: Emergence Possible, Loss
Probable. IIASA Interim Report IR-00-048 (2000). Evolu-
tion 54: 1899-1914 (2000).

No. 50 Nowak MA, Page KM, Sigmund K: Fairness Versus
Reason in the Ultimatum Game. IIASA Interim Report IR-
00-57 (2000). Science 289:1773-1775 (2000).

No. 51 de Feo O, Ferrière R: Bifurcation Analysis of Pop-
ulation Invasion: On-Off Intermittency and Basin Riddling.
IIASA Interim Report IR-00-074 (2000). International Jour-
nal of Bifurcation and Chaos 10:443-452 (2000).

No. 52 Heino M, Laaka-Lindberg S: Clonal Dynamics and
Evolution of Dormancy in the Leafy Hepatic Lophozia Sil-
vicola. IIASA Interim Report IR-01-018 (2001). Oikos
94:525-532 (2001).



No. 53 Sigmund K, Hauert C, Nowak MA: Reward and Pun-
ishment in Minigames. IIASA Interim Report IR-01-031
(2001). Proceedings of the National Academy of Sciences
of the USA 98:10757-10762 (2001).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauer J: Os-
cillations in Optional Public Good Games. IIASA Interim
Report IR-01-036 (2001).

No. 55 Ferrière R, Le Galliard J: Invasion Fitness and Adap-
tive Dynamics in Spatial Population Models. IIASA Interim
Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E,
Nichols J (eds): Dispersal, Oxford University Press, pp. 57-79
(2001).

No. 56 de Mazancourt C, Loreau M, Dieckmann U: Can the
Evolution of Plant Defense Lead to Plant-Herbivore Mutual-
ism. IIASA Interim Report IR-01-053 (2001). The American
Naturalist 158: 109-123 (2001).

No. 57 Claessen D, Dieckmann U: Ontogenetic Niche Shifts
and Evolutionary Branching in Size-Structured Populations.
IIASA Interim Report IR-01-056 (2001). Evolutionary Ecol-
ogy Research 4:189-217 (2002).

No. 58 Brandt H: Correlation Analysis of Fitness Land-
scapes. IIASA Interim Report IR-01-058 (2001).

No. 59 Dieckmann U: Adaptive Dynamics of Pathogen-Host
Interacations. IIASA Interim Report IR-02-007 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 39-59 (2002).

No. 60 Nowak MA, Sigmund K: Super- and Coinfection:
The Two Extremes. IIASA Interim Report IR-02-008 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 124-137 (2002).

No. 61 Sabelis MW, Metz JAJ: Perspectives for Virulence
Management: Relating Theory to Experiment. IIASA Interim
Report IR-02-009 (2002). Dieckmann U, Metz JAJ, Sabelis
MW, Sigmund K (eds): Adaptive Dynamics of Infectious Dis-
eases: In Pursuit of Virulence Management, Cambridge Uni-
versity Press, Cambridge, UK, pp. 379-398 (2002).

No. 62 Cheptou P, Dieckmann U: The Evolution of Self-
Fertilization in Density-Regulated Populations . IIASA In-
terim Report IR-02-024 (2002). Proceedings of the Royal
Society of London Series B 269:1177-1186 (2002).

No. 63 Bürger R: Additive Genetic Variation Under Intraspe-
cific Competition and Stabilizing Selection: A Two-Locus
Study. IIASA Interim Report IR-02-013 (2002). Journal
of Theoretical Population Biology 61:197-213 (2002).

No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund K: Vol-
unteering as Red Queen Mechanism for Co-operation in Pub-
lic Goods Games. IIASA Interim Report IR-02-041 (2002).
Science 296:1129-1132 (2002).

No. 65 Dercole F, Ferrière R, Rinaldi S: Ecological Bistabil-
ity and Evolutionary Reversals under Asymmetrical Competi-
tion. IIASA Interim Report IR-02-053 (2002). Evolution
56:1081-1090 (2002).

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained at www.iiasa.ac.at/Research/ADN/Series.html or by
writing to adn@iiasa.ac.at.



Contents

1 Biological background 2

2 Mathematical analysis 3
2.1 The ecological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Analysis of mutant-resident model . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Adaptive dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Biological implications 7
3.1 Predicting the occurrence of evolutionary reversals . . . . . . . . . . . . . . . . 7
3.2 Effect of environmental change . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Discussion 9
4.1 Mechanism causing evolutionary reversals . . . . . . . . . . . . . . . . . . . . . 11
4.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Appendix 18
5.1 Condition for ecological bistability . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Condition for adaptively-driven population cycles . . . . . . . . . . . . . . . . . 18
5.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



Abstract

How does the process of life-history evolution interplay with population dynamics? Almost
all models that have addressed this question assume that any combination of phenotypic traits
uniquely determine the ecological population state. Here we show that if multiple ecological
equilibria can exist, the evolution of a trait that relates to competitive performance can undergo
adaptive reversals that drive cyclic alternation between population equilibria. The occurrence of
evolutionary reversals requires neither environmentally-driven changes in selective forces, nor the
co-evolution of interactions with other species. The mechanism inducing evolutionary reversals
is two-fold. First, there exist phenotypes near which mutants can invade and yet fail to become
fixed; although these mutants are eventually eliminated, their transitory growth causes the resident
population to switch to an alternative ecological equilibrium. Second, asymmetrical competition
causes the direction of selection to revert between high and low density. When ecological condi-
tions for evolutionary reversals are not satisfied, the population evolves toward a steady state of
either low or high abundance, depending on the degree of competitive asymmetry and environ-
mental parameters. A sharp evolutionary transition between evolutionary stasis and evolutionary
reversals and cycling can occur in response to a smooth change in ecological parameters, and this
may have implications for our understanding of size-abundance patterns.
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Ecological Bistability and Evolutionary Reversals under
Asymmetrical Competition

Fabio Dercole
Régis Ferrière
Sergio Rinaldi

The contrasting patterns of evolution in populations with chronically high or low densities have
captured the shared interests of ecologists and geneticists for a long time (Travis, 1990). There
has been a considerable amount of verbal and mathematical theory on the subject (reviewed lu-
cidly by Mueller (1997)). In this context, the integrative notion of an eco-evolutionary feedback
emphasizes that selective pressures exerted on individuals are shaped by population structure and
abundance; in return, population dynamics are primarily determined by individual phenotypic
traits that are genetically-based and molded by natural selection (Pimentel, 1968; Heino et al.,
1998).

Density-dependent selection is the central theme underlying one arch of the eco-evolutionary
feedback—from ecology to evolution. Over the last two decades, there has been intensive em-
pirical investigation of the effect of population density on the nature, direction and strength of
selection on life-history traits. Exemplary studies include those by Wilbur (1984) and Travis et al.
(1985) on larval anurans, who showed that the role of predatory salamanders as a selective force
for rapid growth of tadpoles varies depending on tadpole density: at very low densities this force
is weak because growth rates are high and encounter rates with predators are low; greater numer-
ical impact of predators occur only at higher tadpole densities; yet at extremely high densities
all tadpoles grow so slowly, due to effective food limitation, that they can be driven extinct. The
net result is that effective selection on growth rate will occur only within certain regions of the
parameter space, depending upon the corresponding population density.

Although much empirical effort has been devoted to understand how crowding influences pat-
terns of selection on life-history traits, the backward effect of selection on population dynamics—
the other arch of the eco-evolutionary feedback—remains poorly understood, even theoretically
(Metz et al., 1992; Rand et al., 1994; Heino et al., 1998). One important feature of density-
dependent models of population dynamics is their propensity to generate complex dynamics, in-
cluding periodic and chaotic oscillations. Much attention has been paid to the question of whether
natural selection could drive individual traits from values leading to stable equilibria, to values cor-
responding to cycles or chaos (Gatto, 1993; Ferrière and Gatto, 1993, 1995; Doebeli and Koella,
1995; Ferrière and Fox, 1995; Ebenman et al., 1996); contrasting theoretical predictions are await-
ing to be tested empirically. A crucial assumption in all models developed around this issue is that
any combination of traits uniquely determines the population state (De Feo and Ferrière, 2000).
However, ecological models can have alternative equilibria (see Scheffer et al., 2001, for a survey),
associated with different equilibrium densities, that can be reached for the very same individual
trait values. The question of how the eco-evolutionary feedback works in these cases is basically
untouched and provides the motivation for this work.

1



We consider a very simple population model that can have a high and a low density equi-
librium. At the former, there is selection for a trait that reduces population density, but at the
latter there is selection for a trait that increases population density. Under some conditions that
we identify by means of the adaptive dynamics approach (Metz et al., 1992; Geritz et al., 1997),
these opposing patterns of selection result in periodic evolutionary reversals. Our analysis also
predicts the influence of a set of environmental parameters on the outcome, and investigates the
full interplay of population density and selective pressures that result from the eco-evolutionary
feedback. A salient result of our study is that there are broad ecological conditions under which the
direction of natural selection periodically reverts in conjunction with switches between ecological
equilibria.

1 Biological background

We consider a single species whose population dynamics are determined by a set of fixed ecolog-
ical parameters, and by life-history parameters that are functions of a phenotypic trait. This trait
is assumed to be genetically determined and heritable, but it may vary among individuals due to
mutations of small effects. Selection acts upon this variation, with changes in population dynam-
ics as a potential by-product. We assume that for suitable environmental parameters there can be
values of the trait for which the population possesses alternative stable equilibria.

Ecological bistability was first put forward by Holling (1973), Noy-Meir (1975), and May
(1977). Subsequently, alternative low- and high- density states have been found in a host of ecolog-
ical models. Although the first experimental examples that were proposed were criticized strongly
(Connell and Sousa, 1983), more recent studies (reviewed in Scheffer et al. (2001)) support the
view that multiple stable states can characterize natural systems.

Here we assume a simple phenomenological model to generate alternative stable equilibria,
akin to the minimal models proposed by Scheffer et al. (2001). As explained below, one possible
interpretation of this model is that the species under consideration is harvested by a generalist
predator, which exploits a spectrum of other prey species. This assumption ensures that potential
variations in selective pressures derive exclusively from intraspecific interactions.

We also assume that the phenotypic trait is related to competitive performance, and we call
it, for this reason, ‘competitive ability’. Thus, variation in individual trait results in asymmetri-
cal competition between phenotypes. Moreover, individuals that are at competitive advantage are
none-the-less expected to suffer some physiological cost: this is why competitive ability is as-
sumed to be costly to some components of reproductive success. A common case involving asym-
metrical competition and physiological costs of higher energy demands occurs when competing
individuals differ in size. Often, larger individuals enjoy a competitive advantage because of their
superior ability at obtaining limited resources (Brooks and Dodson, 1965; Wilson, 1975; Persson,
1985; Calder III, 1996), but the opposite can also be true, like in the case of small zooplanktivorous
fish outcompeting large ones for food (Persson et al., 1998). However, this dichotomy does not in-
fluence our findings, since the only assumption that counts in this theory is that a positive variation
of the trait is accompanied by an advantage in competition (or growth) and by a counterbalancing
disadvantage in growth (or competition).

The body size interpretation of competitive ability may be useful because the relationship be-
tween body size and population abundance arguably has attracted great attention. Yet the search
for general patterns has not been conclusive (Lawton, 1989; Blackburn and Lawton, 1994; Rosen-
zweig, 1995). Data from extant populations show that low abundance, under some circumstances,
is associated with large body size (Brown, 1995; Gaston and Kunin, 1997), but the pattern is far
from general. For example, Navarette and Menge (1997) found no tendency for small species
to occur at higher densities than larger species in the tropical intertidal communities of Panama,
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in sharp contrast with the pattern in intertidal communities in temperate Chile (Marquet et al.,
1990). Thus, although direct measures of competitive performance are difficult to obtain from real
systems, there is hope that our theoretical predictions could be tested against the results of experi-
mental studies (like those reported by Lenski and Bennett (1993) for bacteria) on the evolution of
body size.

2 Mathematical analysis

2.1 The ecological model

We describe the ecological dynamics of the population of a single competition phenotype u by
making use of the following simple model:

ẋ = G(x, u) x−H(x) (1)

where x denotes population density. The function G measures the logistic component of popula-
tion growth; it is given by: G(x, u) = r(u) − ax, where r(u) is the per capita intrinsic growth
rate which is assumed to decrease with competitive ability u to express the cost of enhanced com-
petitive performance and ax measures the extra mortality caused by intraspecific competition.
Competitive ability u scales between 0 and 1. This scaling is achieved by means of the transfor-
mation u = log (l/lmin) / log (lmax/lmin), where l is the ‘real’ trait value, and lmin and lmax are
minimum and maximum trait values, respectively (Schwinning and Fox, 1995).

Bistability is triggered by combining the negative density-dependence of logistic growth with
the positive density-dependence of an additional demographic factor. Two important examples of
such a factor are: the reduction of reproduction due to a shortage of mating encounters in sparse
population; and the reduction of mortality due to the dilution of predation risk as density increases
(Dennis (1989) and references therein; Stephens and Sutherland (1999)). Both examples can be
accounted for by the same model, namely a discount term H(x) = x c/(x + d) in equation (1)
(hereafter H will be refered to as ‘discounting function’). This form of H reflects a negative
exponential distribution of mating encounters (Dennis, 1989), or a Holling type-II functional re-
sponse of the predator (May, 1977; Huberman, 1978; Brauer, 1979). The resulting population
model leads, under suitable conditions on parameters, to the coexistence of two stable equilibria:
the trivial equilibrium of extinction, and a positive equilibrium.

In this paper we investigate a more general scenario of ecological bistability involving the
coexistence of two non-trivial stable equilibria. This is obtained simply by altering the discounting
function H into H(x) = x cx/(x2 + d2) which provides a simple way of accounting for spatial
heterogeneity in predation risk or the chance of mating. With this choice ofH , model (1) predicts
the existence of a lower threshold on competitive ability, ul, below which the population assumes
a single stable equilibrium at high density; and an upper threshold, uh, above which the population
possesses a single stable equilibrium at low density (Appendix). For u values lying between ul
and uh, there are two alternative stable equilibria, one corresponding to a state of high abundance
(denoted by x) and the other to a state of low abundance (x), see Figure 1.

It is also worth noticing that if body size is a measure of competitive ability, and the discount-
ing function H is predation rate, it would be more realistic to assume that H in (1) depends also
upon u since prey body size usually influences the functional response of the predator. However,
this would give rise to an analytically intractable problem even if the final result would be qualita-
tively the same. For this reason we have assumed thatH is independent on u. In any case, model
(1) applies when competitive ability does not influence predation or when body size has only a
weak influence on the predator functional response.
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Figure 1: Multiple ecological equilibria. Population equilibria are given by the intersection of the pop-
ulation growth function Gx (which depends on phenotypic trait u) and the discounting function H . For
u between the lower threshold ul and the upper threshold uh (see dashed line), the population has three
ecological equilibria: two stable equilibria (filled circles), one at low population density x and the other
at high population density x; and one unstable equilibrium (open circle). For the two critical values of u,
namely ul and uh, there is a collision of a stable equilibrium with an unstable equilibrium (see half-filled
circles).

2.2 Analysis of mutant-resident model

Having this ecological model in place, we describe the evolutionary dynamics of the individual
trait u that we regard as adaptive. Adaptive evolution is assumed to proceed by discrete steps
involving small random mutations, and selection (Metz et al., 1992; Geritz et al., 1997). Mutations
are assumed to be sufficiently rare so that two conditions are fulfilled: (i) at the time a mutant
phenotype arises, the resident population of the wild type is at ecological equilibrium, and (ii)
the wild type population is challenged by one mutant phenotype at a time. Once the mutant has
entered the population, it may simply go extinct, or invade and go to fixation by replacing (or
coexisting with) the resident type, thereby setting the new wild environment against which the
next mutant will have to strive. These two conditions amount to separating out the ecological and
evolutionary timescales; they allow us to describe the evolutionary dynamics of the adaptive trait
u as a random walk, each step of which being taken according to the outcome of competition
between a resident population and a mutant population (Champagnat et al., 2001).

The dynamics of interacting resident and mutant populations characterized by traits u and u′,
respectively, are governed by the following system

ẋ = g(x, x′, u, u′) x− h(x, x′)
ẋ′ = g(x′, x, u′, u) x′− h(x′, x) (2)

We assume that there is no discrimination between resident and mutant populations with regard to
discounting (e. g. no discrimination by a predator), so that the function h is given by

h(x, x′) = x
c (x+ x′)

(x+ x′)2 + d2
(3)

By contrast, the per capita growth function g must incorporate the effect of asymmetrical compe-
tition between two phenotypes. This is achieved by setting

g(x, x′, u, u′) = r(u)− ax− b(u, u′) x′ (4)
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The competition coefficient b is taken to depend only on the difference between phenotypic values
u′ and u and is equal to a for u′ = u. It should increase as the difference u′ − u increases,
expressing a stronger deleterious effect on the u-population growth of larger u′-competitors. The
slope of this function as u′ − u goes to zero provides a measure of the strength of the asymmetry,
and is denoted by β in the following, i. e.

β =
db

d(u′ − u) |u
′=u

All possible outcomes of resident-mutant competition can be classified by means of a detailed
analysis of system (2-4) in the trait space (u, u′). In principle, this analysis could be carried out
through extensive simulation of system (2-4) for various values of u and u′. However, in practice,
the simulation approach is rather critical. This is why a much more effective method, called
bifurcation analysis (Kuznetsov, 1998), has been used in this paper. The assumption that mutations
have small effects makes it legitimate to restrict the analysis to the vicinity of the diagonal line
u = u′, that is, to the region of the trait space where the mutant phenotype differs only slightly
from the resident. The result is shown in Figure 2, which unravels seven regions corresponding
to seven qualitatively different behaviors of the dynamical system (2-4). In region I, the resident
population possesses only one stable equilibrium, namely the high-density equilibrium x. Small
mutations characterized by slightly larger phenotype invade and replace the resident type (side
panel I). The evolutionary random walk takes on a small step toward larger phenotype, and this
results in a slight decrease of the equilibrium population density (see Fig. 1). The same outcome
is observed in all regions II-V (side panels II-V). In all of these regions, a mutant with a slightly
larger phenotype can invade and eliminate the resident type. Thus, starting from any ancestral state
of high abundance for which u is less than uh, adaptive evolution proceeds through the gradual
increase of the phenotype, causing the concurrent, slow decrease of population density.

A new phenomenon is observed in region VI, where the resident trait is still slightly less than
uh while the mutant trait is now slightly greater than uh. In this case, the mutant first invades,
but the resident ‘strikes back’ (side panel VI): after its initial increase, the mutant reaches a peak
density, then it starts declining and eventually goes extinct. This unexpected dynamical pattern
arises from the existence, for the resident population, of two alternative equilibria which differ
in their vulnerability to invasion by the mutant. Initially the resident population stands on its
high-density equilibrium, which appears to be invasible. As the mutant population grows, the
resident population cannot sustain its high density any longer and starts to approach its low-density
state. While doing so, it creates a competitive environment that becomes non-invadable by the
mutant. Now the latter is doomed, and as it goes extinct the population is sent back to its original
phenotypic state; but in the mean time the ecological state has changed: the resident population
experienced a sudden transition from the state of high abundance to the state of low abundance.

The same picture holds for the dual case, starting from an ancestral state of low abundance and
intermediate or large phenotype (u larger than ul). Here the adaptive process drives the slow de-
crease of the trait and the concomitant slight increase of population density. When the phenotypic
state comes close to the low threshold ul, any invasion attempt by mutants smaller than ul triggers
the ecological switch of the resident population from x to x. Altogether this analysis shows that
the evolutionary dynamics of the population remains monomorphic and never comes to a halt. The
phenotypic state of the population oscillates between a minimum (ul) and a maximum (uh) trait
value. The ecological state of the population switches between low and high densities every time
the adaptive process reaches either of these threshold phenotypes.

5



I

II

III

IV V VI VII

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

resident competitive ability, u

u
l

u
h

I

II III

IV

V

VI

VII

m
ut

an
t c

om
pe

tit
iv

e 
ab

ili
ty

, u
'

Figure 2: Bifurcation diagram of the resident-mutant model (2-4) in the resident-mutant trait space (u, u′).
The bifurcation diagram (main panel) is symmetrical with respect to the diagonal line; only its upper part is
shown. Mutant trait values must be close to resident trait values (under the assumption of small mutational
effects), therefore the bifurcation analysis is restricted to the neighborhood of the diagonal. Seven regions
(I-VII) correspond to qualitatively different behaviors for the resident-mutant system. A side panel that
describes the population dynamics in the state space (x, x′) is attached to each region. In these panels,
filled circles indicate stable equilibria, open circles: unstable equilibria, half-filled circles: saddle points.
Resident-mutant trait values in side panels: (0.1, 0.2) in panel I, (0.2, 0.4) in II, (0.35, 0.4) in III, (0.4, 0.48)
in IV, (0.46, 0.48) in V, (0.46, 0.6) in VI, (0.6, 0.7) in VII. Other parameters: a = 0.1, β = 0.33, c = 1.0,
d = 0.75, r0 = 1.0, γ = 1.0 (see Appendix for a full specification of the model).
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2.3 Adaptive dynamics model

One can achieve similar conclusions by using an adaptive dynamics model which provides a de-
terministic approximation of the mutation-selection random walk process described above (Dieck-
mann and Law, 1996). The adaptive dynamics model reads:

ẋ = G(x, u) x−H(x)
u̇ = k x s(u, x)

(5)

This model gives the rate of change u̇ of the adaptive trait u as a function of population density x
and of the selection gradient denoted by s(u, x), scaled by a constant rate of evolutionary innova-
tion, k. The selection gradient is defined as the slope of the fitness landscape in the vicinity of the
resident phenotype, and is therefore given by

s(u, x) =
∂

∂u′
g(x′, x, u′, u)|u′=u,x′=0 (6)

The dynamics governed by system (5) involve a fast component, that of population dynamics
governed by the first equation; and a slow component, that of adaptive dynamics described by the
second equation. The analysis of such a slow-fast system can be performed through a method
popularized in ecology by May (1977) (see also Rinaldi and Scheffer (2000) for a recent survey
and Matsuda and Abrams (1994b) and Khibnik and Kondrashov (1997) for applications in the
context of eco-evolutionary dynamics). The analysis requires two steps. First, the two stable
equilibria x(u) and x(u) of the fast component are determined for each frozen value of the slow
variable u. This yields the thin curves shown in the first row of Figure 3. Then the sign of u̇ at each
point (u, x(u)) and (u, x(u)) is determined so as to predict the direction of phenotypic change.
This amounts merely to finding the isocline s(u, x) = 0 in the space (u, x). Figure 3 displays the
three possible outcomes. In Figure 3A, starting from point 0, we observe a first, fast population
transient (0→ 1), followed by a slow evolutionary transient (1→ 2), entraining a slow ecological
change yet leaving the population with low abundance. At point 2, a fast transient of ecological
change abruptly brings the population to high abundance (2 → 3), and from point 3 a final slow
evolutionary transient takes place, driving the population toward an eco-evolutionary equilibrium
at point 4 where the phenotype is associated with high population density. At this point, selection
may turn disruptive, causing evolutionary branching and the further evolution of polymorphism
(Kisdi, 1999), but the investigation of this phenomenon lies outside the scope of the present article.
Figure 3B shows a similar pattern whereby the evolutionary process drives the population toward
a state of permanent low abundance and promotes large phenotypes.

In contrast, the eco-evolutionary process never comes to a halt in the case shown in Figure 3C.
Here, after a first, fast ecological transient (0 → 1), and a slow evolutionary transient (1 → 5),
the system is trapped forever on a slow-fast limit cycle (5 → 2 → 3 → 4 → 5). One can see
by comparing Figures 3A, B, and C that the necessary and sufficient condition for the existence
of such periodic evolutionary reversals is that the selection isocline s(u, x) = 0 (boundary of grey
regions in Fig. 3) separates the two stable branches of equilibria of the population. This is a general
condition for the existence of slow-fast limit cycles, known as separation principle (Muratori and
Rinaldi, 1991).

3 Biological implications

3.1 Predicting the occurrence of evolutionary reversals

The occurrence of evolutionary reversals and adaptively-driven population cycles depends on four
ecological parameters: the intraspecific competition coefficient, a, the strength of intraspecific
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Figure 3: Eco-evolutionary dynamics in the space of trait u and population density x (first row) and
corresponding time evolution of u and x (second and third rows). In the first row, thin curves indicate the
set of equilibrium population density as a function of the trait value u (plain portions: stable equilibria,
dotted portions: unstable equilibria); shaded region: positive selection gradient (s(u, x) > 0); thick curve:
exemplary trajectory (single arrows: slow dynamics, double arrows: fast dynamics). A, Evolution toward
small trait and permanent high abundance (β = 0.12). B, Evolution toward large trait and permanent low
abundance (β = 1.6). C, Periodic evolutionary reversals and adaptively-driven population cycle (β =
0.33). Other parameter values as in Figure 2, and k = 10−4.
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competition asymmetry, β, and the discount parameters, c and d. Notice that in the case where
discounting is due to predation, c and dmeasure the predation rate and the predator half-saturation
constant, respectively. Evolutionary reversals can develop only when the population possesses two
alternative ecological equilibria, which imposes the condition a < c/8d2 (Appendix and Fig. 4A).
Thus, ecological bistability requires that the competition coefficient be lower than a threshold set
by the parameters of the discounting function; this constraint becomes weaker as the discounting
pressure increases (larger c and/or smaller d).

In ecologically bistable populations, the occurrence of periodic evolutionary reversals is deter-
mined by the strength of competitive asymmetry, which has to lie within a range of intermediate
values such that selective pressures on the adaptive trait revert at low and high abundance (Ap-
pendix). Figures 4A and B show that this range shrinks under harsher conditions expressed by a
larger competition coefficient a, whereas for fixed a, it expands if discounting is enhanced (larger
c and/or smaller d). Altogether, a consistent pattern is that evolutionary reversals are more likely to
occur in species characterized by significant competitive asymmetry, and facing strong discounting
pressure.

When conditions for periodic evolutionary reversals are not satisfied, permanent low abun-
dance and permanent high abundance represent alternative by-products of natural selection oper-
ating on competitive ability. Although there is a narrow range of parameters for which permanent
high abundance evolves concomitantly with intermediate phenotypic value (Fig. 4C), there is a
clear tendency for high abundance to evolve most often along with small trait value, whereas per-
manent low abundance can be associated with the evolution of large as well as intermediate trait
value. This may help understand why the association of rarity and large body size in groups of
closely related species remains difficult to establish empirically.

3.2 Effect of environmental change

The ecological parameters a, β, c, d may vary in response to environmental change. It turns out
that even small and smooth changes in these parameters may have a dramatic impact on the eco-
evolutionary dynamics of the population. Here we focus our discussion on the transition between
eco-evolutionary cycles and permanent low abundance. A transition of this kind caused by a slight
environmental deterioration should imply a dramatic rise of the extinction risk. Population cycling
may suddenly lose evolutionary stability and be replaced with a state of permanent low abundance
when selection at low density ceases to be directional (toward the critical, low trait value at which
adaptive reversal occurs) and becomes stabilizing instead (transition seen from Fig. 3C to B).
This can happen as a result of (i) a small increase in competitive asymmetry, β, which makes the
direction of selection on any trait value change at some lower population density actually reached
in the state of low abundance; (ii) slightly more competition (larger competition coefficient a),
or slightly less discounting (small decrease of c, or small increase of d), which cause the whole
range of equilibrium population density across the state of low abundance to rise, leading the
selective pressure induced by competitive asymmetry to dominate and favor larger phenotype,
hence permanent low density.

4 Discussion

How density can influence and be influenced by evolutionary processes has concerned biologists
ever since Darwin suggested that abundant species were more likely than rare species to be the
sources of evolutionary novelties. Nonetheless, despite considerable attention to the matter, evo-
lutionary biologists still hold widely varying views on the consequences of population density on
evolution (Orians, 1997), and on the role of evolution in determining population abundance and
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Figure 4: Eco-evolutionary dynamics depending on ecological parameters a (coefficient of intraspecific
competition), β (strength of competitive asymmetry), and c and d (discounting parameters). A, Effect of
a, d and β. The volume bounded by the displayed surface contains parameter combinations that lead to
periodic evolutionary reversals. Permanent low abundance evolves above the surface. Permanent high
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reversals occur (d = 0.75). C, Effect of a and β on the transition between adaptively-driven population
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small phenotypic trait. The shaded region indicates parameter combinations for which permanent low
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section indicated in A.
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dynamics (Holt, 1997). This theoretical study investigates the interaction between population den-
sity and life-history evolution by focusing on an individual trait related to competitive performance
that is potentially under different selection pressures depending on the population abundance. Our
model allows for multiple ecological equilibria, which entails that the population may rest on a
state of low abundance or on a state of high abundance under the very same conditions.

potentially under different selection pressures depending on In ecological systems that pos-
sess alternative equilibria, the equilibrium on which the population settles depends on ecological
history, and recurrent jumps between equilibria have been traditionally explained by means of en-
vironmental or ecological factors (e. g., Southwood and Comins, 1976; Hanski, 1985; Crawley,
1992). In contrast, our analysis shows that the periodic alternation between low-density and high-
density equilibria can develop on the evolutionary timescale as a result of a purely endogenous
mechanism: periodic reversals of selection on a phenotypic trait.

The simple, deterministic model considered here produces perfectly regular evolutionary cy-
cles in trait value and population density. Random variability, however, is inherent to all popula-
tions. In a stochastic environment, the regularity of such slow-fast cycles is likely to break down
(Rinaldi and Scheffer, 2000), in lieu of which more irregular alternations of phases of low and
high abundance should be expected. Documenting such fluctuations in population abundance re-
quires exceptional data sets collected on a timescale seldom accessible to ecologists. Perhaps the
best example of such data is provided by subfossil deposits of pelagic fish, which have been used
to reconstruct several millenia of population dynamics, with time resolution as fine as a decade
(Soutar and Isaacs, 1974; Baumgartner et al., 1992). In the Pacific sardine Sardinops caerulea,
population data show that the species has persisted at very low density over more than 55% of
the time, through phases of irregular durations, from 10-200 years. Alternations between low and
high abundance occurred rapidly and more or less in unison across the whole species range. Inter-
estingly, a competitor, and possibly predator species, the Northern anchovy Engraulis mordax, has
been fluctuating more smoothly without reaching extreme population densities, suggesting that di-
rect environmental factors may not be solely responsible for the dynamics of the sardine. Similar
patterns have been documented in Sardinops sagax over the whole Holocene period, with bouts
of very low abundance spanning up to 500 years (De Vries and Pearcy, 1982); and in Sardinops
melanistica on the timescale of the last four centuries (Tsuboi, 1984; Kondô, 1987). Tens and even
hundreds of consecutive generations at either high or very low abundance may have given ample
time for contrasting selective pressures to operate on traits related to competitive performance, and
cause the alternations of high and low abundance observed in the data. The combination of mul-
tiple ecological equilibria and adaptive reversals between them offers an alternative explanation,
previously suggested in a verbal model by Cury (1988), to purely ecological models of such long-
term fluctuations between high and low density in fish communities (Ferrière and Cazelles, 1999).
It would be interesting to re-analyse the subfossil fish scale data to investigate the occurrence of
concomitant changes in fish body size, which could be indicative of density fluctuations driven by
evolutionary reversals.

4.1 Mechanism causing evolutionary reversals

The biological mechanism causing evolutionary reversals involves two ingredients. First, there
must exist trait values in the phenotypic space near which mutant phenotypes can invade and
yet fail to go to fixation, while their transitory presence cause the resident population to switch
between two ecological states. This phenomenon brings new evidence that the ‘invasion-implies-
fixation’ principle of adaptive dynamics theory can be violated even for arbitrarily small mutations,
and does require the uniqueness of the ecological attractor to hold true (Geritz et al., 1997). So far
the few examples known to contradict the invasion-implies-fixation principle had been constructed
by resorting to mutations of unlikely large effect (Doebeli (1998); Diekmann et al. (1999); De Feo
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and Ferrière (2000); Mylius and Diekmann (2001); see also Case (1995) and Abrams and Shen
(1989) in the context of species invasion in communities).

The second key ingredient for evolutionary reversals is that selective pressures operate in op-
posite directions on the same phenotypes depending on whether the population density is high
or low. Why this contrasting effect of selection arises in our model is easily understood: at high
population density, a mutant is engaged in many competitive contests; thus, it has much to gain
by investing more into competitive efficiency (through an increased trait value) at the expense of
reducing its reproductive rate (provided that the trade-off between competition and reproduction
is not too steep). In contrast, at low density encounters are few, there is little to be gained from
improved competitive ability; thus, one can expect advantageous mutants to be characterized by a
larger intrinsic reproductive rate, achieved with smaller phenotype.

Khibnik and Kondrashov (1997) also showed that cyclic evolution involving sharp transitions
between multiple ecological attractors can occur in Red Queen dynamics of multispecies coevo-
lution. Our study demonstrates that the coevolutionary Red Queen scenario is not necessary to
explain the reversal of selective pressures between different ecological attractors and the endless
variations in adaptive traits; purely intraspecific interactions are sufficient.

Matsuda and Abrams (1994a) also considered the evolution of body size under asymmetrical
competition, but the uniqueness of ecological equilibrium at any trait value prevented the mecha-
nism causing adaptive reversals to operate in their model. As a consequence, they could observe
only the directional evolution of large body size and low population density, a process that could
lead to population self-extinction. In contrast, if the conditions for adaptive reversals are met in our
model, the evolution toward large phenotype terminates at a trait value where population density
drops fast and dramatically whereas selective pressures revert and ‘rescue’ the population from ex-
tinction by promoting smaller phenotype and slowly increasing population density as a by-product.
Taxon cycles driven by asymmetrical interspecific competition were proposed to explain the long-
term maintenance of diversity in communities subject to colonization and coevolutionary-driven
extinction (Rummel and Roughgarden, 1983, 1985; Taper and Case, 1992). Likewise, adaptive
cycles driven by asymmetrical intraspecific competition can explain the long-term persistence of
a single population subject to genetic variability (providing the mutants needed to beget switches
between ecological equilibria) and selective reversals.

4.2 Concluding remarks

Any ecological scenario that makes the number of ecological attractors dependent upon an adap-
tive trait sets the stage for switches between population attractors driven by the evolutionary dy-
namics of the trait. This has been clearly recognized and exploited by Matsuda and Abrams
(1994b) for showing that the evolution of anti-predator ability may result in self-extinction of a
prey population. Here we have used the same principle to demonstrate that the occurrence of
adaptive reversals and consequent population cycling is a likely property of ecological systems
that possess alternative equilibria. We stress that this property is not bound to the assumption that
multiple steady states are caused by a special ecological mechanism. A discounting function of the
form of Holling type III response was chosen here to make the analysis mathematically tractable.
Qualitatively similar results would be obtained with a Holling type II-like discounting function;
the low-abundance stable equilibrium would simply be replaced with the zero equilibrium, thus
making the ‘evolutionary suicide’ of the population almost unavoidable. Interestingly, some com-
pelling evidence for evolutionary reversals of social traits has been gathered recently (Velicer et al.,
1998; Hibbett et al., 2000). Sociality can induce an Allee effect that may be responsible for a dis-
counting factor of the type considered here (Courchamp et al., 1999). Thus, adaptive switches
between multiple ecological equilibria may point to a purely endogenous mechanism responsible
for the repeated evolutionary rise and fall of social behavior.
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Our study delineates two ways in which selection may depend on density. In the first and
classical case, each value of a trait uniquely determines the population density. If the density
varies monotonically (e. g. decreases) with the trait value, the direction of adaptation may change
with density as a mere consequence of directional selection toward an intermediate phenotype: at
lower trait value, hence higher density, selection would favor an increase of the trait; at higher trait
value, hence lower density, selection would promote the decrease of the trait. In contrast, when
multiple equilibria are feasible, the direction and strength of selection may differ at the same trait
value depending upon the state (e. g. high versus low density) on which the population is actually
resting. Real systems possessing multiple equilibria should therefore be useful to set up laboratory
experiments in which the effect of density on selection is strictly isolated.
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5 Appendix

5.1 Condition for ecological bistability

The ecological model is given by eq. (1) with r(u) = r0 exp(−γu), where r0 and γ are constant
parameters. In the (u, a) parameter plane, the transition from one stable positive equilibrium to
three positive equilibria (two stable, one unstable) corresponds to a so-called fold bifurcation, and
two fold bifurcation curves determine two values of u (ul and uh) for each value of awithin an ap-
propriate range. These two curves meet at a single point (called cusp) which identifies the a value
beyond which no bistability can occur. By writing the standard conditions for fold bifurcations
(e. g., Kuznetsov, 1998)), we find

ul = −
1

γ
ln

[
xl
r0

(
c

x2l + d
2
+ a

)]
uh = −

1

γ
ln

[
xh
r0

(
c

x2h + d
2
+ a

)]

where

xl =

[
c− 2ad2 −

√
c (c− 8ad2)
2a

]1/2
xh =

[
c− 2ad2 +

√
c (c− 8ad2)
2a

]1/2

The cusp point is given by

u = −1
γ
ln

[
8dr0

3
√
3c

]
a =

c

8d2

5.2 Condition for adaptively-driven population cycles

The selection gradient is s(u, x) = −r0γ exp(−γu)+βx. Hence the selection null-isocline in the
(u, x) space is:

x =
r0γ

β
exp(−γu)

Adaptively-driven population cycles occur if and only if the selection null-isocline separates the
upper branch of high population equilibria, and the lower branch of low population equilibria.
Elementary algebra yields the following necessary conditions:

r0γ

β
exp(−γul) > xl

r0γ

β
exp(−γuh) < xh

r0γ

β
exp(−γul) <

d2r(ul)

ax2l

r0γ

β
exp(−γuh) >

d2r(uh)

ax2h

and systematic numerical computations confirm that these conditions are also sufficient. The
surface and curves displayed in Figure 4 are computed from these conditions.

5.3 Numerical analysis

We used the following asymmetric competition function:

b(u, u′) = 2a
{
1−
[
1 + exp(δ(u′ − u))

]−1}

The strength of competitive asymmetry is measured by β = aδ/2. Notice that for all u, b(u, u) =
a. Numerical bifurcation analysis were carried out by making use of the software LOCBIF (Khib-
nik et al., 1993).
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