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On Optimum Control of Multi-Reservoir Systems

Ilya V. Gouevsky

1. Introduction

In this paper the multi-reservoir systems which are in
operation are considered (e.g. see Figure 1). In recent
years, many papers have been devoted to the analysis of
these systems [1,2, 3]. IIASA has also made a significant
contribution to this field [4, 5] . Nevertheless, authors
agree that there are many questions which are far from being
settled. They pertain to the following problems:

i) development of mathematical models describing and
predicting hydrological, ecological, economical and
social processes,

ii} development of models for optimization of the
controlled processes in multi-reservoir systems,

iii) development of decision making models which take
into account the active part of people in the
water resources systems.

The multi-reservoir systems combine large regions with
different hydrological, economical and even political
conditions. On that account, it is difficult to state
that in these systems unequivocal solutions exist as far
as optimum control is concerned. Therefore, optimum
control of water resource systems, and particularly multi-

reservoir systems, should be a dynamic iterative process
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FIGURE 1. HYPOTHETICAL RESERVOIR SYSTEM



with the following phases: recognition of the system
(including its verbal and quantitative description);
simulation and optimization; decision making and its
implementation; evaluation of the consequences and return
to the recognition phase. This procedure is shown in
Fiqure 2.

In this paper an approach is presented which involves
the development of optimization models for control of the
multi-reservoir system with arbitrary configurations. It
is assumed that in this system the reservoirs are the
basic controlled elements and their water resources are
used for hydroelectric energy generation, irrigation,
water supply of cities, recreation, fish and wildlife
enhancement, etc. The objective is to determine the
optimum release policy over the specified release periods
in accordance with the predetermined criterion and set of
constraints, which include for example storage reservations
for flood control and for recreational use, mandatory

releases to the users, etc.

2. Methodology

The description of the optimization model will be
made, with no loss of generality, on the basis of the
example shown in Figure 1. The generality assumptions which
have been considered in this model are the following:

1. The main water controlled resources in the
system are reservoirs. They have a restricted capacity and

their resources are used both for satisfaction of the users'
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demand and for flood control.

2. The inflows and allocation processes are considered
in the interval of time (tl, tk), divided into k subintervals
(stages) .

3. The function describing the relationship between
the user's loss and the amount of water distributed to him
is given for each user. .

4. All social, political and other quality constraints
can be expressed (at least roughly) in a quantity relationship.

5. Because of the finite Vqlume of the reservoirs, the
available amount of water in the system is controlled in a
restricted manner.

6. It is assumed that all the processes in the system
are predictable and can be evaluated in a quantitative manner
in the interval (tl, tk). This assumption means that the
model is deterministic.

Let us consider the system shown in Figure 3 under the
above mentioned assumptions. This figure presents the same
system as is shown in Figure 1, but the processes are
divided into four stages. This means that both spatial and
temporary linkage are shown.

The basic process in each reservoir is storage and
allocation of water at every stage. Using the typical
scheme of the ith reservoir at the sth stage, shown in

Figure 4, the following equation can be written:



= + + X -
(1) Z2ig = 2%i,5-1 t L Lot Ll Egt 1 Xy hEH
CECis qEQis pEPis “Hig
. 1 .
- 3 X, - sis ¥i, s ,
reRiS

where Zis is state (amount of water in [m3]) of the ith

reservoir at the sth stage; Zi s-1 is state of the ith
7

reservoir at the (s-l)th stage; Zio is initial state at

t=tl,'

IC is cth main uncontrolled input of the ith
reservolr at the sth stage,
c € Cis’ Cis is a set of numbers,
Cig = {l,2,...,C,...,niS}, for all i,s,

. th c s
Eq is g additional uncontrolled input,

.th .

q € Q.4 Q¢ = {l,2,...,q,...,wis}, i reservoir,
sth stage,

. th . .
Xp is p main controlled input,
pEP;, Py = {uis + 1, u o+ 2,...,p,...,ViS},
ith reservoir, sth stage,

. th .
Xh is h controlled output for allocating the
amount of water Xh to the user h, h ¢ His’
His = {1,2,...,h,...,2is}, ith reservoir,
sth stage,

1

This equation is written under the assumption that
the amounts of water in the input and in the output of the
hydropower station HPSiS are equal.
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Ic’ ce CiS = {l,2,...,c,...,nis} - main uncontrolled inputs,

Eq' ge Qis ={1,2,...,49,. .,wis} - édditional uncontrolled

inputs,

X he His = {1,2,...,h,...,£is} - controlled outputs,

Xpr FER, = {gis+1,£is+2,...,r,...,uis} - additional
controlled
outputs,

Xp, pE Pis = {uis+l,uis+2,...,p,...,Vis} - main controlled
inputs.

th

(A1l upper variable indexes referring to the i reservoir at

the sth stage are omitted.)

Figure 4. Typical scheme of the ith reservoir

at the sth stage.
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X, is rth additional controlled output of the

ith reservoir at the sth stage, r € Ris’

Ris = {Qis + 1, 'Q'is + 2,...,r,...,uis},

Gis is the minimum admissible amount of water

th

in the i reservoir at the sth stage

Taking into consideration that the set Pis = f both
for all initial reservoirs and for all corresponding stages
{(e.g., for reservoirs 1, 3 and 7 at stages 1, 2, 3 and

4 in Figure 3) and that the main controlled inputs of the

ith reservoir are additional controlled outputs of the

previous reservoirs, the variables XP for all
pelU Pis can be eliminated. For example, if the rth
¥i,s
, th . . . . th
output of the (i-k) reservoir is linked with the p

input of the ith reservoir (see Figure 5), then

= - i . .
(2) xp = (1 0l _y) Xy PEP;gi TER, 4 o .
The coefficient a? W o< ai ; 1, reflects the losses
l— —

along the additional controlled output (called canal below),
linking the (i-k)th and ith reservoirs.

After transformation (2) has been made, the controlled
outputs for every reservoir are reduced to those belonging

to the sets His and RiS for all i and s.
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The function fh(xh), h € His' all i,s, can be put

in accordance with every controlled output. This function
measures the losses which the user will suffer if the water

allocated to him is Xh‘ This function reflects some

economical, social and political aspects of the water
allocation problem.

In the cases where one user receives water from two or
more reservoirs the problem of obtaining the function

fh(xh) arises. For example, Figure 5 shows that the

h

amount of water XQ for the Zt user comes from both

th

the 1 and (i-k)th reservoirs. In such cases the

determination of the functions fh(Xh) and f(X2 } can be

i-k,s

made on the basis of: the costs connected with transferring

the amount of water Xh and X , and the preferences of
i~k,s

the users for the value of Xh and XQ . The latter
i~k,s

presuppose that the utility function of Xh and X2
i-k,s

should be involved.

In a similar way, the function fr(Xr) can be put in
accordance with every additional controlled output (canal)
r € Ris' all i and s. This function usually depends on the
following factors:

i) the amount of water needed for keeping up the

ecological equilibrium in the canal, for fish and

wildlife enhancement, etc.
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Figure 6. Canal's goal funciiwvn.
(not to scale)
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Figure 7. Terminal function for ith

h
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(see equation 3).
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ii) the amount of water needed for recreational use
and navigation,
iii) the maximum value of X.» £ eR; which leads to
flooding and other destruction.
The function shown in Figure 6 reflects some of these
requirements.

rd

In the model under investigation, the 3 type of the

function is involved. By means of this function {(let us
call it terminal function) the final state of the ith
reservoir can be determined.

Let us denote with 9; the expected quantity of inflow

in the time interval (tk, tm), m > k and with e, the expected

th

demand of water in the same interval from the i reservoir.

Then, the terminal function fi(Zik) can be expressed as

1 A

fi(Zik) , if 9 + Zik < e;
{3) fi(zik) = 5

£ if 9; + 24 > &

An example of this function is shown in Figure 7.

The main goal of systems control is to determine a
release policy from the reservoirs (variables xis), and an
allocation of the released water between the users
(variables Xh) and additional controlled outputs (variables
xr), so that the total loss, expressed by the equation (4),

will be minimum.
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n k ] .
. 1s 1s
(4) F(x) = § ) ¥y £ (%) + Y £ (X)) + £57(X] )]
i=l s=1 heHis reR,
n
oLl Ei(Eg)
i=1
where
- is i
X = (X, Xy 2, X7, heH; , reR;, for all i,s}

When one minimizes (4) the following physical and other
constraints are included:

a) The total release from the reservoir cannot be in
excess of the available water and the expected inflow.

b) Fach reservoir i = 1,...,n at every stage s = 1,...,k
has a constraint capacity.

¢} The controlled variables X and Xy have a lower and
an upper boundary, respectively. The lower boundary usually
reflects the mandatory demand of the user, while the upper
boundary quantifies the goal of the user or represents the
physical restrictions on the corresponding canal.

d) Reservoir storage constraints corresponding to
recreational use, flood control, etc.

e) Constraints which take into account the possibility
of one user obtaining water from two or more reservoirs.

The five types of constraints mentioned above can be

quantified in the following way.
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(5) ] X + ] X <z + Y 1.+ ] x
h - "i,s-1 c P
heHis reRis csCis pePis
+ EQ Eq -68;s o+ forall iands=1,...,k-1
qt¥is
(6) th X, + rzR Xp #2330 2% 400 * zc I
is is cttis
+ + - i =
pzp X5 EQ Eq = 8ix » for all i and s=k
is 4% g
(7) 1 X+ Y x>z, + V7 1.+ ) x
h r - "i,s-1 c p
heHis reRiS ceCis pePis
+ EQ Eq - (Mg - vyg) + foralliands ,
el g
where
Mis is the maximum utilized storage in the ith reservoir
th = eee = = ese =
at the s stage (usually Mil = = Mis Mik)'
Y is the empty volume in the ith reservoir at the sth

is
stage required for flood control,

(8) N{x2 - X, - X =0} ,

h

if the amount of water X for the Qt user is obtained from

L
both the i*" ana (i-k)th reservoirs.
The expression N{:} means that there is a set of such
constraints deﬁending on the structure of the system. It is
assumed that indexes of all the users in the system obtaining

water from more than one reservoir belong to the set His'

I
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(9) Yy S X Svo,vy 20, v >0, for all heH, . and
all i and s ,
(10) V. S X, £V, V.20, v 20, for all reR; . and
all i and s ,
(11) x*% - 3 X, >0 , for all i and s ,
o h -
heH;
is
is is sis
(12) X,7 < X7 <X ,
(13) 8o € 2y S My
where .
Vs ¥, and gés are the lower boundaries of the
v d x'% respectivel
pe Vp @n o respectively,
Gh’ Gr and i;s are the upper boundaries of the
v v_ and Xis respectively .
h' “r o

The variables Xp, pePis, all i and s, and the variables
Zis’ all i and s = 1,...,k-1 can be eliminated using the
recurrent equation (1) and equation (2).

Hence, the set of linear inequalities defined by

5y, (6), (71, (8), (9), (10), (11), (12) and (13) can be

expressed in the following more compact abbreviated form

(14) A X <B

where
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X~%, heH. , reR; , for all i,s}

x={xh,x,z. is

r

The matrix A contents L columns and D rows,

where
n k is n
L= 3§ J (u,_+X°)+ ] 2,
i=l s=1 & °©° izl k7
D=3nk + 2L + a ; a is the number of

constraints of the type (8),

B is a vector column having D components.

Putting together (4) and (14) the following nonlinear

optimization problem is derived: to find
min F(X)

subject to

(15) AX<B .,

3. Some Computational Procedures

The main property of the problem (14) is its separable
function F(X) and the set of linear constraints. That means
that for solving the problem, some routine programming
procedures could be applied (especially the separable
programming technique [6]). Nevertheless, this problem
can comprise a huge number of variables even if the system is

not so large. For example, for the system shown in
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Figure 3, the matrix A has 338 rows (246 of the rows
represent constraints of type (9), (10), (12) and (13))
and 123 columns when only four stages are considered and
if for solving the problem nonlinear programming is used.
Because of this, in this paper an idea for a specific
procedure for the problem (15) is given. This procedure

consists of the following:

a) The variables GiS = z Xh' each having eis values
heH !
is
1 2 0 Bis .
Gis’Gis""'Gis""'Gis , are introduced;

where
His - Hi;\\His

b) The optimum allocation for all the variables
belonging to the set H;S for every reservoir i at each stage

s and for all values of the parameter p = l,...,eis is
found. After that, for every value of this parameter the

value of the function

. ) .
Fig(Gig) = 1 £(x)
heH?
1s

is determined.
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. _ 1 1 p p
c) The function Fis(Gis) = F(Fis(Gis),...,Fis(Gis),...,
6. 6.
is is , . . X .
Fis (Gis ), i=1,...,n; s =1,...,k is derived by interpolation
s p p _ .
between the values of the functions Fis(Gis)’ p = 1,...,eis,

all i and s.

d) The optimization problem (15) is solved under the
condition that for every reservoir at each stage only the
variables Xis, GiS and those belonging to the set His exist.
As a result, the optimum values of the variables

is

X7, G, _, X

. .
° is n’ X_, heHis, reRis for all i and s are

r
obtained.

e) The optimum value of the variables Xy, heH{s is
obtained after we come back to item b with the optimum
value Gis‘

This procedure is described in detail in the
block- diagram shown in Figure 8.

4. Possibilities of the Model

Using the model the decision maker (DM) can:

1. Find the optimal allocation of water resources in
the system between both users and reservoirs at
predetermined stages in time.

2. Simulate the parameters' influence on the optimal
allocation. The model parameters which should be changed

are: I ; vy

C i Gis7 fh(Xh)’ hEHis; fr(Xr)’ rERis;

is

mandatory and demand releases. From this simulation one can:
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Start

min g )

hEHiS
subject to
p ja—
I = G, _; <X <wv
» “h is h — "h — "h
heHiS ‘
[ P — >
Fis(Gig) = 1 £ix)
heH?Y
is

where ;h has been derived in

the above stage

No >
P sis
Yes
s =s + 1
No
i=1i+1
No
i > n
Yes

Deriving the function F. (G, )
1 1 is "is

Fis(Gis) = F(Fis(Gis)""’

eis( Bis

Fis is )

o
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e

min y ) ( ) fh(Xh) + Fis(Gis)
i=1l s=1 heHis

: . n
is is
+ fO (XO )) . + ¥ fi(Zik)
i=1
subject to
A'X' < B'
where A', X' and B' are the new matrix and
vector respectively obtained after replacing

all the variables belonging to the set HY
. - is
with one variable Gis

:

i=1

I

s =1

'

min ) £ (%)
heHY
1s

subject to

b

z Xh Gis
heH”.
is

<l

Yp 2 X, 2 Yy

No

No

Figure 8. Computational decomposition procedure.
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a) Evaluate the sensitivity of the optimum processes
in the system. By means of this, the accuracy of the data
for these parameters can be evaluated.

b) Trace the change of the optimal values of the
variables Xr (amount of water in canals linking the reservoirs)
and obtain the distribution function of Xr' With this
function one can evaluate the places where the flood is
expected, and accordingly:

- plan and create new dikes and reservoirs

- change the optimum allocation by means of

decreasing the Yis and increasing the Gis of higher
reservoirs so that the variables Xr are in pre-

determined intervals.

5. Using the Model for Control of Multi-Reservoir System

In the beginning of this paper, it had been mentioned
that the optimization model would be an auxiliary one when
the decision making model of the multi-reservoir system is
developed. 1In general terms the decision making model can
be presented in the following procedure:

1. The optimization problem (15) is solved following
the algorithm shown in Figure 8 (when the number of variables
is large) or by other (direct) methods when the number of
variables allows the use of conventional procedures. The
obtained results for optimum allocation of water are called

optimal program.
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2. The relationship between the optimal program and the
changed parameters of equation (15) is obtained, i.e. a set
of optimal programs is generated.

3. The DM evaluates the obtained optimal programs by
the set of predetermined criteria and select the best
program. This is called the "rational program" and it is
valid for the first step of control of the water resource
system.

4. The procedure described in items 1 to 4 is repeated
after the first step, by taking into consideration the new

information for the processes in the system.

6. Some Problems for Future Investigation

The improvement in the model's adequacy should be
accomplished after its refinement with respect to:

1. Development of stochastic optimization model. A
distinctive feature of the model (15) is that the values
of vector B and the functions fh(Xh), f.(X.) can be
considered as a stochastic variable. Some results and
investigations on this type of optimization problems are
given for example in [7].

2. Development of the specific models for obtaining the
functions fh(xh) and fr(Xr) taking into account economical,
social and physical processes in the system under investigation.

3. Special attention should be paid to the active part
of man, and to the closely related problems of decision

making.
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