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Abstract

Gene expression patterns of the segment polarity genes in the extended and segmented
germband stage are remarkably conserved among insects. To explain the conservation of
these stages two hypotheses have been proposed in the literature. One hypothesis states
that the conservation is due to a high interactivity between modules so that mutations
would have multiple pleiotropic effects in other parts of the body, resulting in stabilizing
selection against mutational variation. The other hypothesis states that the conservation is
due to robustness of the segment polarity network against mutational changes. When
evaluating the empirical evidence for these hypotheses, we found strong support for
pleiotropy and little evidence supporting robustness of the segment polarity network. This
points to a key role for stabilizing selection in the conservation of these stages. Finally, we
discuss the implications for robustness of organizers and long term conservation in
general.
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Conservation of the Segmented Germband Stage:
Robustness or Pleiotropy?

Frietson Galis
Tom J.M. van Dooren
Johan A.J. Metz

Morphogenetic patterning during early embryonic stages, including the process of
segmentation, has diverged markedly among insects. The diversity in morphogenetic
patterning is reflected in the diverse expression patterns of the genes involved (gap and
pair-rule genes, 1-5). However, at the end of gastrulation, developmental trajectories
converge towards a highly conserved stage coinciding with early organogenesis: the
segmented germband stage (Fig. 1; 2,5-8). Conservation of morphological patterns and
expression of genes correspond: both the striped expression patterns of the segment
polarity genes and the co-linear pattern of the Hox genes are remarkably conserved (2-
4,9).

Sander (7) and Raff (10) hypothesize that high connectivity between modules (Fig.
2) is the major cause of conservation in the segmented germband stage. This high
connectivity causes mutational changes to have multiple pleiotropic effects that become
amplified as development proceeds. Since pleiotropic effects during embryogenesis are
generally disadvantageous (11,12), strong stabilizing selection against mutational
variation ensues. In this scenario, conservation is due to consistently strong selection
against mutations via their pleiotropic effects. Strong connectedness of modules implies
an easily destabilized network of inductive events, with low effective robustness and
low effective modularity (Fig. 2). Although the hypothesis was proposed for the
conservation of the segmented germband stage, it is natural to include the earlier
extended germband stage (Fig. 1) when evaluating its explanatory power, as the
characteristic gene expression patterns of the segment polarity and Hox genes are then
already present.

Von Dassow and Munroe (13) also assume that conservation is due to network
characteristics. They hypothesize that the network of the segment polarity genes is
causally involved in the conservation of the expression pattern of the segment polarity
genes in the ectoderm while referring to Von Dassow’s et al.’s (14) model on the
robustness of that network. In robust gene networks, by definition, developmental noise
and mutations do not lead to clear phenotypic effects because gene interactions tend to
neutralize perturbations and in particular make mutations recessive (15,16). According
to Von Dassow et al. (14), robustness should buffer the network both against changes of
the input at the start of the network (i.e., changes in the signals from the preceding
stage) and against changes in the input during its running. Together, the two articles
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Figure�1.�Schematic figure of extended (A) and segmented germband stage (B) in Drosophila. The
germband (blue) refers to the part of the embryo that will give rise to the metameric regions of it: gnathal
segments (Ma, mandible, Mx, maxilla, Lb, labium), thoracic segments, T and abdominal segments, A).
The amnioserosa (red) is an extra-embryonic membrane. The extended germband stage starts approx. 6.5
hours after fertilization and the segmented germband stage ends at approx. 10.5 hours after fertilization.

suggest that conservation of the network occurs despite accumulation of genetic
changes, because these changes have little phenotypic effect and mainly lead to hidden
variation.

The robustness hypothesis was only proposed for the segment polarity gene network
involved in the striped expression pattern occurring in the epidermis during the
extended and segmented germband stage (Table 1). Von Dassow et al. (14) are the first
to model this network and its robustness, which is very valuable. However, the model
needs to be evaluated with respect to influences by genes directly regulating the
network. If the network is robust to changes in its input, mutations in genes regulating
the genes in the network should not affect its activity, e.g.�eve, ftz, slp, tsh, Dpresenilin,
hid and genes of the Notch�pathway. Otherwise, the network is not robust in reality,
with the predicted robustness hinging on the specific modularity assumptions made by
von Dassow et al.

During the extended and segmented germband stages the segment polarity network
acts as an organizer central to many patterning events (Box 1). These stages are
conserved as a whole. Therefore, the robustness hypothesis should be extended to the
organization of those stages in full, otherwise it can never explain evolutionary
conservation.

The two hypotheses become diametrically opposed when extended to the overall
conservation of the two stages. The pleiotropy hypothesis points to a low modularity as
the cause of the conservation, whereas the robustness hypothesis assumes a high
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Table�1.� Constituents of the segment polarity gene network modeled by Von Dassow et al. (2000).

Wg wingless

Cn repressor fragment of CiD

En engrailed

Ptc� patched

Hh� hedgehog

Ph� patched-hedgehog complex

CiD� cubitus interruptus Dominant

Table�2. Predictions of the extended robustness and pleiotropy hypotheses.

Effect of mutations

Pleiotropy hypothesis Robustness hypothesies

genetic mututational
variation

visible at the phenotypic
level

hidden

direct phenotypic effects potentially large small

dominance of direct
effects

haplo-insufficiency
possible

recessivity or near
recessivity

pleiotropic effects many few

modularity for inductive interactions between segments and germ layers as the cause
(fig.2). Therefore, they imply strikingly different roles for modularity in evolution:
constraining versus facilitating evolutionary change. Furthermore, they lead to different
predictions regarding mutations affecting the segment polarity gene activity in the
extended and segmented germband stage (Table 2). Below, we test the explanatory
power of the robustness and pleiotropy hypothesis for the overall conservation of these
stages, while placing special emphasis on the segment polarity gene network in the
ectoderm.

Effects of Mutations Acting on the Extended and Segmented
Germband Stage

The occurrence of mutants

Mutant screens with sensitized genetic backgrounds have probably uncovered the
majority of genes affecting segmentation. For instance, Müller et al.(17) carried out a
translocation screen for zygotically expressed genes in Drosophila that covered more
than 99% of the genome. They found that nearly all zygotically expressed genes that
regulate wg expression in the ectoderm had already been identified previously.
Moreover, nearly all these documented mutations appear to have a phenotypic effect.
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(A)�Robustness

(B)�Interacting�Modules

Changed�
parameter�

values

Equal�Phenotypeswg
hh

wg
hh

Low�Connectivity
=

High�Effective�Modularity

High�Connectivity
=

Low�Effective�Modularity

�
Figure� 2. Schematic figure explaining (A) robustness and (B) effective modularity. (A) When a
parameter is changed in a robust genetic network, the resulting phenotype does not change (in this case
illustrated with the concentration of wingless (wg) and hedgehog (hh) in the cells of the ectoderm). (B)
Modules are discernible and discrete units within large genetic networks that have some autonomy and a
clear physical location (10). They can differ in the amount of connectedness. First of all, all input to
robust elements of a module can be ignored, since it will have no discernible effect. A large proportion of
robust components in a module therefore reduce potential connectivity. Low connectivity, with few
connections having small effects, implies high effective modularity. High connectivity implies low
effective modularity.
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Box�1.���Cascading�pleiotropic�effects��
The signaling of the segment polarity genes in the ectoderm acts as an organizer affecting many
processes, e.g., the segregation and early differentiation of neuroblasts, epidermoblasts, sensory
precursor cells, salivary precursor cells, imaginal discs and tracheal precursor cells in the ectoderm (a-
c). The downstream effects involve a cascade of signaling across segmental and germ layer boundaries.
For instance, the subdivision of the mesoderm into the primordia of heart, fat body and visceral
mesoderm, as well as the differentiation of the somatic mesoderm, are regulated by segment polarity
genes with signals coming from both ectoderm and mesoderm (d-f). Signaling from the mesoderm in
turn is crucial for the local differentiation of the non-segmented endoderm and ectodermal gut (f-h).
Signaling from the gut influences the patterning of the visceral mesoderm (g,i). Patterning of the
visceral mesoderm also involves signaling across segmental borders, e.g. for the anterior migration of
caudal precursor cells of the longitudinal musculature around the gut. Any abnormality in the trunk
visceral mesoderm disrupts this migration (j). The migration of somatic muscle precursors also
involves very complex signaling between germlayers, with a key role for the activity of segment
polarity genes around the parasegmental border in the ectoderm (k,l). Signaling across germline and
segmental borders must also be involved in the differentiation and migration of the nervous system and
trachaeae. The complex branching pattern of the tracheal network is established by migrating
precursors (m). Again, segment polarity genes, especially hh, appear to play a central role (n).
Furthermore, signaling between the ectoderm and the extra-embryonal layer (amnioserosa) is crucial
for two essential morphogenetic processes, to wit, germband retraction and dorsal closure (o,p). The
wg pathway influences this patterning in an interaction with the JnK pathway (p). Finally, cell death
probably plays an important role in the cascade of pleiotropic effects. Programmed cell death occurs at
a relatively high rate during the extended and segmented germband stages and activity of the segment
polarity genes (in particular Wg) plays an important role in the patterning of cell death (q).

References�
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Spontaneous mutations with a phenotypic effect on the extended and segmented
germband stages have long been documented. Especially mutations that cause homeotic
changes have received attention (18). Later, other spontaneous mutations with an effect
during these stages were recovered in laboratories: mutants of the engrailed (19) and
Cubitus�interruptus�(20) genes modelled by Von Dassow, and mutants of other genes
(21, 22).

There is an abundance of induced mutations with an effect on the extended and
segmented germband stages, including an effect on the segment polarity network in the
ectoderm. A number of these mutations change the initial input of the segment polarity
gene network in the ectoderm and this usually leads to severe abnormalities in the
striped segment polarity gene expression (e.g., mutations of the pair rule genes, 17, 23-
26). In addition, many mutations affect the input during the active phase of the network
in the ectoderm and have similarly drastic abnormalities as a result (including mutations
of the Notch and JNK pathway, e.g. 23,27-32). For a few mutations no or few
phenotypic effects are reported, due to overlapping gene functions. This occurs in
invected/engrailed, fz/dfz(2) and cubitus�interruptus/teashirt mutations (17,34,35). The
robustness provided by gene redundancy differs from that considered in von Dassow et
al’s model.

One can argue that most of these mutants correspond to loss of function and thus fall
out of the scope of the robustness modeled by Von Dassow (14). However, severe
effects are also observed in hypomorphic mutations that only reduce gene functions.
Many hypomorphic mutations disrupt the normal signaling of segment polarity genes in
the ectoderm and elsewhere, often with lethal phenotypic effects (fig. 3 and 4, e.g. en,
wg, ptc, arm,�dsh,�porc, eve; 24,25,27, 36-40). Comparisons of hypomorphic and other
mutants show that cells are sensitive in their response to different concentrations of wg
(e.g., in ectoderm and imaginal discs, 23,27,41) and hh (42,43). This lack of robustness
ensures that throughout the embryo small differences in gene dosage can lead to severe
effects. In addition cell responses appear sensitive to dosages of other segment polarity
genes and genes affecting their expression (gsb, arm , ptc and nkd, hid; 23,36,44,45).
The changed expression patterns of segment polarity genes usually maintain a striped
character in a segmentally iterated fashion. However, changes in the position, shape and
intensity of stripes lead to dramatic phenotypic effects, so that the system does not
appear robust.

Although most mutations affecting the extended and segmented germband stages are
indeed nearly recessive, dominant mutations occur. Examples are Cubitus interruptus
(20), fused (segment polarity gene), krüppel, lethal myospheroid, notch, delta, deformed
(12) and Antp (46). Also, most recessive lethal mutations are not innocuous in
heterozygous condition (11). In most investigated cases they are associated with a
reduced viability and a changed developmental rate.

Pleiotropy

Although some robustness may occur, most mutations affecting the extended and
segmented germband stage have dramatic pleiotropic effects. Mutations of segment
polarity and other genes produce disturbances in many parts of the embryo
(9,11,12,29,40,46,47). Interestingly, pleiotropic effects are also found for hypomorphic
mutations, in the ectoderm and elsewhere. For instance, hypomorphic wg mutants have
besides a disturbed striped segment polarity expression, defects in thorax, antennae,
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Figure�3. Null (wg-), Reduced (Df(2)DE and partial (NE2) function mutations of the wg gene lead to
abnormalities in the larval ectoderm. Expression of wg in the ectoderm (A to D), cuticular pattern in the
ventral (E to H) and dorsal (I to L) larval epidermis (W.T. is wildtype). In Df(2)DE mutants wg
expression is reduced, in NE2 wg transport is hampered (from Dierick and Bejsovec, 1998).

wings and in polarity in general (fig. 4; 27,39,48). It is not surprising that pleiotropy is
widespread. The segment polarity genes are, together with Hox and other genes,
involved in many functions during this stage: the specification and early differentiation
of virtually all organ primordia and the patterning of drastic morphogenetic events (e.g.
germband retraction, dorsal closure and head involution). In addition, changes in the
activity of these genes have important pleiotropic effects because of downstream
cascading effects, especially related to the organizer activity of the segment polarity
genes in the ectoderm (Box 1). The overall picture agrees with the high connectivity
that underlies the pleiotropy hypothesis. The downstream cascading effects show that
the interactions across compartment boundaries are considerable and that the overall
level of effective modularity is, therefore, low.

Transheterozygotes

Pleiotropic effects of mutations in the conserved early embryonic stages will no doubt
lead to severe and rapid selection against most mutations. Selection is usually expected
to be very slow against recessive mutations. However, the picture changes if we also
account for haplo-insufficiency when different recessive mutations on the same locus
are combined. Kornberg (47) found that for 58 mutations at the engrailed locus virtually
all combinations of two mutations in heterozygous condition (transheterozygotes) were
lethal and all combinations had phenotypic effects. For wg, Gsb, and Antp similar
transheterozygous effects were found (e.g. 24,44,46). In addition, many mutations show �
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Figure�4. Hypomorphic Wg1 mutant showing a failure in the development of antennae, wings, halteres
and thorax (half of it missing, scutellum missing and hairs deranged (from Sharma and Chopra 1976).

severe and usually lethal haplo-insufficient effects in combination with mutations of
different genes in the same or interacting pathways (e.g. hh, 43; wg, dsh 24; ptc, nkd 23;
dTCF, puckered, hid and Dpresenilin, 45). This combined haplo-insufficiency will
severely constrain the accumulation of recessive mutations.

Towards an Integration

Which genetic network is the robust one?

We agree with Von Dassow et al. (14) that robustness could play an important
evolutionary role in allowing evolvability of stages preceding the conserved stages. The
evolutionary diversification among insects of the gap and pair rule genes would indeed
have been facilitated by robustness of the network that patterns the conserved stripes of
wg and en/hh signaling cells. However, the appearance of the segment polarity stripes
precedes the signaling network as modeled by Von Dassow et al (14). In the initial
phase of the conserved striped pattern wg is not yet dependent on en and involves
activity of pair rule genes (17). It is possible that robustness resides in this earlier more
evolutionarily diversified signaling network, allowing evolutionary change of the
preceding phase. Otherwise, it is difficult to indicate any particular phase of the gene
network that could be characterized as robust. The signaling of the segment polarity
genes during the time of the striped expression seems to be in a state of flux: e.g. after
the initial phase en expression first depends on wg expression in the ectoderm, then en
and wg mutually require each other’s expression, yet later en is no longer dependent on
wg and finally both are independent of each other (17,23,25,49, 50). Adding to the
dynamics are the many spatial differences in expression, e.g. the interaction of the
segment polarity genes differs in the dorsal and ventral ectoderm (23,27,51) and in the
mid-lateral gap that appears in the wg-expressing stripe in the epidermis (49). The
upstream and downstream interactions of the segment polarity genes, thus, show a
surprisingly dynamic pattern in space and time.

Low modularity of organisers and robustness

Despite the observed dynamic pattern, we agree with Von Dassow et al. (14) that the
input of the segment polarity gene network should be as robust as possible to changes.
Yet, we expect that small changes in the connectivity of the segment polarity genes will
have major effects on the outcome. The wg and en/hh signaling cells along the
parasegmental boundary function as an organizer (Box 1). In organizers small changes
in output cause a cascade of effects because they organize a large part of the patterning
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in embryos. This also holds for any organizer during the earlier evolutionarily more
diversified stages of cleavage and gastrulation. Therefore, organizers are not
independent modules as they affect many processes in different parts of the embryo.
The chance of a feedback effect on the input of the organizer is for this reason
considerable, further lowering independence of modules and, in addition, affecting
robustness.

Robustness and long term conservation

Stabilizing selection is expected to lead to robustness to protect optimized traits against
developmental noise and mutations (16,52-55). This robustness can produce short-term
conservation. However, during periods with drastic environmental changes that lead to
strong directional selection, the robustness of genetic interactions can never be
sufficiently high to prevent change. A robust gene network is characterized by selective
neutrality of mutants, causing genetic drift within the set of morphogenetically
equivalent genotypes and, thus, the accumulation of hidden variation (55). When there
is selection for robustness, the neutral set is expected to grow larger. However, after a
while, through combined effects of drift and constraints on the maximum achievable
robustness, mutations come within reach that lead to a loss of robustness (the genetic
composition of the population reaches the boundary of the neutral set, 55). This process
is facilitated by the fact that neutral sets in genotypic sequence spaces tend to have large
boundaries relative to their interior (56,57), so that the proportion of genotypes close to
the boundary is large.

Further Evaluation

The next step in investigating the support for both hypotheses should be a comparison
between the segmented germband stage with earlier or later stages, where the
vulnerability to mutations and the amount of genotypic variation without phenotypic
effects are assessed. We recently analysed teratological studies in vertebrates for
reported phenocopies of mutational change during other developmental stages and the
pharyngula stage (59), the vertebrate phylotypic stage comparable to the germband
stage in insects. Our study supports the validity of Sander’s (7) and Raff’s (10)
hypotheses for the conservation of the vertebrate phylotypic stage. If a similar pattern
would turn up in insects, this would further underpin the important role of pleiotropy
and stabilizing selection in evolutionary conservation.

Conclusion

We found little evidence for robustness of gene networks towards mutational change
acting on the extended and segmented germband stages, and more specifically the
segment polarity gene network in the ectoderm. The phenotypic effects of even weakly
hypomorphic mutations are in agreement with the observation of Lande et al. (58) that
mutations of small, nearly additive effects are usually expressed relatively late in
development, whereas lethal mutations are usually expressed early (see also 11,12). The
organizer function of segment polarity and other genes causes mutations in these genes
to have a cascade of pleiotropic effects. In addition, many auto-regulatory and cross-
regulatory interactions provide feedback on the input of the segment polarity gene
network. As a result the segment polarity gene network shows relatively low effective
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modularity and robustness. The feedback that modulates the input of the network is
absent in Von Dassow’s et al.’s model and this probably explains the discrepancy
between the predicted and observed robustness of the network (and, in extended form,
of the overall organization of the stages). The discrepancy can further be explained by
the crucial importance of concentration differences (of gene products) for patterning,
which increases the sensitivity of the system to changes even when striped patterns are
still generated. Why has more robustness not evolved? Perhaps, within these stages the
total number of interactions involved in morphogenetic patterning is too limited to
organize the pattern in an independent, modular way allowing greater robustness.

Even if the segmented gene network were robust, it would not provide long-term
conservation for two reasons. Firstly, the organizer function of the segment polarity
genes implies large consequences for small changes. This makes it almost impossible to
avoid phenotypic effects. Secondly, robustness achieved during periods of ecological
stasis, loses its effectiveness in periods with strong environmental changes and
directional selection. Drift during episodes of stabilizing selection accumulates hidden
genetic variation, which enables fast evolutionary change as soon as selection becomes
directional.

The severe phenotypic effects of most investigated mutations indicate that there is no
absence of genetic variation with phenotypic effects. Hence, strong stabilizing selection
appears to be the major force in the conservation of the extended and segmented
germband stages. The documented pleiotropic effects of mutations of these stages are in
agreement with the hypotheses of Sander (7) and Raff (10) that negative pleiotropic
effects of mutational changes resulting from global interactions are constraining
evolutionary change. A considerable part of the pleiotropic effects is due to cascading
interactions, indicating a low effective modularity (Box 1). It thus appears that low
effective modularity constrains evolutionary change.
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