
Optimal Feedbacks in Techno-Economic 
Dynamics 

Alexander M. Tarasyev 
International Institute for Applied Systems Analysis, Laxenburg, Austria 

Chihiro Watanabe 
Tokyo Institute of Technology, Tokyo, Japan 

Bing Zhu 
!nternationa//nstitute for Applied Systems Analysis, Laxenburg, Austria 

RR-03-04 
March 2003 

Reprinted from International Journal of Technology Management, 23(7 /8): 
691-717 (2002). 

International Institute for Applied Systems Analysis • Schlossplatz 1 • A-2361 Laxenburg • Austria 
Tel: (+43 2236) 807 •Fax: (+43 2236) 71313 • E-mail: publications@iiasa.ac.at •Web: www.iiasa.ac.at 



Research Reports, which record research conducted at llASA, are independently reviewed before 
publication. Views or opinions expressed herein do not necessarily represent those of the Institute, its 
National Member Organizations, or other organizations supporting the work . 

Reprinted w ith permission from International Journal of Technology Management, 23(7/8):691-717 
(2202). 
Copyright © 2002 lnderscience Enterprises Ltd. 

The International Journal of Technology Management is published in both print and electronic format. 
For more information visit their web site www.inderscience.com 

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopy, recording, or any information storage or 
retrieval system, without permission in writing from the copyright holder. 



Int. J. Technology Management, Vol. 23, Nos. 718, 2002 

Optimal feedbacks in techno-economic dynamics 

Alexander M. Tarasyev 
Dynamic Systems Department, Institute of Mathematics and 
Mechanics (IMM), Ural Branch of the Russian Academy of Sciences, 
ul. S. Kovalevskoi 16, Ekaterinburg 620219, Russia and 
Dynamic Systems Project, International Institute for Applied Systems 
Analysis (IIASA) 
E-mail: tam@imm.uran.ru 

C. Watanabe 
Department of Industrial Engineering and Management, Tokyo 
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 
Tokyo 152-8552, Japan 
E-mail: chihiro@me.titech.ac.jp 

B.Zhu 
Environmentally Compatible Energy Strategies Project, International 
Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria and 
Department oflndustrial Engineering and Management, 
Tokyo Institute of Technology 
E-mail: zhu@iiasa.ac.jp 

Abstract: The objective of this work is twofold: to design control strategies 
which optimise production, technology and their rates in a nonlinear model of 
economic growth; and to demonstrate the significance of this modelling 
approach by means of an empirical analysis. We formulate a problem of 
optimal R&D investment for a dynamic model, which binds production to 
technology. A discounted utility function, which correlates the amount of sales 
with the diversity in production, gives a criterion of optimality. We use the 
Pontryagin maximum principle for the design of an optimal nonlinear 
dynamics. On the basis of the theoretical analysis, we carry out an empirical 
analysis, which attempts to demonstrate the practical significance of the 
approach. For Japan's major manufacturing sectors, we compare optimal and 
actual levels of R&D intensities and identify sources of 'pseudo innovation' in 
high-tech industries. 
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1 Introduction 

The problem of optimal regulation of R&D investments arises naturally due to the 
presence of the 'growth' and 'decline' trends in the interaction between production and 
technology. The technology intensity modelled as a positive exponential tenn in the 
economy's dynamics is responsible for sustainable growth. Investments in R&D 
stimulate new sales on the one hand; on the other hand, they lead to a redistribution of 
resources between production and technology and thus introduce a risk factor in 
innovation. A utility function is an instrument to correlate the amount of sales with the 
diversity in production. The amount of sales is determined by growth in production and 
the diversity in production depends on the accumulated and current R&D investments. 
Qualitatively, a utility function expresses preferences of the investors in the process of 
the simultaneous growth of production, technology and technology rates. The problem of 
optimal R&D investment consists of finding an optimal innovation policy, which 
maximises the utility function. Due to the structure of the utility function, an optimal 
innovation policy optimises production, technology and their rates. An important task in 
the analysis of optimal dynamics is to specify the rates of growth of the productivity 
capacities and the knowledge stocks. 

The present research is connected with classical problems of economic growth and 
optimal allocation of resources [1-4] and refers to endogenous grov.1:h theory [2,3,5]. 
Unlike [2,3 ,5], which treat the dynamics of the knowledge stock as a function of the 
prices for the technology outputs, we deal with a dynamic ~odel, which correlates 
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growth with sales to R&D investments. The model is constructed through the 
differentiation of the production function with respect to time. The model has been 
adjusted to a real econometric time series [6]. We define the utility as a discounted 
integral of a logarithmic consumption index assuming no variations in the elasticity of 
substitution of the invented products [3,7). We apply the Pontryagin maximum principle 
[8] in order to find an optimal R&D investment strategy. When studying the components 
of the optimal solution (the value function, an optimal feedback and its approximations), 
we use the optimality principles of the theory of Hamilton-Jacobi equations (9,10), theory 
of guaranteed control [11) and theory of robust control [4]. Also, our analysis addresses 
the qualitative methods and methods of approximations to the value functions and 
optimal feedbacks in control problems and differential games with discounted pay~off 
integrals [12,13). Finally, we refer to research on planning dynamic investments under 
uncertainties [ 14 ). 

Optimality principles are expressed in the nonlinear system of differential equations 
of the fourth order. We find the fust integral for this system, reduce it to the system of the 
third order and decompose to the second order. Equilibrium of this Hamiltonian system is 
generated by optimal solutions. The existence and uniqueness results are valid for the 
saddle type equilibrium and optimal trajectories converge to it. 

The optimal feedback which generates optimal trajectories is given implicitly and we 
provide explicit approximations of the rational type - suboptimal feedbacks. The 
obtained suboptimal feedbacks have reasonable interpretations in terms of econometric 
characteristics. We indicate growth and decline properties of optimal trajectories and 
feedbacks generated by R&D intensities. The statistic analysis demonstrates that the 
synthetic optimal scenarios turn out to be robust qualitatively. They reflect the actual 
qualitative trends in production, technology, technology productivity and R&D intensities 
of the real econometric time series correctly within a wide domain of the model's 
parameters: discount coefficients and elasticities in consumption index, growth rates, 
delay and obsolescence parameters in technology dynamics. 

On the basis of the theoretical analyses, empirical analyses are attempted to 
demonstrate the practical significance of this approach. By utilising the developed 
approach, evaluations of R&D intensity in major Japanese manufacturing sectors are 
conducted by comparing optimal and actual levels identifying 'pseudo innovation' in 
high technology and its sources. 

Section 2 constructs an optimal control model for the decision of R&D intensity in 
techno-econornic dynamics. Section 3 analyses the trajectories of this optimal control 
problem. Section 4 empirically conducts the evaluation of R&D intensity in Japan's 
major manufacturing industries. Section 5 briefly summarises the implication of the 
optimal feedback in techno-economic dynamics. 

2 The optimal control model 

2.1 The system model 

To construct the nonlinear growth model which describes dynamics of aggregated 
production y = y(t) and technology T = T(t), let us introduce the following notations. 
Aggregated production factors: labour L, capital K, materials M and energy E are 
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decomposed into two parts: one with index y goes to production and another with index T 
goes to technology 

L =Ly + Lr, K=Ky+ Kr, M=My+ Mr, E=Ey+ Er. 

Assuming that production function depends on production factors Ly, Ky, My, Ey and 
technology T. 

y = F(t, Ly, Ky, My, Ey, T) [15] 

and differentiating it by time t we obtain the following time series 

y dF I dF L L dF K K dF M M dF E E 
-=--+---+---+---+---
y dt y dL y L dK y K dM y M dE y E 

-(dF dLr + dF dKr + dF dMr + dF dEr J+ dF T 
dL dT dK dT dM dT dE dT dT y 

Using t = r, rewrite the above equation in the form of: 

y r r 
-=f-p-+q­
y y y 

where function/= fi..t) 

f=f(t)= dF I_+ dF !:._~+ dF K K + dF MM+ dF EE 
dt y dL y L dK y K dM y M dE y E 

decrease in manufacturing due to R&D spending Lr, Kr, Mr, Er is collected into 
functionp 

increase of R&D knowledge stock is described by function q which coincides with the 
marginal productivity of technology 

dF 
q=q(t)=­

dT 

In the general case function f depends on the accumulated R&D investment T. Let us 
assume that this dependence is given by the formula 

Now we can get a nonlinear growth model which describes dynamics of aggregated 
production y and technology T depending on cumulative R&D investment r = r(t) 

y (TJr r - = J; + f2 - -g-
y y y (1) 

f =r 

where g = p - g. 
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One can treat dynamic process (1) as the balanced equations of spending resources 
between the productivity rate y I y and R&D intensity r I y. Function/= f (t) presents the 

non-R&D contribution to the productivity growth rate r I y. The term (TI y/ with the 
coefficient h = h(t) in the first equation in (1) shows the growth effect of the technology 
intensity TI y on production rate y I y. The negative sign -g, g = g(t) = p(t) - q(t) >O, of 

the net contribution by R&D means that in the short run, spending p = p(t) on R&D 
prevails on the rate of return q = q(t) to R&D and provides the decline and risk factor of 
R&D investment. 

Change in technology T due to time lag m and obsolescence effect cr in technology, is 
not precisely equal to the current R&D investment r, and is connected mainly with the 
R&D investment in initial stage r, -m 

. 1 
T = r = --(-o"T + r,_m ), 0 ~ CJ"< 1 

(1- CJ") 
(2) 

Relation (2) means that a part of contribution r1_m to R&D at time t - m is spent on 
compensation of obsolescence crT of technology T and the rest r1_m - crT ;?; 0 affects the 
current change of technology t = r with the time lag m (see [6]). 

The production y and the accumulated R&D investment T stand for the phase 
parameters in dynamics (1). The current change r in technology T is the control 
parameter. The control parameter r = r(t) is not fixed and can be chosen for obtaining 
'good' properties of trajectories of dynamics (1) . If the trajectories T = T(t) and their 
rates r = r(t) with 'good' properties are constructed, then the real investment r, -m is 
expressed from equation (2) by relation 

r,_m = (1- O")r + O"T 

2.2 Utility of the system trajectories 

We formulate now the utility principle for evaluating the quality of economic trajectories 
(y( ) ,I( "),r( )). For this purpose we introduce the discounted integral which measures 
utility in the long-run term (see [1,3]) 

.... 
U, = J e-T/(s -r ) lnD(s)ds (3) 

Here the logarithm of the consumption index D(s) represents the instantaneous utility of 
products (technologies) at time s, 77 is the discount rate, s is the running time, t is the 
fixed initial time. 

For the consumption index D we choose a specification that imposes a constant and 
equal elasticity of substitution between every pair of products (see [3]) 

( J
I / a 

D = D(s) = f xa(j)dj , n=n(s) (4) 

Here j is the current index of invented products, x(j) is the quantity of production of the 
brand with indexj, n is the quantity of available (invented) products, a is the parameter 
of elasticity and E is the elasticity of substitution between any two products 
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1 
C:=--

(1-a) 

Similarly to [3] we assume that quantities x(j) are equal for each indexj 

x(j)=l_, y=y(s), n=n(s) (5) 
n 

let us suppose that quantity of invented products n depends on the accumulated R&D 
investment Tand the technology rater according to the exponential rule (see [6]) 

n = n(s) = benT/Ji ,.r;, , T = T(s), r = r(s) (6) 

Formulas (5) and (6) mean that innovation n depends upon the forefront R&D activities 
demonstrated by the technology rate r. At the same time it owed accumulation of past 
R&D activity given by technology stock T. In addition, innovation n has a general 
tendency to a decaying nature which can be expressed by term exs. All three effects lead 
to a decrease in the respective brand production x and imply diversification. 

Combining equations (3)-(6) we obtain the following expression for the utility 
function - -U, = J e-T1(s-t ) (ln y(s) + lli ln T(s) + a

2 
ln r(s))ds +A J e-,,(s-r)(Ks +lo b)ds (7) 

A= (1-a) 
a 

The structure of the utility function U1 (7) means that investors (governments, financial 
groups) are interested in growth of production y as well as in growth of the accumulated 
R&D investment T and the current change of technology r (new goods, 
technologies, etc.). 

3 Trajectories of the optimal R&D control system 

3.1 Optimality principle 

The problem of optimal R&D investment is to find such level of the technology rate 
r0 

= r0(t) - optimal investment, the corresponding optimal production/ = /(t) and the 
optimal accumulated R&D investment 'I° = T°(t) subject to dynamics (1) which 
maximise the utility function (7). 

Let us note that problem (1 ), (7) is a classical problem of the optimal control theory. 
For its solution one can use the maximum principle of Pontryagin [8]. Applications of 
this optimality principle to problems of economic growth were developed by pioneer 
economists (e.g. [1,7]). 

Let us define the value function of the optimal control problem ( I), (7) 

V(y,T) = supU,(y0,T(-),rO), y(t) = y, T(t) = T (8) 
r (-) 
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Results of the pioneer works by Dolcetta [12] and [13] show that the value function 
(y,1)-t V(y,1) has finite values and is continuous. Taking this fact into account and based 
on the compactness property of the set of admissible control r( ") one can prove that the 
supremum in the value function V (8) is realised and hence the optimal control problem 
(1), (7) has the solution 

V(y,T) = maxU,(y(-),T(-),r(·)) = U,(y0 (),T0 (-),r 0
(-)) 

r(-) 

y(t) = y°(t) = y, T(t) = T 0 (t) = T 

Let us compose the Hamiltonian of the problem (1), (7) 

H(y,T,r,lf'plf/2 ) = 1ny+a1 1nT+a2 lnr+lf/1(J;y+ f 2rryo-ri - gr)+lf/2r (9) 

The Hamiltonian H (9) describes the current flow of utility from all sources. The current 
control r = r(t) is chosen to maximise this flow. Note that boundaries r1 , ruin restrictions 
on control parameter r 

are given not precisely and can scarcely be identified from the real econometric data. 
Therefore, we will be interested in such regimes of optimal control r0 = r0(t) which are 
realised at points of global maximum of the Hamiltonian H (9) for technology rates r > 0. 
It happens that these optimal values are restricted and the corresponding optimal 
trajectory converges to the equilibrium point with finite, positive values. Taking this fact 
into account we calculate maximum of the Hamiltonian H (9) over parameter r as follows 

aH 1 
- = a2 - - glf/1 + '1'2 = 0 ar r 

So the maximum value is attained at the optimal technology rate r0 

0 1 
r =a2 

(g '1'1 - '1'2 ) 
(10) 

The value function V(y,1) at points of differentiability should satisfy the Hamilton-Jacobi 
equation 

av av av 
-77V(y,T)+lny+CZi lnT +a2 (1na2 -1)+-(J;y+ f 2T7 y<l-r))-a

2 
ln(g---) = 0 (11) 

ay ay ar 
Let us introduce constructions of the Pontryagin maximum principle which plays the role 
of the method of characteristics for the Hamilton-Jacobi equation (11 ). For this purpose 
we consider dynamics of the conjugate (adjoint) variables \f/i, l/'2 which can be interpreted 
as 'prices' ofproductiony and technology T 

(12) 
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Prices ll'i· 1f1i measure the marginal contribution of variables y, T to the utility function. 
Differential equations (12) for prices ll'i, 'l'i can be interpreted as an equilibrium 

condition: the increment in flow plus the change in price should be zero. 
Combining dynamics of real (1) and adjoint variables (12) with the maximum 

condition for the Hamiltonian (10) we obtain the following closed system of differential 
equations 

T=--a-=2 __ 
(gl/fi - '1'2) 

· 1 (T)r 'l'i =17---0-r).t; - - f.. 
'1'1 1/1.,Y Y 

(13) 

fir2 = 77--5._- r f2 Ji.( y )(1-r) 
'1'2 '1'2T '1'2 T 

Let us pass to the transversality conditions for the system (13). On the finite time horizon 
[t, l9], t::;; tJ < +=the transversality conditions have the following form 

I/'; ( tJ) = 0 ' i = 1, 2 (14) 

The transversality conditions (14) and the nonpositive rates fit;(s)::;; 0 in (12) provide the 

shift of prices l/f;, i = 1,2 to the positive domain in the inverse time 

\fl;(s) ~ 0, SE [t, zJ), i = 1, 2 (15) 

Let us introduce notations for costs ofproductiony and technology T 

z(s)=z1(s)+z2 (s), z;(s)=\f/;(s)y(s), s~t, i=I, 2 (16) 

Since variables y, T are strictly positive, we can derive the equivalent transversality 
conditions in terms of costs 

z(zJ)=O, z;(tJ)=O, i=l, 2 

The cost z = z(s) satisfies the following differential equation 

z(s) = 77z(s)-77p
0

' 
0 (a1 +a2 +I) 

p = 
77 

(17) 

(18) 

Its solution which meets transversality conditions (17) can be presented by the Cauchy 
formula 

(19) 

Solution z = z(s) (19) and its components z; = z,{s), i = 1,2 are bounded and, hence, 
adjoint variables l/f; = l/f; (s), i = 1,2 are also bounded 
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It means that for times t'J -f + 00 there exists a sequence of components of optimal 

solutions /C "), i'( ·), z\ "), z;k ( ·), !//; ("),I= 1,2 for the problems with finite horizons iJic 
which converges to the optimal solution of the problem (1), (7) with the infinite horizon. 

The uniform estimate is valid for the sequence :I ( ·) 

suple-77'zk(s)-e-77'p0 l=e-77"'-p0 (21) 
s~t 

For the terminal times growing to infinity iJic -f +oo the sequence of costs {e-17'zL-(s)} 
converges uniformly to the optimal cost e - 17sP° and therefore the constant 

z= po (22) 

is the limit function for costs :I ( '). The constant function (first integral) z = p 0 is the 
unique solution of differential equation (18) which meets the well known transversality 
condition (see [1,3]) 

1im e-rys z(s) = 0 (23) 
S->+-

Transversality condition (23) means that the total cost z = z(s) should not grow faster than 
exponent e 17'. 

We introduce new variables 

_y 
Xi - y: ' X2 = ll'1Y ' (24) 

Here x1 - technology productivity, x2 - the cost of production, x3 - the inverse of 
technology, x4 - the cost of technology. 

The system of new variables (24) transforms system (13) to the system with the 
separable structure 

x _ +r_ +fx(t-r) a2(Xi +g)Xi 
1 - J1-. 2 1 

(gx2 -X1X4) 

(25) 

. f l a2gx2 X2 =7JX2 +y 2X2--l--~~-
x{ (gx2 -XiX4) 

Analysis of system (25) shows that under the certain conditions (for details see [ 16]) it 

has the unique stationary point x0 = (Xi0 ,x~ ,x~ ,x~) of the saddle type and the optimal 

trajectory is the only trajectory which converges to it (see [17]). 
Taking into account that system (25) has the first integral 

(26) 
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and using its block structure one can reduce this system with four variables to the two 
dimensional system 

(27) 
. f 1 1 aigx2 
xi = 77x2 + r 2Xi 7 - - cc ) o ) 

Xi Xj+gxi-PXi 

In the general case optimal control r0 which provides convergence of the system (25) to 
equilibrium x0 has a very complicated structure. Analysis of system (27) at the 
equilibrium point x0

: evaluation of the Jacobi matrix of the right hand sides of the system 
(27), estimation of its eigenvalues and eigenvectors, allows the substitution of optimal 
control r0 by a series of suboptimal feedbacks r· with the rational structure 

(28) 

The suboptimal feedback (28) is derived from the first equation of the nonlinear system 
(27) and the structure of optimal control r0 (10) under the condition of the linearisation of 
the second coordinate 

x2 =x~+W(Xj-x~), w;:::o 

The convergence result to the equilibrium point x0 is valid for trajectories of the 
controlled process (1), generated by feedbacks / with slopes Cl!J corresponding to the 
eigenvector with the negative eigenvalue of the Jacobi matrix. The rational feedback 
/ = r"(U!J) with the slope Cl!J can be interpreted as the linear approximation of the optimal 
control r0

• 

One can show that that there exist intervals for parameter w around the 'optimal' 
slope Cl!J which give different combinations of growing and declining properties of R&D 
intensities r I y, r1_m I y. Trajectories (/( ·), T*( -), /( ·)), (y°( ·), I°( ·), r°( ·)), generated by 
rational r • and optimal r0 feedbacks respectively has the analogous growth properties: 
production y( J, technology T( J and investment r( -), are growing to infinity with the equal 
exponential growth rates. 

3.2 Analytic solution 

Let us note that the nonlinear system (13) of the optimal process is rather complicated 
and at the first glance does not have the analytic solution expressed in the explicit 
functions. In order to obtain explicit solutions we consider now the reduced version - the 
test optimal control problem, as the first approximation of the nonlinear system (13). To 
obtain the simplified dynamics assume that 

y = 0 in (13) and, hence, function/ does not depend on the technology parameter T 

f=J;+f2 

So we deal with the following dynamics 
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y r 
-=f-g­
y y 
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(29) 

Let us stress that we examine here a nonstationary model with the time dependent 
functions 

f=f(s), g=g(s). 

Equation (6) can be developed as follow, 

n=n(s)=bTp,,.p, =b(-,.-)Pi rp, 
()+ (5 

(30)[18) 

(31) 

Combining (3), (4), (5) and (31), we obtain the following expression for the utility 
function 

The Hamiltonian has the form 

H(y,r,lj/) = lny+ (1-a) ((lnb-/31 ln(B+0"))+(/3
1 

+ /3
2
)lnr)+ lj/(fy- gr) (33) 

a 

Its maximum by parameter r is determined by the formula: 

(34) 

So its maximum value is attained at the optimal R&D investment r0 

(35) 

Here lj/ is the marginal price of production y. It can be expressed as the gradient 
l/f = a WI dy of the value function W. 

The Hamilton-Jacobi equation has the following form 

aw aw aw 
-+ H(y,r,-) = -+ H(y,r,lj/) = 0 
at ay at 

(36) 

It implies the adjoint equation for the marginal price lj/ 

~(aw)+ aH =i_(awJ+ aH =al//+ aH =0 
dy at dy dt ay dy dt dy 

(37) 

Utility function (32) requires the following Hamiltonian in addition to the 
Hamiltonian (33): 
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Under the optimality condition we have 

"OH= oH· =O 
or or 

The following relations bind two Hamiltonians (33) and (38) 

oH I 
-=-+ flf/ ay Y 

aH· - -71(s-I) I f . ---e -+ If/ ay Y 

If/. = e -q(s-1) If/ 

oH' _ -q(s-tl ( I f )- -qCs-t l oH ---e -+ If/ -e -ay Y ay 
The marginal price If/' satisfies the following adjoint equation 

oH' 0 lf/
0 

( -q(s-1) -11<s-1) • ) --=---=- -77e lj/+e If/ ay at 
From equations (42) and (43) it follows 

oH . a;= 7]lj/- lj/ 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

Therefore, for dynamics of the conjugate variable If/ one can compose the adjoint 
equation: 

. oH 1 f If/= 7]lj/-- = 7]lj/--- If/ ay y 
(45) 

Combining equations (29) and (34) and transforming (45) , we obtain the following closed 
system of differential equations 

(46) 

. 1 
If/= 77--- f (47) 
If/ Ylf/ 

Introducing notation z = y If/ for the production cost and summarising equations ( 46) and 
( 4 7) the following differential equation is obtained: 
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(48) 

The general solution of equation ( 48) has the following form 

z(t) = Ce71
' +*{ (l ~a) (P, + P2 ) + l] (49) 

The unique solution which meets the transversality condition of the maximum principle 
is the steady state solution: 

lime_,,, z(t) = 0 (50) 
,__,~ 

Since coefficient C in equation ( 49) should be 0 to satisfy the steady solution condition, 
the following formula is obtained: 

z=z(t)= (B+l), 
1] 

(51) 

Substituting solution (51) into equations (46), (47) we obtain dynamics of the optimal 
process 

Assuming that f = f (t) is a nondecreasing function with positive rate 

(f -17B /( B + 1)) > 0 and introducing notations 

' B B 
Q(t) = f ucn---17)dr > Cf(to)---17)(1-10 ) 

, (B+l) (B+l) 
0 

we obtain the optimal model with the exponentially growing production y 

Y = y(t) = y0eQ(t), y(to) =Yo 

and the exponentially decreasing price l/f 

l/f = l/f(l) = l/f
0
e-Q(t), l/f(to) = I/lo 

Substituting solution (51) into optimal control (35), we obtain the relation between the 
optimal investment r and the optimal production y 

(52) 

Here c = 1/(1-a) is the elasticity of substitution. 
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In the case where the number of available varieties n(s) in equation (6) satisfies tbe 
condition of the constant returns to scale with respect to r and T, we have /31 + /32 = 1 
(see [19]), and the optimal investment r is defined by the formula 

r=.!Ly 
£g 

The optimal R&D intensity is presented by the following equation 

r = 1 .!l 
y (£-l+(/J1+/J2)) g 

Under the condition that /31 + /32 = 1, we have 

!:__ = .!]_ (1- a)17 
y £g (p-q) 

(53) 

(54) 

(55) 

Let us note that formula (53) for optimal investment r can be treated as the first 
approximation of optimal feedback r* (28) for zero slope w = 0 of R&D intensity and 
maximum price of production x~ = p 0

• For R&D intensity r I y, equation (55) describes 
dependence of optimal R&D intensity on the substitution parameter a, the subjective 
discount rate 17 and the discounted marginal productivity oftechnology-g = q - p . When 
the cost p for sustaining the accumulated R&D investment T is high, then the R&D 
intensity r I y is low. Vice versa, increase of the rate of return to R&D q leads to growth 
of the research intensity r I y. Assuming that the positive function g = g(t) is non­
increasing over time t we get the growth property of the R&D intensity r I y. 

Taking into account relation (53) for optimal R&D investment r we can derive the 
growth process for technology 

B ' eQC•> 
T = T.0 +--17y0 J~r, T(t0 ) = T0 (B+l)., , g(r) 

0 

For technology intensity P =T I y one can obtain the following differential equation 

. (Ty- yT) y r B B 77 
P= =--P+-=-(f(t)---77)P+----

y2 y y (B+l) (B+l) g(t) 

Its solution is presented according to the Cauchy formula 

B I (-Q(t)+Q(T)) 

P(t) = Pae-QCt> +--77 r dr, 
(B+l) , g(r) 

0 

Technology intensity P has the zerO'velocity on the curve 

Po() B17 
t = (B+l)g(t)(f(t)-77B /(B+l)) 

(56) 
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lfthe initial position (t0 ,l'r,) is located below the curve P 0
, Po< P 0 (t0 ) , then technology 

intensity P(t) is growing. If the initial position (t0 , Pa) is located above the curve P0 
, 

Po > P0 (t0 ) , then technology intensity P(t) is declining over time t. 
Finally we consider the value function rp(t,y) which assigns the optimal result <p of 

the utility function (32) along the optimal process (y°, r0
) to an initial position (t,y) . 

The value function <p is the solution of the Hamilton-Jacobi equation for the reduced 
control problem 

(57) 

Let us find the value function <p in the class of the following structure 

rp(t , y) = e-111 (µ(y) + v(t)) 

Substituting the optimal control r0 (35) into the Hamilton-Jacobi equation (57) and 
considering price l/f as the gradient of the function µ(y) 

aµ 
lfl=-

dy 

we derive equations for components µ(y), v(t) 

-17(µ+v) +v+ 'dµ JY+lny-B+B(lnB-lng-ln 'dµ) = 0 
dy dy 

Using indeterminate coefficients in the expression for function µ 

µ(y) = Clny 

we obtain the explicit expression for parameter C 

C= (B+l) 

T/ 

and the linear differential equation for function v 

V(t) = TJV(t) + h(t) , 
(B+l) B 

h(t) = Blng---f -B(ln--- ln 17- l) 
17 (B+l) 

The general solution of this equation has the following form 

I 

v(t) =De,,,+ F(t), F(t) = f e-11<s-•l h(s)ds 
0 

The transversality condition for component v 

lim e- 771 v(t) = 0 , ... .,_ 

provides the explicit expression for parameter C 
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+-

D = - f e_,,, h(s)ds 
0 

Finally, we obtain the following explicit expressions for functionsµ and v 

µ(y) = (B+ I) lny' 
77 

+-

v(t) = - f e-.,rs-t)h(s)ds 
I 

In particular, if h is a constant, then v is also a constant determined by the formula 

h 
V=--

77 

According to the explicit expressions for the value function rp we can conclude that in the 
considered model the optimal result has the decomposition property. The first term µ 
depends only on the discount parameter77, parameter of the elasticity of substitution a 
and in the logarithmic way (not very intensively) on the initial production y and does not 
depend on the specific features of the dynamic system - functions f and g. On the 
contrary, the second term v is determined mainly by dynamics aggregated in function h 
and does not depend on initial productiony. 

4 Empirical analyses and evaluation of the results 

4.1 Optimal R&D intensity 

As developed in section 3.2, the optimal R&D intensity can be obtained by solving the 
optimal R&D control model: 

r 77 
(55)[19] -=-

Y £g 

Equation (46) suggests that the optimal R&D intensity depends on the elasticity of 
substitution £, the discount rate 77 and the discounted marginal productivity of technology 
g and its level increases as £ and g decrease and 77 increases. After the model is 
constructed and the analytic optimal solution is obtained, the key process moves to the 
measurement of core factors in the model and to the empirical analysis of actual 
industrial activities by using the model. 

4. 2 Measurement of core factors 

4.2.1 Measurement of elasticity of substitution 

Under the condition of the equilibrium between demand and supply, the elasticity of 
substitution measured by demand-side factors (e.g. substitution between innovative 
goods) could be interpreted by the elasticity of substitution measured by supply-side 
factors (e.g. substitution among production factors) . Given that production is represented 
by GDP (V, value added), the substitution elasticity should be between labour, capital and 
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technology. By using a technology incorporation model to treat technology (T) embodied 
in labour (L) and capital (K), the substitution elasticity could be treated as a bilateral 
substitution issue only between labour and capital e(K(I'), L(T)). 

On the basis of technology incorporated production function [20], the elasticity of 
substitution between capital K(F) and labour L(T) can be formulated as follows: 

din K(K',T) 
L(L',T) 

E = -------'---'--'-
d Jn P, 

P, 

=[(a In K(K', T) )[~]-(a In K(K',T))(d In K')]-[(a In L(L',T))[~]+ (a In L(L',T))( d In~')] 
olnT din P, olnK' dlnP, olnT din P, olnL' dlnP, 

P, P, 

where 

L': 

K': 

labour without technology incorporation [21] 

capital without technology incorporation 

price of labour and 

price of capital. 

(58) 

The follovving regression equations are used to measure the different terms in 
equation (58): 

where 

GLC: 

GCC: 

GTC: 

ln(T/L) = aJO + bn lnT + b 12 ln(P/P,o) 

ln(T/K) = akO + bk1 lnT + b1c2 ln(P/P1o) 

ln(GLCIGTC) = b '13 + b '14 lnT 

ln(GCC/GTC) = b 'u + b 'k4 lnT 

ln(P1(T)IPmJ = h + i lnT 

price of technology 

gross labour cost 

gross capital cost and 

gross technology cost. 

4.2.2 Measurement of discounted marginal productivity of technology 

(59) 

(60) 

(61) 

(62) 

(63) 

In the case using value-added (V) as production output, the discounted marginal 
productivity of technology (g) can be formulated as follows: 

g=p-q (64) 
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(65) 

q =av (marginal productivity of technology) ar · (66) 

where 

X ': L ' and K'; and 

XT: LT (labour for technology) and KT (capital stock for technology). 

In order to measure the discounted marginal productivity of technology, it is requested to 
simultaneously solve the following equations (67), (68) and (69) in advance (see (22]): 

where 

P,: 

P',: 

P, = (1- gs)·[(Ris· DI +Rms · Dm+Res · De)+ Rks ·Dk · (r + p) /(1-ct)] (67) 

av 
ar 

GTC·(P',!P,) V 

GLC+GCC+GTC-(P',! P,) T 

mr -fav - (r+p)d av /(- ) e = -e t=- r+p 
0 
ar ar 

service price of technology 

capital price of technology 

(68) 

(69) 

Rls, Rks, Rms and Res: shares of R&D expenditures for labour costs, tangible fixed 
assets, materials and energy respectively 

DI, Dk, Dm and De: wage index, investment goods deflator, wholesale price 
indices of materials and energy respectively 

gs: 

ct: 

r : 
m: 

p 

ratio of government financial support 

ratio of corporate tax and 

rate of internal return to R&D investment 

time-lag from R&D to commercialisation and 

rate of obsolescence of technology. 

Assume that factor input directing to R&D (XT =Lr. Kr. MT, ET) which composes T and 
consists of labour, capital, materials and energy takes similar marginal productivity as 
production factors at the initial year. By introducing price indices Dv, Dx, DT (here Dr is 
equal to P,) and DXT (initial year =l) corresponding to V, X, T and XT, finally we can 
develop equation (54) into equation (70): 

P = L Dx . Dr . Pyo 
L,K Dv D;.T Pvo 

(70) 
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As shown in equation (66), term q is exactly the marginal productivity of technology. 
The discounted marginal productivity of technology (g) can be obtained from the balance 
oftermp and q. 

4.2.3 Measurement of discount rate 

Normally the discount rate was treated as the average rate of bank loans. However, in 
recent years there has been an argument to introduce weighted average capital cost for 
discount rate (e.g. [23]). Stimulated by this argument an attempt to introduce composite 
discount rate was conducted. Composite discount rate 17 can be measured py the 
following equation: 

where 

r1 interest rate (average rate of bank loans) 

r2 real dividend yield(= DIVD/(CAP+CAPRV)) 

r 3 risk free rate (government bond yield) 

w1 the share of interest-bearing liabilities to gross assets (=LI/GA) 

w2 the share of capital stock and capital reserve to gross assets 
(=(CAP+ CAPRV)IGA) 

w3 the share of the other reserves to gross assets (=PS /GA) 

Tax corporate tax rates 

DIVD dividend 

CAP capital stock 

CAPRV capital reserve 

LI interest-bearing liabilities 

SE shareholders' equity 

PS the other reserves(== SE-CAP-CAPRV) 

GA gross assets(= LI+ CAP+ CAPRV +PS= LI+SE) 

(71) 

Our analysis demonstrates that the composite discount rate introduced here seems to 
reflect the reactions ofrespective sectors' behaviour in the market. 

4.3 Results of empirical analyses 

On the bases of the measurement of core factors (elasticity of substitution, discounted 
marginal productivity of technology and composite discount rate), Table 1 evaluates the 
optimal R&D intensity of Japan's manufacturing industry (manufacturing average (MA), 
food (FD), chemicals (CH) and electrical machinery (EM)) over the last two decades 
(1975-1996). The evaluation is conducted by dividing the period of the analysis into five 
periods: 1975-1978 (after the first energy crisis and before the second energy crisis); 
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1979-1982 (after the second energy crisis and before the fall of international oil prices); 
1983-1986 (after the fall of international oil prices and before the bubble economy); 
1987-1990 (during the period of the bubble economy); and 1991-1996 (after the bursting 
of the bubble economy). In addition to R&D intensity using the 1990 fixed prices, the 
nominal value (current prices) of optimal R&D intensity is also calculated. 

Table 1 Calculation of optimal level ofR&D intensity in major sectors of the Japanese 
manufacturing industry (197 5-1996) 

1975-78 1979-82 1983-86 1987-90 1991-96 

Manufacturing n (%) 8.45 8.55 7.21 6.11 4.70 

Average e 1.01 1.01 1.01 0.71 0.42 

g 1.05 1.23 1.23 1.20 1.42 

1990 (r!VJopt. (%) 7.97 6.88 5.80 7.17 7.88 
prices (r/ V)act. (%) 4.36 4.72 5.90 6.77 6.91 

Current (r!VJopt· (%) 6.15 6.05 5.34 6.87 8.20 
prices (r/V) act. (n) (%) 3.36 4.15 5.43 6.49 7.19 

Food 7] (%) 9.12 8.94 7.58 6.02 4.60 

e 0.69 0.69 0.691 0.59 0.41 

g 2.41 2.55 2.31 1.90 2.13 

1990 (r!VJopt. (%) 5.48 5.07 4.75 5.33 5.32 
prices (r!VJact. (%) 0.75 0.84 1.09 1.67 1.64 

Current (r!VJopt. (%) 6.18 6.10 5.04 5.13 5.05 
prices (r!VJact. (%) 0.85 1.01 1.16 1.60 1.56 

Chemicals n (%) 8.45 8.49 6.96 6.14 4.76 

e 1.31 1.31 1.31 1.12 0.63 

g 0.34 0.51 0.63 0.67 0.87 

1990 (r!VJopt. (%) 18.97 12.71 8.43 8.18 8.68 
prices (rl VJact. (%) 18.28 15.78 15.14 15.26 14.14 

Current (r!VJopt. (%) 9.24 8.13 6.88 7.47 9.73 
prices (rl VJoct. (%) 8.90 10.09 12.35 13.94 15.84 

Electrical n (%) 8.87 8.93 7.30 5.95 4.62 

Machinery e 1.69 1.69 1.69 1.65 0.57 

g 0.18 0.27 0.30 0.42 0.81 

1990 (r!VJopt. (%) 29.16 19.57 14.40 8.59 10.01 
prices (r/VJact. (%) 33.93 23.70 20.59 17.35 12.95 

Current (r!V)opt. (%) 8.02 8.92 9.03 7.54 13 .23 
prices (r!VJoct. (%) 9.33 10.80 12.91 15.24 17.12 

'IT- discount rate; e. elasticity of substitution; g: discounted marginal productivity of 
technology; (r/V) 0P1 : measured optimal R&D intensity; (r!VJ 0c1 . • : actual R&D intensity. 

Since the period between 1975-86 is relatively homogeneous in comparison to the other two 
periods examined, in order to use the elasticity of substitution for as long a period as possible 
(see [24]) the elasticity of substitution for three periods is used for this evaluation analysis. 
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4.4 Comparative analyses betvveen optimal and actual R&D intensity 

Based on the calculation results summarised in Table 1, comparative analyses between 
optimal and actual R&D intensity for secors MA, FD, CH and EM in the Japanese 
manufacturing industry over the period 197 5-1996 are illustrated in Figure 1. 

Figure 1 Comparison of optimal R&D intensity and actual R&D intensity - comparison of 
leading sectors in the Japanese manufacturing industry (1975-1996): % 
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First of all, let us look at the case of manufacturing average (MA). The Japanese 
manufacturing industry's R&D intensity was far behind the optimal level until the middle 
of the 1980s. This imbalance decreased due to consistent efforts to strengthen R&D 
investment. Consequently, Japan's manufacturing industry reached a reasonable level of 
R&D intensity, 5.4% of GDP and a little bit higher than the optimal level, making the 
balance reversed. However, this balance reversed again during the period of the bubble 
economy when the actual R&D intensity changed to 5.5% lower than the optimal level. 
This imbalance grew after the bursting of the bubble economy resulting in the 
manufacturing industry's R&D intensity dropping to 12.3% lower than the optimal level 
(see Figure 2). This low level of R&D intensity might be the source of the current 
'vicious cycle' between R&D and economic growth resulting in Japan's decrease in 
international competitiveness [25]. 

Figure 2 Trends in the ratio between actual and optimal R&D intensity 

2.02 

1.80 

I 1.87 
1.63 

CH 

1.43 
124 1.29 EM 

1.16 

I 121 1.02 
0.96 I 0.94 

0.88 MA 

0.69 
0.55 

0.14 0.17 ______ Q,2l ____ _;----9~~! ___________ Q~1__ __ f_I?_. 
--------------~-------------· 

197> 78 1979-82 1983-86 1987-90 1991-96 

By looking at the trends in R&D intensities of optimal and actual level, quite different 
observations can be found between FD and other two sectors; while similar observations 
can be found between CH and EM. 

In the case of FD, the R&D intensity is always far behind the optimal level over the 
whole period examined. It increased slightly before the bubble economy while the 
optimal level changed from 6.2% of GDP to 5.0%. After the bursting of the bubble 
economy, both actual and optimal R&D intensity decreased slightly. However, the 
optimal level is still much higher than the actual one. 

In the case of CH, the R&D intensity is almost always higher than the optimal level 
except for the period 197 5-1978. Due to consistent efforts to strengthen R&D investment, 
the R&D intensity continued to increase over the whole period while the optimal level 
decreased by the middle of the 1980s before changed to an increasing trend. 
Consequently, the discrepancy between actual and optimal R&D intensity levels 
continued to increase. 
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In the case of EM, similar to the behaviour of CH, the R&D intensity is always higher 
than the optimal level over the whole period examined. Also due to consistent efforts to 
strengthen R&D investment, the R&D intensity increased while the optimal level 
increased slightly before the bubble economy, changed to a decrease slightly during the 
period of the bubble economy and again increased dramatically after the bursting of the 
bubble economy. The discrepancy between actual and optimal R&D intensity levels 
increased until the period of the bubble economy and changed to a decrease after the 
bursting of the bubble economy. 

4. 5 Allowance of R&D intensity 

It is generally accepted that, similar to the safety allowance of the machine, in order to 
secure a sustainable development trajectory, a certain allowance between actual R&D 
intensity and optimal R&D intensity level is necessary. Figure 2 illustrates the trends in 
the allowance of R&D intenisty (the ratio of actual and optimal R&D intensity). Looking 
at this Figure, we note the following observations: 

Allowance of R&D intensity bas been increasing steadily until 1987 in all sectors 
examined. 

2 However, this ratio changed to a decreasing trend from 1987 in manufacturing 
average and chemicals. While the ratio of electrical machinery continued to increase 
until 1990, it changed to a dramatic decrease from 1991. 

3 Contrary to the above trends, the ratio of food continued to increase and maintained 
the same level after 1987. 

Noteworth trends depicted in 2, demonstrate the hypothetical view of the concern about a 
vicious cycle between R&D and growth. 

4. 6 Inte1pretation of the results 

In this empirical analysis, three leading manufacturing sectors, FD, CH and EM are 
examined. FD is one of the typical biological resources dependent industries, while EM is 
a knowledge intensified industry. CH can be classified between FD and EM as it 
encompasses such a nature as resources dependency and knowledge intensified. FD is 
generally classified in the low-tech sector while encompassing some high-tech facets 
such as depending on advanced biotechnology. Contrary to FD, CH and EM are generally 
classified in the high-tech sector as they depend on a high level of R&D intensity. Pavitt 
[26] contrasted these three sectors with scale-intensive characteristics (FD) and with 
science-based characteristics (CH and EM). 

As summarised by Pavitt, the nature of technological opportunities and threats facing 
firms varies considerably as a function of their principle activity. Rich technological 
opportunities are associated with science-based and specialised suppliers, with relatively 
many opportunities for innovations and high outside threats from others diversifying 
horizontally and from technologically active users. Supplier-dominated firms have fewer 
technological opportunities and are under threat of entry from suppliers. Scale-intensive 
firms focus on improving complex and interdependent product technologies. Together 
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with specialised suppliers, they can exploit opportunities for 'fusion' with radical 
breakthrough technologies. 

Figure 1 suggests the following interesting observations with respect to a ·clear 
contrast in the three sectors examined: 

Optimal R&D intensity in EM and CH (typical high-tech sectors) are higher than 
FD. 

2 Actual R&D intensity of EM and CH is much higher than the optimal level, while 
FD demonstrates the opposite. This is considered to be due to the following: 

• Among priority strategies for EM and CH firms to seek maximum profit 
including market strategies (e.g. sales promotion, propaganda, etc.), process 
management/control and strategic alliances, the decision for the investment 
option is one of the most crucial issues. 

• The results demonstrate that in order to achieve maximum return, R&D 
investment plays a more significant role than manufacturing investment for EM 
and CH in which speed of innovation is crucial; while manufacturing investment 
plays a significant role for FD in which mass volume production of variety of 
goods is crucial. Another reason for the lower level of R&D intensity in FD is 
because it mainly depends on other sectors' R&D rather its own. 

3 The high-level of R&D intensity in CH and EM is due to the typical nature ofhigh­
tech sectors under severe competition, encompassing not only really essential R&D 
intensity but also Pseudo R&D intensity ('Pseudo innovation,' see (27]), similar to 
the safety allowance in a machine. 

4 However, these allowances have dramatically decreased after the bursting of the 
bubble economy in 1991 leading to the vicious cycle between R&D and growth. 

5 Motivations for Pseudo innovation include the following: 

• 'feint,' 'decoy' to rivals, 

• posturing as a really high-tech firm demanding customers, 

• . 'cheaper propaganda,' 

• 'cannot stop,' and 

• 'innovation hungry' .. ... . 

These observations remind us of a 'pseudo innovation' postulated by Mensch (27] . He 
pointed out a source of this pseudo innovation, particularly in high-tech sectors, the time 
discrepancy of customers' reaction to such characteristics of high-tech products as 
functionality of the product, safety for the user and durability of the product. Due to this 
discrepancy in high-tech products he pointed out that "It is important to note that in 
advanced stage of brand growth, important innovations are replaced with the increased 
frequency by pseudo~innovation." 
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5 Conclusions 

Conclusions obtained from this analysis can be summarised as follows: 

Theoretical analyses based on the optimal control theory are applied to this R&D 
investment decision making aiming at maximising a utility function. 

715 

2 The maximum principle of Pontryagin is applied for designing optimal nonlinear 
dynamics. Optimality principles are interlinked with equilibrium properties of the 
Hamilton system. Suboptimal feedbacks of the rational type for balancing the 
dynamic system are constructed. Properties of suboptimal feedbacks and techno­
economic trajectories are indicated for different slopes ofR&D intensities. 

3 Methodologies for the measurement of core factors essential for the practical 
application of the optimal control model are developed. 

4 The empirical analyses demonstrate the practical significance of this approach. 
Evaluations of the R&D intensity level in major sectors were conducted by 
comparing the optimal and actual level. 'Pseudo innovation' in certain high-tech 
sectors and its sources are identified. 
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(5.41) (5.25) (5.79) 
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