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Abstract

We provide steps towards a welfare analysis of a two-country endogenous growth model
where a relatively small follower absorbs part of the knowledge generated in the leading
country. To solve a suitably defined dynamic optimisation problem an appropriate version
of the Pontryagin maximum principle is developed. The properties of optimal controls and
the corresponding optimal trajectories are charactarised by the qualitative analysis of the
solutions of the Hamiltonian system arising through the implementation of the Pontryagin
maximum principle. We find that for a quite small follower, optimisation produces the
same asymptotic rate of innovation as the market. However, relative knowledge stocks
and levels of productivity differ, in general. Thus, policy intervention has no effect on
growth rates but may affect these relative levels. The results are different for not so small
follower economies. The present paper provides the rigorous justification for the results
presented in Aseev, Hutschenreiter and Kryazhimskii, 2002.
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A Dynamical Model of Optimal Allocation of

Resources to R&D

Sergei Aseev (aseev@iiasa.ac.at)
Gernot Hutschenreiter (Gernot.Hutschenreiter@wifo.ac.at)

Arkadii Kryazhimskii (kryazhim@aha.ru)

1 Introduction

An endogenous growth model linking a smaller follower country to a larger autarkic leader
through ”absorptive capacities” enabling it to tap into the knowledge generated in the
leading country was introduced by Hutschenreiter, Kaniovski and Kryazhimskii, 1995.
We will refer to this model as the ”leader-follower” model. It is built along the lines
of the basic endogenous growth model with horizontal product differentiation (Grossman
and Helpman, 1991, Chapter 3), where technical progress is represented by an expanding
variety of products. The leader-follower model was symmetrised to allow for knowledge
flows in both directions (Borisov, Hutschenreiter and Kryazhimskii, 1999).

Based on a comprehensive analysis of the dynamic behaviour of the leader-follower
model, a particular class of asymptotics was singled out. Any trajectory characterised by
this asymptotics was shown to be a perfect-foresight equilibrium trajectory analogous to
the one found for the basic Grossman - Helpman model. For this type of trajectory, explicit
expressions in terms of model parameters for key variables such as the rate of innovation,
the rate of output and productivity growth, the ratio of the stocks of knowledge of the
two countries, or the amounts (shares) of labour devoted to R&D and manufacturing were
given (Hutschenreiter, Kaniovski and Kryazhimskii, 1995).

The evolution of the economy represented by this model is the result of decentralised
maximising behaviour of economic agents. A perfect-foresight equilibrium trajectory gen-
erated by the model can therefore be referred to as ”decentralised” or ”market” solution.
However, a market solution is not necessarily an optimal solution. Rather, non-optimality
is a common outcome in the presence of externalities of some kind. According to Gross-
man and Helpman, 1991, in their basic model intertemporal spillovers result in a market
allocation of resources which is not Pareto-optimal since too little labour is allocated to
R&D. In contrast, Benassy, 1998, finds that both underinvestment and overinvestment
in R&D (in terms of the allocation of labour) are possible if returns to specialisation are
seperated from the monopolistic mark up. In any case, deviations of the optimal from the
market solution provide scope for welfare-enhancing policy intervention.

A welfare analysis of the leader-followermodel introduced by Hutschenreiter, Kaniovski
and Kryazhimskii, 1995 is missing so far. This paper provides important steps in this
direction. For this purpose, we set up and analyse an optimisation problem capturing the
task of intertemporal utility maximisation faced by a fictituous social planner.

*This work was partially supported by the Russian Foundation for Basic Research (projects No. 00-01-
00682, No. 02-01-00334) and the Fujitsu Research Institute (contract No. 01-109).
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The analysis is carried out within the framework of mathematical optimal control
theory (Pontryagin, et al., 1969). An important feature of the problem under consideration
is that the goal functional is defined on an infinite time interval. In problems with infinite
time horizons the Pontryagin maximum principle, the key instrument in optimal control
theory, is, in general, less efficient than in problems with finite time horizons. In particular,
for the case of infinite time horizons the natural transversality conditions, providing as a
rule essential information on the solutions, may not be valid (Halkin, 1974). Additional
difficulties in our analysis arise due to non-standard logarithmic singularity in the goal
functional.

In the present paper our study is based on the approximation approach to the in-
vestigation of optimal control problems with infinite time horizons developed recently by
Aseev, Kryazhimskii and Tarasyev, 2001, (a)-(c). This approach provides a possibility to
establish existence results for problems with infinite time horizons and to derive the appro-
priate versions of the Pontryagin maximum principle which contain some extra conditions
on the adjoint function and the behaviour of the Hamiltonian at the infinity (in fact, this
allows us, in some cases, to guarantee the normality of the problem and the validity of
the additional transversality conditions at the infinity). In this paper, we apply the ap-
proximation technique to prove the existence of an optimal control and also to derive an
appropriate version of the Pontryagin maximum principle. Then we qualitatively analyse
the solutions of the Hamiltonian system arising through the implementation of the Pon-
tryagin maximum principle. Namely, we find that the global optimizers are characterized
by the exceptional qualitative behavior; this allows us to select the unique optimal regime
in the pool of all local extremals.

The paper is organised as follows.
In section 2 we formulate the problem and discuss it in economic terms.
Section 3 is devoted to developing necessary mathematical tools for the problem under

consideration. In particular we establish the existence of a solution and develop a relevant
version of the Pontryagin maximum principle.

In section 4 we introduce new state and adjoint variables, reformulate the Pontryagin
maximum principle in terms of these variables and construct the associated Hamiltonian
system.

Starting from section 5, we restrict our analysis to the case where the follower country
is quite small relative to the leader. In section 5 we classify the qualitative behaviours of
the solutions of the Hamiltonian system.

In section 6 we focus on the solutions of the Hamiltonian system which exhibit an ex-
ceptional behaviour (we call them equilibrium solutions). We show that a global optimizer
is described by an equilibrium solution and state the uniqueness of this solution. Based on
these results, we give the final description of an optimal process and prove its uniqueness.

In section 7 we consider the family of the original problems parametrized by the initial
state and describe an optimal synthesis for this family i.e., define a feedback which solves
the problem with any initial state.

The final section 8 interprets main results of the mathematical analysis in economic
terms.

2 Optimal control problem

In the model we analyse, an economy’s labour resources can be used in two different
ways, either for manufacturing intermediate goods (which enter final output) or in the
production of blueprints for new intermediate goods which permanently raises productivity
in final goods production. The optimisation problem faced by a fictitious social planner
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maximising utility allocating resources to R&D or manufacturing is the following:

J(nB(t), LB
n (t)) =

∫ ∞
0

e−ρt[(
1

α
− 1) lnnB(t) + ln(LB − LB

n (t))]dt→ max , (2.1)

ṅB(t) =
LB
n (t)

a
(nB(t) + γnA(t)), (2.2)

ṅA(t) = ḡAnA(t), (2.3)

nB(0) = nB
0 , nA(0) = nA

0 , (2.4)

LB
n (t) ∈ [0, LB). (2.5)

Let us state for now that the model parameters ρ, α, LB, a, γ, ḡA are all positive. Also
note that the objective function (2.1) is the same as in the social planning problem formu-
lated by Grossman and Helpman, 1991. Let us first comment on this objective function.
Recall that production of final output is represented by a Dixit - Stiglitz - Ethier produc-
tion function Y B(t) where final output is produced by a set of differentiated intermediate
goods (Dixit and Stiglitz, 1977, Ethier, 1982)

Y B(t) = [

nB(t)∫
0

x(j)αdj]1/α,

where nB(t) is the number of these goods invented up to time t and x(j) represents the
output of intermediate good of variety j. The parameter 0 < α < 1 is related to the
(constant) elasticity of substitution ε = 1/(1 − α). In Grossman and Helpman, 1991,
there is a dual interpretation of the function Y B(t) as an index of utility (”love of variety”
approach) which we will not take up here. See on this issue Barro and Sala-i-Martin, 1995.

It is a well-known feature of the basic Grossman - Helpman model that in a momentary,
symmetric equilibrium, all types of intermediates are produced in the same quantities. If
xB(t) denotes this uniform output per brand, aggregate output of intermediates is given
by XB(t) = nB (t) xB (t). Consequently, for the production function Y B(t), final output
at time t is given by

Y B(t) = (nB(t))1/αxB(t) = (nB(t))1/α−1XB(t). (2.6)

Obviously, total factor productivity (TFP) at time t is an increasing function of the
country’s stock of knowledge:

Y B(t)

XB(t)
= (nB(t))1/α−1.

With steady growth, where the allocation of labour to manufacturing and R&D is constant,
the growth rate of final output and TFP is identically (1/α−1)ḡB(t), where ḡB(t) denotes
the steady-state rate of growth of the country’s knowledge stock.

In the basic Grossman - Helpman model, each intermediate good is produced by a
constant-returns-to-scale technology where one unit of labour is required to turn out one
additional unit of output. Consequently, aggregate output of intermediate goods equals
total labour allocated to manufacturing,

XB(t) = LB − LB
n (t), (2.7)

where LB represents the economy’s constant supply of homogenous labour and LB
n (t) the

amount of this pool of labour allocated to R&D.
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At any moment of time, the market for final goods is assumed to be in equilibrium so
that consumption CB(t) equals the flow of final output

CB(t) = Y B(t).

In the following analysis we assume that instantaneous utility is given by

U(t) = lnCB(t). (2.8)

Of course, one could work with a more general utility function. In fact (2.8) is a limiting
case for the widely-used constant elasticity of intertemporal substitution utility function

U(t) =
CB(t)1−θ − 1

1− θ

as θ→ 1. For simplicity, we restrict ourselves to this limiting case.
Combining (2.6), (2.7) and (2.8) and discounting by the time preference rate ρ we

obtain the expression in the integral defining the objective function.
Let us next turn to equation (2.2) in the above optimal control problem. In the

spirit of Romer, 1990, we employ a production function for developing blueprints for
novel intermediates where the productivity of resources devoted to R&D is enhanced
by the accumulated stock of knowledge capital. A distinguishing feature of the leader-
follower model is that the knowledge stock available in country B at time t is assumed
to consist of the sum of the knowledge accumulated in country B which is represented
by the number of differentiated inputs developed so far domestically, nB(t), and a term
comprising externally produced knowledge appropriated by country B. More specifically,
a fraction 0 ≤ γ(nB) ≤ 1 of the knowledge stock produced in country A is absorbed into
the knowledge stock of country B. Function γ(nB) represents the absorptive capacities
(see Cohen and Levinthal, 1989) of the follower (determined by its capabilities but also
by barriers to international communication or the extent of redundant knowledge which
will not be targeted by the follower). For simplicity, in the present optimisation problem
we treat the absorptive capacities of the follower country as a parameter γ. We assume
γ > 0. Parameter a reflects productivity in R&D.

Equation (2.3) tells us that the autarkic leading country’s stock of knowledge grows
exponentially at the steady rate of innovation ḡA > 0. If the leading country evolves in
its steady state, we know from Grossman and Helpman, 1991 that its exponential rate of
innovation is given by

ḡA = (1− α)L
A

a
− αρ > 0. (2.9)

Equation (2.4) fixes initial conditions. Finally (see (2.5)), it is assumed that the follower
country’s R&D labour does not exhaust its total labour force and thus manufacturing
activity does not vanish at any instant of time.

In this paper (starting from section 5) the analyis is restricted to the case

aḡA > LB .

This inequality has the straightforward interpretation that the amount of labour allocated
to R&D in the leading country exceeds the total labour force in the follower country.
This suggests that the follower country is quite small relative to the leader. As shown in
Hutschenreiter, Kaniovski and Kryazhimskii, 1995, the opposite inequality must hold for
the follower country to be able to catch up with the leader in terms of knowledge stocks
in the market economy.
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At present, we have some tentative results for the slightly relaxed case

aḡA + ρ > LB

as well as for the opposite case
aḡA + ρ ≤ LB.

Clearly, this latter case fulfills the necessary condition identified for the follower country
to catch up with the leader in terms of knowledge stocks.

3 Existence of an optimal control and the Pontryagin max-
imum principle

To simplify the analytic expressions dealt with in the sequel, we use the following notations
in sections 3-7:

x(t) = nB(t),

y(t) = nA(t),

u(t) =
LB(t)

a
,

b =
LB

a
,

ν = ḡA,

κ =
1

α
− 1.

Using these notations, we rewrite problem (2.1)-(2.5) as the following problem (P):

J(x(t), u(t)) =
∫ ∞
0

e−ρt[κ lnx(t) + ln(b− u(t))]dt→ max , (3.1)

ẋ(t) = u(t)(x(t) + γy(t)), (3.2)

ẏ(t) = νy(t), (3.3)

x(0) = x0, y(0) = y0, (3.4)

u(t) ∈ [0, b). (3.5)

Here b, γ, ρ, ν and κ are positive parameters, and x0 and y0 are positive initial values for
the state variables.

Let us recall several standard definitions of optimal control theory in the context of
problem (P). A control for system (3.2), (3.3) is identified with any measurable function
u(t) : [0,∞) → R1, which is bounded on arbitrary finite time interval [0, T ]. We define
the trajectory under control u(t) to be the component x(t) of the (unique) Caratheodory
solution (x(t), y(t)) on [0,∞) of differential equation (3.2), (3.3) with the initial state
(x0, y0). A control process for system (3.2), (3.3) is a pair (x(t), u(t)) where u(t) is a
control and x(t) is the trajectory corresponding to u(t). A control u(t) is an admissible
one in problem (P) if u(t) satisfies (3.5) for all t ≥ 0. A control process (x(t), u(t)) is an
admissible control process in problem (P ) if u(t) is an admissible control.

Remark 3.1 The trajectory does not include the component y(t) of the solution (x(t), y(t))
of the system (3.2), (3.3). This simplification of the definition (and in further notations)
does not lead to any ambiguity, since y(t) = y0e

νt does not depend on u(t).
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An accurate formulation of problem (P) is as follows: maximize J(x(t), u(t)) over the
set of all admissible control processes (x(t), u(t)) in problem (P ). An optimal control in
problem (P) is defined to be an admissible control u∗(t) such that the associated control
process (x∗(t), u∗(t)) satisfies J(x∗(t), u∗(t)) = J∗ where J∗ is the maximal (optimal) value
in problem (P).

Remark 3.2 The non-closedness of the interval [0, b) for admissible controls (see (3.5))
and the associated logarithmic singuliarity ln(b−u(t)) in the goal functional (3.1) (ln(b−
u(t)) approaches −∞ as u(t) approaches b) prevent us from referring to standard theorems
stating the existence of optimal controls (see Balder, 1983) and from using the modified
Pontryagin maximum principle suggested in Aseev, Kryazhimskii and Tarasyev, 2001, (a)-
(c), directly. We study problem (P ) in-depth, based on the approximation methodology
of Aseev, Kryazhimskii and Tarasyev, 2001, (a)-(c).

Our goal in this section is to prove the existence of an optimal control in problem
(P ) and to develop an appropriate version of the Pontryagin maximum principle for this
problem,

For technical reasons we will start with the consideration of the following (slightly
more general) optimal control problem (Q):

J̃(x(t), u(t)) =

∫ ∞
0

e−ρt[κ lnx(t) + ln(b− u(t)) + φ(u(t), t)]dt→ max , (3.6)

ẋ(t) = u(t)(x(t) + γy(t)), (3.7)

ẏ(t) = νy(t), (3.8)

x(0) = x0, y(0) = y0, (3.9)

u(t) ∈ [0, b). (3.10)

Here function φ(u, t) is continuous on [0, b]× [0,∞) and concave in u. We assume that the
function φ(u, t) is bounded, i.e. there exists a constant K0 > 0 such that |φ(u, t)| ≤ K0
∀u ∈ [0, b], ∀t ≥ 0. All other data of problem (Q) are assumed to be the same as in the
initial problem (P ). As in the initial problem (P) the set of admissible controls u(t) for
problem (Q) consists of all measurable functions u(t) : [0,∞)→ [0, b).

For arbitrary T > 0 let us consider the following auxilary optimal control problem
(QT ) on the final time interval [0, T ]:

J̃T (x(t), u(t)) =
∫ T

0
e−ρt[κ lnx(t) + ln(b− u(t)) + φ(u(t), t)]dt→ max , (3.11)

ẋ(t) = u(t)(x(t) + γy(t)), (3.12)

ẏ(t) = νy(t), (3.13)

x(0) = x0, y(0) = y0, (3.14)

u(t) ∈ [0, b). (3.15)

Here all data of problem (QT ) are the same as in problem (Q) and as usual the set
of admissible controls u(t) for problem (QT ) consist of all measurable functions u(t) :
[0,∞)→ [0, b).
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Lemma 3.1 For arbitrary T > 0 there exists a constant l(T ), 0 < l(T ) < b such that for
all 0 < l ≤ l(T ) condition (3.15) can be replaced by the condition

u(t) ∈ [0, b− l] (3.16)

in the formulation of the problem (QT ) without changing the optimal value and the set of
controls which can be optimal in the problem.

Proof. For arbitrary 0 < l < b and arbitrary admissible control u(t) : [0, T ]→ [0, b) define
a set

Ml = {t ∈ [0, T ] : u(t) > b− l}.
Let x(t) be the trajectory of the system (3.12), (3.13) corresponding to the control u(t)
with initial conditions (3.14). Consider now an admissible control u0(t) : [0, T ]→ [0, b− l]
which is equal 0 if t ∈ Ml and u(t) if t /∈ Ml. Let x0(t) be the trajectory of the system
(3.12), (3.13) corresponding to the control u0(t) with initial conditions (3.14). Due to the
definition of the control u0(t) and the boundedness of the function φ(u, t) the following
inequalities hold:∫ T

0
e−ρt[ln(b− u(t))− ln(b− u0(t))]dt ≤ (ln l − ln b)e−ρTmeas (Ml), (3.17)

∫ t

0
e−ρT [φ(u(t), t)− φ(u0(t), t)]dt≤ 2K0meas (Ml). (3.18)

Further, for arbitrary t ∈ [0, T ] we have

x(t)− x0(t) =
∫ t

0
u(s)(x(s) + γy(s))ds−

∫ t

0
u0(s)(x0(s) + γy(s))ds=

∫
Ml∩[0,t]

u(s)(x(s) + γy(s))ds+
∫
[0,t]\Ml

u(s)(x(s)− x0(s))ds ≤

≤ bK1(T )meas (Ml) + b

∫ t

0
(x(s)− x0(s))ds,

where K1(T ) is a positive constant such that x(t) + γy(t) ≤ K1(T ) for an arbitrary
admissible trajectory x(t) of the control system under consideration. Due to the Bellman-
Gronwall inequality (Hartman, 1964) for every t ∈ [0, T ] we have

x(t)− x0(t) ≤ bK1(T )meas (Ml)e
bt.

Hence the following inequalities take place:∫ T

0
e−ρt[κ lnx(t)− κ lnx0(t)]dt ≤ κ

∫ T

0
e−ρt

x(t)− x0(t)
x0

dt ≤ K2(T )meas (Ml), (3.19)

where K2(T ) is a positive constant which is independent from the trajectory x(t).
Combining now inequalities (3.17)-(3.19) we get

J̃T (x(t), u(t))− J̃T (x0(t), u0(t)) =

=

∫ T

0
e−ρt[κ lnx(t)+ln(b−u(t))+φ(u(t), t)]dt−

∫ T

0
e−ρt[κ lnx0(t)+ln(b−u0(t))+φ(u0(t), t)]dt≤

≤ ((ln l − ln b)e−ρT + 2K0 + bK2(T ))meas (Ml).

Hence there exists a constant l(T ), 0 < l(T ) < b such that for all 0 < l ≤ l(T )

J̃T (x(t), u(t))− J̃T (x0(t), u0(t)) < 0

if measMl > 0. The Lemma is proved.
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Corollary 3.1 For arbitrary T > 0 there exists an optimal control uT (t) in problem (QT ).

Indeed due to the Lemma 3.1 the condition u ∈ [0, b) (see (3.15)) in the statement of
problem (QT ) may be replaced by the condition u ∈ [0, b− l] (see (3.16)) where l is a small
enough positive number. Now, the existence of an optimal control uT (t) is a consequence
of the Fillipov existence theorem (Cesari, 1983).

Corollary 3.2 An optimal control process (xT (t), uT (t)) in problem (QT ) satisfies the
Pontryagin maximum principle (Pontryagin, et al., 1969), i.e. there exists an absolutely
continuous vector function ψ(t) : [0, T ]→ R2, ψ(t) = (ψ1(t), ψ2(t)) such that the following
conditions hold:

1) The vector function ψ(t) is a solution to the adjoint system

ψ̇1(t) = −uT (t)ψ1(t)− κ
e−ρt

xT (t)
, (3.20)

ψ̇2(t) = −γuT (t)ψ1(t)− νψ2(t); (3.21)

2) For almost all t ∈ [0, T ] the maximum condition takes place:

uT (t)(xT (t) + γy(t))ψ
1(t) + e−ρt(ln(b− uT (t)) + φ(uT (t), t)) =

= sup
u∈[0,b)

[u(xT (t) + γy(t))ψ
1(t) + e−ρt(ln(b− u) + φ(u, t))]; (3.22)

3) The transversality conditions hold:

ψ1(T ) = 0, ψ2(T ) = 0. (3.23)

Indeed, let us take an arbitrary sequence {li}, i = 1, 2, . . . such that 0 < li+1 < li <

l(T ), ∀i = 1, 2, . . . and li → +0 as i → ∞. Then for arbitrary i = 1, 2, . . . due to the
Lemma 3.1 the optimal control process (xT (t), uT (t)) is an optimal one in problem (Qi,T )
which is different from (QT ) only by the constraints on controls: the condition (3.15) is
replaced by u(t) ∈ [0, b− li]. The last problem (Qi,T ) satisfies all the assumptions of the
Pontryagin maximum principle for free end point optimal control problems on fixed time
interval [0, T ] (Pontryagin, et al., 1969). Hence for arbitrary i = 1, 2, . . . there exists an
absolutely continuous vector function ψi(t) : [0, T ]→ R2, ψi(t) = (ψ

1
i (t), ψ

2
i (t)) such that

the following conditions hold:
1) The vector function ψi(t) is a solution to the adjoint system

ψ̇1i (t) = −uT (t)ψ1i (t)− κ
e−ρt

xT (t)
, (3.24)

ψ̇2i (t) = −γuT (t)ψ1i (t)− νψ2i (t); (3.25)

2) For almost all t ∈ [0, T ] the maximum condition takes place:

uT (t)(xT (t) + γy(t))ψ
1
i (t) + e−ρt(ln(b− uT (t)) + φ(uT (t), t)) =

= sup
u∈[0,b−li)

[u(xT (t) + γy(t))ψ1i (t) + e−ρt(ln(b− u) + φ(u, t))]; (3.26)

3) The transversality conditions hold:

ψ1i (T ) = 0, ψ2i (T ) = 0. (3.27)
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It is easy to see that the sequence {ψi(t)}, i = 1, 2, . . . is a precompact in C[0, T ]. Hence
passing if necessary to a subsequence we can assume that there exists an absolutely con-
tinous vector function ψ : [0, T ] → R2, ψ(t) = (ψ1(t), ψ2(t)) such that ψi(t) � ψ(t) as
i → ∞ and ψ̇i(t) → ψ̇(t) weakly in L1[0, T ] as i → ∞. It is easy to see that due to
(3.27) condition (3.23) holds. Due to the Mazur theorem (Mordukhovich, 1988) passing
to a limit in (3.24), (3.25) as i → ∞ we get that the function ψ(t) satisfies the adjoint
system (3.20), (3.21) for problem (QT ). Finally as far as li → +0 as i→∞, the maximum
condition (3.22) follows from (3.26).

The following two results provide estimations on the ”tail” of the integral goal func-
tional in the basic problem (Q) and the approximation problems (QT ) (T > 0).

Lemma 3.2 There exists a nonincreasing positive function ω0(t); ω0(t)→ +0 as t→∞
such that for arbitrary admissible control process (x(t), u(t)) in problem (Q) and all 0 <
τ < ξ and the following inequalities hold:∫ ξ

τ
e−ρs[κ lnx(s) + ln(b− u(s)) + φ(u(s), s)]ds≤ ω0(τ), (3.28)

∫ ∞
τ

e−ρs[κ lnx(s) + ln(b− u(s)) + φ(u(s), s)]ds≤ ω0(τ). (3.29)

The proof follows directly from the boundedness of φ(u, t), the uniform exponentional
boundedness of trajectories of the control system (3.7), (3.8) with initial conditions (3.9)
and the logarithmic form of the corresponding term in the goal functional (3.6).

Lemma 3.3 There exists a nondecreasing negative function ω1(t); ω1(t)→ −0 as t→∞
such that for arbitrary T > 0, arbitrary optimal control process (xT (t), uT (t)) in problem
(QT ) and all 0 < τ < ξ ≤ T the following inequality holds:∫ ξ

τ
e−ρs[κ lnxT (s) + ln(b− uT (s)) + φ(uT (s), s)]ds≥ ω1(τ). (3.30)

Proof. Due to the optimality of the process (xT (t), uT (t)) in problem (QT ) the restriction
of this process on the time interval [τ, T ] is an optimal one in the corresponding optimal
control problem on this time interval [τ, T ]. Hence we have∫ T

τ
e−ρs[κ lnxT (s) + ln(b− uT (s)) + φ(uT (s), s)]ds=

∫ ξ

τ
e−ρs[κ lnxT (s) + ln(b− uT (s))+

+φ(uT (s), s)]ds+

∫ T

ξ
e−ρs[κ lnxT (s) + ln(b− uT (s)) + φ(uT (s), s)]ds≥

≥
∫ T

τ
e−ρs[κ lnxT (τ) + ln b+ φ(0, s)]ds.

Hence (due to (3.28))∫ ξ

τ
e−ρs[κ lnxT (s)+ln(b−uT (s))+φ(uT (s), s)]ds≥

∫ T

τ
e−ρs[κ lnxT (t)+ln b+φ(0, s)]ds−

−
∫ T

ξ
e−ρs[κ lnxT (τ) + ln(b− uT (s)) + φ(uT (s), s)]ds≥ ω1(τ),

where

ω1(τ) = −
∫ ∞
τ

e−ρs[κ| lnx0|+ | ln b|+K0]ds− ω0(τ).

The Lemma is proved.
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Theorem 3.1 There exists an optimal control in problem (Q).

Proof. Let {Tk}, k = 1, 2, . . . be a sequence of positive numbers such that Tk < Tk+1,
k = 1, 2, . . . and Tk → ∞ as k → ∞. Consider a corresponding sequence of optimal
control problems {(QTk)} each of which defined on its own fixed time interval [0, Tk] (see
(3.11)-(3.15)). For brevity we will write below (Qk) instead of (QTk).

Due to Corollary 3.1 for any k = 1, 2, . . . there exists an optimal process (xk(t), uk(t))
in problem (Qk).

Consider now the sequence of controls {uk(t)}, k = 1, 2, . . . on the time interval [0, T1].
Due to the convexity and compactness of the interval [0, b] one can choose a subsequence
{u1,k(t)} of {uk(t)} such that u1,k(t) → u∗(t) weakly in L1[0, T1] as k → ∞ where u∗(t)
is a measurable function on the time interval [0, T1] with values lies in [0, b]. Note, that
by the construction each control u1,k(t), k = 1, 2, . . . is an optimal one in a correspond-
ing problem (Qm(1,k)) on the time interval [0, Tm(1,k)], Tm(1,k) ≥ T1 for some number
m(1, k) ≥ 1. Assume x1,k(t) is the optimal trajectory corresponding to u1,k(t) on the time
interval [0, Tm(1,k)], k = 1, 2, . . ., and x∗(t) denotes the trajectory of the system (3.7), (3.8)
corresponding to control u∗(t) on the time interval [0, T1].

Due to the linearity in respect to control of the system (3.12), (3.13) we have x1,k(t)�
x∗(t) on [0, T1] as k →∞. Obviously, ẋ1,k(t)→ ẋ∗(t) weakly in L

1[0, T1] as k →∞.
Consider now the sequence {u1,k(t)}, k = 1, 2, . . . on the time interval [0, T2] for k ≥ 2.
Analogously to the previous step there exists a subsequence {u2,k(t)}, k = 1, 2, . . . of

the sequence {u1,k(t)}, k = 2, 3, . . . such that {u2,k(t)} converges weakly in L1[0, T2] to
a measurable function is defined on the time interval [0, T2] with values lies in [0, b] and
coincide with u∗(t) on [0, T1]. Let us denote the control constructed by this procedure on
[0, T2] again by u∗(t).

By the construction each control u2,k(t), k = 1, 2, . . . is an optimal one in a corre-
sponding problem (Qm(2,k)) on the time interval [0.Tm(2,k)], Tm(2,k) ≥ T2 for some number
m(2, k) ≥ 2. Let x2,k(t) be the corresponding to u2,k(t) optimal trajectory on the time
interval [0, Tm(2,k)], k = 1, 2, . . . and let x∗(t) be the trajectory of the system (3.7), (3.8)
corresponding to control u∗(t) on the time interval [0, T2].

Analogously to the previous step we have x2,k(t) � x∗(t) on [0, T2] as k → ∞ and
ẋ2,k(t)→ ẋ∗(t) weakly in L

1[0, T2] as k→∞.
Repeating this procedure we construct step by step a measurable function u∗ : [0,∞)→

[0, b] and the corresponding trajectory x∗(t) of the system (3.7), (3.8). Simultaneously
we construct a countable family of controls {ui,k(t)}, i = 1, 2, . . ., k = 1, 2, . . . and the
corresponding family of trajectories {xi,k(t)}, i = 1, 2, . . ., k = 1, 2, . . .. Furthermore, for
all i = 1, 2, . . ., k = 1, 2, . . . the control ui,k(t) which is defined by this procedure, is an
optimal one in optimal control problem (Qm(i,k)), m(i, k) ≥ i on the corresponding time
interval [0, Tm(i,k)] where Tm(i,k) ≥ Ti, i = 1, 2, . . .Moreover, for all i = 1, 2, . . . we have

ui,k(t)→ u∗(t) weakly in L1[0, Ti] as k→∞;

xi,k(t)� x∗(t), on [0, Ti] as k→∞;

ẋi,k(t)→ ẋ∗(t) weakly in L1[0, Ti] as k→∞.

Let us take the diagonal sequence {uk,k(t)}, k = 1, 2, . . . from the constructed family
{ui,k(t)}, i = 1, 2 . . ., k = 1, 2 . . . and denote ūk(t) = uk,k(t), x̄k(t) = xk,k(t), and m(k) =
m(k, k), k = 1, 2, . . ..

Constructed by this procedure pair (u∗(t), x∗(t)), and sequences of controls {ūk(t)},
k = 1, 2, . . . and corresponding trajectories {x̄k(t)}, k = 1, 2, . . . satisfy the following
properties:
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a) ∀k = 1, 2, . . . the control ūk(t) is defined on the time interval [0, Tm(k)], m(k) ≥ k

and ūk(t) is an optimal control in problem (Qm(k)).
b) ∀T > 0 we have

ūk(t)→ u∗(t) weakly in L1[0, T ] as k→∞;

x̄k(t)� x∗(t) on [0, T ] as k →∞;
˙̄xk(t)→ ẋ∗(t) weakly in L1[0, T ] as k→∞.

Let us prove that the control u∗(t) constructed above is an admissible one in problem
(Q), i.e. that (3.5) holds for almost all t ∈ [0,∞).

Due to the Lemma 3.3 there exists a negative nondecreasing function ω1(t); ω1(t)→ −0
as t → ∞ such that for all T > 0, all 0 < τ < T and the optimal pair (x̄k(t), ūk(t)) in
problem (Qm(k)): Tm(k) > T the following inequality (3.30) holds:

∫ T

τ
e−ρs[κ ln x̄k(s) + ln(b− ūk(s)) + φ(ūk(t), t)]ds≥ ω1(τ).

Hence, for any c > 0 and for arbitrary ε > 0 due to the upper semicontinuity of the integral
functional

J̃τ,T (x(t), u(t)) =

∫ T

τ
e−ρs[κ lnx(s) + ln(b− u(s) + c) + φ(u(s), s)]ds

(see Theorem 10.8.ii in Cesari, 1983), there exists N > 0 such that ∀k ≥ N the following
inequality takes place:

ω1(τ) ≤
∫ T

τ
e−ρs[κ ln x̄k(s) + ln(b− ūk(s) + c)) + φ(ūk(s), s)]ds≤

≤
∫ T

τ
e−ρs[κ lnx∗(s) + ln(b− u∗(s) + c) + φ(u∗(s), s)]ds+ ε.

Whence, for all T > 0 and all 0 < τ < T we get

∫ T

τ
e−ρs[κ lnx∗(s) + ln(b− u∗(s) + c) + φ(u∗(s), s)]ds≥ ω1(τ) (3.31)

and, as far as function φ(u, t) is bounded and the set of all trajectories of the system (3.7),
(3.8) is uniformly bounded on [0, T ], there exists a constant K3(T ) > 0 such that

∫ T

0
e−ρs ln(b− u∗(s) + c)ds ≥ ω1(0)−K3(T ).

It follows immidiately from the last inequality and arbitrariness of c > 0 that for almost all
t ∈ [0, T ] the constructed control u∗(t) satisfies to inequality u∗(t) < b. Hence, u∗(t) < b

almost everywhere on [0,∞).
Let us prove now that the constructed admissible control u∗(t) is an optimal one in

problem (Q).
First of all note that for arbitrary τ > 0 the following inequality∫ ∞

τ
e−ρs[κ lnx∗(s) + ln(b− u∗(s)) + φ(u∗(s), s)]ds≥ ω1(τ)
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follows from the validity of (3.31) for arbitrary c > 0. This inequality and Lemma 3.2 (see
(3.29)) imply the existence of a positive nonincreasing function ω(t); ω(t) ≥ ω0(t) ∀t ≥ 0
and ω(t)→ +0 as t→∞ such that

|
∫ ∞
τ

e−ρs[κ lnx∗(s) + ln(b− u∗(s)) + φ(u∗(s), s)]ds| ≤ ω(τ) ∀τ > 0. (3.32)

Note, that due to Lemmas 3.2 and 3.3 without loss of generality it is possible to assume
also that for arbitrary T > 0, all 0 < τ < T and all k : Tk ≥ T the analogous inequality
holds for all pairs (ūk(t), x̄k(t)), which are optimal in corresponding problems (Qm(k)):

|
∫ T

τ
e−ρs[κ ln x̄k(s) + ln(b− ūk(s)) + φ(ūk(s), s)]ds| ≤ ω(τ).

Assume that u∗(t) is not optimal in problem (Q). Then there exist ε > 0 and an
admissible pair (ũ(t), x̃(t)) such that

J̃(x∗(t), u∗(t)) < J̃(x̃(t), ũ(t))− ε. (3.33)

Further, due to the the properties of the function ω(t) there exists k1 such that ∀T ≥ Tk1

we have
ω(T ) <

ε

4
. (3.34)

Consider now the above constructed sequences {ūk(t)}, {x̄k(t)} on the time interval
[0, Tm(k1)] for k ≥ k1.

On this time interval [0, Tm(k1)] we have

ūk(t)→ u∗(t) weakly in L1[0, Tm(k1)] as k →∞;

x̄k(t)� x∗(t) on [0, Tm(k1)] as k →∞;
˙̄xk(t)→ ẋ∗(t) weakly in L1[0, Tm(k1)] as k →∞.

Further, due to the upper semicontinuity of the functional J̃Tm(k1)(x(t), u(t)) (see The-
orem 10.8.ii in Cesari, 1983) there exists k2 ≥ k1 such that ∀k ≥ k2 the following inequality
holds:

J̃Tm(k1)(x̄k(t), ūk(t)) ≤ J̃Tm(k1)(x∗(t), u∗(t)) +
ε

4
(3.35)

Consider now the admissible pair (ūk2(t), x̄k2(t)) on the corresponding time interval
[0, Tm(k2)]. By the construction ūk2(t) is an optimal control in optimal control problem
(Qm(k2)) on the time interval [0, Tm(k2)]. Hence, due to (3.34) and inequality (3.29) we
have

J̃Tm(k2)(x̄k2(t), ūk2(t)) ≥
∫ Tm(k2)

0
e−ρt[κ ln x̃(t) + ln(b− ũ(t)) + φ(ũ(t), t)]dt≥

≥
∫ ∞
0

e−ρt[κ ln x̃(t) + ln(b− ũ(t)) + φ(ũ(t), t)]dt− 1
4
ε = J(x̃(t), ũ(t))− 1

4
ε.

Whence due to (3.34), inequality (3.28) and (3.35) we get

J(x̃(t), ũ(t)) ≤ J̃Tm(k2)(x̄k2(t), ūk2(t)) +
1

4
ε =

∫ Tm(k1)

0
e−ρt[κ ln x̄k2(t) + ln(b− ūk2(t))+

+φ(ūk2(t), t)]dt+
∫ Tm(k2)

Tm(k1)

e−ρt[κ ln x̄k2(t) + ln(b− ūk2(t)) + φ(ūk2(t), t)]dt+
1

4
ε ≤

≤ J̃Tm(k1)(x∗(t), u∗(t)) +
3

4
ε ≤ J(x∗(t), u∗(t)) + ε,

which contradicts (3.33). Hence u∗(t) is an optimal control in (Q). The Theorem is proved.
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Corollary 3.3 There exists an optimal control u∗(t) in problem (P ).

Indeed, problem (P) is a particular case of (Q) with φ(u, t) ≡ 0.

Now we concretize the function φ(u, t) in auxiliary problems (Qk), k = 1, 2, . . . used
in the proof of the Theorem 3.1 by such a way that the corresponding sequence {uk(t)},
k = 1, 2, . . . of their optimal controls will provide an appropriate (strong in L2[0, T ],
∀T > 0) approximation of the given optimal control u∗(t) of problem (P ). We need such a
strong approximation to derive the desirable necessary optimality conditions for problem
(P ). As above in the realization of the approximation approach we follow closely the
constructions developed in Aseev, Krayazhimskii and Tarasyev, 2001, (a)-(c).

Assume u∗(t) is an optimal control in initial problem (P ) and x∗(t) is the correspond-
ing optimal trajectory. Referring to the proof of Theorem 3.1 (stated for problem (Q)
more general than problem (P)) we assume that the pair (x∗(t), u∗(t)) and a positive non-
increasing function ω(t); ω(t)→ 0 as t→∞ satisfy the property (3.32) with φ(u, t) ≡ 0.

For k = 1, 2, . . . we fix a continuously differentiable function vk : [0,∞) → R1 such
that

sup
t∈[0,∞)

|vk(t)| ≤ b+ 1, (3.36)

∫ ∞
0

e−ρt(vk(t)− u∗(t))2dt ≤
1

k
, (3.37)

sup
t∈[0,∞)

|v̇k(t)| ≤ σk <∞. (3.38)

It is easy to see that such sequence {vk(t)}, k = 1, 2, . . . of continuously differentiable
functions vk(t) exists. Without loss of generality we can assume that σk →∞ as k →∞.

Let us take now a sequence of positive numbers {Tk}, k = 1, 2, . . . such that Tk < Tk+1

∀k, Tk →∞ as k →∞, and for arbitrary admissible trajectory x(t) of the control system
(3.2), (3.3) and ∀k = 1, 2, . . . we have∫ ∞

Tk

e−ρt(κ lnx(t) + ln b)dt ≤ 1

k(1 + σk)
, (3.39)

ω(Tk) ≤
1

k(1 + σk)
. (3.40)

Consider now the sequence of the following auxiliary optimal control problems (Pk),
k = 1, 2, . . . each of which is defined on its own time interval [0, Tk]:

Jk(x(t), u(t)) =
∫ Tk

0
e−ρt[κ lnx(t) + ln(b− u(t))− (u− vk(t))

2

1 + σk
]dt→ max ,

ẋ(t) = u(t)(x(t) + γy(t)),

ẏ(t) = νy(t),

x(0) = x0, y(0) = y0,

u(t) ∈ [0, b).
Here all data of problem (Pk) are the same as in initial problem (P ). As usual we are
searching for a minimizer of problem (Pk) in a class of all measurable bounded functions
u : [0, Tk]→ [0, b).

Note that for each k = 1, 2, . . . problem (Pk) is a particular case of problem (Qk) with
φ(u, t) = −(u − vk(t))2/(1 + σk) and, hence, due to Corollary 3.1 for every k = 1, 2, . . .
there exists an optimal control uk(t) in problem (Pk).
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In what follows we shall assume that for any k = 1, 2, . . . the control uk(t) is continued
by 0 on the whole time interval [0,∞). Denote by xk(t) the trajectory corresponding to
uk(t) on [0,∞).

Lemma 3.4 ∀T > 0 we have

uk(t)→ u∗(t) in L2[0, T ] as k→∞.

Proof. Let T > 0 and let us take a number k1 such that Tk1 ≥ T . Obviously, for any
k = 1, 2, . . . we have

Jk(xk(t), uk(t)) =

∫ Tk

0
e−ρt[κ lnxk(t) + ln(b− uk(t))−

(uk(t)− vk(t))2
1 + σk

]dt ≤

≤
∫ Tk

0
e−ρt[κ lnxk(t) + ln(b− uk(t))]dt−

e−ρT

1 + σk

∫ T

0
(uk(t)− vk(t))2dt.

Hence, due to the optimality of uk(t) in problem (Pk), k ≥ k1, optimality of u∗(t) in
problem (P ), and due to (3.37), (3.39), (3.40) and (3.32) we get

e−ρT

1 + σk

∫ T

0
(uk(t)− vk(t))2dt ≤

∫ Tk

0
e−ρt[κ lnxk(t) + ln(b− uk(t))]dt− Jk(x∗(t), u∗(t)) ≤

≤
∫ ∞
0

e−ρt[κ lnxk(t) + ln(b− uk(t))]dt−
∫ ∞
Tk

e−ρt[κ lnxk(t) + ln b]dt− Jk(x∗(t), u∗(t)) ≤

≤ J(xk(t), uk(t))− J(x∗(t), u∗(t)) + ω(Tk) +
1

k(1 + σk)
+

+
∫ ∞
0

e−ρt

1 + σk
(vk(t)− u∗(t))2dt ≤

3

k(1 + σk)
.

Hence we get ∫ T

0
(uk(t)− vk(t))2dt ≤

3eρT

k
.

Hence

(
∫ T

0
(uk(t)− u∗(t))2dt)

1
2 ≤ (

∫ T

0
(u∗(t)− vk(t))2dt)

1
2+

+(

∫ T

0
(uk(t)− vk(t))2dt)

1
2 ≤

√
eρT

k
+

√
3eρT

k
= (
√
3 + 1)

√
eρT

k
.

Hence ∀ε > 0 ∃k2 ≥ k1 such that ∀k ≥ k2 the following condition holds:

‖uk(t)− u∗(t)‖L2[0,T ]dt < ε.

Hence the assertion of the Lemma holds. The Lemma is proved.

Remark 3.3 It follows immediately from the assertion of the Lemma 3.4 that without
loss of generality we can assume that for arbitrary T > 0 we have

uk(t)→ u∗(t) in L2[0, T ] as k→∞;

xk(t)� x∗(t) on [0, T ] as k →∞;
ẋk(t)→ ẋ∗(t) in L2[0, T ] as k→∞.

Passing if necessary to subsequence we can assume also that

uk(t)→ u∗(t) for almost all t ∈ [0, T ] as k→∞.
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Now we develop an appropriate version of the Pontryagin maximum principle for problem
(P) using the limit procedure in the relations of the Pontryagin maximum principle for
problem (Pk) as k →∞.

Note, that due to the logarithmic singularity in the goal functional (3.1) problem
(P) does not satisfy to the assumptions of the maximum principle developed in Aseev,
Kryazhimskii and Tarasyev, 2001, (a)-(c). First let us introduce some standard notations.

Let

H(x, y, t, u, ψ1, ψ2) = u(x+ γy)ψ1+ νyψ2 + e−ρt(κ lnx+ ln(b− u))

and
H(x, y, t, ψ1, ψ2) = sup

u∈[0,b)
H(x, y, t, u, ψ)

denote the Hamilton–Pontryagin function and the Hamiltonian (maximum function) re-
spectively for problem (P ) with the Lagrange multiplier ψ0 corresponding to the maxi-
mized functional J(x(t), u(t)) equal 1.

Theorem 3.2 Let u∗(t) be an optimal control in problem (P ) and x∗(t) be the corre-
sponding optimal trajectory. Then there exists an absolutely continuous vector function
ψ(t) : [0,∞)→ R2, ψ(t) = (ψ1(t), ψ2(t)) such that the following conditions hold:

1) The vector function ψ(t) is a solution to the adjoint system

ψ̇1(t) = −u∗(t)ψ1(t)− κ
e−ρt

x∗(t)
, (3.41)

ψ̇2(t) = −γu∗(t)ψ1(t)− νψ2(t); (3.42)

2) For almost all t ∈ [0,∞) the maximum condition takes place:

H(x∗(t), y∗(t), t, u∗(t), ψ1(t), ψ2(t)) = H(x∗(t), y∗(t), t, ψ
1(t), ψ2(t)); (3.43)

3) The condition of the asymptotic stationarity of the Hamiltonian is valid:

lim
t→∞

H(x∗(t), y∗(t), t, ψ
1(t), ψ2(t)) = 0; (3.44)

4) The vector function ψ(t) is strictly positive, i.e.

ψ1(t) > 0, ψ2(t) > 0 ∀t ≥ 0. (3.45)

Remark 3.4 Note, that Theorem 3.2 formulated above is identical to the version of the
Pontryagin maximum principle for a class of problems with infinite time horizons developed
by Aseev, Kryazhimskii and Tarasyev, 2001, (a)-(c). Theorem 3.2 is a version of the
Pontryagin maximum principle in the so-called normal form. It asserts that the Lagrange
multiplier ψ0 corresponding to the maximizing functional (3.1) is strictly positive and hence
may be taken to equal 1. Further, this result incorporates additional conditions (3.44) and
(3.45), where the stationarity condition (3.44) (which was introduced by Michel, 1982)
is analogous to the transversality condition with respect to time in the formulation of
the Pontryagin maximum principle for a free time finite horizon optimal control problem
(Pontryagin et.al., 1969). Condition (3.45) is not standard for the Pontryagin maximum
principle; it arises in problems of optimal growth and plays a serious role in our analysis.
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Proof. Let us consider the sequence of auxiliary problems (Pk), k = 1, 2, . . . con-
structed above. Let uk(t) be an optimal control in problem (Pk) and let xk(t) be the
corresponding optimal trajectory, k = 1, 2, . . .. As shown above (see Remark 3.3) we can
assume that ∀T > 0

uk(t)→ u∗(t) in L2[0, T ] as k→∞;

xk(t)� x∗(t) on [0, T ] as k →∞;

ẋk(t)→ ẋ∗(t) in L2[0, T ] as k →∞

and
uk(t)→ u∗(t) for almost all t ∈ [0, T ].

Due to the Pontryagin maximum principle (Pontryagin et. al., 1969) and Lemma 3.1 (se
Corollary 3.1 for problem (Pk), k = 1, 2, . . . there exists an absolutely continuous vector
function ψk(t) : [0, Tk]→ R2, ψk(t) = (ψ

1
k(t), ψ

2
k(t)) such that for almost all t ∈ [0, Tk] the

following conditions hold:

ψ̇1k(t) = −uk(t)ψ1k(t)− κ
e−ρt

xk(t)
, (3.46)

ψ̇2k(t) = −γuk(t)ψ1k(t)− νψ2k(t), (3.47)

Hk(xk(t), yk(t), t, uk(t), ψ
1
k(t), ψ

2
k(t)) = Hk(xk(t), t, ψ

1
k(t), ψ

2
k(t)) (3.48)

and
ψ1k(Tk) = 0, ψ2k(Tk) = 0. (3.49)

Here

Hk(x, y, t, u, ψ
1, ψ2) = u(x+ γy)ψ1+ νyψ2 + e−ρt[κ lnx+ ln(b− u)− (u− vk(t))

2

1 + σk
]

and
Hk(x, y, t, ψ

1, ψ2) = sup
u∈[0,b)

Hk(x, t, u, ψ
1, ψ2)

are the Hamilton–Pontryagin function and the Hamiltonian (maximum function) for prob-
lem (Pk), k = 1, 2, . . . in a normal form.

1

Note that due to relations (3.46), (3.47) and (3.48) of the Pontryagin maximum prin-
ciple for problem (Pk) the following condition holds for k = 1, 2, . . .:

dHk(xk(t), yk(t), t, ψ
1
k(t), ψ

2
k(t))

dt

a.e.
=

∂Hk

∂t
(xk(t), yk(t), t, uk(t), ψ

1
k(t), ψ

2
k(t)). (3.50)

Further, due to (3.46), (3.47) and (3.49) we have immediately that ψi
k(t) > 0 ∀t ∈

[0, Tk), i = 1, 2.
Now we show that the sequences {|ψi

k(0)|}, k = 1, 2, . . ., i = 1, 2 are bounded. For this
purpose let us integrate the equality (3.50) on the time interval [0, Tk], k = 1, 2, . . ..

Using (3.50) we get

H(x0, 0, ψ
1
k(0), ψ

2
k(0)) = e−ρTk [κ lnxk(Tk) + sup

u∈[0,b)
(ln(b− u)− (u− vk(Tk))

2

1 + σk
)]+

1Problem (Pk) is a free right end point optimal control problem on the fixed time interval [0, Tk ],
k = 1, 2, . . .. Hence the multiplier ψ0 can be taken to equal 1.
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+ρ

∫ Tk

0
e−ρt[κ lnxk(t)−

(uk(t)− vk(t))2
1 + σk

]dt− 2
∫ Tk

0
e−ρt

(uk(t)− vk(t))v̇k(t)
1 + σk

dt.

It is not difficult to see that due to the conditions (3.36)-(3.38), there exists a constant
K4 > 0 such that for all k = 1, 2, . . . we have

Hk(x0, y0, 0, ψ
1
k(0), ψ

2
k(0)) ≤ K4.

Hence

sup
u∈[0,b)

[u(x0 + γy0)ψ
1
k(0) + ln(b− u)−

(u− vk(0))2
1 + σk

] + νy0ψ
2
k(0) + e

−ρtκ lnx0+ ≤ K4.

From the last inequality we derive

b

2
(x0 + γy0)ψ

1
k(0) + νy0ψ

2
k(0) ≤ K4 − κ lnx0 − ln

b

2
+

1

1 + σk
(
b

2
− vk(0))2.

As far as x0 > 0, y0 > 0, b > 0 and ν > 0 we get the boundedness of the sequences
{|ψi

k(0)|}, k = 1, 2, . . ., i = 1, 2.
Now consider consequently time intervals [0, Ti], i = 1, 2, . . . and sequences {uk(t)},

{xk(t)} and {ψk(t)} on [0, Ti] as k→∞.
Due to the Bellman–Gronwall inequality (Hartman, 1964), boundedness of the se-

quence {|ψk(0)|}, k = 1, 2, . . ., i = 1, 2 and (3.46), (3.47) we may assume that there exists
an absolutely continuous vector function ψ : [0, Ti]→ R2, ψ(t) = (ψ1(t), ψ2(t)) such that

ψk(t)� ψ(t) on [0, Ti] as k →∞,

and
ψ̇k(t)→ ψ̇(t) weakly in L1[0, Ti] as k →∞.

Considering the sequence of increasing time intervals [0, Ti] as i → ∞, and passing to a
subsequence of {ψk(t)}, k = 1, 2, . . . on each of these time intervals, and taking then a
diagonal subsequence we can suppose that there exists an absolutely continuous vector
function ψ : [0,∞)→ Rn, such that ∀T > 0 we have

ψk(t)� ψ(t) on [0, T ] as k →∞,

and
ψ̇k(t)→ ψ̇(t) weakly in L1[0, T ] as k →∞.

Due to the uniform convergence of the sequence {xk(t)} to x∗(t) as k →∞ and convergence
of uk(t) to u∗(t) in L2[0, T ] as k →∞, passing to a limit in (3.46) for almost all t ∈ [0, T ]
as k → ∞ we get that due to the Mazur theorem (Mordukhovich, 1988) the absolutely
continuous function ψ(t) is a solution to the adjoint system (3.41), (3.42) on time interval
[0, T ].

Hence the conditions (3.41), (3.42) are proved.
Due to the positiveness of the functions ψi

k(t), k = 1, 2 . . ., i = 1, 2 we have ψ
i(t) ≥ 0,

i = 1, 2 ∀t > 0. Further, adjoint sysytem (3.41, (3.42) and condition ψ(t) ≥ 0 implies
ψi(t) > 0 ∀t ≥ 0, i = 1, 2, i.e. condition (3.45) is proved.

Passing to the limit in (3.48) as k →∞ we get the maximum condition (3.43).
Let us prove now the asymptotic stationarity condition (3.44). To this end let us take

an arbitrary t > 0 and integrate the equality (3.50) on the time interval [t, Tk] for large
numbers k such that Tk > t. Due to the equality (3.49) we get

Hk(xk(t), t, ψ
1
k(t), ψ

2
k) = e−ρTk [κ lnxk(Tk) +max u∈[0,b)(ln(b− u)−

(u− vk(Tk))
2

1 + σk
)]−
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−ρ
∫ Tk

t
e−ρs[κ lnxk(s) + ln(b− uk(s))−

(uk(s)− vk(s))2
1 + σk

]ds+

+2
∫ Tk

t
e−ρs

(uk(s)− vk(s))v̇k(s)
1 + σk

ds. (3.51)

Further, passing to the limit in the equality (3.51) as k →∞ we have

H(x∗(t), t, ψ
1(t), ψ2(t)) = ρ

∫ ∞
t

e−ρs[κ lnx∗(s) + ln(b− u∗(s))]ds. (3.52)

Finally, passing to the limit in the last equality (3.52), as t → ∞ we get the condition
(3.44).

The Theorem is proved.

Corollary 3.4 The following transversality conditions hold:

lim
t→∞

ψ1(t)x∗(t) = 0, lim
t→∞

ψ2(t)y(t) = 0; (3.53)

moreover, ∀t ≥ 0 the following inequality takes place:

eρtψ1(t)x∗(t) ≤
κ

ρ
. (3.54)

Indeed, it is easy to see that the transversality conditions (3.53) are a direct conse-
quence of the asymptotic stationarity condition (3.44), condition (3.45) and positiveness
of the parameters b, γ, ν, and the trajectories x∗(t) and y(t).

Let us prove the validity of inequality (3.54). Differentiating the product ψ1(t)x∗(t)
for almost all t we have

d

dt
ψ1(t)x∗(t) = ψ̇1(t)x∗(t) + ψ

1(t)ẋ∗(t) = −u∗(t)ψ1(t)x∗(t)− κe−ρt+

+u∗(t)(x∗(t) + νy(t))ψ
1(t) ≥ −κe−ρt.

Whence, integrating the last inequality on arbitrary time interval [t, T ] we get

ψ1(T )x∗(T )− ψ1(t)x∗(t) ≥ −κ
∫ T

t
e−ρsds =

κ

ρ
(e−ρT − e−ρt).

Hence, for all 0 ≤ t < T we have

ψ1(t)x∗(t) ≤ ψ1(T )x∗(T ) +
κ

ρ
(e−ρt − e−ρT ).

Passing to a limit in a last inequality as T →∞ for arbitrary fixed t ≥ 0 due to the first
of transversality conditions (3.53) we get the inequality (3.54).

4 Problem reformulation and construction of the associated
Hamiltonian system

Now we simplify the problem formulation by reducing the dimension of the state variable
for 1. Set

z(t) =
x(t)

y(t)
, z0 =

x0
y0
.
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If (x(t), u(t)) is a control process, then (see (3.2) (3.3))

ż(t)
a.e.
=

ẋ(t)

y(t)
− x(t)

y2(t)
ẏ(t)

a.e.
=

u(t)(x(t) + γy(t))

y(t)
− x(t)

y2(t)
νy(t) =

= u(t)(z(t) + γ)− νz(t)
and (see (3.1))

J(x(t), u(t)) =

∫ ∞
0

e−ρt[κ ln(z(t)y(t)) + ln(b− u(t))]dt =

=

∫ ∞
0

e−ρt[κ ln z(t) + κ lny(t) + ln(b− u(t))]dt =

=

∫ ∞
0

e−ρt[κ lnz(t) + κ ln
(
y0e

νt
)
+ ln(b− u(t))]dt =

=

∫ ∞
0

e−ρt[κ lnz(t) + ln(b− u(t))]dt+K5

where

K5 =
∫ ∞
0

e−ρt[κ lny0 + κνt]dt.

This observation leads to the next equivalency statement.

Lemma 4.1 Problem (P) is equivalent to the optimal control problem (P̃)

J(z(t), u(t)) =

∫ ∞
0

e−ρt[κ ln z(t) + ln(b− u(t))]dt→ max ,

ż(t) = u(t)(z(t) + γ)− νz(t), (4.1)

z(0) = z0, (4.2)

u(t) ∈ [0, b)
in the following sense:

1) u∗(t) is an optimal control in problem (P) if and only if it is an optimal control in
problem (P̃),

2) the optimal values J∗ and J∗∗ in problems (P) and (P̃) are related to each other
through J∗ = J∗∗ +K5.

Problem (P̃) introduced in Lemma 4.1 is understood similarly to problem (P). Namely,
the trajectory of system (4.1) under a control u(t) with the initial state z0 is the unique
Caratheodory solution z(t) on [0,∞) of equation (4.1) with the initial condition (4.2); a
control process for system (4.1) is a pair (z(t), u(t)) where u(t) is a control and z(t) is the
trajectory under u(t).

Due to Lemma 4.1 and Theorem 3.1 (see Corollary 3.3) there exists an optimal control
u∗(t) in problem (P̃ ).

Below we will use the reduced problem (P̃) for the qualitative analysis of the optimal
processes.

Let us introduce now a new adjoint variable p(t) = eρtψ1(t)y(t), where ψ1(t) is the
adjoint variable corresponding to the optimal trajectory x∗(t) in problem (P ) via the

Pontryagin maximum principle (Theorem 3.2), and let z∗(t) =
x∗(t)
y(t)

.

Then the function p(t) is strictly positive and due to the condition (3.41) for almost
all t ≥ 0 we have

ṗ(t) = ρeρtψ1(t)y(t) + eρt(−u∗(t)ψ1(t)y(t)− κe−ρt
y(t)

x∗(t)
+ νψ1(t)y(t)) =
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= −(u∗(t)− ν − ρ)p(t)−
κ

z∗(t)
.

Further, the maximum condition (3.43) can be rewritten in terms of these new variables
z∗(t) and p(t) as follows:

u∗(t)p(t)(z∗(t) + γ) + ln(b− u∗(t)) a.e.
= sup

u∈[0,b)
(up(t)(z∗(t) + γ) + ln(b− u)).

Finally, the condition (3.54) can be rewritten as

p(t)z∗(t) ≤
κ

ρ
∀t ≥ 0.

Thus, due to Lemma 4.1 we get the following version of the Pontryaginmaximum principle
for problem (P̃ ) in terms of variables z∗(t), p(t) as a consequence of Theorem 3.2.

Theorem 4.1 Let u∗(t) be an optimal control in problem (P̃ ) and z∗(t) be the correspond-
ing optimal trajectory. Then there exists an absolutely continuous strictly positive function
p(t) defined on [0,∞) such that the following conditions hold:

1) The function p(t) is a solution to the adjoint system

ṗ(t) = −(u∗(t)− ν − ρ)p(t)−
κ

z∗(t)
; (4.3)

2) For almost all t ∈ [0,∞) the maximum condition takes place:

u∗(t)p(t)(z∗(t) + γ) + ln(b− u∗(t)) = sup
u∈[0,b)

(up(t)(z∗(t) + γ) + ln(b− u)); (4.4)

3) The boundedness condition is valid:

p(t)z∗(t) ≤
κ

ρ
∀t ≥ 0. (4.5)

Let us construct now the Hamiltonian system associated with the optimal control
problem (P̃ ) via implementation of the Pontryagin maximum principle (Theorem 4.1).

For this we introduce the function g(z) : (0,∞)→ (0,∞),

g(z) =
1

b(z + γ)
(4.6)

and the sets
G1 = {(z, p) ∈ R2 : z > 0, p ≥ g(z)}, (4.7)

G2 = {(z, p) ∈ R2 : z > 0, 0 ≤ p < g(z)}. (4.8)

Obviously, G1 ∪G2 = G where

G = (0,∞)× [0,∞). (4.9)

Define functions r(z, p) : G→ R1 and s(z, p) : G→ R1,

r(z, p) =


 (b− ν)z + bγ − 1

p
, if (z, p) ∈ G1,

−νz, if (z, p) ∈ G2,
(4.10)

s(z, p) =



−(b− ν − ρ)p− γκ+ (κ− 1)z

(z + γ)z
, if (z, p) ∈ G1,

(ν + ρ)p− κ

z
, if (z, p) ∈ G2.

(4.11)
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Remark 4.1 One can easily check that both functions r(z, p) and s(z, p) are continuous.

Lemma 4.2 Let (z∗(t), u∗(t)) be an optimal control process in problem (P̃ ). Then
1) there exists a strictly positive function p(t) defined on [0,∞) such that (z∗(t), p(t))

solves the equation
ż(t) = r(z(t), p(t)), (4.12)

ṗ(t) = s(z(t), p(t)), (4.13)

(in G) on [0,∞),
2) for almost all t ≥ 0

u∗(t) =


 b− 1

p(t)(z∗(t) + γ)
, if (z∗(t), p(t)) ∈ G1,

0, if (z∗(t), p(t)) ∈ G2;
(4.14)

3) ∀t ≥ 0
p(t)z∗(t) ≤

κ

ρ
. (4.15)

Remark 4.2 Equation (4.12), (4.13) represents the stationary Hamiltonian system for
problem (P̃ ). In our further analysis we will for convenience split (4.12), (4.13) in two
parts:

ż(t) = (b− ν)z(t) + bγ − 1

p(t)
, (4.16)

ṗ(t) = −(b− ν − ρ)p(t)− γκ+ (κ− 1)z(t)
(z(t) + γ)z(t)

, (4.17)

((z(t), p(t)) ∈ G1),

and
ż(t) = −νz(t), (4.18)

ṗ(t) = (ν + ρ)p(t)− κ

z(t)
, (4.19)

((z(t), p(t)) ∈ G2).

We will call equation (4.16), (4.17) nondegenerate and equation (4.18), (4.19) degenerate.

Proof of Lemma 4.2. Let (z∗(t), u∗(t)) be an optimal control process in problem (P̃ ).
Then by Theorem 4.1 there exists a strictly positive solution p(t) of the adjoint equation
(4.3) which satisfies the maximum condition (4.4) and the boundedness condition (4.5).

Consider the maximum condition (4.4). For a given t ≥ 0, the differentiation of the
function

h(u) = up(t)(z∗(t) + γ) + ln(b− u)

at u ∈ [0, b) yields
∂

∂u
h(u) = p(t)(z∗(t) + γ)−

1

b− u.
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We see that the function ∂
∂uh(u) decreases and tends to −∞ as u → b − 0. Hence, h(u)

reaches its maximum at u ∈ [0, b) such that ∂
∂uh(u) = 0 if

∂
∂uh(0) ≥ 0, and at 0 otherwise.

Therefore, (4.4) is specified as

u∗(t) =



b− 1

p(t)(z∗(t) + γ)
, if

1

p(t)(z∗(t) + γ)
≤ b,

0, if
1

p(t)(z∗(t) + γ)
> b

(4.20)

for almost all t ≥ 0. Substituting (4.20) into the system equation (4.1) and the adjoint
equation (4.3), we get

ż∗(t) =
[
b− 1

p(t)(z∗(t) + γ)

]
(z∗(t) + γ)− νz∗(t) =

= (b− ν)z∗(t) + bγ − 1

p(t)
,

ṗ(t) = −
[
b− 1

p(t)(z∗(t) + γ)
− ν − ρ

]
p(t)− κ

z∗(t)
=

= −(b− ν − ρ)p(t) + 1

z∗(t) + γ
− κ

z∗(t)
=

= −(b− ν − ρ)p(t)− γκ+ (κ− 1)z∗(t)
(z∗(t) + γ)z∗(t)

for almost all t ≥ 0 such that
1

p(t)(z∗(t) + γ)
≤ b,

and
ż∗(t) = −νz∗(t),

ṗ(t) = (ν + ρ)p(t)− κ

z∗(t)

for almost all t ≥ 0 such that
1

p(t)(z∗(t) + γ)
> b.

The Lemma is proved.

5 Qualitative analysis of the Hamiltonian system

In what follows we assume that2:
ν > b.

The vector field of the Hamiltonian system (4.12), (4.13) in G (see (4.9)) is the union
of the vector fields of the nondegenerate equation (4.16), (4.17) in G1 (see (4.7) and the
degenerate equation (4.18), (4.19) in G2 (see (4.8).

Let us study the structure of the vector field of the nondegenerate equation (4.16),
(4.17) in G1.

Define h1(z) : (0, bγ/(ν− b))→ (0,∞) and h2(z) : (0,∞)→ (0,∞),

h1(z) =
1

bγ − (ν − b)z , (5.1)

2An economic interpretations of this assumption (presented in Introduction as aḡA > LB) is that the
follower country B is much smaller than the leader country A; see Introducton for details.
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h2(z) =
γκ+ (κ− 1)z

(ν + ρ− b)(z + γ)z
. (5.2)

Note that h1(z) is strictly increasing on (0, bγ/(ν− b)),

h1(z)→∞ as z → bγ

ν − b − 0, (5.3)

h1(z) > g(z) (z ∈ (0, bγ/(ν− b))) (5.4)

(see (4.6)).
Consider function h2(z). Obviously,

h2(z)→∞ as z → +0. (5.5)

Consider derivative d
dzh2(z). We have (see (5.2))

d

dz
h2(z) =

−(κ − 1)z2 − 2κγz − κγ2
(ν + ρ− b)(z + γ)2z2

Obviously d
dzh2(z) < 0 for all z > 0, if κ ≥ 1. Hence, in this case h2(z) is positive and it

strictly decreases on (0,∞).
Consider the case 0 < κ < 1. As far as in this case κ < (ν+ ρ)/b there exists a unique

point z9 > 0,

z0 =
bγκ

ν − bκ+ ρ (5.6)

which is a solution of the equation h2(z) = g(z), i.e. h2(z
0) = g(z0). Let us show that

function h2(z) is strictly decreasing on (0, z
0] in this case.

As far as d
dzh2(z) < 0 for all small z and

d
dzh2(z) is continuous on (0,∞) it can change

its sign only at the positive root of the equation

(κ− 1)z2 + 2κγz + κγ2 = 0.

In the case κ < 1 the last equation has the unique positive root

z̃ =
γκ

1− κ + γ
√
κ

1− κ.

Let us show that z0 < z̃. We have (recall that b < ν and κ < 1)

z0 − z̃ = bγκ

ν − bκ+ ρ
− γκ

1− κ − γ
√
κ

1− κ <

<
bγκ

b− bκ −
γκ

1− κ − γ
√
κ

1− κ = −γ
√
κ

1− κ < 0.

Hence, for 0 < κ < 1 we have d
dzh2(z) < 0 for all 0 < z ≤ z0. Thus the function h2(z)

strictly decrease on (0, z0], if 0 < κ < 1.
The right hand side of equation (4.16) (for z(t)) is zero on the curve

V 0z = {(z, p) ∈ G1 : p = h1(z)}, (5.7)

positive in the domain
V +z = {(z, p) ∈ G1 : p > h1(z)}
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and negative in the domain

V −z = {(z, p) ∈ G1 : p < h1(z)} ∪
{
(z, p) ∈ G1 : z ≥

bγ

ν − b

}
.

The right hand side of equation (4.17) (for p(t)) is zero on the curve

V 0p = {(z, p) ∈ G1 : p = h2(z)}, (5.8)

positive in the domain
V +p = {(z, p) ∈ G1 : p > h2(z)}

and negative in the domain

V −p = {(z, p) ∈ G1 : p < h2(z)}.

Thus, the vector field of the nondegenerate equation (4.16), (4.17) is
(i) positive in both coordinates in the domain

V ++ = V +z × V +p = {(z, p) ∈ G1 : p > h1(z), p > h2(z)}, (5.9)

(ii) negative in both coordinates in the domain

V −− = V −z × V −p = {(z, p) ∈ G1 : p < h1(z), p < h2(z)}, (5.10)

(iii) positive in the z coordinate and negative in the p coordinate in the domain

V +− = V +z × V −p = {(z, p) ∈ G1 : p > h1(z), p < h2(z)}, (5.11)

(iv) negative in the z coordinate and positive in the p coordinate in the domain

V −+ = V −z × V +p = {(z, p) ∈ G1 : p < h1(z), p > h2(z)}. (5.12)

The rest points of equation (4.16), (4.17) in G1 are the solutions of the next system of
algebraic equations

p = h1(z), p = h2(z). (5.13)

Relations (5.3), (5.4), (5.5) imply that (5.13) has a solution in G1. The fact that h1(z) is
strictly increasing and h2(z) strictly decreasing (at least in the domain where h2(z) > g(z))
impliy that the solution (z∗, p∗) of (5.13) inG1 is unique. Using the definitions of h1(z) and
h2(z) (see (5.1) and (5.2)), we find z

∗ through the next series of equivalent transformations:

γκ+ (κ− 1)z∗
(ν + ρ− b)(z∗+ γ)z∗

=
1

bγ − (ν − b)z∗ ,

(γκ+ (κ− 1)z∗)(bγ − (ν − b)z∗) = (ν + ρ− b)(z∗ + γ)z∗,

γ2bκ− γκ(ν − b)z∗ + bγ(κ− 1)z∗ = (ν + ρ− b+ νκ − bκ− ν + b)z∗2 + (ν + ρ− b)γz∗,

(κ(ν − b) + ρ)z∗2 + (κν − 2κb+ ν + ρ)γz∗− γ2bκ = 0,

and finally
z∗ ∈ {z∗1, z∗2}

where

z∗1 =
γ(2bκ− κν − ν − ρ) + γ[(2bκ− κν − ν − ρ)2 + 4bκ(κ(ν − b) + ρ)]1/2

2(κ(ν − b) + ρ)
,
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z∗2 =
γ(2bκ− κν − ν − ρ)− γ[(2bκ− κν − ν − ρ)2 + 4bκ(κ(ν − b) + ρ)]1/2

2(κ(ν − b) + ρ)
.

We have z∗ = z∗1 , for z
∗
2 < 0. Employing the first equation in (5.13), we provide the final

formulas for the unique rest point of the nondegenerate equation (4.16), (4.17) in domain
G1:

z∗ =
γ(2bκ− κν − ν − ρ) + γ[(2bκ− κν − ν − ρ)2 + 4bκ(κ(ν − b) + ρ)]1/2

2(κ(ν − b) + ρ) =

= γ
2bκ− (κ+ 1)ν − ρ+ [((κ+ 1)ν + ρ)2 − 4bκ2ν]1/2

2(κ(ν − b) + ρ) , (5.14)

p∗ = h1(z
∗) =

1

bγ − (ν − b)z∗ . (5.15)

Note that due to (5.4) we have

p∗ = h1(z
∗) > g(z∗), (5.16)

i.e., (z∗, p∗) lies in the interior of G1 (see (4.7)).
Now let us describe the structure of the vector field of the degenerate system (4.18),

(4.19) in G2
Define h(z) : (0,∞)→ (0,∞),

h(z) =
κ

(ν + ρ)z
. (5.17)

The vector field of the degenerate equation (4.18), (4.19) is
(i) negative in the z coordinate and zero in the p coordinate in the domain

W 0
p = {(z, p) ∈ G2 : p = h(z)}, (5.18)

(ii) negative in both coordinates in the domain

W−− = {(z, p) ∈ G2 : p < h(z)}, (5.19)

(iii) negative in the z coordinate and positive in the p coordinate in the domain

W−+ = {(z, p) ∈ G2 : p > h(z)}. (5.20)

Let us analyze how the vector fields of the nondegenerate equation (in G1) and degen-
erate equation (in G2) are pasted together. Note that G1 and G2 are separated by the
curve

G0 = {(z, p) ∈ R2 : z > 0, p = g(z)}
(see (4.7) and (4.8)). Inequality (5.4) shows that curve V 0z (5.7) does not intersect G

0.
Note that, two cases are possible depending on the values of the parameters b, κ, ν

and ρ:

a) κ <
ν + ρ

b
or

b) κ ≥ ν + ρ

b
.

Consider case (a). In this case curve V 0p intersects G
0 at point (z0, g(z0)) (see (5.6)), it

goes down and lies above G0 (on the (z, p) plane) in the strip {(z, p) : 0 < z < z0, p ≥ 0};
more accurately,

h2(z) > g(z) (z < z0), h2(z
0) = g(z0), h2(z) < g(z) (z > z0). (5.21)
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Indeed, using (5.2) and (4.6), we get the next sequence of equivalent transformations:

h2(z) > g(z),

γκ+ (κ− 1)z
(ν − b+ ρ)(z + γ)z

>
1

b(z + γ)
,

γκ+ (κ− 1)z
(ν − b+ ρ)z

>
1

b
,

bγκ+ b(κ− 1)z > (κ− b+ ρ)z,

z0 > z.

Note that (5.16) implies p∗ = h2(z
∗) > g(z∗); consequently by (5.21)

z0 > z∗. (5.22)

Formulas (4.6) and (5.17) show that in this case curve W 0
p (5.18) also intersects G

0 at
point (z0, g(z0)) and lies below it in the strip {(z, p) : z > z0, p ≥ 0}; more accurately,

h(z) > g(z) (z < z0), h(z0) = g(z0), h(z) < g(z) (z > z0). (5.23)

Indeed,
h(z) < g(z)

is equivalently transformed as follows:

κ

z(ν + ρ)
<

1

b(z + γ)
,

bκ(z + γ) < z(ν + ρ),

bγκ < (ν − bκ+ ρ),

z0 < z.

Therefore,
inf{z : (z, p) ∈W−+} = z0. (5.24)

Relations (5.23) show that in case (a) the vector field of the entire Hamiltonian system
(4.12), (4.13) (in G (4.9)) changes the sign in the p coordinate on the (continuous) curve

L0p = {(z, p) : p = h2(p), 0 < z ≤ z0} ∪ {(z, p) : p = h(p), z > z0}. (5.25)

Consider now the case (b), κ ≥ (ν + ρ)/b. Due to (4.6), (5.2) and (5.17) for all z > 0
we have

h2(z) > g(z), h(z) > g(z).

Thus, in this case both curves V 0p and W 0
p lie above the curve G

0, the set G2 coincides
with W−− and W−+ = ∅. Hence, in this case the vector field of the entire Hamiltonian
system (4.12), (4.13) (in G (4.9)) changes its sign in the p coordinate at the (continuous)
curve V 0p (5.8).

We end up with the next description of the vector field of (4.12), (4.13).
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Lemma 5.1 The vector field of the Hamiltonian system (4.12), (4.13) (in G) is
(i) positive in both coordinates in domain V ++ (see (5.9)),
(ii) negative in both coordinates in domain V −− ∪W−− (see (5.10) and (5.19)),
(iii) positive in the z coordinate and negative in the p coordinate in domain V +− (see

(5.11)),
(iv) negative in the z coordinate and positive in the p coordinate in domain V −+∪W−+

(see (5.12) and (5.20)), if κ < ν+ρ
b , or in V −+, if κ ≥ ν+ρ

b (in this case W−+ = ∅ ).
(v) zero in the z coordinate on curve V 0z (see (5.7)), and
(vi) zero in the p coordinate on curve L0p (see (5.25)) if κ < ν+ρ

b . In this case curve
V 0p intersects G0 at point (z

0, g(z0)).

(vii) zero in the p coordinate on curve V 0p (see (5.8) if κ ≥ ν+ρ
b . In this case curve V 0p

lies strictly above G0 and W
−+ = ∅.

The rest point (z∗, p∗) of (4.12), (4.13) in G is unique; it is defined by (5.14), (5.15)
and lies in the interior of G1.

The vector field of system (4.12), (4.13) in case (a) is shown in Fig. 1.
The vector field of system (4.12), (4.13) in case (b) is similar. In this case curve V 0p

lies strictly above G0 and W
−+ = ∅.

Lemma 5.1 allows us to give a full classification of the qualitative behaviors of the
solutions of the Hamiltonian system (4.12), (4.13) in G (see also Fig. 1).

In what follows, clE denotes the closure of a set E ⊂ R2.

Lemma 5.2 Let (z(t), p(t)) be a solution of (4.12), (4.13) in G, which is nonextendable
to the right, ∆ be the interval of its definition, t∗ ∈ ∆, and (z(t∗), p(t∗)) �= (z∗, p∗).

The following statements are true.
1. If (z(t∗), p(t∗)) ∈ cl(V −− ∪W−−), then ∆ is bounded, (z(t), p(t)) ∈ V −− ∪W−−

for all t ∈ ∆ ∩ (t∗,∞), and p(ϑ) = 0 where ϑ = sup∆.
2. If (z(t∗), p(t∗)) ∈ clV ++, then ∆ is unbounded, (z(t), p(t)) ∈ V ++ for all t ∈ (t∗,∞)

and

lim
t→∞

z(t) =
bγ

ν − b, (5.26)

lim
t→∞

p(t) =∞. (5.27)

3. If (z(t∗), p(t∗)) ∈ V +−, then one of the next cases (i), (ii), (iii) takes place:
(i) ∆ is bounded and (z(t), p(t)) ∈ cl(V −− ∪W−−) for all t ∈ ∆ ∩ [t∗,∞) with some

t∗ > t∗;
(ii) ∆ is unbounded, (z(t), p(t)) ∈ clV ++ for all t ≥ t∗ with some t∗ > t∗ and relations

(5.26) and (5.27) hold;
(iii) ∆ is unbounded, (z(t), p(t)) ∈ clV +− for all t ≥ t∗ and

lim
t→∞

z(t) = z∗, (5.28)

lim
t→∞

p(t) = p∗. (5.29)

4. If (z(t∗), p(t∗)) ∈ V −+ ∪W−+, then one of the next cases (i), (ii), (iii) takes place:
(i) ∆ is bounded and (z(t), p(t)) ∈ cl(V −− ∪W−−) for all t ∈ ∆ ∩ (t∗,∞) with some

t∗ > t∗;
(ii) ∆ is unbounded, (z(t), p(t)) ∈ clV ++ for all t ∈ [t∗,∞) with some t∗ ∈ ∆∪ [t∗,∞)

and relations (5.26) and (5.27) hold;
(iii) ∆ is unbounded, (z(t), p(t)) ∈ clV −+ for all t ∈ [t∗,∞) and relations (5.28) and

(5.29) hold.
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Figure 1: The vector field of the Hamiltonian system (4.12), (4.13) for ν = 4, b = 2, κ = 1,
ρ = 0.1, γ = 0.5 (a Maple simulation).



–29 –

Proof. 1. Let (z(t∗), p(t∗)) ∈ cl(V −−∪W−−). The fact that the vector field of (4.12),
(4.13) is negative in both coordinates in V −− ∪ W−− (Lemma 5.1) and the locations
of V −− and W−− in G (see (5.10) and (5.19)) imply that the set cl(V −− ∪ W−−)∩
{(z, p) ∈ G : p ≤ p(t∗)} is invariant for (4.12), (4.13); moreover, (z(t), p(t)) ∈ V −− ∪W−−

for all t ∈ ∆∩ (t∗,∞) and there are δ > 0 and t∗ ∈ ∆∩ [t∗,∞) such that ṗ(t) ≤ −δ for all
t ≥ ∆∩ [t∗,∞). Hence, p(ϑ) = 0 for some finite ϑ, i.e., (z(t), p(t)) is nonextendable to the
right in G and ϑ = sup∆.

2. Let (z(t∗), p(t∗)) ∈ clV ++. The fact that the vector field of (4.12), (4.13) is positive
in both coordinates in V ++ (Lemma 5.1) and the location of V ++ in G (see (5.9) imply
that the set clV ++∩ {(z, p) ∈ G : p ≥ p(t∗)} is invariant for (4.12), (4.13); moreover,
(z(t), p(t)) ∈ V ++ for all t ∈ ∆∩ (t∗,∞) and there are a δ > 0 and a t∗ ∈ ∆∩ [t∗,∞) such
that ṗ(t) ≥ δ and ż(t) > 0 for all t ≥ ∆ ∩ [t∗,∞). Therefore, ∆ is unbounded and (5.27)
holds. Now (5.3) and the fact that ż(t) > 0 for all t ≥ ∆ ∩ [t∗,∞) imply (5.26).

3. Let (z(t∗), p(t∗)) ∈ V +−. Due to the definitions of V +−, V 0z and V 0p (see (5.11),
(5.7 and (5.8), three cases are admissible: (z(t∗), p(t∗)) ∈ V 0z for some t∗ ≥ t∗ (case 1),
(z(t∗), p(t∗)) ∈ V 0p for some t∗ ≥ t∗ (case 2), and (z(t

∗), p(t∗)) ∈ V +− for all t ∈ ∆ (case
3). Note that assumption (z(t∗), p(t∗)) �= (z∗, p∗) implies that (z(t), p(t)) �= (z∗, p∗) for
all t ∈ ∆ (we refer to the theorem of the uniqueness of the solution of a Cauchy problem
for a differential equation with a Lipschitz right hand side). Therefore, in case 1 we have
the situation described in statement 1 (with t∗ replaced by t∗); hence, (i) holds. Smilarly,
in case 2 (ii) holds due to statement 2. Let case 3 take place. If ϑ = sup∆ < ∞, then
(z(ϑ), p(ϑ)) belongs to the interior of G; hence, (z(t), p(t)) is extendable to the right, which
contradicts the assumption that (z(t), p(t)) is nonextendable to the right. Therefore, ∆ is
unbounded. Functions z(t) and p(t) are increasing and bounded; consequently,

z(t)→ z1 as t→∞, (5.30)

z(t) ≤ z1 (t ∈ ∆), (5.31)

p(t)→ p1 as t→∞,

p(t) ≤ p1 (t ∈ ∆).

Suppose (z1, p1) �= (z∗, p∗). Then one of the right hand sides r(z1, p1), s(z1, p1) of the
Hamiltonian system (4.12), (4.13) is positive at point (z1, p1). Let, for example r(z1, p1) >
δ > 0. By (5.30) ż(t) = r(z(t), p(t)) > δ/2 for all sufficiently large t. Then, referring to
(5.30) again, we find that z(t) > z1 for all sufficiently large t, which contradicts (5.31).
Similarly, we arrive at a contradiction if we assume s(z1, p1) > δ > 0. Thus, (z1, p1) =
(z∗, p∗). and we get (5.28) and (5.29). Statement 3 is proved.

4. A justification of statement 4 is similar to that of statement 3.
The Lemma is proved.

6 Optimal control process

In this section we give an entire description of a solution of problem (P̃ ) and state its
uniqueness.

The core of the analysis is Lemma 6.2 which selects solutions of the Hamiltonian system
(4.12), (4.13) (we call them equilibrium solutions) whose qualitative behavior agrees with
the Pontryagin maximum principle (Theorem 4.1) and also acts as a necessary condition
for the global optimality in problem (P̃ ).

We call a solution (z(t), p(t)) (in G) of the Hamiltonian system (4.12) (4.13) an equilib-
rium solution if it is defined on [0,∞) and converges to the rest point (z∗, p∗), i.e. satisfies
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(5.28) and (5.29). Let us formulate additional properties of equilibrium solutions based
on Lemma 5.2.

Lemma 6.1 Let (z(t), p(t)) be an equilibrium solution of the Hamiltonian system (4.12)
(4.13). Then

(i) z(0) = z∗ implies that (z(t), p(t)) = (z∗, p∗) for all t ≥ 0,
(ii) z(0) < z∗ implies that (z(t), p(t)) ∈ V +− for all t ≥ 0,
(iii) z(0) > z∗ implies that (z(t), p(t)) ∈ V −+ ∪W−+ for all t ≥ 0.

Proof. Prove (i). Let z(0) = z∗. If p(0) < p∗, then (z(0), p(0)) ∈ clV −− ∪ clW−−

(see (5.10)). Hence, by Lemma 5.2, (statement 1) the interval of definition of (z(t), p(t)) is
bounded, which is not the case. If p(0) > p∗, then (z(0), p(0)) ∈ V ++ (see (5.9)). Hence,
by Lemma 5.2 (statement 2) (5.26), (5.27), hold, which contradicts (5.28), (5.29). Thus,
p(0) = p∗. Due to the uniqueness of the solution of a Cauchy problem for system (4.12),
(4.13) we have (z(t), p(t)) = (z∗, p∗) for all t ≥ 0.

Prove (ii). Let z(0) < z∗. Then

(z(0), p(0)) �∈ clV −+ ∪ clW−+. (6.1)

Indeed, the definition of V −+ (5.12), the facts that h1(t) is strictly increasing and h2(t)
strictly decreasing (at least in the domain where h2(z) > g(z); see Section 5) and equality
p∗ = h1(z

∗) = h2(z
∗) imply that z ≥ z∗ for every (z, p) ∈ clV −+. Furthermore, by

(5.24) and (5.22) z(0) �∈ W−+ In view of (6.1) three cases are admissible: (z(0), p(0)) ∈
clV −− ∪ clW−− (case 1), (z(0), p(0)) ∈ clV ++ (case 2), and (z(0), p(0)) ∈ V +−. In case
1 by Lemma 5.2 (statement 1) the interval of definition of (z(t), p(t)) is bounded, which
is a contradiction. In case 2 by Lemma 5.2 (statement 2) we have (5.26), (5.27), which
contradicts (5.28), (5.29). Therefore, case 3 takes place. For this case statement 3 of
Lemma 5.2 holds. Situations (i) and (ii) of this statement do not take place (see the above
argument). Therefore, we have situation (iii) of this statement, which proves (ii) in the
present Lemma.

Statement (iii) is proved similarly.
The Lemma is proved.

Lemma 6.2 Let (z∗(t), u∗(t)) be an optimal control process in problem (P̃ ). Then
(i) there exists a strictly positive function p(t) such that (z(t), p(t)) is an equilibrium

solution of the Hamiltonian system (4.12), (4.13);
(ii) for almost all t ≥ 0 (4.14) holds,
(iii) for all t ≥ 0

p(t)z∗(t) ≤
κ

ρ
.

Proof. By Lemma 4.2 there exists a strictly positive function p(t) defined on [0,∞)
such that (z(t), p(t)) solves (4.12) (4.13) (in G) on [0,∞), for almost all t ≥ 0 (4.14) holds
and p(t)z∗(t) ≤ κ/ρ for all t ≥ 0. These facts prove statements (i) and (iii). In order to
prove (ii) it remains to show that z(t), p(t) is an equilibrium solution of the Hamiltonian
system (4.12), (4.13).

According to Lemma 5.2 three cases are admissible:
Case 1: the interval of definition of (z(t), p(t)) is bounded (Lemma 5.2, statement 1,

statement 3, (i), and statement 4, (i)).
Case 2: relations (5.26), (5.27) hold (Lemma 5.2, statement 2, statement 3, (ii), and

statement 4, (ii)).
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Case 3: relations (5.28), (5.29) hold, i.e., (z(t), p(t)) is equilibrium (Lemma 5.2, state-
ment 3, (iii), and statement 4, (iii)).

Case 1 is not possible since (z(t), p(t)) is defined on [0,∞).
Statement (iii) shows that case 2 is not possible either. By excluding cases 1 and 2 we

state that case 3 takes place.
The Lemma is proved.

Lemma 6.3 For every z0 > 0 there exists a unique equilibrium solution (z0(t), p(t)) of
the Hamiltonian system (4.12), (4.13), which satisfies z0(0) = z0.

Proof. Suppose z0 = z∗. By Lemma 6.1 for any equilibrium solution (z(t), p(t)) of
(4.12), (4.13) such that z(0) = z0 = z∗ we have (z(t), p(t)) = (z∗, p∗) (t ≥ 0), which
completes the proof.

Let z0 < z∗. The existence of a desired equilibrium solution follows from the existence
of an optimal control process. Indeed, by Theorem 3.1 (see Corollary 3.3) there exists an
optimal control process (z∗(t), u∗(t)) in problem (P̃ ) with initial condition z∗(0) = z0.

By Lemma 6.2, (i), there exists a function p(t) such that (z∗(t), p(t)) is an equilibrium
solution of the Hamiltonian system (4.12) (4.13). (Note that the existence of a desired
equilibrium solution can also be proved explicitly).

Let us state the uniqueness of the considered equilibrium solution. Suppose there are
two different equilibrium solutions of (4.12), (4.13), (z1(t), p1(t)) and (z2(t), p2(t)), such
that z1(0) = z2(0) = z0. Then

lim
t→∞

zi(t) = z∗, lim
t→∞

pi(t) = p∗, (6.2)

i = 1, 2, and p2(0) �= p1(0) (otherwise (z2(t), p2(t)) and (z1(t), p1(t)) coincide due to
the uniqueness of the solution of a Cauchy problem for equation (4.12), (4.13)). Denote
p0i = pi(0), i = 1, 2. Without loss of generality assume

p02 > p01. (6.3)

By Lemma 6.1
(zi(t), pi(t)) ∈ V +− (t ≥ 0),

i = 1, 2. Hence, żi(t) > 0 (t > 0), i = 1, 2. Define p̄i : [z0, z
∗) → [pi(0),∞) by p̄i(ζ) =

pi(z
−1
i (ζ)) Due to (6.2) limz→z∗ p̄i(z) = p∗, i = 1, 2, in particular,

lim
z→z∗

(p̄2(z)− p̄1(z)) = 0. (6.4)

We have
d

dz
p̄i(z) = f(z, p̄i(z)), (z ∈ [z0, z∗)), p(z0) = pi(0), (6.5)

i = 1, 2, where

f(z, p) =
s(z, p)

r(z, p)
(6.6)

(recall that r(z, p) and s(z, p) determine the right hand side of the Hamiltonian system
(4.12), (4.13)). Due to (6.3)

p̄2(z) > p̄1(z) (z ∈ [z0, z∗)). (6.7)

For (z, p) ∈ V +− ⊂ G1 (see (4.7), (4.10), (4.11), (5.4)), (5.11)) we have

r(z, p) = (b− ν)z + bγ − 1
p
> 0,
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s(z, p) = (ν − b+ ρ)p− γκ+ (κ− 1)z
(z + γ)z

< 0;

hence,

∂f(z, p)

∂p
=

(
∂s(z, p)

∂p
r(z, p)− ∂r(z, p)

∂p
s(z, p)

)
1

r2(z, p)

=

(
(ν − b+ ρ)r(z, p)− 1

p2
s(z, p)

)
1

r2(z, p)
> 0.

Then, in view of (6.7) and (6.5),

d

dz
p̄2(z)−

d

dz
p̄1(z) ≥ 0 (z ∈ [z0, z∗)).

Hence (see (6.5) again),

p̄2(z)− p̄1(z) ≥ p02 − p01 (z ∈ [z0, z∗)),

which contradicts (6.4). The contradiction completes the proof for z0 < z∗.
The case z0 > z∗ is treated similarly.
The Lemma is proved.
Given a z0 > 0, the equilibrium solution (z0(t), p(t)) of the Hamiltonian system (4.12),

(4.13), which satisfies z0(0) = z0 (and whose uniqueness has been stated in Lemma 6.3)
will further be said to be determined by z0.

Lemmas 6.2 and 6.3 yield the next characterization of a solution of problem (P̃ ).

Theorem 6.1 Let (z0(t), p(t)) be the equilibrium solution of the Hamiltonian system (4.12),
(4.13) which is determined by z0. A control process (z∗(t), u∗(t)) is optimal in problem (P̃ )
if and only if z∗(t) ≡ z0(t) and (4.14) holds for almost all t ≥ 0.

Proof. Necessity. Let a control process (z∗(t), u∗(t)) be optimal in problem (P̃ ). By
Lemmas 6.2 and 6.3 z∗(t) ≡ z0(t) and (4.14) holds for almost all t ≥ 0.

Sufficiency. Consider a control process (z0(t), u0(t)) t ≥ 0. Suppose (z0(t), u0(t)) is
not optimal in problem (P̃ ). By Theorem 3.1 there exists an optimal control process
(z∗(t), u∗(t)). By Lemmas 6.2 and 6.3 z∗(t) = z0(t) and (4.14), where u∗(t) is replaced
by u0(t), holds for almost all t ≥ 0. Hence, z0(t) ≡ z∗(t) and u0(t) = u∗(t) for almost
all t ≥ 0. Therefore, (z0(t), u0(t)) is optimal, which contradicts the assumption. The
contradiction completes the proof.

Theorem 6.1 and Lemma 6.3 imply the next uniqueness result.

Corollary 6.1 The optimal control process in problem (P̃ ) is unique in the following
sense: if (z1(t), u1(t)) and (z2(t), u2(t)) are optimal control processes in problem (P̃ ), then
z1(t) = z2(t) for all t ≥ 0 and u1(t) = u2(t) for almost all t ≥ 0.

Theorem 6.1 provides the next algorithm to finding the solution (z∗(t), u∗(t)) of prob-
lem (P̃ ):

1. Find the equilibrium solution (z0(t), p(t)) of the Hamiltonian system (4.12), (4.13)
which is determined by z0.

2. Set z∗(t) ≡ z0(t) and define u∗(t) by (4.14) (t ≥ 0).
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7 Optimal synthesis

In this section we consider the family of problems (P̃ ) parametrized by the initial state
z0 > 0 and describe an optimal synthesis for this family (see Pontryagin, et. al., 1969, p.
51), i.e., define a feedback which solves problem (P̃ ) with arbitrary z0.

In this paper we define a feedback to be an arbitrary continuous function U(z) :
(0,∞)→ [0, b) such that for every z0 > 0 the equation

ż(t) = U(z(t))(z(t) + γ)− νz(t) (7.1)

has the unique solution z(t) defined on [0,∞) and satisfying z(0) = z0; we call z(t) the
motion (of system (4.1)) under feedback U(z) with the initial state z0.

Remark 7.1 Equation (7.1) represents the original control system (4.1) with control
values u(t) formed on the basis of current states z(t) via feedback U(z): u(t) = U(z(t))
(t ≥ 0). According to a terminology oftenly used in control theory (7.1) is the control
system (4.1) closed with feedback U(z).

Given a feedback U(z) and a z0 > 0, we define the control process under U(z) with
the initial state z0 to be the pair (z(t), u(t)) where z(t) is the motion under feedback U(z)
with the initial state z0 and u(t) = U(z(t)); obviously, (z(t), u(t)) is a control process for
system (4.1) (see the definition of a control process in section 3). We call a feedback U∗(z)
an optimal synthesis if for every z0 > 0 the control process under U∗(z) with the initial
state z0 is an optimal control process in problem (P̃ ).

In the construction of an optimal feedback, our main instrument will be one-dimensional
representations of the equilibrium solutions of the Hamiltonian system (4.12), (4.13).
These are functions p̄(z) solving the one-dimensional equation

d

dz
p̄(z) = f(z, p̄(z)) (7.2)

which is derived from (4.12), (4.13) by deviding its second component by the first one.
Thus, in (7.2) and in what follows f(z, p) is defined by (6.6). Note that the domain of
definition of f(z, p) is domf = G \ V 0z (see (4.9) and (5.7)); therefore, solutions of (7.2)
are understood as those in domf = G \ V 0z (i.e., by definition every solution p̄(z) of (7.2)
satisfies (z, p̄(z)) ∈ G \V 0z for any z from the domain of its definition). A positive solution
p̄(z) of (7.2) (in G \ V 0z ) will be called

(i) a left equilibrium solution if p̄(z) is defined on (0, z∗) and

lim
z→z∗

p̄(z) = p∗, (7.3)

(ii) a right equilibrium solution if p̄(z) is defined on (z∗,∞) and (7.3) holds.

Lemma 7.1 1. Let p̄(z) be a left equilibrium solution of (7.2). Then

(z, p̄(z)) ∈ V +− (z ∈ (0, z∗)).

2. Let p̄(z) be a right equilibrium solution of (7.2). Then

(z, p̄(z)) ∈ V −+ ∪W−+ (z ∈ (z∗,∞)).
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Proof. We will prove statement 1 only (the proof of statement 2 is similar). Suppose
statement 1 is not true, i.e., (z0, p̄(z0)) �∈ V +− for some z0 ∈ (0, z∗). Let (z(t), p(t)) be the
nonextendable solution of the Hamiltonian system (4.12), (4.13) (in G), which satisfies
(z(0), p(0)) = (z0, p̄(z0)). The definition of V

−+ (5.12) and relations (5.22), (5.24) show
that z0 < z∗ yields (z(0), p(0)) �∈ V −+ ∪W−+. Therefore,

(z(0), p(0)) = (z0, p̄(z0)) ∈ cl(V −− ∪W−−) ∪ clV ++.

Note that (z0, p̄(z0)) lies in domf = G \ V 0z of f(z, p) (see (6.6)), i.e., (z0, p̄(z0)) �∈ V 0z . We
consider separetely the cases

(z(0), p(0)) = (z0, p̄(z0)) ∈ cl(V −− ∪W−−) (7.4)

and
(z(0), p(0)) = (z0, p̄(z0)) ∈ clV ++. (7.5)

Let (7.4) hold. Then by Lemma 5.2

(z(t), p(t)) ∈ V −− ∪W−− (t ∈ ∆ ∩ [0,∞)) (7.6)

where ∆ is the domain of definition of (z(t), p(t)); moreover, ∆ is bounded and

p(ϑ) = 0 (7.7)

where ϑ = sup∆. By (7.6) (z(t), p(t)) lies in domf = G \ V 0z for all t ∈ ∆ and z(t)
is strictly decreasing. Hence, p̂(z(ϑ)) defined by p̂(ζ) = p(z−1(ζ)) solves equation (7.2).
Since p̂(z0) = p(0) = p̄(z0), and due to the uniqueness of the solution of a Cauchy problem
for equation (7.2), we get p̄(z) = p̂(z) for all z ∈ (z(ϑ), z0). In particular,

p̄(z(ϑ)) = p̂(z(ϑ)) = p(z−1(z(ϑ)) = p(ϑ) = 0

(see (7.7)). By the definition of f(z, p) (see (6.6), (4.10), (4.11)) we have f(z(ϑ), 0) > 0.
Hence, solution p̄(z) of (7.2) is nonextendable to the left of z(ϑ) > 0 in G (see (4.9)),
which contradicts the assumption that p̄(z) is defined on (0, z∗). Thus, (7.4) is untrue.

Suppose (7.5) holds. Then by Lemma 5.2

(z(t), p(t)) ∈ V ++ (t ≥ 0) (7.8)

and relations (5.26), (5.27) hold. By (7.8) (z(t), p(t)) lies in domf = G \ V 0z for all t ≥ 0
and z(t) is strictly increasing. Hence, p̂(z(ϑ)) defined by p̂(ζ) = p(z−1(ζ)) solves equation
(7.2). Since p̂(z0) = p(0) = p̄(z0), and due to the uniqueness of the solution of a Cauchy
problem for equation (7.2), we get p̄(z) = p̂(z) for all z ∈ (z0, z∗). Then by (5.26) and
(5.27) p̄(z) = p̂(z)→∞ as z → z∗, which in not possible, for the left equilibrium solution
p̄(z) of (7.2) satisfies (7.3). The contradiction eliminates case (7.5) and completes the
proof.

We will use Lemma 7.1 for proving the uniqueness part of the next existence and
uniqueness theorem.

Theorem 7.1 There exist a unique left equilibrium solution of (7.2) and a unique right
equilibrium solution of (7.2).

Proof. We will prove the existence and uniqueness of the left equilibrium solution of
(7.2) (the existence and uniqueness of the right equilibrium solution is stated similarly).
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Take a z0 ∈ (0, z∗). By Lemma 6.3 there exists an equilibrium solution (z(t), p(t)) of the
Hamiltonian system (4.12), (4.13), which satisfies z(0) = z0. By Lemma 6.1, (ii),

(z(t), p(t)) ∈ V +− (t ≥ 0). (7.9)

Hence, ż(t) = r(z(t), p(t)) > 0 (t > 0) and p̄ : [z0, z
∗) �→ [p(0),∞) defined by p̄(z) =

p(z−1(z)) solves (7.2). By definition the equilibrium solution (z(t), p(t)) satisfies (5.28),
(5.29), which implies (7.3). By (7.9) (z, p̄(z)) ∈ V +− for all z ∈ [z0, z∗). Now consider a
solution p̂(z) of (7.2) in V +−, which is nonextendable to the left and satisfies p̂(z) = p̄(z)
for all z ∈ [z0, z∗). Let us fix the fact that

(z, p̂(z)) ∈ V +− (z ∈ [z0, z∗)). (7.10)

In order to state that p̂(z) is a left equilibrium solution of (7.2), it is sufficient to show that
its domain of definition is (0, z∗). Suppose the domain of definition of p̂(z) is (ζ, z∗) where
ζ > 0. For all z ∈ (ζ, z∗), we have (z, p̂(z)) ∈ V +− and hence, f(z, p̂(z)) > 0. Therefore,
p̂(z) is decreasing and there is the limit

π = lim
z→ζ

p̂(z)

satisfying
π > p∗. (7.11)

By the definition of V +− (see (5.11)) the set {(z, p) ∈ V +− : z ≥ ζ} is bounded. Conse-
quently, π is finite and (ζ, π) lies on the boundary of V +−. Two cases are admissible:

(ζ, π) ∈ V 0z (7.12)

(see (5.7)) and
(ζ, π) ∈ V 0p (7.13)

(see (5.8). If (7.12) holds, then π = h1(ζ) < h1(z
∗) = p∗ (recall that ζ < z∗ and h1(z)

is strictly increasing); we get a contradiction with (7.11). Thus, (7.12) is not possible.
Suppose (7.13) holds. Then π = h2(ζ) and s(ζ, π) = 0; the latter implies f(ζ, π) = 0 (see
(6.6)). Take an ε > 0. There is a δ > 0 such that∣∣∣∣ ddz p̄(z)

∣∣∣∣ < ε (z ∈ (ζ, ζ + δ]).

Let
2ε < K5 = inf

z∈[ζ,z∗]
|h′2(z)|

(recall that h2(z) is strictly decreasing) and

ζ1 ∈ (ζ, ζ + εδ/2]

satisfy ζ1 < z∗ − δ (with no loss of generality we assume that δ is small enough, for
example, δ < (z∗ − ζ)/2) and

|p̂(ζ1)− π| < εδ/2.

Then using the fact that h2(z) is decreasing, we get

p̂(ζ1 + δ/2) > p̂(ζ1)− εδ/2 > π − εδ
= h2(ζ)− εδ > h2(ζ)− κδ/2 > h2(ζ + δ/2)

> h2(ζ1 + δ/2).
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Hence, (ζ1 + δ/2, p̂(ζ1 + δ/2)) �∈ V +− (see (5.11)), which contradicts (7.10). Thus, (7.13)
is not possible. We have proved that p̂(z) is defined on (0, z∗). Consequently, p̂(z) is a left
equilibrium solution of (7.2).

It remains to prove that the left equilibrium solution of (7.2) is unique. Suppose there
are two left equilibrium solutions of (7.2), p̂1(z) and p̂2(z). So,

p̂1(z0) �= p̂2(z0) (7.14)

for some z0 ∈ (0, z∗). By Lemma 7.1

(z, p̂i(z)) ∈ V +− (z ∈ (0, z∗)),

i = 1, 2. Let (zi(t), pi(t)) be the nonextendable solution of the Hamiltonian system (4.12),
(4.13) (in G), which satisfies

(zi(0), pi(0)) = (z0, p̂i(z0)), (7.15)

i = 1, 2. Take an i ∈ {1, 2}. Point (zi(0), pi(0)) ∈ V −+ lies in domf = G \ V 0z ; therefore,
(zi(t), pi(t)) ∈ G \ V 0z for all t from a right neighborhood of 0. Let ϑi be the supremum of
all τ ≥ 0 such that (zi(t), pi(t)) ∈ domf for every t ∈ [0, τ ], i = 1, 2. Then necessarily

żi(t) = r(zi(t), pi(t)) > 0 (t ∈ [0, ϑi)); (7.16)

hence, setting
ξi = lim

t→ϑi
zi(t),

we find that p̄i(z) : [z
0, ξi) �→ [0,∞) defined by

p̄i(ζ) = pi(z
−1
i (ζ)) (7.17)

solves (7.2) Consequently, p̄i(z) = p̂i(z) for all z ∈ [z0,min{z∗, ξi}).
Suppose ξi < z∗. By the definition of ϑi

lim
ζ→ξi

(ζ, p̄i(zi(ζ)) = lim
ζ→ξi

(ζ, p̂i(zi(ζ)) = (ξi, p̂i(ξi)) �∈ domf,

which is not possible, for (z, p̂i(z)) ∈ domf for all z ∈ (0, z∗). Thus,

ξi ≥ z∗. (7.18)

As soon as p̂i(z) is a left equilibrium solution of (7.2), we have

p̂i(ζ) = p̄i(ζ)→ p∗ as ζ → z∗. (7.19)

Suppose inequality (7.18) is strict, i.e., ξi > z∗. Then p̄i(z
∗) = p∗ and (zi(τi), pi(τi)) =

(z∗, p∗) where τi = z−1i (z∗); consequently, (zi(t), pi(t)) is the stationary solution of the
Hamiltonian system (4.12), (4.13), i.e., (zi(t), pi(t)) = (z∗, p∗) for all t from its domain
of definition, which contradicts (7.15) (recall that z0 < z∗. Thus, (7.18) is in fact the
equality, ξi = z∗. Then referring to (7.19), (7.16), (7.17), we find that

lim
t→ϑi

pi(t) = lim
z→z∗

p̄i(ζ) = p∗ (7.20)

Recall that (zi(t), pi(t)) is not the stationary solution of the Hamiltonian system (4.12),
(4.13), i.e., (zi(t), pi(t)) �= (z∗, p∗) for all t. Then by Lemma 5.2 (7.20) yields ϑi = ∞.
Therefore, (zi(t), pi(t)) is an equilibrium solution of the Hamiltonian system (4.12), (4.13)
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Figure 2: The left and right equilibrium solutions of (7.2) for ν = 4, b = 2, κ = 1, ρ = 0.1,
γ = 0.5 (a Maple simulation).
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which satisfies zi(0) = z0 (see (7.15)). This holds for i = 1, 2. Hence, by the uniqueness
Lemma 6.3 (z1(t), p1(t)) = (z2(t), p2(t)). However, (7.14) and (7.15) show that p1(0) �=
p2(0). The contradiction completes the proof of the Theorem.

In what follows we denote the unique left equilibrium solution of (7.2) by p̄−(z) and
the unique left equilibrium solution of (7.2) by p̄+(z).

In Fig. 2 the left and right equilibrium solutions of equation (7.2) are shown.
Now we are ready to construct a desired optimal synthesis U∗(z). The idea is the

following. In the expression (4.14) for an optimal control u(t) we replace z(t) by a free z
and replace p(t) by p̄−(z) if z < z∗, by p̄−(z) if z > z∗, and by p∗ if z = z∗. Thus, we
define U∗(z) : (0,∞)→ [0, b) by

U∗(z) =




b− 1

p∗(z∗ + γ)
, if z = z∗,

b− 1

p̄−(z)(z + γ)
, if z ∈ (0, z∗),

b− 1

p̄+(z)(z + γ)
, if z ∈ (0, z∗), (z, p̄+(z)) ∈ G1,

0, if z ∈ (0, z∗), (z, p̄+(z)) ∈ G2;

(7.21)

note that by Lemma 7.1 we have (z, p̄−(z)) ∈ V +− for z ∈ (0, z∗); as soon as V +− ⊂ G1
(see (5.11), (4.7), (5.4)), U∗(z) is given by the single formula for z ∈ (0, z∗).

Lemma 7.2 Function U∗(z) (7.21) is a feedback.

Proof. Obviously, U∗(z) is continuous at every z �= z∗. The fact that p̄−(z) is the
left equilibrium solution and p̄+(z) is the right equilibrium solution of (7.2) implies that
U∗(z) is continuous at z

∗ as well. Moreover, the right hand side of equation (7.1) (for the
”closed” system) is, obviously, Lipschitz on every bounded interval in (0,∞) which does
not intersect a neighborhood of z∗. If it is also Lipschitz in a neighborhood of z∗, then for
every z0 > 0, equation (7.1) has the unique solution z(t) defined on [0,∞) and satisfying
z(0) = z0, which proves that U∗(z) is a feedback. Now we will state that the right hand
side of (7.1) is Lipschitz in a neighborhood of z∗. It is sufficient to show that U∗(z) is
Lipschitz in a neighborhood of z∗; this is so if, in turn, p̄−(z) and p̄+(z) are Lipschitz in
a neighborhood of z∗ (see formula (7.21)). To prove the Lipschitz character of p̄−(z) and
p̄+(z) in a neighborhood of z

∗ it is enough to verify that

lim sup
z→z∗

d

dz
p̄−(z) <∞, (7.22)

lim inf
z→z∗

d

dz
p̄−(z) > −∞, (7.23)

lim sup
z→z∗

d

dz
p̄+(z) <∞, (7.24)

lim inf
z→z∗

d

dz
p̄+(z) > −∞. (7.25)

By Lemma 7.1
p̄−(z) ∈ V +− (z ∈ (0, z∗), (7.26)

p̄+(z) ∈ V −+ ∪W−+ (z ∈ (z∗,∞).

Hence, dp̄−(z)/dz < 0 (z ∈ (0, z∗) and dp̄+(z)/dz < 0 (z ∈ (z∗,∞). Thus, (7.22) and
(7.24) hold.
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Let us show (7.23). Take z ∈ (0, z∗). We have (z, p̄−(z)) ∈ G1 and (see (7.2), (6.6),
(4.10), (4.11))

d

dz
p̄−(z) = f(z, p̄−(z)) =

s(z, p̄−(z))

r(z, p̄−(z))
,

s(z, p̄−(z)) < 0, r(z, p̄−(z)) > 0.

By (7.26)
p̄−(z) > lim

z→z∗
p̄−(z) = p∗.

Then

0 > s(z, p̄−(z)) = (ν − b+ ρ)p̄−(z)−
γκ+ (κ− 1)z
(z + γ)z

> (ν − b+ ρ)p∗ − γκ+ (κ− 1)z
(z + γ)z

,

r(z, p̄−(z)) = (b− ν)z + bγ −
1

p̄−(z)
> (b− ν)z + bγ − 1

p∗
> 0.

Using the L’Hopital theorem, we get

lim inf
z→z∗

d

dz
p̄−(z) ≥ lim

z→z∗

(ν − b+ ρ)p∗ − γκ+(κ−1)z
(z+γ)z

(b− ν)z + bγ − 1
p∗

=

=
κ− 1

(z∗ + γ)2z∗(b− ν) .

Inequality (7.23) is proved.
Let us show (7.25). Take a z > z∗ sufficiently close to z∗. Since (z∗, p∗) lies in the

interior of G1, we have (z, p̄(z)+) ∈ G1.

d

dz
p̄+(z) = f(z, p̄−(z)) =

s(z, p̄+(z))

r(z, p̄+(z))
,

s(z, p̄+(z)) > 0, r(z, p̄−(z)) < 0.

By (7.26)
p̄+(z) < lim

z→z∗
p̄+(z) = p∗.

Then

0 > s(z, p̄+(z)) = (ν − b+ ρ)p̄+(z)−
γκ+ (κ = 1)z

(z + γ)z
> (ν − b+ ρ)p∗ − γκ+ (κ− 1)z

(z + γ)z
,

r(z, p̄+(z)) = (b− ν)z + bγ −
1

p̄+(z)
< (b− ν)z + bγ − 1

p∗
< 0.

Using the L’Hopital theorem, we get

lim inf
z→z∗

d

dz
p̄+(z) ≥ lim

z→z∗

(ν − b+ ρ)p∗ − γκ+(κ−1)z
(z+γ)z

(b− a)z + bγ − 1
p∗

=
κ− 1

(z∗ + γ)2z∗(b− ν)

which proves (7.25).
The Theorem is proved.
The next Theorem presents our final result.

Theorem 7.2 Feedback U∗(z) (7.21) is an optimal synthesis.
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Proof. Take a z0 > 0. We must show that the control process under feedback U∗(z)
with the initial state z0 is an optimal control process in problem (P̃ ).

Consider the equilibrium solution ((z(t), p(t)) of the Hamiltonian system (4.12), (4.13)
which satisfies z(0) = z0. By Lemma 6.3 this solution is unique and by Theorem 6.1 the
pair z(t), u(t)) where u(t) is given by (4.14) is an optimal control process in problem (P̃ ).
Therefore, in order to complete the proof of the Theorem, it is sufficient to state that
z(t), u(t)) is the control process under feedback U∗(z) with the initial state z0.

Suppose z0 = z∗. Then by Lemma 5.2 (z(t), p(t)) = (z∗, p∗) (t ≥ 0) and by (4.14) and
(7.21) u(t) = U∗(z∗) (t ≥ 0). For z(t) = z∗ the right hand side of equation (7.1) for the
”closed” system is zero; Thus, z(t), u(t)) is the control process under feedback U∗(z) with
the initial state z0 = z∗.

Consider the case z0 < z∗ (the case z0 > z∗ is treated similarly). By Lemma 6.1 we
have

(z(t), p(t)) ∈ V +− (t ≥ 0).

Consequently, (z(t), p(t)) ∈ domf = G \ V 0z for all t ≥ 0 and z(t) is strictly increasing.
Since (z(t), p(t)) is an equilibrium solution of (4.12), (4.13), the limit relations (5.28),
(5.29) hold. Hence, the function p̄ : ζ �→ p̄(ζ) = p(z−1(ζ)) is defined on [z0, z∗) and solves
equation (7.2) on this interval. Due to (5.28), (5.29) p̄(z) satisfies the limit relation (7.3).
Therefore, p̄(z) is the restriction to [z0, z∗) of the (unique) left equilibrium solution p̄−(z)
of (7.2), and we have

p(t) = p̄(z(t)) = p̄−(z(t)) (t ≥ 0). (7.27)

By Theorem 6.1 (z(t), u(t)) where u(t) is defined by (4.14) is an optimal control process
in problem (P̃ ).

Now we replace p(t) in (4.14) by p̄(z(t)) (see (7.27)). Comparing with (7.21), we find
that u(t) = U∗(z(t)) (t ≥ 0). Then

ż(t) = r(z(t), p(t)) = r(z(t), p̄(z(t))) = U(z(t))(z(t) + γ)− νz(t)

(t ≥ 0), i.e., z(t) solves equation (7.1) for the “closed” system on [0,∞). Hence, (z(t), u(t))
is the control process under feedback U∗(z) with the initial state z0. The Theorem is
proved.

In Fig. 3 the shape of the optimal synthesis U∗(z) is illustrated.

Theorem 7.2 provides the next algorithm for the construction of solutions in the family
of problems (P̃ ) parametrized by the initial state:

1. Find the left equilibrium solution p̄−(z) and the right equilibrium solution p̄+(z) of
equation (7.2).

2. Given a z0 > 0, find the optimal control process (z(t), u(t)) in problem (P̃ ) as the
control process under feedback U∗(z) (7.21) with the initial state z0.
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Figure 3: The optimal synthesis for ν = 4, b = 2, κ = 1 ρ = 0.1, γ = 0.5 (a Maple
simulation).
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8 Interpretation of results

A major result of the optimisation performed in this paper is that, under the present as-
sumptions, there is an unique constant optimal asymptotic ratio of the stocks of knowledge
of the two countries. This result implies that the knowledge stocks of the two countries
grow at an identical exponential rate as time goes to infinity. Since the rate of innovation
of the leading country is a parameter in our maximisation problem, the asymptotic rate
of innovation of the follower country equals that of the leading country.

This result was also found to hold asymptotically for a perfect-foresight equilibrium tra-
jectory in the leader-follower model (Hutschenreiter, Kaniovski and Kryazhimskii, 1995).
Thus we conclude that in terms of the asymptotic rate of innovation, social planning pro-
duces the same result as the market economy. This unsettles a basic tenet which is often
but - as, e.g., pointed out by Aghion and Howitt, 1998 - nevertheless wrongly ascribed to
endogenous growth theory.

However, it may be possible that the long-run ratio of stocks of knowledge associated
with the market outcome differs from that in the optimal solution. Indeed, according to
Hutschenreiter, Kaniovski and Kryazhimskii, 1995, in the market solution the asymptotic
stock of knowledge is a simple function of the absorptive capacities of the follower and
relative country size. Specifically, a perfect-foresight equilibrium trajectory was shown
to be characterised by nB(t) growing to infinity, and the asymptotic ratio of knowledge
stocks of the two countries, r(t) = nB (t) /nA (t), approaching a positive constant

r∞ =
γ

LA/LB − 1 , (8.1)

where limt→∞ r(t) = r∞. Thus, e.g., in the case where country A is twice the size of
country B, the relative knowledge stock of the latter simply equals its absorptive capacity.
In contrast, solving the above optimisation problem we arrive at a much more complex
expression for the ratio of knowledge stocks. Thus, in general (except for particular pa-
rameter constellations), the asymptotic relative knowledge stocks derived from the two
models are not the same. This implies that the long-term relative levels of productivity
or output per capita differ in the two solutions.

Thus we arrive at the ”Solowian” conclusion that policy intervention does not affect
the long-run growth rate but is likely to affect relative levels of productivity, output per
capita etc.

We can carry this reasoning one step forward. If, in the twomodels under consideration,
the rate of innovation is the same (as we have established) and the ratio of the stocks of
knowledge differs (as is the case in general), then the amount of labour asymptotically
allocated to R&D also differs from the one accomplished by the market mechanism.

To illustrate this, let us divide both sides of equation (2.2) by nB(t). Using notation
ḡB(t) = ṅB(t)/nB(t) we get

ḡB(t) =
LB
n (t)

a

(
1 +

γ

r(t)

)
.

Resolving this equation for LB
n (t) yields

LB
n (t) =

aḡB (t)

1 + γ
r(t)

. (8.2)

We have shown that ḡA is the asymtotic rate of innovation of the leading and the follower
country in both the market and the optimal solution. Fixing the rate of innovation at this
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value and passing to the limit (8.2) becomes

LB
n∞ =

aḡA

1 + γ
r∞

, (8.3)

where LB
n∞ = limt→∞ LB

n (t) and r∞ = limt→∞ r(t) (either for the market system or the
social planning model).

In the case that, for a given rate of innovation, the asymptotic ratio of knowledge
stocks is small, i.e. the leading country approaches a relatively large stock of knowledge,
the follower will devote only little resources to its own R&D activities. The reason for
this is that the productivity of the follower country’s researchers is strongly boosted by
knowledge absorbed by the leader so that it has to spend relatively little on R&D in order
to reach the leader’s rate of innovation. On the other hand, if the knowledge stock the
follower country achieves in the long run gets large relative to that of country A, its R&D
labour input approaches aḡA = L̄A

n , i.e. the steady-state R&D labour input of the leading
country from below.

Since in the market outcome the asymptotic ratio of knowledge stocks is given by (8.1),
and taking into account equation (8.3), the amount of labour allocated to R&D approaches

LB
n∞ =

LB

LA
aḡA. (8.4)

It follows that the shares of R&D employment in the total labour force are the same in
both countries in the long run, namely aḡA/LA.

To summarise, in the market solution of the leader-follower model, the long-run values
of the pair r(t), LB

n (t) consistent with the asymptotic rate of innovation ḡ
A is given by

equations (8.1) and (8.4).
If the welfare analysis shows that the market allocates too little (too much) labour to

R&D then it follows from relation (8.3) that the optimal ratio of knowledge stocks will be
higher (lower) than the respective market outcome.

Now our task will be to compare r∞ and z∗. Here we call r∞ the market limit and z∗

the optimal limit.
According to Hutschenreiter, Kaniovskii and Kryazhimskii, 1995 (see (8.1)),

r∞ = γ
1

LA/LB − 1 = γ
LB/a

LA/a− LB/a
. (8.5)

In terms of the notations used in the present paper (ν = ḡA), condition (2.9) can be
rewritten as

ν = (1− α)L
A

a
− αρ.

Further, as far as κ = 1/α− 1 we have

LA

a
=
(κ+ 1)ν + ρ

κ

and due to (8.5), taking into account that b = LB/a, we get

r∞ = γ
bκ

(κ+ 1)ν + ρ− bκ.

Let us introduce the ratio

σ =
z∗

r∞
.
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We will show that
σ > 1 (8.6)

which is equivalent to the fact that the optimal limit z∗ is greater than the market limit
r∞.

Using the expressions for z∗ (see (5.14)) and r∞ (see (8.5)), we find that

σ =

(
2bκ− (κ+ 1)ν − ρ+ [((κ+ 1)ν + ρ)2 − 4bκν]1/2

2bκ

)
×

×
(
(κ+ 1)ν + ρ− bκ
κ(ν − b) + ρ

)
. (8.7)

Denote η = (κ + 1)ν + ρ and µ = bκ/η2 (note that 0 < b < ν implies 0 < µ < νκ/η2).
Then condition (8.6) can be rewritten in terms of η, µ as (see (8.7))

(2µη2 − η + η(1− 4µν) 12 )
2µη2

× (η − µη2)
(η − µη2 − ν) > 1

or
(2µη − 1 + (1− 4µν) 12 )

2µ
× (1− µη)
(η − µη2 − ν) > 1.

As far as 1− µη > 0 and η − µη2 − ν > 0 the last inequality is equivalent to

(1− 4µν) 12 > 1− 2µν

1− µη .

Squaring it we get

1− 4µν > 1− 4µν

1− µη +
4µ2ν2

(1− µη)2
or

−4µν + 8µ2ην − 4µ3η2ν > −4µν + 4µ2ην + 4µ2ν2

and it is equivalent to
η − µη2 > ν.

The last inequality holds because µ < νκ/η2 and η − νκ = ν + ρ > ν. Hence condition
(8.6) is proved.
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