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Abstract 

The verification of net greenhouse gas emission changes, as required under the Kyoto 
Protocol, is not yet fully understood. This report reflects the attempt to explore the 
usefulness of Laplace integral transform techniques to grasp the dynamics of emissions 
and emission uncertainties in order to understand verification characteristics of different 
systems emitting greenhouse gases. The study is based on the Verification Time 
Concept proposed by IIASA’s Forestry Project. The Laplace integral transform is 
applied to describe the dynamics of emissions and uncertainties. 
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Looking Behind the Kyoto Protocol:  
Can Integral Transforms Provide Help  
in Dealing with the Verification Issue? 
Volodymyr Dachuk 

1 Introduction 

According to the United Nations Framework Convention on Climate Change 
(UNFCCC), the atmospheric concentration of greenhouse gases (GHG) should 
ultimately be stabilized at a level that would prevent dangerous anthropogenic 
interference with the climate system. To attain this objective, the emissions of 
greenhouse gases should be limited considerably. In Kyoto in 1997, the parties of the 
convention agreed on emissions reductions in industrialized countries (UNFCCC, 
1998). The Kyoto Protocol to the UNFCCC obligates the Annex I countries to reduce 
their greenhouse gas emissions by the first commitment period (2008–2012) relatively 
to their base year (1990 for most countries). However, the Protocol leaves still 
unresolved the question of verifying the changes of GHG emissions, which in most 
cases are reported to be less than the corresponding uncertainties in emissions data.  

Current scientific understanding of the various human-induced processes, which lead to 
emissions and removals of GHGs to and from the atmosphere, is incomplete. In some 
cases, where substantial measurement data exist and have been thoroughly analyzed, 
this understanding provides a basis for accurate calculation of global and national 
emissions. In many cases, however, data and analysis have not attained this state. This 
affects the uncertainty inherent in the various components of the default methods, as 
well as the estimates using other methodologies. Therefore, the verification-uncertainty 
issue in the context of the Kyoto Protocol still experiences serious methodological 
difficulties.  

Even without considering the uncertainties that underlie the emission data, verification 
under the Kyoto Protocol is not clear because it does not take into account the dynamics 
of changes in emissions. An example (Figure 1) illustrates this. Let us consider the 
behavior of a system (e.g., an Annex I country) emitting GHGs between two points in 
time 1t  (the base year) and 2t  (the commitment year). According to the Protocol, these 
three strategies are conceivable. However, following strategy 2, the country emits in 
total fewer GHGs than under strategy 1, because the total amount of carbon emitted 
during the period of time between points 1t  and 2t  is proportional to the area of 
curvilinear trapezoid bounded by emission curve )(ts  and the time axis. The country 
can choose strategy 1 as the most profitable for itself, because it permits the 
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accumulation of most products of some kind (energy, feedstock, goods, etc.), and at the 
same time satisfies the conditions of the Kyoto Protocol. But there is strategy 3, under 
which the country does not satisfy the conditions of the Kyoto Protocol, although total 
emissions are less than under strategies 1 or 2. The example reveals the insufficiency of 
considering only two points in time 1t  and 2t  for verification. The ideal point in time for 

verification would be the case when each point in time between 1t  and 2t  is taken into 
account, or alternatively, taking into account dynamical moments of emissions in order 
to reproduce the behavior of emission function )(ts  on the time segment ],[ 21 tt . So, the 
dynamical moments of emissions (or the total amount of carbon emitted) should be 
considered under the Kyoto Protocol. At present, the Kyoto concept for verification is 
static: only two points in time (final and base years) are considered, and the dynamics of 
emissions between these points are not taken into account. Taking the uncertainties into 
account complicates the process of verification.  

 Country Net Emission 

 Time 

 1t  2t

  )(ts  

 1 

 2 

 3 

 
Figure 1: Conceivable strategies of an Annex I country fulfilling the Kyoto Protocol. 

Countries differ from each other in their potential for reducing emissions and in the 
economic consequences of emission limitations. This is due to their different 
characteristic conditions and available resources, energy systems and economies, 
including historical development and wealth. This difference is directly connected with 
countries’ abilities to fulfill their Kyoto obligations. Considering uncertainties in 
reported national emissions data make the task of verifying emission changes intricate 
insofar as verifying these changes demands a sound and robust strategy, which is not 
available now. 

This paper aims at developing the basis for accounting GHG emissions in consideration 
of verification and uncertainty. The main focus of the approach presented here is to 
uncover the emission and uncertainty dynamics that is characteristic for a given GHG 
emitting system with the help of the Laplace integral transform. The Laplace integral 
transform is applied to describing the dynamics of emissions and the underlying 
uncertainties. Traditionally this transform is used for solving difference and differential 
equations, i.e., finding the unknown functions from such equations. Here, in a certain 
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sense the inverse task is posed, that is to determine the dynamical parameters of systems 
with the help of the Laplace integral transform. 

The results of Jonas et al. (1999a, b) and Gusti and Jęda (2002), who studied the 
verifiability of carbon accounts under the Kyoto Protocol by acknowledging the 
uncertainty underlying such accounts, provide the basis for this study. The authors 
evaluated questions related to the methods used for verifying carbon accounts and the 
effect of different provisions on the feasibility of implementing the Protocol by 
developing and applying the concept of “verification time”. This is the minimal time 
required to verify changes in GHG emissions. It links the dynamics of carbon emissions 
with the dynamics of the underlying uncertainties. In contrast to these earlier studies, 
where the verification time concept is considered in light of emission’s and 
uncertainties’ dynamical moments of the first and second order, this study investigates 
the ability of Laplace integral transforms to grasp dynamical characteristics of systems 
emitting greenhouse gases.  

The verification time concept dates back to the IIASA FOR Project’s studies on full 
carbon accounts for Russia and Austria (Nilsson et al., 2000; Jonas and Nilsson, 2001). 
The concept gave rise to a number of urgent issues and corresponding problems, which 
were discussed by the authors in a number of IIASA reports (Jonas et al., 1999a, b, 
2000; Obersteiner et al., 2000a, b, c; Jonas and Nilsson, 2001; Gusti and Jęda, 2002).  

2 Methodology 

This section introduces the IIASA/FOR’s verification time concept and the application 
of the Laplace integral transform to verification time calculations. 

2.1 Verification Time Concept 

The method for determining the verification time for dynamical systems emitting GHGs 
was proposed by IIASA’s FOR Project. It is based on a reasonable standard condition 
for verification (Jonas et al., 1999a). This condition states (Figure 2) that the absolute 
change in a country’s net carbon emissions (emission signal) at time 2t  with reference 

to time 1t  ( 21 tt < ) is greater than the uncertainty in the reported net carbon emissions at 

time 2t .  

If we have the emission signal )()( τ−− tsts  and the level of uncertainties )(tε , then 

the signal can be verifiable only when it outstrips the level of uncertainties (Jonas et al, 
1999a):  

)()()( ttsts ετ ≥−− . (1) 

Inequality (1) is the mathematical formulation of the verification time concept. One can 
assume that functions describing emission )(ts  and uncertainty )(tε  are smooth enough 
so that they can be represented by polynomials in the independent variable t . If we 
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decompose the emission and uncertainty functions )(ts  and )(tε  in 1t  with the help of a 
Taylor series and limit the emission function )(ts  to the n-th order and the uncertainty 

function )(tε  to the m-th order, one can calculate the verification time (VT) 12 tt −=τ .  

  Net Emissions 

 Time 

 1t   2t

 Emission Signal 

 Verification Time 

Uncertainty 
 Bounds  
 

)(tε  

  )( ts  

 

Figure 2: The Verification Time Concept as introduced by Jonas et al. (1999a). 

Gusti and Jęda (2002) have investigated the case of representing emission signals 
(reflecting the burning of fossil fuels, the production of cement, and the flaring of gas) 
and their uncertainties by first and second-order polynomials. The authors considered 
only CO2 emissions and used in their estimations the UNFCCC database (UNFCCC, 
2000) and global, regional, and national CO2 emissions data by Marland et al. (1999), 
where uncertainty of global emissions is more than 10%, uncertainties in national 
estimates for different sectors are in the range of 10–25% (IPCC/OECD/IEA, 1997), 
and the overall uncertainty in emission estimates reported to the IPCC are about 20% 
(IPCC, 2000). Gusti and Jęda (2002) have calculated verification times for all Annex I 
countries. Their study shows that for Annex I countries the verification time is in the 
range of a few years to decades. So, according to this study, most Annex I countries will 
most likely be able to verify their national emission changes from fossil fuels burning, 
cement production and gas flaring by 2010. But taking into consideration the emissions 
from sectors of agriculture and land use change and forestry, where uncertainties in 
emission data are significant, may complicate verification (the verification time 
increases in general). 

To determine verification time τ , let us continue from inequality (1). In the case of a 
second-order emission signal and a first-order uncertainty, we obtain the equation: 
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τεεττ
dt

td
t

dt

tsd

dt

tds )(
)(

)(

2

1)( 1
1

2
2

1
2

1 +=+ . (2) 

After obtaining a set of solutions of the kind in equation (2), we chose such τ  that are 
real, greater than zero, and are the smallest among the valid ones. Additionally, there are 
no solutions if uncertainty is increasing faster than emissions are changing (Gusti and 
Jeda, 2002). 

As demonstrated by Gusti and Jęda (2002), the non-linearity of equation (2) leads to 
interesting surprises like, e.g., a “jumping” VT depending on the dynamics of 
uncertainty (Figure 3) or other parameters of the equation. This results from non-
uniqueness of the roots of equation (2): the verification time is given by the minimal 
solution among them. The graphical solution of equation (2) is presented in Figure 4, 
which also exhibits the “jumpy” nature of the VT.  

 

Figure 3:  Illustration of the “jumpy” VT character depending on the dynamics of 
uncertainty, here for the fossil fuel emissions including cement production 
(second-order approach) from the Russian Federation (Gusti and Jęda, 2002). 
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Figure 4: Graphical solution of equation (2). The straight lines (1, 2 and 3) represent the 
right side of the equation for various uncertainty growth rates. The curve 
represents the left side of the equation. It becomes obvious that a little change 
in the derivative of uncertainty (slope of the straight line) may cause a 
considerable change in the verification time (VT1 < VT2 << VT3).  

As one can conclude after analyzing Figure 4, the polynomial expansion for the 
emission (and uncertainty) function to higher (more than 2) order may lead to more 
jumps of verification time (for example, for third-order dynamics, we may expect two 
jumps, and so on). 

2.2 The Basics of Operational Calculus and Integral Transforms 

The purpose of this section is to introduce the basic techniques of operational calculus 
and to make use of them for our VT calculations. The particular transforms discussed 
here are the Laplace, Fourier and z-transforms, but the main attention is paid to the 
Laplace integral transform. Another objective of this section is to acquaint the reader 
with the idea of implementing the Laplace integral transform for solving and analyzing 
verification inequality (1), which is a difference inequality and can be solved (analyzed) 
more easily with the help of this transform. 

2.2.1 Operational methods 

The concept of the operational method is based on a functional transformation such as 
those provided by the Fourier and Laplace integrals. One can think, e.g., of the act of 
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differentiation as a transformation, where operator D  transforms a function )(ts  into a 
function )(ts′ . That is, 

{ } )()( tsts ′=D . (3) 

The function )(ts′  is the transform of )(ts  under the transformation. For example, we 

could view the function t2  as a transform of 2t . In a similar fashion, the act of 
integration can also be viewed as a transformation. The operation: 

{ } )()()(
0

xgdttsts
x

== ∫I  (4) 

transforms the function )(ts  to the functional )(xg . Even the operator that multiplies all 
the functions by the same constant can be viewed as a transformation. 

The integral transform of function )(ts  is defined as transformation: 

{ } )(),()()( pSdtptKtsts
b

a

== ∫F . (5) 

The kind of integral transform and its character depend on the option of limits on 
integral a  and b , and also on function ),( ptK  of variable t  and parameter p . ),( ptK  
is called the kernel of integral transform (5), and )( pS  is called the image of )(ts  under 
integral transform F . 

The integral transforms are extremely useful in solving differential and difference 
equations. For example, one can often use the Laplace transform to reduce equations to 
simple algebraic expressions in the transform of the unknown function )(ts . At the 
same time, the initial or boundary conditions are automatically incorporated in the 
transform solution. This is in contrast with classical methods, in which the general 
solution must be fitted to these conditions. Solutions are often expedited through the use 
of tables and a small set of theorems about the characteristics of the transform. The 
transform method can also provide a great amount of intuition about the physical system 
being modeled. 

In addition to their uses in solving and analyzing differential and differences equations, 
the transforms have found an application for solving certain classes of integral and 
integro-differential equations.  

2.2.2 Integral transforms: definitions and relationships  

The Fourier integral transform (direct and inverse) for the function )(ts  is defined on 
the whole time axis: 

{ } )()()( ωω∫
∞

∞−

− == Sdtetsts tjF ; { } )()(
2
1

)(1 tsdeSS tj∫
∞

∞−

− == ωω
π

ω ωF . (6) 
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For a function )(ts  defined for ∞<≤ t0 , and for real constants K  and a  such that 
atKets ≥)( , its Laplace integral transform (direct and inverse) is denoted as )( pS  

obtained by the following pairs of integrals:  

{ } )()()( ∫
∞

∞−

− == pSdtetsts ptL ; { } )()(
2

1
lim)(1 tsdpepS

j
pS

jba

jba

pt

b ∫
+

−
∞→

− ==
π

L . (7) 

It should be noted that for most physically realized functions their Laplace integral 
transforms exist.  

The z-transform is nothing else than the Laplace integral transform for discrete 
functions if we introduce the new variable ptez = . For the function nfnftf =∆= )()(  

with discretization step ∆  the z-transform is given by: 

{ } )(zFzff n

n
nn == −

∞

−∞=
∑Z ;  { } m

m fdzzFz
j

zF == ∫ −− )(
2

1
)( 11

π
Z . (8) 

2.2.3 Some properties of Laplace transforms 

To use Laplace integral transforms more efficiently we have to mention some of their 
properties, which will be used in the next sections. Interested readers could refer to 
reference or textbooks on advanced and applied mathematics, e.g., Ovchinnikov (2000), 
Hanna and Rowland (1990), and Churchill (1972).  

(a) Linearity: The Laplace transform is a linear operator. This implies that for constants 
α  and β :  

{ } { } { })()()()( 2121 tstststs LLL βαβα +=+ .  

(b) Shifting property of the original: A shift of τ  units on the time axis can be 
accomplished in the transform domain by multiplying the transform of the function 
with its origin at 0=t  by pe τ− . That is, 

{ } )()( pSets pττ −=−L .  

(c) Variable transform: Let the function )(ts  be the original, and )( pS  its image. Then 
for constant 0≠a : 

{ } 





=

a

p
S

a
ats

1
)(L .   

(d) Shifting property of the image: Let )( pS  be the image of the original )(ts , and α  a 

complex number. Then )( α+pS  is the image of the function )(tse tα− , or: 

{ } )()( αα +=− pStse tL . 

(e) Derivative of the image: Let )( pS  be the image of the original )(ts . Then 
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{ }
dp

pdS
tts

)(
)( =−L , 

( ){ }
n

n
n

dp

pSd
tst

)(
)( =−L . 

(f) Derivative of the original: Let the function )(ts  have a continuous derivative at 
0>t , and let )(ts′  be the original. Then 

{ } )0()()( sppSts
dt

ds −=′=






 LL , 

{ } )0()0()0()0()()( )1(321)( sspspsppSpts nnnnn −−′′−′−−= −−− ΛL . 

In the case that the initial conditions are zero, we have: 

{ } )()()( pSpts nn =L . 

(g) Integration of the original: Let )(ts  be the original, and )( pS  its image. Then 

∫
t

duus
0

)(  is also an original, and its image is 
p

pS )(
, or 

)(
1

))((
0 0

pS
p

duus
n

t t
n =







∫ ∫ΛL . 

(h) Integration of the image: Let { } )()( pSts =L , 
t

ts )(
 be the original, and the integral 

∫
∞

p

dzzS )(  converge. Then 

∫
∞

=








p

dzzS
t

ts
)(

)(
L . 

(i) Initial theorem: )(lim)(lim
0

ppSts
pt ∞→→

= . 

(j) Final-value theorem: )(lim)(lim
0

ppSts
pt →∞→

= . 

(k) Convolution: { } )()()()()()( 21

0

2121 tstsutsuspSpS
t

∗≡−= ∫L . 

(l) The first expansion theorem: 
1

1

! +=








n

n

pn

t
L . 
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(m) The second expansion theorem: If the image is a fractional rational function, i.e., 

the numerator and denominator are polynomials in p : 
)(

)(
)(

pG

pF
pS

n

q= , where the 

degree of numerator q  is less than the degree of denominator n , moreover the 

denominator has zeros 1α , 2α , …, mα  of corresponding multiplicities 1k , 2k , …, 

mk  ( nkkk m =+++ Λ21 ), then the original for )( pS  can be determined by the 

expression:  









−

−
= −

−

→=
∑ pt

n

qk
ik

k

p

m

i i

e
pG

pF
p

dp

d

k
ts i

i

i

i )(

)(
)(lim

)!1(

1
)(

1

1

1

α
α

. 

Consequence: If the denominator )( pGn  has distinct zeros 1α , 2α , …, nα , then we 

have the Heaviside expansion formula for the original: 

)(

)(
)(

1 in

iq
n

i

t

G

F
ets i

α
αα

′
=∑

=

. 

2.2.4 The nature of the p-domain 

The Laplace integral transform, like all transforms, changes one signal into another 
according to a fixed set of rules (Smith, 1999). This transform sets up a univocal 
correspondence between a signal (called, original) in the time domain, and a signal (also 
called, image) in the p-domain. The original has to be a continuous function of time on 
the whole time axis. The p-domain is a complex plane. So, the abscissa axis corresponds 
to real numbers and variable σ , and the ordinate axis corresponds to imaginary 
numbers and variable ω . The location of any point on the p-plane can be represented by 
a pair of variables σ  and ω , or alternatively by a single complex variable ωσ jp += , 
where j  is the imaginary unit. Traditionally images by Laplace are represented by 
capital letters. For example, a time domain signal )(ts  is transformed into the p-domain 
signal )( pS , or alternatively ),( ωσS . The p-plane is continuous and extends to infinity 
in all four directions.  

The image by Laplace is a function defined on the p-domain and takes on values that are 
also complex numbers. In other words, each point of the p-plane corresponds to the 
complex value of the image. As with all complex numbers, the real and imaginary parts 
of the image can alternatively be interpreted as the magnitude and the phase. 

In the same way as the Fourier transform examines signals in terms of sinusoids, the 
Laplace transform examines signals in terms of sinusoids and exponentials. From a 
mathematical point of view, this makes the Fourier transform a subset of the more 
general Laplace transform. Figure 5 explains the strategy behind the Laplace integral 
transform. To find the values along a vertical line in the p-plane (the values at a fixed 
σ ), the original is first multiplied by the exponential curve te σ− . The left half of the p-
plane multiplies the original with exponentials that increase with time )0( <σ , while in 
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the right half the exponentials decrease with time )0( >σ . Next, take the complex 
Fourier transform of the exponentially weighted signal. The resulting spectrum is placed 
along a vertical line in the p-plane, with the top half of the p-plane containing the 
positive frequencies and the bottom half containing the negative frequencies. The values 
on the ω-axis (ordinate axis) of the p-plane )0( =σ  are exactly equal to the Fourier 
transform of the original signal. 

Let us remember that the expression for Fourier transform in the complex form for 
signal )(ts  is given by: 

∫
∞

∞−

−= dtetsS tjωω )()( . (9) 

This can be expanded into the Laplace transform by first multiplying the original signal 
by the exponential term: 

[ ]∫
∞

∞−

−−= dteetsS tjt ωσωσ )(),( . (10) 

To place the equation in a shorter form, the two exponential terms can be combined: 

( )∫
∞

∞−

+−= dtetsS tjωσωσ )(),( . (11) 

And finally, the location in the complex plane can be represented by the complex 
variable p , where ωσ jp += . This allows equation (11) to be reduced to the more 
compact expression: 

∫
∞

∞−

−= dtetspS pt)()( . (12) 
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Figure 5:  The strategy behind the Laplace integral transform (Smith, 1999). The 
Laplace integral transform converts a signal in the time domain )(ts  into a 
signal in the p-domain )( pS  or ),( ωσS . The values along each vertical line 
in the p-domain can be found by multiplying the time domain signal by an 
exponential curve with the decay constant σ , and taking the complex Fourier 
transform. When the time domain is entirely real, the upper half of the p-
plane is a mirror image of the lower half. 
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2.3 Application of Laplace Integral Transform 
to Verification Time Calculations 

2.3.1 VT calculations in the Laplace space 

The condition for verification (1) is a difference inequality, so we can perform the 
analysis of the VT using Laplace integral transform. 

Let the images in the Laplace space are )( pS  and )( pE , which correspond to the 
functions of the emission )(ts  and uncertainty )(tε , respectively:  

)()( pSts ↔ ; )()( pEt ↔ε . (13) 

The VT concept in the time domain can be expressed as: 

)()()( ttsts ετ ≥−− . (14) 

For verification time ascertainment we consider the equation that corresponds to 
inequality (14) in the space of images. After the transition into the image space and 
using the shifting property of the Laplace integral transform, we obtain: 









−−=

)(

)(
1ln

1
)(

pS

pE

p
pτ  for )()( τ−≥ tsts  (increasing emission signal); (15) 









+−=

)(

)(
1ln

1
)(

pS

pE

p
pτ  for )()( τ−< tsts  (decreasing emission signal). (16) 

Thus, the verifiability of a GHG emitting system is related to the ratio of images of the 
emission signal and uncertainty, respectively, in the p-domain. This ratio has to be 
interpreted not only as their magnitude fraction; it also reflects the so-called phase 
correlation between the emission signal and its uncertainty.  

We have obtained the expressions (15) and (16) for the verification time τ  as functions 
of the model variable p . To obtain the expression for τ  in the time domain, we need to 
carry out the inverse Laplace transform of )( pτ  according to definition (7); or, if the 
expressions (15) or (16) are sufficiently simple, we can try to use a table of Laplace 
transforms of known functions in combination with given transform properties. In the 
event that these means are impracticable, one can always use numerical methods for 
finding the inverse Laplace transform (Duffy, 1993). 

2.3.2 Determining behavior of the function of the emission signal 

With help of the Laplace integral transform of the inequality for the VT [equation (1)], 
one can determine properties of the function describing the emission signal defined by 
its verification time τ . 

Let us consider the case of a decreasing signal: 
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)()()( ttsts ετ =+− ∗∗ . (17) 

By implementing the Laplace integral transform we obtain: 

pe

pE
pS τ−−

=
1

)(
)(* , (18) 

where )(* pS  is the Laplace image of the limit function )(ts ∗  of the emission signal 
)(ts , )( pE  is the Laplace image of the uncertainty )(tε , p  is the model variable, and 

τ  is the verification time. To obtain the original for )( pS , one has to apply the inverse 
Laplace integral transform to the image )( pS . Thus, to satisfy the verification condition 
(1), the emission signal )(ts  has to decrease identically or faster than the limit function 

)(ts ∗  between 1t  and 2t . 

2.3.3 Dynamical signal representation 

To represent the emission signal and its uncertainty with the help of the Laplace integral 
transform, the real structure of the existent data has to be considered. Such data are 
available as mean annual emissions and their uncertainties. Thus, the real emission 
signal (as well as its uncertainty) can be approximated by the sum of elementary signals 
(with a time step of 1=∆  year). There are two formal possibilities for such 
representation:  

(i) the dynamical representation of the emission signal with the help of Heaviside’s 
function )(tσ , and 

(ii) the dynamical representation of the emission signal with the help of Dirac’s delta-
function )(tδ . 

The first method corresponds to Figure 6a, where multi-step functions are used as 
elementary signals that appear in equal time intervals ∆ . In the second method (Figure 
6b), rectangular pulses serve as elementary signals that follow one another in equal time 
intervals ∆ .  

The first case of dynamical signal representation is realized by: 

ττσ
τ

σ dt
d

ds
tsts )()()0()(

0

−+= ∫
∞

, (19) 

where Heaviside’s function )(tσ  is defined as: 





≥
<

=
.0,1

,0,0
)(

t

t
tσ  (20) 
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Figure 6:  Dynamical signal representation. The first case corresponds to the 
representation where multi-step functions are used as elementary signals that 
appear in equal time intervals ∆ . In the second method, rectangular pulses 
serve as elementary signals that follow one another in equal time intervals ∆ .  

The second case is realized by: 

∫
∞

∞−

−= ττδτ dtsts )()()( , (21) 

where )(tδ is Dirac’s delta-function. In the theory of generalized functions there are 
many ways to define the Dirac’s delta-function by functional sequences (Churchill, 
1972; Hanna and Rowland, 1990); here we use the following one: 





≠
=∞

=
,0,0

,0,
)(

t

t
tδ   and  ∫

∞

∞−

=1)( dttδ . (22) 

We will consider the representation of the emission signal where the multi-step 
functions are used as elementary signals that appear in equal time intervals ∆  (the first 
case): 

[ ] ,)()()()()(

)2()()()()()(

01
10

12010

∑∑
∞

=

∞

=
− ∆−∆−−∆−=∆−−+=

=+∆−−+∆−−+=

k
k

k
kk ktktsktssts

tsstsststs

σσσσ

σσσ Λ
 (23) 

where ks  are signal values at points in time, ∆= ktk , ),0( ∞=k . 
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Taking into consideration that { }
p

tL
1

)( =σ , and using the shifting property of the 

image (property (d), see Section 2.2.3), we obtain the Laplace image of the signal 
represented by equation (23): 

∑
∞

−∞=

−
∆−−=

k

pt
k

p
kes

p

e
pS

1
)( , (24) 

where ∆  is the discretization time interval (typically 1 year), and ks  reflects the annual 

emissions for k-th year. 

3 Analysis of Applying the Laplace Integral Transform 
to the VT Concept and Identifying the Potentials of 
Different Systems Emitting Greenhouse Gases 

3.1 Sensitivity Analysis of Signal Representation by Laplace 

In reality, considerable uncertainty underlies the emission data. In many cases this 
uncertainty may be comparable to the order of emission levels. Additionally, very often 
the emission data are described by polynomial functions in time, where the polynomial 
coefficients play the role of dynamical moments of the emission signal (mean value, 
velocity, acceleration, and dynamical moments of higher orders). In light of the 
aforementioned uncertainties, the question of how sensitive the Laplace integral 
representation of such a signal to variations in its polynomial coefficients is interesting. 
To these ends, we will look into how one Laplace signal representation differs from 
another representation of the same signal, if the polynomial coefficients that represent 
the emission signal in the time domain are permitted to vary. 

To begin with, we will consider the question of how sensitive the signal representation 
by a polynomial function in the time domain is to uncertainties in the polynomial 
coefficients. Let the emission signal be described by a polynomial function of the order 
n : 

∑
=

=
n

k

kk t
k

s
ts

0 !
)( . (25) 

Using the first expansion theorem (property (l), see Section 2.2.3) we take Laplace 
transform of the signal represented by equation (25). Then, the Laplace image of the 
signal will also be described by a polynomial but with the negative exponents with 
respect to the Laplace variable p :  

∑
=

+=
n

k
k
k

p

s
pS

0
1

)( . (26) 
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Let us consider the variation )(tsδ  of the original signal )(ts  induced by a variation isδ  

of the polynomial coefficient is ( ni ≤≤0 ): 

ii t
i

s
ts

!
)(

δδ = , (27) 

which is inverse proportional to !i , the order of the signal dynamical moment under 
discussion, and proportional to it , the time interval for which the signal is represented 
by the polynomial. That is, for a given time interval less accuracy is needed for higher 
polynomial coefficients.  

Similarly, we consider the variation )( pSδ  of the signal image )( pS  induced by a 

variation isδ of the polynomial coefficient is  ( ni ≤≤0 ): 

1
)( +=

i
i

p

s
pS

δδ . (28) 

The variation )( pSδ  has the same significance value as variation )(tsδ  in equation (27); 
this significance decreases with increasing the number i . So, the higher accuracy of the 
coefficient is  is necessary to represent lower “spectral” components of the signal in the 

space of originals.   

As a measure to evaluate the quality of representing one signal by another of the 
emission signal and uncertainty, it is proposed to use the norm of the signal 
(uncertainty) that reflects its energy E , and distance between two signals as a norm of 
their difference: 

Edttsts == ∫
∞

0

2 )()( , (29) 

where )(ts  is the norm of the signal. Then ( )∫
∞

−=−
0

2
2121 )()( dttstsss  is the 

distance between the signals )(1 ts  and )(2 ts . 

3.2 Analysis of VT Depending on the Dynamics of Uncertainties 

Since we have obtained expressions (15) and (16) for the verification time in an explicit 
form in the p-domain, the question arises of how the verification time depends on the 
change in uncertainty. To these ends, it is proposed for the time being to accept )( pE  as 
an independent variable in equations (15) and (16), i.e., we consider the derivative of 
the verification time with regard to )( pE  in these equations. In the case of an increasing 
emission signal (15), we have: 
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)()()(

1

pS

e

pEpSdE

d pττ =
−

= , (30) 

where the difference )()( pEpS −  is replaced by τpepS −)(  from equation (15). 

Now we can introduce the sensitivity parameter β  as a measure of change in 
verification time due to a 1% change in uncertainty. It is defined in the p-domain by: 

dE

dpE τβ
100

)(= . (31) 

Taking into account expression (30), we find:  

τβ pe
pS

pE

pEpS

pE

)(

)(

100

1

)()(

)(

100

1 =
−

= . (32) 

It should be noted that introducing the sensitivity parameter β  in the p-domain is purely 
formal. As a matter of fact, the physical meaning of β  in the p-domain is lost. This is 
because equation (32) is valid in the p-domain for images )( pE  and )( pS , which take 
on complex values (it is impossible to say which complex number is bigger and by how 
much). To obtain an expression for β  in the time domain, we need to transform 
equation (32) into the space of originals according to definition (7) or use a table of 
Laplace transform and its properties. In the event that these means are impracticable, 
one can use numerical methods for finding the inverse Laplace transform, e.g., 
presented in Duffy (1993). 

If we introduce a similar parameter α , which expresses the sensitivity of the VT due to 
a change in the emission signal, then βα −= . So, from the point of view of verification 
in the image space, there is not a difference in the sensitivity of the emission signal and 
its uncertainty.  

3.3 Determining Parameters of the Systems 
Emitting Greenhouse Gases 

A convenient mathematical apparatus for modeling dynamical systems are differential 
equations. The Laplace integral transform is a natural tool for solving them. In the case 
of a system of linear differential equations one can apply the Laplace transform to the 
system and change it into simple algebraic expressions of the unknown function.  

In this section, it is proposed to investigate GHG emitting systems, under the 
assumption that their dynamics can be modeled by a system of linear differential 
equations. Time intervals are assumed to be sufficiently small so that the coefficients in 
the equations are constant.  
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Let the following system of differential equations of dimension n  describes the system 
investigated: 















++++=

++++=

++++=

,)t(g)t(sa)t(sa)t(sa
dt

ds

,)t(g)t(sa)t(sa)t(sa
dt

ds

,)t(g)t(sa)t(sa)t(sa
dt

ds

nnnn22n11n
n

2nn2222121
2

1nn1212111
1

L

M

L

L

 (33) 

where for ni ,1=  and nj ,1=  )(tsi  are state variables (describing the emissions of the 

i-th box of the system); ija  is a constant coefficient (describing the rate of emission 

flow from the j-th box to the i-th box); ig  is an external disturbance of the system 

(describing the external force or activity performed in the i-th box). 

As is well known from the theory of differential equations, the general solution of 
system (33) in the case of real or complex roots of characteristic equation of the 
corresponding homogeneous system can be expressed by: 

)()()( *

1

tsetcts i

n

j

t
jiji

j +=∑
=

λγ , ni ,1= ;  (34) 

where jλ  are the roots (real or complex) of the characteristic equation of the 

corresponding homogeneous system; n  is the order of the system; )(tc j  are coefficients 

(functions in t or constants); ijγ  are the components of the characteristic vectors 

corresponding to the jλ ; and )(* tsi  is the partial solution of the non-homogeneous 

system of differential equation (Ovchinnikov, 2000; Birkhoff and Rota, 1978). In the 

case of an undisturbed system, when 0)( ≡tgi  ( ni ,1= ), the solution of system (33) is: 

∑
=

=
n

j

t
jiji

jects
1

)( λγ , ni ,1= ;  (35) 

where jc  are constants defined by the initial conditions for system (33). 

Let us consider the Laplace transform for expression (35). Using the linearity of the 
Laplace transform (property (a) in the Section 2.2.3) and taking into account that 

{ }
λ

λ

−
=

p
e t 1

L , we obtain: 

∑
= −

=
n

j j

jij
i p

c
pS

1

)(
λ

γ
, ni ,1= . (36) 
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Expression (36) allows us to determine the roots of the characteristic equation of the 
corresponding homogeneous system jλ  from it (the )( pS  approaches infinity when p  

approaches jλ ).  

Let us assume that we face the difficulties of constructing a system of equations like 
(33) because of the overly great dimension of the system to be modeled or lack of data 
that are necessary for setting up such a system of equations. Let us additionally assume 
that we have the dynamical data defining the state of some boxes (even one of them) of 
the system to be modeled (signal )(tsi ). Then, performing the Laplace transform of 

such a signal, we can calculate some or more of the jλ  (depending on the 

representability of the signal )(tsi  investigated). These jλ  are the parameters of the 

system modelled, and they define to a certain extent an inner structure of the 
undisturbed system.  

Thus, it appears that the task of determining the characteristic numbers for our GHG 
emitting system is equivalent to the task of reducing the emission signal to the form of 
equation (36) and investigating the latter with respect to its poles.  

In a simple case (when the signal in equation (35) can be represented by an exponential 
function) these characteristic numbers correspond to exponential growth (decay) 
constants.  

3.4 Detecting Specific Features for Systems Emitting GHGs 

As explained in Section 2.3.3, the real emission signal (uncertainty) can be 
approximately realized by the sum of elementary signals (rectangular impulses) that 
appear in the time domain with a time step of one year. 

Figure 7 shows an example of a rectangular pulse in the time domain, its frequency 
spectrum, and its p-domain representation (Smith, 1999). The rectangular pulse has a 

width of two and a height of one. Taking into account that { }
p

tL
1

)( =σ  (see Section 

2.3.3) and using shifting property (b) of the Laplace transform (see Section 2.2.3), we 
evaluate the corresponding p-domain signal, expressed in terms of the complex location 
p , and the complex value )( pS :  

p

ee
pS

pp −−=)( . (37) 

The topographical surfaces in Figure 7 are graphs of the equation (37), where the 
complex variable p  is decomposed in its real and imaginary part.  

In our case (GHG emitting systems) the signal consists of a sum of elementary 
rectangular pulses shifted in time. Such a signal corresponds to the superposition of the 
images like (37) and presented in Figure 7. As a result, we obtain the “spectral” portrait 
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of the signal investigated in the p-domain, which can help one detect specific features 
for different signals and thus for different systems emitting GHGs. This is a probable 
way of predicting the future dynamics of systems by investigating their past dynamics. 

 

 

Figure 7:  Time, frequency and p-domain. A time domain signal (the rectangular pulse) 
is transformed into the frequency domain using the Fourier transform, and 
into the p-domain using the Laplace transform (Smith, 1999). 
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4 Conclusions 

The main task of this study is to investigate the usefulness of the Laplace integral 
transform for verifying emission signals of GHG emitting systems. Particular 
conclusions arise from this study: 

• The verifiability of GHG emitting systems is related to the ratio of the images of the 
emission signal and uncertainty (equations (15) and (16) in Section 2.3.1). In the 
Laplace domain, this ratio reflects not only the amplitude ratio of the signal to 
uncertainty, but also their so-called phase correlation; 

• The emission signal can be described as a sum of elementary signals (rectangular 
pulses) in the time domain with a time step of one year, which is sufficient to 
process and represent real emission data and their uncertainties; 

• If the emission signal is presented by a polynomial function in time t, then its L-
image is also presented by a polynomial function in the Laplace variable p with 
negative exponents. Therefore, coefficients of p-terms with smaller exponents need 
to be defined more precisely;   

• The Laplace integral transform allows modeling GHG emitting systems by the 
systems of differential equations and determining the characteristic numbers for the 
GHG emitting system, which serve as parameters of the system modeled and define, 
to a certain extent, an inner structure of the system; 

• With the help of “spectral” emission portraits in the Laplace domain, it is hoped that 
one can detect specific features of the signals. This may permit the prediction of 
possible system behaviors, and thus to link a signal’s past dynamics with its future 
dynamics. 

The application of integral transforms appears promising to discover the dynamics of 
different GHG emitting systems. This problem is of great interest and demands a better 
understanding of the features and potentials of these systems.  
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