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Abstract

The evolution of co-operation among non-related individuals is one of the fundamental
problems in biology and social sciences. Reciprocal altruism fails to provide a solution
if interactions are not repeated often enough or groups are too large. Punishment and re-
ward can be very effective but require that defectors can be traced and identified. Here we
present a simple but effective mechanism operating under full anonymity. Optional par-
ticipation can foil exploiters and overcome the social dilemma. In voluntary public goods
interactions, co-operators and defectors will coexist. We show that this result holds un-
der very diverse assumptions on population structure and adaptation mechanisms. Thus,
voluntary participation offers an escape hatch out of some social traps. Co-operation can
subsist in sizeable groups even if interactions are not repeated, defectors remain anony-
mous, players have no memory and assortment is purely random.
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Public goods are defining elements of all societies. Collective efforts to shelter, pro-
tect and nourish the group form the backbone of human evolution from prehistoric time
to global civilisation. They confront individuals with the temptation to defect, i.e. to
take advantage of the public good without contributing to it. This is known as ’Tragedy
of the Commons’, ’Free Rider Problem’, ’Social Dilemma’ or ’Multi-person Prisoner’s
Dilemma’ – the diversity of the names underlines the ubiquity of the issue (1–7).

Theoreticians and experimental economists investigate this issue by public goods
games (8–11), which are characterised by the fact that groups of co-operators do bet-
ter than groups of defectors, but defectors always outperform the co-operators in their
group. In typical examples, the individual contributions are multiplied by a factor r and
then divided equally among all players (12). With r smaller than the group size, this is
an example of a social dilemma (13, 14): every individual player is better off defecting
than co-operating, no matter what the other players do. Groups would therefore consist
of defectors only, and forego the public good. For two-player groups, this is the pris-
oner’s dilemma game. It is well known that in this case co-operation based on direct
or indirect reciprocation can get established, provided the probability of another round is
sufficiently high (15,16). But retaliation does not work if many players are engaged in the
game (17), because players intending to punish a defector can do so only by refraining
from co-operation in subsequent rounds, thereby also punishing the co-operators in the
group.

If players are offered, after each round, the possibility to fine specific co-players,
co-operation gets firmly established. This happens even if punishment is costly to the
punisher (18, 19), and if players believe that they will never meet again (20). But such
fining, or alternatively rewarding (21), requires that players can discriminate individual
defectors. While reward and punishment must be major factors in human co-operation,
we want to draw attention to a simpler mechanism. It consists in allowing the players not
to participate, and to fall back on a safe ’side income’ which does not depend on others.
Such risk-averse optional participation can foil exploiters and relax the social dilemma,
even if players have no way of discriminating against defectors (22).

We consider three strategic types: co-operators and defectors, both willing to engage
in the public goods game and speculate (though with different intentions) on the success
of a joint enterprise, and ’loners’ who rely on some autark way of life. Co-operators will
not stably dominate the population in such a voluntary public goods game, but neither
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Figure 1: Optional public goods games in large well mixed populations. The three equilibria
ec, ed and el are saddle points, denoting homogenous populations of co-operators, defectors and
loners. (a) and (b) describe the replicator dynamics ẋi = xi(Pi−P̄ ), where P̄ is the average payoff
in the population. For r ≤ 2 (a), the interior of the simplex S3 consists of orbits issued from and
returning to el. Only brief intermittent bursts of co-operation are observed. (b) For r > 2, an
equilibrium pointQ appears, surrounded by closed orbits. (c) With perfect information, i.e. best-
reply dynamics, Q becomes a stable fixed point. The dashed lines divide S3 into three regions
where co-operation, defection and loners dominate. (d) Individual based simulations confirm
the stability of the cycles in finite populations, if the strategy of a randomly picked individual
is imitated whenever it performs better. Parameters: N = 5, (a) r = 1.8, σ = 0.5, (b)-(d)
r = 3, σ = 1, (d) population size: 5000, number of interactions: 106.
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will exploiters. Their frequencies oscillate, because the public good becomes unattractive
if free riders abound.

To model this with evolutionary game theory, we assume a large population consisting
of co-operators, defectors and loners. From time to time, a random sample of N individ-
uals is offered to engage in a public goods game. The loners will refuse. They each get a
payoff Pl = σ. The remaining group of S players of the sample consist of nc co-operators
and S − nc defectors. If S = 1, we assume that this single player has to act like a loner.
We normalise the individual investment to 1. The defectors’ payoff is then Pd = r · nc/S
and the co-operator’s payoff is Pc = Pd − 1 (due to the cost of co-operation). Hence, in
every group, defectors do better than co-operators. We assume r > 1 (if all co-operate,
they are better off than if all defect) and 0 < σ < r − 1 (better to be a loner than in a
group of defectors; but better still to be in a group of co-operators). We stress that players’
strategies are decided before the samples are selected, and do not depend on the compo-
sition of the group. No anticipation, preferential assortment or conditional response is
involved. Co-operation persists in this minimalistic scenario under a wide variety of as-
sumptions concerning population structure or adaptation mechanisms. The results are
extremely robust, and do not depend on any particular brand of evolutionary game theory.

In a well-mixed population, analytic expressions for the payoff values can be derived
(23). The strategies display a rock-scissors-paper cycle. If most players co-operate, it
pays to defect. If defectors are prevalent, it is better to stay out of the public goods game
and resort to the loners’ strategy. But if most players are loners, groups of small size
S can form. For such groups, the public goods game is no longer a social dilemma:
although defectors do always better than co-operators, in any given group, the payoff
for co-operators, when averaged over all groups, will be higher than that of defectors
(and loners), and so co-operation will increase. This is an instance of the well-known
Simpson’s paradox (24). Thus, group size S divides the game into two parts. For small
size, co-operation is dominant, and for large size, defection; but the mere option to drop
out of the game keeps the balance between the two options, in a very natural way.

The game dynamics describing the frequencies of the strategies depends on how play-
ers imitate others and learn (25, 26). If, for instance, they occasionally update their strat-
egy by picking another player at random, and adopting that model’s strategy with a prob-
ability proportional to the payoff difference (provided it is positive), then this yields the
usual replicator dynamics (27). It can be fully analysed in spite of the highly non-linear
payoff terms (28). For r < 2 we observe brief recurrent bursts of co-operation interrupt-
ing long periods of prevalence of the loner’s strategy. For r > 2, a mixed equilibrium
appears and all orbits are periodic. The time averages of the frequencies correspond to
the equilibrium values, and the time average of the payoff is the same for all strategies,
and hence equal to the loner’s payoff σ. Other imitation mechanisms may lead to other
oscillatory dynamics. In particular, if players always adopt the strategy of their randomly
chosen ’model’ whenever that model has a higher payoff, then individual-based simu-
lations display stable oscillations for the frequencies of the three strategies (29). This
finding is very robust, and little affected by additional effects like hyperbolic discounting,
random changes of strategies or occasional errors leading to the adoption of strategies
with lower payoffs. The oscillations persist if σ, r and N are random variables. Another
updating mechanism is the best reply dynamics based on the assumption that from time
to time, individuals switch to whatever is the best strategy, given the current composition
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Figure 2: Representative snapshots of the optional public goods games on a square lattice with
synchronous updates. In (a), (b) the deterministic rule applies where each site is taken over by the
best strategy within its 3×3 neighborhood. In (c), (d) the stochastic rule prescribes that 80% of all
sites adopt more successful neighboring strategies, with a probability proportional to the payoff
difference. Blue refers to co-operators, red to defectors and yellow to loners. Intermediate colors
indicate players that have just changed their strategy. For low multiplication rates (r = 2.2 in (a)
and (c)) persistent travelling waves are observed regardless of the details of the update rules. In
(b), for r = 3.8, co-operators thrive on their own and loners go extinct. But in (d), for the same
high value of r, co-operators would go extinct in absence of loners, due to the randomness. In
a typical configuration, clusters of co-operators are surrounded by defectors and the latter again
surrounded by loners. Every now and then co-operators manage to break through the defectors
clutch and invade domains of loners. Parameters: 50× 50 lattice, periodic boundaries, σ = 1.
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Figure 3: Average frequencies and payoffs in the spatial public goods for (a) compulsory and
(b) voluntary participation with a loner’s payoff of σ = 1. Individuals imitate more successful
neighboring strategies with a probability proportional to the payoff difference. In (a) co-operators
(blue line) persist for sufficiently high interest rates r>∼3.90 through cluster formation i.e. by
minimizing interactions with defectors (red line). Interestingly they achieve always significantly
higher payoffs than defectors. In (b) the additional protection against exploitation provided by
loners (green line) enables co-operators to persist for all r > σ + 1. For r>∼4.17, the loner
strategy no longer represents a valuable alternative and goes extinct – co-operators thrive on their
own. As in (a), the payoff of co-operators is significantly higher than for defectors but, somewhat
surprisingly, for low r, the average population payoff P̄ (blue line) drops even below σ and hence
the population would be better off without the opportunity to participate in a public goods game.

of the population. The best-reply dynamics displays damped oscillations converging to a
stable polymorphism.

So far we have considered well-mixed populations: groups form randomly, and po-
tential ’role models’ are chosen randomly. But the option to withdraw from the game
boosts co-operation also for other population structures. For instance, we may assume
that individuals are bound to a rigid spatial lattice, and interact only with their nearest
neighbors (30). As in the related prisoner’s dilemma game (31), co-operators tend to fare
better in the spatial than in the well-mixed case. In the optional public goods game, this
is even more pronounced: co-operators persist for all values of r > σ + 1, whereas in
the compulsory game (i.e. without the loner’s option), co-operation can persist only for
considerably larger values of r (32). Thus, loners protect co-operation. The dynamics
displays travelling waves driven by the rock-scissors-paper succession of co-operators,
defectors and loners (29,33).

In the public goods game, the drop-out option allows groups to form on a voluntary
basis, and thus to re-launch co-operation again and again. But each additional player
brings a diminishing return and an increased threat of exploitation. As in the land of the
Red Queen ’it takes all the running you can do, to keep in the same place’. Individuals
keep adjusting their strategies but in the long run do no better than if the public goods
option had never existed. On the other hand, voluntary participation avoids the deadlock
of mutual defection which threatens any public enterprise in larger groups.
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