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PREFACE

Historical data on world energy consumption, when plotted versus
time as fractional shares of different primary energy sources, follow a very
regular pattern. This observation has been made by C. Marchetti [2] who
also brought to the ITASA Energy Systems Program the idea of considering
different primary energies as commodities competing for the energy market.
This approach has been extensively applied in IIASA studies using empirical
models and ad hoc rules which appeared to fit the past history of the substi-
tution process. As market behavior seems to be one of the important
constraints for introduction and development of large-scale energy systems,
the lack of deeper-rooted understanding has been increasingly felt. The
present report is an attempt to overcome this lack and to elaborate a
mathematical model based on well-understood assumptions.

Market penetration by new technologies is a very complex interplay
between producers and consumers. The theory presented emphasizes the
macroeconomic view on the producer side. In spite of this simplification
it seems that the resulting models well reflect the most important relations
governing the dynamics of market penetration for any number of competi-
tors (not necessarily in energy). This is indicated by the fit of the models
with known historical data and by the fact that the theory presented
explains existing empirical models as special cases or reasonable approxi-
mations.

The elaborated algorithms and computer subroutines make the theory
directly applicable and also make it possible to incorporate the model of
market penetration into more complex models.

The model cannot forecast the birth of a new technology. A new-
comer has to be introduced into the model exogenously using its economic
assessment, as demonstrated by the example of nuclear energy.

It is believed that the rcport can also be used as a case study on
probabilistic modeling, identification, and forecasting of uncertain processes
(nonlinear, multivariate and nonstationary). With this methodological
aspect in mind the part on application of probability theory is written in a
somewhat tutorial way, presenting the underlying philosophy and careful
discussion of assumptions.

This work is the IIASA-funded contribution to a project supported
by the Foundation Volkswagenwerk, FRG.
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SUMMARY

The report deals with mathematical modeling of technological
substitution processes. Its main objectives are: on the basis of plain and
well-understood assumptions, to derive mathematical models of market
penetration for any number of competing technologies, to explain existing
empirical models and rules, to develop computational tools for analysis
and forecasting of technological substitutions, and to apply the models
to the substitution of primary energy sources in world energy consump-
tion.

The approach adopted is based on the long-term balance of capital
flows governing production using one of several competing technologies.
The main assumption made is that a viable technology, when established,
has to live and grow on its own account, i.e. that the mean value of the
external capital flow is equal to zero. In this way a set of differential equa-
tions is obtained by which the multivariate competition is governed. Using
market shares instead of the absolute production of particular technologies
makes it possible to eliminate the market price and decomposes the
description and forecasting of the substitution process into the evolution
of market shares and the growth of the total production of the given
commodity. This is, perhaps, the main trick in the development of the
model. Only the dynamics of market shares is followed in detail.

The dynamics of market shares depends on differences in production
costs, on specific investments, and on the total growth rate factor. The
analysis shows that in the case of n competitors the number of model param-
eters can be reduced to 2(n - 1) and in most cases even to n - 1. It is also
shown that the fluctuations of model parameters over time are smoothed
so that only their mean values are significant. This explains the high
regularity in the behavior of market shares observed in the past.

Both deterministic and stochastic models for the substitution process
are developed. The stochastic version is exploited in derivation of optimal
procedures for extraction of information about the model parameters from
known historical data and in quantitative description of the uncertainty of
forecasting.

To facilitate practical application, the main theoretical results are
condensed into algorithms and computer subroutines and their use is
demonstrated on practical examples. The forecast of market penetration
by nuclear energy is an example of how a new technology can be incor-
porated into the model using its economic assessment.
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Macrodynamics of Technological Change:

Market Penetration by New Technologies

1. TINTRODUCTION

Abstract mathematical models appear to be powerful tools
in forecasting the future. It seems that there are two main
reasons for their growing popularity and for growing endeavor to

build mathematical models for more and more complex processes.

First, mathematical modeling makes it possible to decompose
human reasoning into simpler steps and to express it in quantita-
tive terms. In this way mathematical models help the forecaster
to be objective and to avoid unintentional bias due to his natu-

ral efforts to make the future what he wants it to be.

Second, once a model is found and verified it gives a better
insight into and a better understanding of the process studied,
and, what perhaps is most important, also shows how the future

Gevelopment of the process can be influenced and controlled.

However, any mathematical model and any mathematical theory
can be only a simplified image of the objective reality or of the
laws by which the reality is governed. A very detailed and
thorough model may even be undesirable if it is too complicated
and difficult to apply. A good mathematical model should have

the following properties.

- It should reflect the relations that are most important
for the purpose for which the model is built. The
difficulty is that usually it is not a priori clear which
relations are important and which can be neglected.
Therefore the development of a model is, as a rule, an

iterative and learning procedure.

- It should be as simple as possible. By simplicity is

meant here, first of all, the low number of parameters



that have to be determined. Mathematics supplies the
model builder with an immense number of possibilities
for describing a particular relation. However, only
a correct choice of the structure of the model makes
it possible to reduce the number of parameters by which
all possible cases can be characterized and to minimize
the number of exogenous quantities and variables. The
choice of the model structure is perhaps the most crit-

ical step in model building.

- It should be based on assumptions that are well under-
stood. As any model can be only an approximate descrip-
tion of the complex reality, it is true that assumptions
are made to be violated. However, the simpler and
clearer the assumptions are, the better the judgment
that can be made about the reliability of the answers

the model can give to our questions.

In general it may be very difficult to meet all the require-
ments formulated above and there is no unique way how to proceed
optimally (if any optimum exists at all). Model building is and
always will remain an art and a game: an art in how to combine
mathematics, intuition, sound reasoning, and experience (one's
own and of predecessors); a game between the human intellect and
nature based on the rule of trial and error. This is what makes
the mathematical modeling of the real world so attractive and

exciting.

This paper deals with mathematical modeling of the dynamics
of interaction between society and new technologies. The progress
in technology can be viewed as a continuing historical process
during which existing forms of satisfaction of human needs are

replaced by new and superior ones.

Reliable forecasting of technological changes is surely of
great interest for corporations and producers planning their
activity and looking for new opportunities. However, it seems
that the understanding of the diffusion of new and emerging tech-
nologies may be of much broader importance. Considering that man
has few basic material needs to be satisfied--food, clothing,

shelter, defense, transportation, communication, health care, and



entertainment--one can regard the material development of society
as a sequence of substitution processes, or as a single multi-
variate substitution process with many technologies sequentially

entering and leaving the process.

The impulse for this study was given by the work of Marchetti
{1,2] who also oriented the author's attention toward the empirical
model advanced by Fisher and Pry [3,4] for the case of two com-
peting technologies. 1Inspite of a very low number of parameters,
the curves generated by these models fit the known historical
data with a precision which is much higher than one is used to in
the modeling of economic and social systems. The main objectives of

this study are:

~ To explain the existing empirical models and rules which
appear to fit the historical data, and to define the

conditions under which they hold.

- To find a law governing multivariate substitution pro-

cesses, i.e., with any number of competitors.

- To develop algorithms and computer programs for fore-
casting of substitution processes and for estimation of

model parameters from historical data.

- To find formulae making it possible to calculate the
model parameters on the basis of the economic assessment
of a new technology in order to be able to incorporate

the newcomers also in the model.

- To develop a probabilistic model of the substitution
process, making it possible to describe and evaluate the

accuracy of forecasting.

- To apply the model to substitution of primary energy
sources in world energy consumption, to verify the model
on historical data (wood, coal, oil, natural gas), and
to show how the possible role of a new energy source
(e.g. nuclear) can be forecast on the basis of objec-

tive and quantitatively well defined data.



The paper is organized in the following way.

In Section 2 existing empirical models of substitution
processes are briefly reviewed and discussed. Several examples
are given to illustrate the problem and to point out some im-

portant facts.

The approach adopted in this study is based on a differen-
tial equation formulated in Section 3. This equation reflects
the long-term balance of capital flows governing the production
using one of competing technologies. A system of such equations
describes the multivariate competition and the introduction of
market shares makes it possible to eliminate the market price.
Following this basic idea a simple model is derived in Section 4,
which can be considered as an extension of the Fisher-Pry model
to the multivariate case. This model is derived under certain
simplifying assumptions; they are removed in Section 5, where
a more general model is presented. As a closed analytical solu-
tion does not exist in this case an algorithm is developed which

sclves the problem numerically in a very effective way.

The question how the information about the model parameters
can be extracted from known historical data is studied in Section
6. To be able to answer this question in a consistent way, it
was necessary to extend the deterministic models developed in
previous sections to a probabilistic model. The problem of
parameter estimation is solved in detail including the numerical

algorithms and practical examples.

The problem of forecasting is addressed in Section 7. It
is shown how the uncertainty of model parameters can be respected
in forecasting and how a new technology can be incorporated in
the model using its economical assessment. This is demonstrated

on the forecast of market penetration by nuclear energy.

In the concluding Section 8 the range of validity of the
model is discussed from a general point of view and some further

possible applications are outlined.



Technical details of mathematical character, which have
been omitted in the main text to make it easier to follow, can
be found in Appendix A in the form of mathematical theorems and

proofs.

In Appendix B a simple and effective optimization method is
developed. It is applied in maximum likelihood estimation in

Section 6.

The main practical results of the theory presented are con-
densed in FORTRAN - subroutines the commented listings of which

can be found in Appendix C.

2. FISHER-PRY EMPIRICAL MODEL

Perhaps the first systematic attempt at forecasting tech-
nological changes based on a mathematical model is due to Fisher
and Pry [3,4]. They collected historical data on a wide variety
of substitutions and advanced a model which fits existing data
remarkably well. The results of Fisher and Pry's investigation
apply to two competing technologies of commodities fulfilling

the same need. The essence of their work can be stated as follows.

Let f1(t) be the fraction of market occupied by the commo-
dity produced by the first, o0ld technology at time t and f2(t)
the fraction of market penetration by the second, new technology

at the same time.
f1(t) + f2(t) =1 . (2.1)

If the observed values of f, are plotted as a function of time

2
the plot follows with a high regularity the S-shaped curve given

in Figure 1.

This curve can be described by the following formula:

1 €12 1
£,(t) = 5|1 + tgh —= (t-t, )| = , (2.2)
2 2 2 h 1o 0e -
1+e t-ty)

where th is the time at which the half of the market is penetrated,
1 . . .
fz(th) = f1(th) = 5. For given th the entire substitution process

is determined by a single parameter S5 which is denoted in the



original paper as 2a; we changed the notation to be compatible
with the rest of the paper where more than two competing techno-

logies are considered.

Figure 1. Logistic curve.

The fraction f1(t) can be obtained simply as a supplement
to one according to (2.1), or formally from the formula (2.2) when

the indices 1 and 2 are interchanged and the relation

€1 = ~Cq2 (2.3)
is used.

The relation (2.2) can be rearranged in the following way:

f,(t) Cqo(t—-t)
2 _ 2 h (2.4)
1- f2(t)
or
£, (v)
lnt—f—z——(zT = C12(t-th) . (2-5)

This indicates that the substitution data, when plotted in the
form of f2/(1 —f2) as a function of time semilogarithmically,
should form a straight line. This appeared to hold with ex-

traordinary precision for a wide range of cases investigated.



Fisher and Pry defined the "takeover time" of the substitu-
tion as the time period tS required to transfer from f2 = 0.1
to f, = 0.9. It is easy to find that the takeover time tg and

the parameter c,, are related in the following way:

_ 2 gn 9
Cqp = S .
s
2(t - ty)
If the dimensionless time 1 = — is introduced, for-

s
mulae (2.2) and (2.5) can be written in the following parameter-
less forms:

1 £,(1)

£f,(1) = ; 4n —=——— = gn9% -1 .
2 1+9T 1—f2(T)

This makes it possible to plot different substitution processes
into a single graph. Fisher and Pry have done it for 17 sub-
stitutions listed in Table 1. The result is shown in Figure 2.
For more details the reader is referred to [3]. Here, we will
point out only that the main outliers in Figure 2 concern the
synthetic/natural rubber substitution and are due to the per-
turbation that occurred during the Second World War when large
effort was undertaken to support the substitution. This is

clearly seen from Figure 3 [3].

A very important feature of the Fisher-Pry model is that
it describes the evolution of the fractional market share and
not the total production of the particular commodity. While the
total production may be influenced by various and often unknown
external factors the evolution of the fractional market share ex-
hibits nice regularity. This can be clearly seen from the ex-
amples in Figures 4 and 5. The line for steel production in the
USSR indicates that the model may be valid also for societies

with planned economies.

For later use some other possible forms of the Fisher-Pry

substitution model will now be given.



Table 1.

Substitution tS th
Years Year
Synthetic/Natural Rubber 58 1956
Synthetic/Natural Fibers 58 1969
Plastic/Natural Leather 57 1957
Margarine/Natural Butter 56 1957

Electric Arc/Open Hearth
Specialty Steels 47 1947
Water Based/Oil-Based House Paint 43 1967
Open Hearth/Bessemer Steel 42 1907
Sulfate/Tree-Tapped Turpentine 42 1959
TiOz/PbO-ZnO Paint Pigments 26 1949
Plastic/Hardwood Residence Floors 25 1966
Plastic/Other Pleasure Boat Hulls 20 1966
Organic/Inorganic Insecticides 19 1946
Synthetic/Natural Tire Fibers 17.5 1948
Plastics/Metal Cars 16 1981
BOF/Open Hearth Steels 10.5 1968
Detergent/Natural Soap (US) 8.75 1951

Detergent/Natural Scap (Japan) 8.25 1962
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Suppose that we start to count the time t at the moment when
f.I(O) =f10 and f2(O) = 1-f10= f20 . (2.6)
(2.4) we have
f20 %21t
- ’
f‘IO
and the formula (2.2) can be written as follows:
200 = 0 et 7 (2.7)
1+ N [=]
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The Fisher-Pry model can also be written in the differential form

2
== ci(1-£,) . (2.8)

2

The formula (2.7) is actually the solution of this simple non-

linear equation of Bernoulli type for the initial conditions (2.6).

The substitution process with two competing commodities may
also be described by two differential equations

£ £
(2.9)

Notice that the relation
£.08) + £5,(8) =0

holds if (2.3) holds. It means that the condition (2.1) is ful-
filled for any t if it is fulfilled for one particular t, e.g.

t = 0. This observation may seem somewhat redundant in this
simple two dimensional case. Its importance will be seen later

on when we shall deal with multivariate substitution processes.

Several modifications of the Fisher-Pry model have been sug-
gested [5-10] but they don't seem to be substantial, at least

from the point of view of this study.

Marchetti (1,2] brought up the idea of considering different
primary energy sources as commodities competing for a market.
In the historical period of interest there are at least three
or four primary energy sources in the competition and the Fisher-
Pry model cannot be directly applied. To handle this case
Marchetti, after an analysis of known historical data, suggested
a rule called "first in - first out." According to this rule
both the technology leaving the market and the newcomer follow
the Fisher-Pry straight line (2.5), the former with positive
the latter with negative slope, while the fraction of the oldest

among the growing ones is determined as a complement to 1. 1In
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this way he was able, using data before 1940, to predict the
fractional market share of 0il consumption in the USA up to

1970 with a precision better than one percent. See Figure 6.

o CALCULATED VALUES
A STATISTICAL DATA

1930 TQLZ.O 1950 1960 1970 1880 1990

Figure 6. US oil energy fraction calculated from
1930-1940 trend lines.

Source: |2]

When we try to summarize the present knowledge of the substi-
tution processes, mostly based on experience, several questions

arise naturally.

(1) The fractions of market share exhibit a much higher
regularity than the absolute values of particular productions.

Why is it so?

(2) The equation (2.8) says that "the fractional rate of
fractional substitution of new for old is proportional to the
remaining amount of the old left to be substituted” [3]. This
was asserted by Fisher and Pry as a basic assumption. How can
such an assumption be justified? Obviously, it cannot be true

for more than two competing commodities.
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(3) The parameter c,; = —GCq, in equations (2.2) and (2.9)
is a characteristic of the difference in quality of two compet-
itors. From the second equation in (2.9) it can be seen that the

newcomer f., never can penetrate the market if Cyq <0. Even if

2

f202>0, it will die out. (Remember the competition between air-
ships and airplanes at the beginning of this century.) What does

this coefficient depend on?

(4) The previous question was partially answered by Mansfield
[9] who showed that the rate constant was positively correlated
with profitability of the new technology and negatively influenced
by the relative capital investment needed to introduce the new
technology. The question whether this relation can be established
quantitatively is of extraordinary importance. If the answer were
positive it would not be necessary to wait for historical data and
the chance of the new technology could be evaluated in advance and
also the evolution of the competition could be precalculated given
the time instance when the new technology is introduced. For in-
stance, it would be possible to determine under which conditions

solar energy may enter the market and what role it will play.

(5) Considering the case of more than two competing techno-
logies it does not seem likely that the evolution of the looser
and the newcomer could be entirely independent of the competitor
being in transition. Apparently, the Marchetti rule "first in -
first out” is a well working approximation of a more general law.
What is this law?

(6) The existing substitution models are fatalistic in the
sense that they project the future as uniquely predetermined by
the past history. An interesting discussion on technological fate
can be found in [2]. 1Is this fate inevitable? A positive answer
can hardly be accepted in general. What can be done if the normal
competitive technological evolution would lead to drastic ecolo-

gical changes or if it would threaten the existence of mankind



-16~

itself? What is the best way to control the substitution pro-

cesses?

All these questions will be addressed and hopefully also

answered, at least partially, in the following sections.

3. BASIC EQUATION

Let Pi(t) be the production of the ith competing commodity
in time t. By production we mean the number of units of the
particular commodity produced in the unit of time. What unit is
chosen to measure the production is not important at this moment.
For instance the steel production can be measured in tons per day,
in the case of electricity a megawatt can be chosen as a unit of

production.

Consider a finite time interval in which the production was

increased from Pi(t) to Pi(t+At). To realize this increase of
production a certain investment was necessary. Let this invest-
ment be

ai[Pi(t+At) - Pi(t)] ,

where oy is the capital needed to increase the production by a

unit and will be called specific_investment. 1In oy also the in-

vestment for distribution of the product is respected. Any unit
can be chosen to measure the capital and/or investment. The
reader may consider a monetary measure if he wants. Later on it

will be seen that only ratios are important.

The investment must be covered from some capital sources. One
of the possible sources is the capital accumulated by the producer

during the time period

t+At

P.(t)[p(t) - c.ldt

1 1 4

where c; are specific production costs and p(t) is the market




-17-

price. By specific production costs we mean all expenses con-
nected with production of a unit of the given commodity including
amortization of the material goods used in production and even-

tually also the tax set on the product by the government.

Let Qi(t,At) be the external capital which was extended to
the producer from outside. It also may be, for instance, a
governmental support given to the producer, if there is some

public interest in the production of the given commodity.
Making a balance, we can write
t+At
ai[Pi(t+At)— Pi(t)] = ./. Pi(t)[p(t)— ci]dt + Qi(t,At) + Ai(t,At)

(3.1)

where Ai(t,At) is either the part of the capital which was kept
by the producer to be invested in the near future, in this case
Ai is negative, or it is a part of the capital which was accumu-
lated in the past and is invested in the time interval under

consideration.

The equation (3.1) can be rewritten into the following form:

t+At
f gaiﬁi(t) - P (D) [p(t) ¢yl gy lt)pde = A (t,08) (3.2)
t

where

and q(t) is the external capital flow defined by the relation

0; (t,at) = f q(t)dt .
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When t and/or At are changing the right-hand side of equation
(3.2) takes different values, positive and negative. As we are
interested only in long term behavior of the process studied,
Ai(t,At) in (3.2) can be considered as a random variable with

zero mean and instead of (3.2) we can write

t+ At

/

Strictly taken, the variable Pi(t) in (3.2) should be distinguished

a, P

iy (8) =P (£) [p(t) —c;l - gy (t)pdt =0 . (3.3)

from the equally denoted variable in (3.3). 1In (3.2) it means a
realization of a random process while in (3.3) it is used to de-
scribe an abstract "smoothed" process which is of main interest
from the viewpoint of our goals. The stochastic nature of the
true process will be considered in more detail later on when we
shall deal with estimation of model parameters from historical

data and with uncertainty of forecasting.

As the integral in (3.3) is equal to zero for any t and At

the following differential equation must hold
a.P.(t) = Pi(t)[p(t) —ci] + qi(t) . (3.4)

This is the basic equation we shall deal with.

The equation (3.4) contains the market price p(t) which is
a very uncertain variable depending on many external and often
unknown factors. It should be stressed that we have introduced
this quantity only as a separator to be able to formulate the
economical balance separately for different competing productions
of commodities satisfying the same or similar need. It will be
eliminated and will never enter our model. This is perhaps the

main trick of the further development of the substitution model.

In the case of societies with planned economies, where no
open market exists, the market price p(t) can be understood as a
social value of the considered commodity for the present deploy-

ment of technologies.
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4. MULTIVARIATE COMPETITION

In this section we shall consider the situation when n pro-
ducers produce commodities satisfying the same need but they use
different technologies. We shall derive a multivariate substitu-
tion model, a special case of which, for n = 2, is the Fisher-Pry

model reported in Section 2.

To start a production with a new technology some investment
must be made using external capital sources. No technology can
start from zero without external help. This can be clearly seen
from equation (3.4). However, if the new technology has been al-
ready established and is viable, it must be able to live and grow
on its own account. In this section we shall assume that none of
the competing technologies is permanently supported by external
capital. These conditions can be defined mathematically in the

following way.

qi(t)=0 , ¥i , t >t . (4.1)

For n competing technologies we have n equation of type (3.4)
a.P.(t) = Pi(t)[p(t)-ci]; i=1,2,...,n . (4.2)

Because of the unknown quantity p(t) the system of differential
equations (4.2) is not a complete description of the substitution
process. We have n equations for n+1 unknowns. Before we show

how this difficulty can be overcome two comments are in order.

The differential equation (3.4) has been derived for a growing
production. In the system (4.2) all of the competing productions
may grow if the demand is growing fast enough. See, for instance,
the competition between soap and synthetic detergents in Japan
between 1950 and 1957 in Figure 5. However, in general, some
productions may subside in the course of competition and the
qguestion is whether the corresponding equation in the system (4.2)
applies also to this case. The answer is yes under the condition
that the production does not fall faster than is the natural

amortization of the equipment. Further on we shall assume that
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this condition is fulfilled. Then the negative left-hand side
of equation (4.2) represents the capital flow which is saved
because a part of the worn-out equipment is not renewed. The

old technology lives from his stock.

The second comment concerns the market price. 1In the system
of equations (4.2) it was tacitly assumed that the market price
is the same for all competing commodities. This is a reasonable
assumption if the commodities are in every respect equal. This
is, for instance, the case when the same steel is produced by
different technologies (e.g. open hearth or Bessemer) or when
electricity is generated using different primary energy sources.
However, even when competing commodities satisfy the same need,
in the sense that the consumer having purchased one commodity will
not purchase the other one, they may satisfy this need in qualita-
tively different ways. The consumer is ready to pay a higher price
for a higher cuality. Consider, for instance, domestic heating.
Both coal and 0il can be used to heat a house but o0il heating is
more comfortable and many of us prefer it even if it is more expen-
sive. Mechanical and electronic wrist watches satisfy the same need,
nevertheless many people are ready to pay a higher price for an elec-
tronic watch because they want to have it for some psychological rea-

sons. A drastic example of this kind are women's clothes.

To be able to handle at least some of these cases we have to

introduce a reference price. As a reference price the price of any

of the competing commodities can be chosen. For the sake of
simplicity let us choose the lowest price. Let p be this ref-
erence price, P the price of the ith commodity and Api the dif-
ference the consumer is ready to pay for the higher quality.

The difference between the price and the specific production costs,
which is the source of the capital the producer can accumulate,

can be written in the following way

p; - c; =P + Api - ¢, =p- (ci-Api) .

This shows that the system of differential equations (4.2) holds

also for the case of different prices if the specific production
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costs are reduced by Api. From now on ¢y will mean specific

production costs corrected in this way.

To proceed in the development of our model we shall rear-

range the equation (4.2) in the following way:

P.
0, == =p -c
iP. P i
1
a. L (4np.) =p - c (4.3)
idt i i )

The same equation can be written for the commodity indexed by j.

d = -
0t~g£(lnPj) =p-cy - (4.4)

Subtracting (4.3) from (4.4) we obtain

d d _ _
O"E(anj) aia?(lnPi) =cy cj . (4.5)

In this way n-1 independent equations can be consiructed which do
not contain the unknown variable p; however, one equation is still

missing.

To begin with a simple case we shall assume that the specific

investments are the same for all of the competing technologies:
o, = o Vi . (4.6)

At first sight, it may seem that this is a drastic and very
restricting assumption. However, later on when this assumption
will be removed, we shall see that the dynamics of market penetra-
tion is not very sensitive with respect to this assumption and
that the result obtained under this simplification may be a very

good approximation for the more general case.

Under the assumption (4.6) the left-hand side of (4.5) can

be rearranged in the following way.
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4a _ d _ d
aj 3t (ZnPj) 93 3F (Ln Pi) = o= (SLn

where P is the total production of competing commodities

n
P= ] P (4.9)

and fi is the fractional market share

Py
fl = ? . (4.10)

Using (4.8) the equation (4.5) can be rewritten for market shares.
a fi c; - c.
ac Rnfi = X J (4.11)

In this way the market price p(t) has been eliminated. The
equation (4.11) can be written for any i and j; however, only n-1
of these equations are independent. Hence we still have a system
of n-1 equations for n unknowns fi’ i=1,2,...,n. But having
passed from absolute values of productions Pi to corresponding
market shares fi we have the possibility to make use of an addi-

tional equation, which is independent of (4.11):

: fi(t) =1 . (4.12)

e~ 3

i

Now we have a complete system of differential equations the

solution of which, for given initial conditions, is unique.

The system of equations (4.11) and (4.12) is somewhat un-
symmetric. It would be good to have it in a symmetric form.
Let us find such a form.
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can be reorganized in the following way.

The equation (4.11)

€
+_
6]

.
Hh| Fhe
[ VN

c.
S R R
. a
J
As this relation holds for any j and i there must exist a function

¥(t) which is common for all components of the system and for

Hh

which
£, c.
f:.L"El = ety , ¥y (4.13)
J
Let us determine this function. From (4.12)
n -
Y O f.(t) =0 (4.104)
j=1 J
From (4.13) we have
. [ Si]
fj = fj P(t) - 5 ,
and after the substitution in (4.14) we get
; D
t = - u.15
p(t) 3 £1 eyt { )

(4.13) :

Now, the symmetric system can be obtained from
(4.16)

-_— 1 -

Making use of the obvious relation
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and introducing the notation

CcC.—=C.
c. .=+ 1 (4.17)
ij a
c =0 B

ii

the equation (4.16) can be written as
i . (4.18)

Notice that this system of equations also holds when the
coefficients cij are time-dependent. No assumptions have been
made in this respect. Notice also that for n=2 the system (4.18)
is

f.I i c12f.|f2 =0 |, £+ ¢
which is the Fisher-Pry model in the differential form (2.9)}.

Only very rarely an explicit solution of a system of non-
linear differential equations can be found. Fortunately,
system (4.18) is an exception. A general solution can be found
in different ways. We shall proceed in a way which is somewhat

tricky but simple.

Evidently for any t

fi(t) :—'—“"—f‘m . (4.19)
R

1+
jii F,TE)

With notation (4.17) the equation (4.11) reads
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a . (t)
S len ) = el o= -cL
dt < fi(t)> ij ji

and can be easily integrated:

£.(t) £ t
i I R _j c..(n)ar (4.20)
. (t) t. Jji
1 10 t
0]
£.(¢) 5o T
Ty - L oxP 'I cji(T)dT‘ ' “-2D
i i0 £
0]
where
fio = £t ¥ i

are the initial conditions. It only remains to substitute (4.21)
into (4.19).

f.(t) = . (4.22)

_f Cji(T)dTg
tO

H

1+ ?19 exp
JFi i

10

If it can be assumed that the coefficients cij defined by (4.17)

are time invariant the following simple result is obtained:

fi(t) = - . (4.23)

If we denote

k.. = on A2 (4.24)

formula (4.23) becomes
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£.(t) = — . (4.25)

Notice that for n=2, formula (4.23) gives the Fisher-Pry
model in the form (2.7) while (4.25) corresponds to (2.2).

The simple formula (4.23) assumes that the coefficients cji
are time invariant. According to (4.17) these coefficients are
determined by ratios of specific production costs (eventually
corrected by Api as discussed above) and specific investment.

It is known [11] that due to the learning effect the efficiency
of the direct labor input improves with the number of units
produced. This should be reflected in specific production costs
and also in specific investments. Therefore the assumption that
their ratio remains constant does not seem unrealistic at least
from the time when the technology was well established. Moreover,
from the way that the time-varying coefficients c.; enter the
more general formula (4.22) it can be seen that a mean value,
defined as

t +7T

=1

OI
ji J cji(T)dT ,
t

0]

may serve as a good approximation for tOf-tf»tO+T if cij(T) does
not vary too drastically.

Example 1., Substitution of primary energy sources

Now it will be shown how the multivariate substitution model,
derived in this section, works in a practical example. The model
will be applied to describe the competition between different
primary energy sources during the past 110 years. Wood, coal,
oil and natural gas are considered as competitors in the world
consumption of energy.

Under the assumption that cij are constants for all j and i

the relation (4.20) can be written in the following form

£f.(t)

on fi(t) = kji - cji(t-to) . (4.26)
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It indicates that the logarithms of the ratios of market shares
for all pairs of competitors, when plotted as functions of time,
should follow straight lines. Figures 7a, b, ¢, 4 show that in
the given example it is true with a very good approximation. The
straight lines in these figures were obtained as least squares
fits. Notice that o0il and natural gas are equivalent competitors
in a certain sense. This can be seen from horizontal lines in
Figures 7c, d and from parallelism of lines for oil and natural

gas in Figures 7a, b.

To see how the model can be used for forecasting, only the
historical data between 1930 and 1950 were taken to estimate the
model parameters. The projections obtained in this way for the

future (and also for the past) are given in Figure 8 where also

true historical data are registered for comparison. The figure
also shows how the future, not yet known, development of the
natural competition could be if no new and superior technology --
like nuclear -- were introduced. The historical data given in

this example were collected at IIASA by N. Nakicenovic [12] who
also performed this preliminary calculation. The question of
estimation of model parameters from historical data will be dis-
cussed in Section 6 where a more detailed analysis and description
of this example will be given. The problem of forecasting is

studied in Section 7.
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Figure 7a,b. Ratios of market shares plotted
vs. time in semilogarithmic scale.
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5. COMPETITION UNDER DIFFERENT SPECIFIC INVESTMENTS

In the previous section a multivariate substitution model
has been developed under the assumption that the specific invest-
ments oy i=1,2,...,n, were the same for all of competing tech-
nologies. This simplifying assumption will now be removed and it
will be shown that the overall dynamics of the substitution does
not change much when the specific investments of competing tech-
nologies are slightly different. As a matter of fact, this was
already indicated by the example of primary energy substitution
where the specific investments apparently are not equal, and also
by many examples of two-dimensional competition given by Fisher
and Pry [3,4]. Now we shall investigate this favorable feature
of the model in detail.

We shall start our investigation with the equation (4.5) which

can be written in the following form
+ c: . (5.1)
For n competing technologies n-1 independent equations of this

type can be written. Introducing the fractional market shares
(4.10) we have

By fi P
N - S (5.2)
] J

where P is the total production of all competing technologies (4.9).
If the growth rate factor

_P
P=35

_d
= 3t (4n P) (5.3)

is introduced the equation (5.1) gets the form

+ c, +a.p . (5.4)

Fh] Hhe
[N

£,
—l =
a'f. + cj + ajp ai
J i
By the growth rate p (5.3) a new exogenous parameter, or possibly

a variable, is introduced. The influence of this exogenous quan-

tity on the system dynamics will be discussed in more detail later
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on; at this moment notice only that the growth rate p can be can-
celled in (5.4) if aj = oy Notice also that all parameters in
equation (5.4) can be time-varying in general. Some assumptions

concerning this point will be made in due course.

As the relation (5.4) holds for any pair of indices i and j
there exists a function ¢ (t) which is common for all of the com-

petitors and for which

£,
L =9 . ;
oy fi + ooy 4 o, e ; Vi . (5.5)

Similarly to Section 4 the function ¢ (t) can be determined from

the condition

n
) £,0=1 (5.6)
i=1
E .
f. = o . (5.7)
i=1
From (5.5)
- C'
£F.o= f.(Lp-—l- ) , (5.8)
1 1I\G [o 0
1 1

and using (5.7) the following expression for v (t) is obtained:

(5.9)

The replacement of ¢ in (5.8) by (5.9) and a simple rearrangement

gives the following symmetrical system of differential equations:

H i=1,2,...,n , (5.10)

where
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Q.
_ i
J
Cli Ci il Ci—C. ai
cij Sl e gt Q) = —lot. tlg - Ve (5.12)
] 1 J ! J

Notice that the following relations hold for the parameters

cij and aij entering the system of differential equations (5.10)

by which the multivariate substitution process is governed.

aij=a+=;£=§ (5.13)
Jj1 jr ri

a;; = 1 (5.14)

cij = - aij cji = crj - aij Cri = arj(cir-cjr) (5.15)

¢y = O . (5.16)

This means that the system dynamics is fully determined only by
2(n-1) independent parameters (possibly time-varying), for instance,
by

a_.,c_. ; ¥i *%r
or by

3jr s Ciy ¢ VI Fr

where r is the index of an arbitrarily chosen reference competitor.
All remaining parameters are determined by relations (5.13) to
(5.16) .

Notice also that the system can be considered as a system
C. o.

with constant parameters if (ai +g? and the ratios ai are time-
i ]

invariant, i.e. not necessarily cy and oy separately.

A comment is in order concerning the growth rate factor p.
The introduction of this factor is the price we have to pay in
order to get rid of the market price p in the case of different
specific investments o, - Actually the growth rate factor p is
related to the market price p and it is true that eliminating the

uncertain quantity p we introduced the other one p. However, it



-34-

seems to be more advantageous to operate with p instead of p for
several reasons: (1) From the expression (5.12) it can be seen
that the total growth rate factor p does not have much influence
if the ratio ui/uj is close to one. (2) Often the growth of the
total production P exhibits an exponential behavior and the factor
p can be considered as a constant with reasonable approximation.
World energy consumption and U.S. total energy consumption are
given in Figures 9 and 10 [2] as examples of this kind. In the
former case p = 0.02, while for the USA p = 0.03 if one year is
taken as the time unit. Later on it will be seen that the dynam-
ics of the system is rather insensitive with respect to stochastic
fluctuations of p(t) around some mean value even when the specific
investments are considerably different. (3) If one would prefer
to go deeper into the market relations it would be necessary to
introduce and parametrize the market demand function and to make
some additional assumption like existence of market equilibrium,
etc.

The solution of the system of differential equations (5.10),
by which the substitution process is governed in the case of dif-

i
a closed explicit form. A straightforward way to obtain the solu-

ferent specific investments o, i.e. aji + 1, cannot be given in

tion for a particular case is the stepwise numerical solution using
several known general algorithms. However, if it can be assumed

that the ratios aij
is possible to reduce the solution of the system of n nonlinear

ui/aj are time-invariant for all i and j it

differential equations (5.10) to a problem of finding the root of
a simple univariate transcendental equation. The method we are
going to develop, makes it possible to determine the market shares
fi(t), i=1,2,...,n for any given time instant t in a simple way
and it also gives a better picture about the sensitivity of the
solution with respect to parameter values and their possible var-

iations.

Choose one of the competing technologies, say with index r,

as the reference competitor, divide the relation (5.4) by ur> 0
c
and subtract from both sides of (5.4) the term (&E'_ 9. The fol-
r

lowing relation equivalent to (5.4) is obtained:
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£ £,
_J = 1
ajrf, + cjr A F. + c. . (5.17)
j i
Similarly to (5.4) this relation also holds for any pair of in-

dices i and j and therefore
£,
a, ?i. e =9, {5.18)

where Pr is a function of time which is common for all indices i.
The meaning of this function becomes clear when the index i is
chosen as i = r and the relations (5.14) and (5.16) are considered.

Then from (5.18)
f
_r _ d
p_ = F < ak ®n fr) . (5.19)

Dividing the whole equation (5.18) by a, and using the first

equalities in (5.13) and (5.15), we obtain

c.
1 a ir -c
a. ri

a. ri
ir ir

The relation (5.18) can be rearranged into the following form

i L ¢ +oa.y ) (5.20)

Integration of (5.20), under the assumption that apy is time-

invariant, gives

£ (t) i t
wn F ) = f c ;(ndt + a g [ Pr(r)dt (5.21)
i'o £o ¢
a_;v_ ()
rrr
Fi(8) = g (e ' (5.22)

where
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t
Jcri(T)dT
to
ki (8) = £.(to) e (5.23)
t £,(t)
= = _ .24
b (t) JPr(T)dT n F_(co) (5 )

t

o

If it can be assumed that the parameters Cri

ant then the formula (5.23) gets

Cri(t—to)

Krl(t) = fi(tO) e

are also time-invari-

the form

(5.25)

Notice that the variations of the parameters Cri(t) are

smoothed by the integral in (5.23).

This also shows that the

stochastic fluctuations of the growth rate factor p, entering

c_. according to
ri

i=1,2,.

For given initial condition

(5.12), may well be neglected even when oy

..,n are considerably different.

fi(to) and given Cri the factor

Kri(t) can be easily calculated for all i and any time instance

t using (5.23) or (5.25). To be
shares fi(t) according to (5.22)
of the single function wr(t) for

be determined from the condition

when fi are considered functions

t. 1If we introduce the function

n
L) = E £,

g0 =

able to determine also the market
it is necessary to know the value

the particular t. This value can

of an unknown value wr for given

(5.26)
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then the unknown value wr(t) is the root of the transdendental

equation

g () =0 . (5.27)

As both Kpi and a,; for all i are positive the derivative dEr/dwr
is also positive for any wr-— the function Er(wr) is monotonous --
and consequently the real root of the equation (5.27) is unique.

It can be found by several well known iterative numerical methods.
Before we go into these details some rearrangement of the equation

(5.27) 1is necessary.

The advantage of the procedure outlined above is that it
operates with the minimum number of parameters. The disadvantage
is that it is unsymmetrical in the sense that it depends on the
choice of the reference competitor indexed by r. A more detailed
analysis shows that an unsuitable choice of the reference competitor
might lead to numerical difficulties. To avoid these possible dif-
ficulties we shall forego the minimum number of parameters and we

shall modify the procedure to maintain the symmetry.

Let a be some mean value of all o's the suitable choice of
which will be made later on. Dividing equation (5.5) by a; > o,

we can write it as

C. +0.p\ —
a. _f{e _ 71 i o
dtzn f. = (H ———=———>—— . (5.28)

Integration of this equation over the time interval (to,t) under

the assumption that the ratio E/ai is time-invariant gives

f t i+ 0P
tn = J -gdt J L 1 a4t
£

£.(t) = f%e ’ (5.29)

where

’ (5.30)



-39~

fi = fi(to), Y(t) is a function of time which is common for all
Q
i but unknown for t # t, and

tc.-+u.p
B. (t) = J; dt (5.31)
1 [

t

0

or, when (ci-+aip)/a is constant,

c,tap
B.(t) = ——— (t-ty) . (5.32)

1 o

For any given t % t, all market shares (5.29) can be considered
as functions of a single quantity ¢ = y(t). The correct value of

this quantity can be determined as the real root of the equation

E(y) =0 , (5.33)
where
n
E() = ] £ -1
i=1
n (y-B.)a.
E) = J £i, @ S T (5.34)

can be only positive the derivative

: _dew) _ % (W-B3lay

E'(y) = & = i; a; £ @ (5.35)
n

') = ] a £ (5.36)

is also positive and the function g(y) is monotonously increasing.
Therefore the real root of the equation (5.32), we are lokking for,
is unique and can be easily found by the Newton-Raphson method

illustrated in Figure 11 and realized by the recursive formula

ALRARIEELY S A (5.37)
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Figure 11. Newton-Raphson method.

where w(k) means the kth approximation. Theoretically the root

is found as the limit

vo= lim &

ko

however, in practice only a few iterations are fully sufficient

to obtain the root with the required precision if the starting
point w(o) is well chosen. Hence, the question of suitable choice
of the initial approximation w(o), which we are going to answer,
is of great practical importance. 1In this context we shall also
find a suitable mean value a of all a's which has not been de-

fined yet.

In the case of equal a's, i.e. for a, = E/ai =1, ¥i, the
root of equation (5.33), i.e. the zero point of the function

{(5.34), can be calculated explicitly.
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In this case, equation (5.33) reads

v -85
e’} f. e -1=0
iz o
and its solution is
N (5.38)
n -B.
) £ e 1
i=1 0
n -8
Y = = &n (.Z fioe ) . (5.39)
i=1
Substitution of a; = 1 and (5.38) into formula (5.29) gives
=B (t)
f. e 1 1
f.(t) = 1o =
1 n -Bj(t) £ Bi(t) - Bj(t) !
I £ e + i = (5.40)
j:‘] 0 J¥F1 0

which is the solution we obtained for this simple case in

Section 4.

The value of Yy given by formula (5.39) can well serve as
the initial approximation of the root of equation (5.33) if the
mean value o is chosen in such a way that the ratios E/ai = ay
are as close to one as possible. To meet this requirement we

choose o so that it minimizes the expression

L&)

The mean value which has this property is

e~
Q|

@ = — (5.41)

[arle]

Q
H-NJ‘
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(o) according to

The choice of the initial approximation ¥
(5.39) and of the mean value a according to (5.41) is not neces-
sarily the best one for some particular case. Nevertheless, in-

spite of its simplicity it appeared to be fully convenient.

To complete the numerical algorithm one last question remains
to be answered: How is it possible to recognize that the required

precision has been reached and the iteration (5.37) can be stopped?

(k)

Let Y be the true root of equation (5.33), v its kth ap-

proximation, f{k)(t) the kth approximation of fi(t) and
k k
5¢( ) _ ¢‘ ) _ v
(k) _ (k) _
SE; = £ £

the corresponding errors. From (5.29)

(k)
f,(k) 3 (p - Bi)ai (y - Bi)ai Sy a; Sy aj;
i .

a4
-1

As all a; are positive all errors §f
(5.34) we have

(k)

Sy
6f§k) = f.(e
1 1

(k)

i have the same sign. From

(k)

n
Iooef) = o™

1

i
and consequently

(k)

| max 6£ ) | < e ™))

1

This means that if ¢ is the greatest acceptable error in the cal-
culation of f;(t) and the iteration (5.37) is stopped when

|g|5 £, then the required precision is guaranteed for all i.
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The numerical solution can be summarized into the following.
Algorithm PENETR:
1. For given oy i=1,2,...,n, calculate the mean g according

to (5.41) and aj for all i according to (5.30).

2. For given Cir P and (t-tO) calculate Bi for all i accord-
ing to (5.32).

3. For given fi(to) = in calculate the starting value W(k),
k = 0, according to (5.39).
u, Assuming Y = W(k) calculate the market shares f;, = £, (t)
for all i according to (5.29).
n
5. Calculate £ = iz1fi - 1. 1If the absolute value |&]| is

less than the maximum acceptable error in the calculation

of fi stop the calculation.

(k+1)

6. Calculate new Y using (5.37) together with (5.36) and

repeat 4.

This algorithm is realized by the FORTRAN subroutine PENETR
(N,C,AL,Fg,T,F) the listing of which can be found in Appendix C.

Algorithm PENETR operates with 2n+ 1 parameters, namely

o] a i=1,2,...,n, and p. However, as was shown above, the

Ly Oy,
sélution fi(t) for given fi(to) is uniquely determined only by

2 (n-1) parameters. Therefore 3 parameters of the algorithm
PENETR are redundant and could be removed. It is easy to verify
that the same result is obtained if the original parameters p,
a, C are substituted by the modified parameters p, &, ¢ deter-

mined in the following way:

p =0
a_ =1
r
1 ¢y
%3 T &y T a T T o (5.42)
ri r
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C . O
€ =cj,=-g-=———+(-1e , (5.43)

where r is the index of an arbitrarily chosen reference compet-
itor. Of course, other modifications of parameters are also

possible.

To demonstrate the application of the algorithm PENETR we
shall give a simple example. Further examples will be given in

the next sections where we shall deal with real practical cases.

Example 2. Sensitivity analysis of two-dimensional com-

petition with respect to different specific investments.

Consider a two-dimensional competition where f2 is the
market share of the new, winning technology. The evolution of

the market shares is described by the differential equation (5.10)

which for n = 2 and 1 = 2 reads
C,. £
. 211 B
£, + 5 ayE,FE, 0
or, with o
21 1
£, = 1-f,, ¢ == - a = g (5.44)
1 2 12 a4 12 ay,
. £f.(1-£,)
£ 2 2

2 T €12 -
1+ (a12 1)f2

To make the analysis as general as possible let us intro-

duce the dimensionless time

where t is the time point at which a half of the market is
penetrated (i.e. for t = t,yor T = 0, £, = £, = 0.5) and let us

choose Ty in such a way that

df., (1)
2 _ n9
—5 = == (5.45)
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in all cases. Obviously
o g 2 ™ 20 (5.46)
- = - = c .
dz s dt s "121 +(a12—])f2

and for 1 = 0 and f2 = 0.5
df2 ~ TS Cq9 (5.47)
dt T =0 2(1-+a12)

Comparing the right-hand sides of (5.45) and (5.47) we have

+ 1 OL.] + 0.2
T = ————— +4n9 = * 2n9 . (5.48)
S Ci0 ¢y -c + (a1 - az)p

Notice that for a =1 (i.e. ay = az) TS is the take-over

12
time defined in the Fisher-Pry model as the time period required

to transfer from f2 = 0.1 to f2 = 0.9 (see Section 2).

From (5.46) it is seen that after this normalization the
differential equation describing the evolution of market shares

gets the form

af £,(1-1£,)

2 _
F = (a12+1) Zn9 1+ (a (5.49)

and has to be solved for the initial condition f2 = f1 = 0.5
for t = 0. For any 1 (positive or negative) the solution can
be obtained using the subroutine PENETR with the following

values of its formal parameters:
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&:a_1
1 a,
0y = 1 ;
f10 = 0.5 ;
f20 = 0.5 ;
t =1

The result of this calculation is given in Figures 12 and 13.

From Figure 13 it can be seen that within the take-over
time the plot Qn(f2/(1— f2)) can well be approximated by a
straight line for a rather large range of ratios a,, = a1/a2.
This explains why the empirical Fisher-Pry model is able to
describe so many practical cases even when the specific in-
vestments are different. It also conforms with the observa-
tion of C. Marchetti that the parameter Co1q of the Fisher~Pry
model can be determined from the present trend of the market
penetration if the new technology reaches a nonnegligible part

of the market, say approximately 10%.



—47-

Figure 12.  Two-dimensional competition. Sensitivity analysis
with respect to different specific investments:

aylag = 1/2.2/3, 3/4,1,4/3,3/2, 2.
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Figure 13.  Two-dimensional competition. Sensitivity analysis
with respect to different specific investments:
oyfag = 1/2,2/3,3/4,1,4/3,3/2, 2.
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6. PROBABILISTIC MODEL AND ESTIMATION OF PARAMETERS FROM
HISTORICAL DATA

To be able to use the model developed in the previous sec-
tion for forecasting the future course of the substitution
process we have to know the values of its parameters. In prin-
ciple, there are two ways of obtaining these values: (a) the
economic evaluation of the technologies entering the process,
(b) the estimation of the parameters from known historical data.
Each of these two possibilities has its advantages and draw-

backs.

In some cases it may be very difficult to determine the
model parameters using the former approach. For instance: How
to calculate the correction Api (see Section 4 for definition)
by which the specific production costs c; have to be reduced in
the case when the competing commodities satisfy the given need
in a qualitatively different way? Or, what is the precise mean-
ing of the specific investment oy in the case of wood as primary
energy source and how this value can be calculated? However,
there is no other way of proceeding when the substitution pro-
cess has not started yet and no historical data are available.
All what we can practically do in this case is to pick up one
or more sets of possible values of model parameters according
to our subjective judgment and to apply the model for these

scenarios.

If the substitution process studied is already running in
reality and its observation in the past is available, then the
parameters ——- whatever their interpretation is -- can be estimated
on the basis of this past experience. How to extract the infor-
mation about the unknown parameters from the historical data is

the main question which will be studied in this section.

A widely used approach to parameter estimation is the so-
called curve fitting. The parameters of the model are chosen in
such a way that the output of the model is as close as possible

to the known true data. When we try to formalize this ad hoc
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approach mathematically several questions arise. The first one
is: What curves have to be fitted? In our case we have many
possibilities, for instance,

£, (¢) £, (t)

. i . . .
T77f17€7 , ¥i:; or &n —— ¥i, 3 # i.

f.(t), ¥i; or &n fj(t) '

Which one of these (or other) possibilities has to be chosen to

obtain the "most reliable"” estimates?

A sound, intuitive, feeling says that the more data can be
used the better estimates of the model parameters can be obtained.
However, if the number of data is greater than the number of un-
known parameters, a perfect fit can never be reached in general
and the second question arises naturally: What significance has
to be assigned to different errors and how to express it quanti-

tatively?

To be able to answer these and similar questions in a con-
sistent way we have to go deeper into the stochastic nature of

the process and to build a probabilistic model.

To make this text accessible also to those readers who are
not specialists in probability theory, we shall concentrate
our exposition mainly on the underlying "philosophy" and practic-
al results. The technical details of a mathematical character,
which are not necessary for general understanding, will be stated
in the main text without formal proofs. Full proofs (some of

them are far from trivial) can be found in Appendix A.

Our approach to estimation and forecasting adopted through-
out the rest of this paper is purely Bayesian. The substitution
process we are studying is nonstationary in its nature: the sit-
uation which occurred in the past can never be repeated in the
future. The set of historical data we have at our disposal, is
one realization of one nonstationary stochastic process. There-
fore the concept of probability cannot be based on frequency con-
siderations. 1In the Bayesian view the probability is understood

as a measure of belief and the probability distribution reflects



-51-

the uncertainty of the relationship between us (you or the
author) and the external world. In general, different people
may have different probability distributions for the same phe-
nomenon depending on the information or knowledge they have.
Because of this subjective feature one often speaks of the sub-
jective probability approach. However, to avoid misunderstand-
ing it should be stressed right at the beginning that using
this approach it is possible to eliminate the prior subjective
opinion about the possible values of unknown quantities and to
base our judgment only on objective data. This will be shown

in detail later on.

The mathematical system that is called Bayesian statistics,
compared to other approaches to statistics, is the only one
which is fully consistent and logically closed. Besides this
mathematical beauty two pragmatic arguments speak in its favor.
It is based on sound principles and works in practice, as we
shall be able to show. An excellent explanation of the logical
foundation of the probability theory with the interpretation
outlined above has been given by De Finetti [13]. Very good
textbooks are De Groot's [14] and Raiffa and Schlaifer's ([15].

To those readers who are not familiar with the present state
of mathematical statistics, it may seem that we devote too
much space to the justification of the Bayesian approach. They
are recommended to read a short but pithy talk given by Lindley
at the conference on Directions for Mathematical Statistics
[167.

The Bayesian position, from which essentially everything
follows, is that all uncertain quantities -- including the un-
known parameters -- are, before they are observed, random: that
is, have a probability structure and a probability distribution
can be assigned to them. This is, actually, no assumption; it
can be proved on the basis of a few simple and natural axioms.
The act of observation changes the status of the guantity ob-
served from a random quantity to a number. If the quantities

we are interested in, like parameters of our model, cannot be
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observed directly but only through other related quantities,
like the output of the model, they remain uncertain also after
this observation; however, their probability distribution is
changed -- their uncertainty is decreased. From this Bayesian
point of view the parameter estimation means finding the prob-
ability distribution for the unknown parameters conditional on
the observed data. Any single value, which is taken as an
"estimate" is nothing more than some characteristic of this
conditional distribution. It may be, for instance, the point

at which the probability density reaches its maximum.

To be able to solve our practical problem only a few basic

rules of the general probability theory have to be recalled.

Let a,b,c,... be random quantities or sets of such quantities
and let p(a|b) denote the probability density of a conditional
on b. Then the following relations hold:

pla,blec) = p(alb,c)p(b|c) (6.1)
plalc) = Jp(a,b|c) db , (6.2)

where the integral in (6.2) is taken over all possible values of
b. When (6.1) holds, the following relation must also hold:

p(a,b|c) = p(bla,c)plalc) . (6.3)
From (6.3)

p(bla,c)

and using (6.1) and (6.2) we have

p(bla,c) = ~2@lPeIpb]C) . (6.4)

Jp(alb,c)pwlc) db

This is the famous Bayes rule which makes it possible to deter-

mine p(bja,c) when p(alb,c) and p(b|c) are known.
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A successive application of (6.1) gives an other useful

tool sometimes called the chain rule for probability densities.

N
p(x1,x2,...,xi,...,xN) = i£1 p(xi|xi_],xi_2,. .,x1) . (6.5)
Later on we shall also need the rule according to which
the probability density p(x1,x2,...,xn) can be recalculated into
the probability density p(y1,y2,..,,yn) when the random quanti-
ties {x1,x2,...,xn} and {y1,y2,...,yn} are related by a regular
(one-to-one) deterministic transformation. Let
p(x1,x2,...,xn) = g(x1,x2,...,xn) ,
X; = &3 (yquYpreeyy ) 5 1= 1,2,.00yn (6.6)
then
P(Y1:Y2,---,yn) = 9(51:€2,---,€n)' J| ’ (6.7)

where |J| means the absolute value of the determinant J (Jacobian)

of the transformation (6.6).

8£1 8&1 8£1

By1 ’8y2 res ’Byn

s D(€1,€2,---,€n) B 8&2 8&2 8&2
D(y1’y2""’yn) 8y1 rayz P 'ayn . (6.8)

%n %n %

ay1 r ayz r . r ayn

Now, let us go closer to our estimation problem using these

methodological tools.

Let K be the finite set of unknown parameters we would like

to know and let D be the set of data we have at our disposal.
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Then the probability distribution we are interested in is p(K|D).
Let v be the dimension of K (the number of unknown parameters)
and s; be the space of all possible values of K which have to be

considered. Applying the Bayes rule (6.4) we have

o(k|D) = BPIKIR(E) 6.9)
J(p(D|K)p(K) dK
Y
SK

where p(K) is the prior (subjective) probability density which
we -— as users of this tool -- have to assign to the unknown param-
eters before the observed data are incorporated into our knowledge.
The probability density of the set of the observed quantities D
given the parameters K has to be known. This is one of the

reasons for which we have to build the probabilistic model of

the process. We shall come to this point after this general in-
troduction where we want to explain the basic philosophy of

Bayesian estimation.

The operation (6.9) can be understood as the correction of
our prior subjective probability distribution for X by objective
data. A classical objection to this Bayesian estimation is that
when the prior distribution p(K) is wrong in the sense that it
prefers other than true values of K, then the resulting p(K|D)
is incorrect or at least biased. This objection is fully justi-
fied but should be oriented not against the Bayesian statistics
but against the user. Mathematics provides us with a logical
and consistent system of reasoning but it cannot correct our
mistakes. The prior distribution p(K) is a model of our prior
uncertainty. Like any other mathematical model, for mathematics
it is an input. If the input is wrong the output is also wrong
in general. The system of axioms, on which mathematics operates,
and mathematical models are the only connection between mathemat-

ics and the true world.

If the reader accepts this explanation he has the right to

ask the following gquestion: How should we choose the model p(K)
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to be sure that no subjective mistake is introduced into the cal-

culation?

The author does not know any practical situation when ab-
solutely no prior information is available. For instance, in
our case of market penetration the parameter a; . means the ratio
of specific investments, a ;. =
negative. But we also a priori know that it cannot be larger

ai/ar, and therefore cannot be

than say 10!2?., sSimilarly, we can assume with certainty that the
parameter c; lies within the interval -10%0 < cir<i103°. In prac-
tice we can choose any prior distribution p(K) which is very "flat",
but if we want to be extremely "objective" we may choose the

uniform distribution
p(K) = ¢ for KES;()

_ v
p(K) =0 for K¢S, ,

where

1
£ = (6.10)

[as
\Y
SK

In that case (6.6) gives

(D |K)
p(KID)=p—'——— for Kes; (6.11)
{p(D|K)dK
Vv
SK

p(K|D) = 0 for K¢S

K

Strictly speaking, the space S; can be as large as we want but

finite. It is not possible to distribute uniformly one unit (of
our belief) on an infinite countable set of intervals. If S; is
growing to infinity then e, defined by (6.10), tends to zero and

the right-hand side of (6.9) becomes undetermined.

For technical reasons it is usually much more convenient to
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operate with probability density functions which are defined by
a unique formula on the whole euclidean space RY rather than on
its subset SECZRv, like (6.11). (This is actually the reason
why the normal distribution is so widely used also in cases
when it is known that the random gquantity may lie only within a
finite interval.) This situation can be reached also for the

conditional distribution (6.11) if the integral

{
J p (D|K) dK
RV
exists. Under this condition (6.11) can be written
p(D|K)
p(K|D) = |
p(D|K) dK - J p(D|K) dK
v VLV
R R SK
and for S; > RY we obtain the simple relation
) _ 1.
P(K[D) = 53 p(D|K) , (6.12)

which holds for all Ke R’ and where K_1(D) is the normalizing

factor

x (D) = {p(D|K)dK , (6.13)

which does not depend on the unknown parameters K.

The probability density p(D|K), considered -- for given data
D--as a function of unknown parameters K, is called the likeli-

hood function

L(K) = p(D|K) . (6.14)

If we are interested in the point in which the probability

density p(K|D) reaches its maximum we have to find such a set of
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possible values of unknown parameters K for which
L(R) > L(K) . (6.15)

The point K is called the maximum likelihood (ML) estimate.

when K is expressed as a function of observed data D, K = ﬁ(D),

then one speaks about a maximum likelihood (ML) estimator.

A classical (non-Bayesian) statistician may say that this
result is nothing else than the well-known and nowadays almost
generally accepted method of parameter estimation in non-Bayesian
("objective") statistics. He is right--formally. There is a
great difference not only in understanding and interpretation
of this result, but also in practical application: (a) The

maximum likelihood method cannot be derived within non-Bayesian

statistics. It can be only proposed-- as an inductive step of
reasoning (opposite to logically deductive) -- and its properties
can be investigated ex post. (b) All general results concerning

the properties of ML estimates, known i non-Bayesian statistics,
are of asymptotic character, i.e. they apply for a large number
of samples which are independently drawn from the same distribu-
tion. Accepting the Bayesian point of view we know precisely
what we are doing for any sample size. (c) The choice of one
point from the whole distribution (6-12) is, in fact, a decision
problem and as such has to be handled. Depending on the final
goals we are pursuing, some other points may be more suitable
than the maximum of the probability density. (d) In many cases
-- like forecasting ~- we are actually not interested in point
estimates. Parameter estimation is usually only one step

in the solution of the whole problem. In such cases it is pos-
sible -- and in general also necessary -- to consider all possible
values of the parameters, i.e. to operate with the whole distri-
bution. This will be clearly seen in the next section where we

shall deal with forecasting.

Let us now reconsider the question which arised at the be-

ginning of this section in connection with curve fitting, namely
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"What curves have to be fitted?", and let us show that it is
irrelevant. The question is equivalent to the question whether
the parameter estimation is influenced by regular (one-to-one)
transformation of the data set used. Let D be the data set ob-

tained from the original one D by a regular transformation

D = F(D)

D = ¢(D) (6.16)
and let

p(D|K) = g(D,K)

Then, according to (6.7), the conditional probability density

for the new data set D given K is

p(D|K) = g(¢(D),K) - |T(D)| , (6.17)
where J(D) is the Jacobian
gy = 2 (6.18)

The transformation (6.16), and consequently also the Jacobian
(6.18) cannot depend on the unknown parameters, otherwise, not
knowing the parameters, we would not be able to recalculate the
data and use them as input for our estimation problem. Using
(6.17) and (6.12), for D instead of D, we obtain

N g (¢ (D) ,K)
p(K|D) = = p(K|D) , (6.19)

fg<¢<b),x) aK

which proves that not only the ML estimates but the entire prob-
ability distribution for K is invariant with respect to one-to-

one transformation of the data set D.

It 1s also possible to show that the ML estimates are in-
variant with respect to one-to-one transformation of unknown

parameters K, i.e. that
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To proceed towards our practical problem we have to show
how the probability density p(D|K) can be calculated and what
we mean by a probabilistic model. The processes we are going
to consider are time oriented. Every observation we can make
is related to some time point or time interval. If we want to
describe and analyze the relations between these quantities we
have to distinguish them; we have to specify the set D in more

detail. Let Y (x) be the guantity, in general a vector, which

can be observed at time tk' We shall call y(k) the output of
the process at time t . Let us order the time indexing in
such a way that tk-1 < tk < tk+1’ i.e. the output y(k_1) pre-

cedes the output y Let y be the first and YN the last

(k)* (1) )

output the observations of which are available. To simplify the
writing we shall introduce the following notation for sets of

outputs

(3) _ | -1 . ..
Y (i) ‘{Y(j)'Y<j-1)""'y(i+1)'y<i)} B GECLARAE } 1zt (6200

For j < i the set (6.20) is empty. With this notation the data

set D is
(N)
D =
Y1)
and the probability density which has to be known is

P(D[K) = p(yﬁlg IK>

Using the chain rule (6.5) we can expand this density in the

following way

N
(N) - (k=1)
p(Y(-])lK) - k£1 p(Y(k)|Y(1) IK> . (6-21)

To keep the contact with reality we have to understand what the

particular factor in this product, namely

(k=1)
p<y(k)|y(1) K) . (6.22)
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physically means. The probability density (6.22) describes the
probabilistic transformation between the past history of the
process yE§;1)

law of the evolution of the process. Notice that the system

(k-1) C k=
{p(y(k)|y(1) ,K) tk=1,2,000.. } (6.23)

is the most general description of the process from the viewpoint

and the next output Y (x)- It is the probabilistic

of the outer observer that makes it possible to determine (using
two basic rules (6.1) and (6.2)) any finite dimensional probabi-
lity density for any combination of quantities which can be ob-
served on the process. K is the finite set of parameters which

are unknown in this system of functions.

By a probabilistic model of the process we mean any mathe-
matical description of the process which defines the conditional
probability density (6.22) for any k up to a finite set of param-
eters K. In the sequel we shall develop such a model for our

case of market penetration by new technologies.

6.1 Probabilistic Model

Approaching any practical modelling problem we have to
specify, first of all, to what goal the model has to serve. In
our case this goal is: (1) to explain and to identify, i.e. to
describe quantitatively, the past evolution of market shares
f.(t), 1 =1,2,...,n; (2) to forecast the future evolution of

1
market shares.

The second guestion which must be cleared is: What data are
available to identify the process? In this study we shall assume
that only the market shares at discrete time points (not neces-

sarily equally spaced) are available.

The market shares fulfill the deterministic relation
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and therefore one of them, say

£ (t) =1 - 7} £o0) (6.24)
ifr

can be omitted in the probabilistic model. When f; (t,), vidr,
are known, the value fr(tk) does not bring any new information
and when we are able to forecast fi(t)’ ¥i$r, we are also able
to forecast fr(t). Hence, the output of the process, we are
studying, is the (n-1)-dimensional vector

{f. (e ) s vitr} . (6.25)

Y (x) k

In algebraic expressions y(k) will mean a column vector the (n-1)

components of which are ordered in an arbitrary but fixed way.

Our modelling effort is to find the conditional probability
density

(k=1)
p<y(k)ly(1) ,K) . (6.26)

As we cannot assume the prior knowledge of any parameter of this
distribution, K will be the set of all parameters. This means
that we have -- on the basis of sound and realistic assumptions --
to find only the structure of this function. Pursuing this aim

we shall start again with the equation (3.1)

t+AL
ai[Pi(t+At)-Pi(t)] = J Pi(t)[p(t)-ci]dti-Qi(t,At)+-Ai(t,At)

t
(6.27)

which formed the basis of our deterministic model. However,
building the probabilistic model we have to consider also the
stochastic terms. The equation (6.27) can be rewritten as

follows:
t+At

L{aiPi(t)"Pi(t)[p(t)-ci]-dqi(t)}dt =0 (6.28)



-62-

where 6qi(t) now means a stochastic process for which

t+At
8q, (£)dt = 0 (t,AL) + B, (t,88) . (6.29)
t

From (6.28) the stochastic differential equation obtained is:

We shall again assume that dqi(t) is zero but only in the mean.
Assumption 1
Eléq(t)]l =0 , wi . (6.31)

This means that we admit stochastic fluctuations around zero

both for the external capital flow and for the capital reserves.
Notice that the process dqi(t) is not necessarily white {actually
no real continuous process can be white). All that we claim
until now is (6.29) and (6.31).

It is not unrealistic to assume that the standard deviation
of the stochastic fluctuations qu(t) around the zero mean value
is proportional to the instantaneous production Pi(t). As Pi(t)

can be only positive we can write
ql(t) = Pi(t) . (Scl(t) . (6.32)

This transformation of the stochastic process qi(t) seems to be
reasonable except at the very beginning when Pi(t) is close to
zero and the new technology needs some external capital input to
be able to start the production. The assumption we are discussing
is only a part of an assumption which will be made later on in a

more formal and precise way.
Substitution of (6.32) into (6.30) gives

aiéi(t) = P, () [p(t) —c; +8c, (£)] | (6.33)
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Notice also that stochastic fluctuations of c; can be incorpo-
rated into 6ci(t). This 1is, actually, the reason for the nota-
tion used.

The market price p(t) can be eliminated in a similar way

as in the deterministic case in Section 5 if the following

assumption is accepted.

Assumption 2

igz) = p + bpo(t) (6.34)
ESp(t) = 0 , (6.35)

where p is the growth rate of the total production P(t) of all

competing technologies and §p(t) is the stochastic fluctuation

around the constant p. Similarly to (5.2) we have
LTS G - O B L R e
= - p ol
Pi(t) fi(t) P(t) fi(t) !

and the following stochastic analogy of (5.4) is obtained.

£ £
i r _ _ _
&y f; eyt Yyf *r f; *ep top) =8, moc 4 (0 —a)dp
) E
. T i FT. T Cpp T %ep v (6.36)
i r
where a.; and c,p; are the parameters, defined by (5.11) and
(5.12), and
1 %r
éeri(t) = a;(éci - 6cr) + (1 - EI)GQ . (6.37)

Integration of the equation (6.36) over the time interval
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(tk-T’tk) gives

s T M enys T A g T E gy ) T Cn BT g) S ey #(6-38)
where

f(k)i fi(tk) (6.39)

t,
Sxyri T r Sepjltrae . (6.40)
Ex-1

As the mean value of deri(t) is zero for any t the integral
(6.40) also has this property.

Ee(k)ri = 0 , vk,i . (6.41)

Let us introduce the following notation for the column

vector of all e, ., i + r.

ek = coZ[e(k)ri :viFr] . (6.42)
In correspondence with (6.25) and (6.24) we also have

Yiky = coz[f(k)i,vi+r] (6.43)

n—-1
f =1 - £, =1- 7 ¥ .. (6.044)
(k)r iir (k)i 521 (k) J

For later use we shall also introduce the (n-1) - vectors of
parameters

c = COZ[cri: V1.+r] (6.U45)

a = COZ[ari: ¥igrl] . (6.46)
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For given parameters a, ¢ and given y(1) the equation
(6.38) together with (6.44) define a deterministic transforma-
tion between the stochastic processes {Y(k): k=2,3,...} and

{e :k=2,3,... 1. This means that if we are able to find
(k) o k)
ky'-(2y '

y(1),K) we shall also be able to find the density p(y(k)|

yE?;1),K) we are looking for. This is the line we shall follow

a suitable conditional probability distribution p(e

now.

If the sampling interval (tk-tk_1) is large enough it is

realistic to assume that the random variable e(k) is independent
(k=1)
(2)

of the previous ones e and also of y(1).

Assumption 3

(k=1) )
p<e(k)le(2) Iy(1)lK> = p(e(k)|K) . (6.47)

This assumption means that the knowledge of ef§;1)

(k_1% cannot bring any information

(M

and y(1) (or
equivalently the knowledge of y

about the possible value of e(k). Because of the deterministic
relation between yé§;1) and 652;1) (for given y(1) and parameters)

the conditional part of (6.47) can be modified as follows.

(k=1) _ (k=1) -

As shown in Appendix A (Theorem 1) the transformation between

€ (k) and Y (k) for given Y and for positive a,;r ¥i, is

k-1)
one-to-one with the Jacobian

_ Plegy) faor * iir arifii

J
ey U(y(k))

A (6.49)
n £

1 (k)i

i

Hence, according to (6.7), we have
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(k=1) o _
POy vy TR = [9gy

. (%)
p(e(k)ly(1),K)
(6.50)

lJeyl'p(e(k)lK) .

This shows that all that remains to be found is a suitable
structure of the probability density p(e(k)|K) with a minimum

number of unknown parameters.

We have no reasons to prefer positive or negative values

of the random variable e(k). It means that the density p(e(k)|K)

has to be symmetric. From the left-hand side of (6.38) it can
be seen that the density should be defined over the whole range

n-1

R of possible values e These requirements are fulfilled

(k)"
by a multivariate normal distribution with zero mean. Making
this choice of the form of the distribution we have to define

the covariance matrix

for any k through a finite number of unknown constants.

If we want to consider also the cases when the samples y(k)

are not equally spaced in time, i.e. the interval (tk - tk-1)
may be different for different k, then the suitable structure
for R(k) is

R(k) = (tk - tk—1)R (6.51)

vhere R 1s an unknown but constant matrix. To show the relevance

of this structure let us divide the time interval (tk - tk—1)
into u equal intervals

te -ty = uit
From the definition of the random variable e . (6.40) we have

(k)ir



-67-

tk y tk_1+mAt
e = Se(t)dt = ) de(t)dt
(k) m=1
€ ty gt (m=1) At
)
e = e (6.52)
(k) meq mo,
where
ty_,mit
e(k)m = J Se (t)dt

t, gt (m=1) At

If the time interval At is still large enough that the random

variables {e(k)m: m+1,2,...,u} can be assumed to be uncorrelated
Ele e ] 0 for + m
(k)m" (k) j ' ] ’
Ele T 1 = m,

(x)m® (x)m

we obtain using the relation (6.52)

This result shows that if we assume the independence (6.47) then
the covariance matrix R(k) has to be proportional to the length
of the sampling interval (t

ture (6.51).

k tk—1)' This justifies the struc-

Summing up we can make the last assumption.

Assumption 4

Q
T
= - -1 —
p(e(k)|K) = (2m rl_1exp) e tk'tk—1e(k) . (6.53)

(b ~ty )
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where we introduced for later convenience the precision matrix

[14]
= R {6.54)

as the unknown parameter instead of R. Thus the full set of

unknown parameters 1is
K = {c,a,2} . (6.55)

To make the formulae more compact it is convenient to

introduce the following n-vectors

Y (x)

h
I

= col[f R (6.56)

(k)i
f(k)r

a
a ' (6.57)
1

the [(n-1) X n]-matrix

A= IT _qemal (6.58)
where In—1 is an identity matrix of dimension (n-1), and also
the following notation

n
) = 0 food (6.59)
T(k) = tk - tk—1 (6.60)
f(k)i

(€.61)
f(k-1)i
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(6.62)

x(k) coZ[x(k)i: vi]

With this notation the density (6.53) gets the form

T
Qe(k}q (6.63)

n-1 ;
I LI I R
ple ) I®) = @m B A W & )
T 2
(k)
the Jacobian (6.49) is
f'lzk)é
S {9 R (6.64)
e
Y H(f(k))
and é(k) can be expressed from (6.38) as follows:
= - cT . 6.65
Ax(k) cTi) ( )

gives the probability density

Substitution into (6.50)

which we are looking for.
n-1 T - 3
- fad |t
k=1) .\ _ z (k) R T @ 6.66
p(Y(k) \Y(‘]) IK) = (2m) ]"[(f ) n—_iexp 2T(k) e(k) e(k) ( )
YTy 2

and thereby the entire conditional density
depends only on the preceding output

Notice that &
(k)
can be omitted in the

(6.66) for the output Y (k)
: (k=2)
y(k_1). Hence, the old history y(1)
condition part
(6.67)

(k=1) ) _
can be considered as an observable state of

and the output y(k)
a nonlinear dynamic stochastic system.

The conditional probability density (6.66) is all that we
need to be able to estimate the parameters and to forecast the

future course of the process on the basis of known historical data
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6.2 Maximum Likelihood Estimates

As mentioned above, to estimate the unknown parameters
K = {c,a,} means finding the probability distribution for this

parameter set conditioned on the known data

p(KIYEIfD = p(c,a,ﬂlyﬁ];) . (6.68)

The dynamic probabilistic model, developed in the previous sub-

section, makes it possible to calculate
N
(N) (k=1)
p(y ly ,K> = I p(y ly ,K> , (6.69)
(2) (1) k=2 (k) " (1)

where p(y(k)lyE§;1),K> is the density (6.66). Using the Bayes

rule (6.4) we can determine the a posteriori probability density

(6.68) in the following way.

) ,
) _ P @y K] p&Klv )
p(Kly 1)) = = . (6.70)
N
(2)‘y(1)’K>'p(K|y(1))dK

Considering that the single observation of the first output y(1

)

does not bring any information about the unknown parameters K,

we can write

P(Kly 1)) = p(X) (6.71)

where

p(K) = pl(c,a,N)
is the prior distribution for the unknown parameters.

Using similar arguments as in the general introductory
part of this section we obtain for the limit case of a very

flat prior subjective probability distribution
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(N) _ 1 . (N)
p<K|Y(1)> = (N) L(C,a,Q,y(.|)> ’ (6.72)
1
where

(N) _ (N)
L(c,a,Q,y(1)> = p(y(2)|y(1),K> (6.73)

is the likelihood function for our estimation problem and

K(yﬁl;) = fffL(c,a,Q,yﬁ];) d¢ - da - dQ . (6.74)

SCSaSQ

As the components of the vector a (i.e., a.; = ar/ai,i+r) can
be only positive the space Sa is a space of all (n-1)-vectors
with positive components. SQ is the space of all positive
definite matrices of dimension (n-1) x (n-1) and Sc is the

euclidean (n-1)-dimensional space R(n—1). It is assumed, of
course, that N is large enough so that the integral (6.74)

exists.

The likelihood function (6.73) is obtained as the product
(6.69) of probability densities (6.66). From the properties

of the trace of matrix expressions

trB + trC = +tr (B+C)

tr (B C)

tr (CB) ,

it follows that

N
1 T
) e, Qe = tr|:Qe ! eT} = trl:QX e e ]
k=2 T (k) (k) (k) k=2 (k) T(k) (k) 2, () T (k)

(6.75)

When the right-hand side of (6.65) is used to express the vec-

tors ey Ye get
Yo o1 T T
kZz T(k) k) Qe(k) = Ad\(N) A - Am(N) c - cm(N)A + STy © ,
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where
N
1 T
¢ = ] Y x (6.77)
(N) klo T (k) F(k)
N
oy k£2 X (16) (6.78)
N f f
Mgyi = L ln# = n f(N)l (6.72)
k=2 (k=1)1 (1)i
N
Ty T kEZT(k) =t T B (6.80)

Using (6.76) the likelihood function can be brought into the

following form:

(N) _ (N)
L(c,a,Q,y“)) = p(y(2)|y(1),c,a,9)
1
- N(n-1) n-1
—=—/ N N
2 2
(2m) (H T ) - I NI(f )
k=2 (k) k=2 (K
N N1
T - 2 T T T
X kzz (f(k)a)- Q| exp{—%tr [Qé\q;(N) A - 2Am(N)c + c T(N)c ):l}

(6.81)

As the first factor, not depending on the unknown parameters,
cancels in (6.72) it is possible and more convenient to operate

with the modified likelihood function

N-1
~ N a
L(c’a’g'yﬁ];) T e (f(Tk)a) ol * e {'%tr[géd’(N)AT - 2 o' +

+ cr(N)cT>]} (6.82)
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p(c,a,n|yffg> = L Z(c,a,ﬂ,ygT;> (6.83)
1)

c,a,f y(§;>dc. da . aQ. (6.84)

rals
<
Sa——
Il
OVJ
m:
(75}
/'\

The probability density (6.83) reflects our uncertainty about
(N)
(1)

the unknown parameters c,a, after the data y have been ob-

served.

If we are interested in the ML-estimates of the unknown
parameters we have to find the point at which the likelihood
function (6.82) reaches its maximum. This maximization can be

decomposed into three steps:

(i) In the first step we shall find the maximum of the
likelihood function over ¢ for all possible values of a and Q.
The parameter c enters only the exponent in (6.82). It is easy
to verify that this exponent can be rearranged in the following
way.

T T T _
tr[Q<A¢(N)A - 2Am(N)c + CT(N)C >] =

=tr Q|:A¢ AT+(c— L Am )T <— ! Am )T—Am _1__mTA
(N) Tm) Ny (N) Tm) (N) (MTm)(m
T
= tr[QAH( )A] + Ty )(c-Ab( )) Q(c-Ab(N)) ' (6.85)
where
1
b = m (6.86)
(N) T(N) (N)
f ..
_ _ 1 (N) i
b(N)i = 3 m = £n (6.87)

M ) T Ty
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_ _ 1 _ - T
i T P T T, M Yoy T Pan T anPa
N
1 T
= z (x - T b ) (x - T b )
k=2 T(k) (k) (k) " (N) (k) (k) " (N)
(6.88)
N £ s £
1 (k)1 k)3
H .. = ) fn -7, b, .| ltn 2L 1 b
N)1 T k N j
N)1) k=2 T(k) f(k-1)i (k)" ()i f(k—1)j k) ()3
(6.89)
As any possible @ must be positive definite the last term in
(6.85) can be only nonnegative. It is evident that the minimum
of (6.85) and hereby the maximum of the likelihood function
(6.82) is reached for
c = Ab(N) (6.90)
°ri T Paoi T riPaor (6.91)

no matter what the values of the remaining parameters a,{l are.

After this first maximization step we have

. ) T =
18480, = i al-e
nﬁx L(; a,N y(1)) k=2<f(k)a) Q| exp

(6.92)

{ii) In the second step we shall find the matrix § which
maximizes (6.71) for any a. According to Theorem 2 in Appendix

A the maximum is taken on at

-1
Q = (N—‘I)-[AH(N) AT] (6.93)

and the maximum is
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N
- <fg<)5>
1) (= =2
m) - . (N1)(n1)/2—N . (6.94)

max max L(c,a,&?._,y =
2

Q c

T

AH A
(N)

(iii) In the third step we have to find the vector a (by
which also A(6.58) and a (6.57) are defined) which maximizes
(6.94). This last step of maximization procedure cannot be
solved analytically but only numerically. However, some re-
arrangement of the function (6.94) is suitable to facilitate
the numerical solution. Theorem 3 in Appendix A makes it

possible to rewrite (6.94) in the following form.

N-1
max max L{c,a,2,y™) = (& Mml) 2 -x@ . (6.95)
Q c (1)
where N
I £ A (6.96)
k=2 %)
AE) = =2
N=1
I:ETH'1 éjl 2
(N)

Notice that the value of the function (6.96) remains un-
changed when all components of the n-vector 3 (6.57) are divided
(or multiplied) by any positive number Y.

a =

1
1 6.97
¥ 3 ( )

A (a) A (&)

For instance, if we choose Yy = O then Ei = 1/ai for all i, in-

cluding r. Alternatively, for v = ar/a we have Ei = a; as de-

fined by (5.30). This shows that the ML-egtimate of a;
a. = /

j arj ari
chosen as the reference competitor. It also shows that it is

3 = 4/
18 always the same mo matter what technology is

impossible to estimate separately Oy i=1,2,...,n, but only
their ratios.
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A simple and effective numerical procedure which calculates
the vector 3 maximizing the function (6.96) is developed in
Appendix B and the corresponding FORTRAN-subroutine AMLE can be
found in Appendix C.

The whole numerical procedure for maximum likelihood esti-
mation of all model parameters can be summarized into the
following algorithm.

Algorithm MLEST:

1. Given the market shares f(k)i’ i=1,2,00ayn3; k=1,2,...,N,
at time points tk' k=1,2,...,N, calculate the scalar T,

the n-vector b and the symmetrical n xn - matrix H according

to formulae (6.80), (6.87) and (6.89).
Tt T R
f .
b, = 1 Ln N E H i=1,2,...,n
i T £ .
()i
N f t
l=ZT1—JLnf(k)l T ) Pi gn K1 T 5, P ,
T k22 Ty (k-1)i (k-1) 7 J
i,j=1,2, ,n
where
=t
T (x) x T tx-1)
2. Find the direction vector a of any length for which the

function (6.96)

N
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reaches its maximum. For this purpose the FORTRAN-sub-
routine AMLE, given in Appendix C, can be used. The sub-
routine AMLE gives the maximizing direction vector a of

length (euclidian norm) equal to one.

3. For any chosen reference competitor (indexed by r) calcu-
late the estimates a; . and Cipr i=1,2,...,n, according
to formulae

a
3. = L
ir ai
s _ - A
Cir = by~ &, by (6.98)
4. Calculate the estimate of the covariance matrix R = 9_1

according to formulae which follows from (6.93).

“ H
R =—1—( = 1r 7&‘4’#) ' vl,] #r.(6-99)
1] N-1 1j a a, a._a.
jr ir ir " jr

The FORTRAN - subroutine realizing this algorithm can be
found in Appendix C.

Before examples of practical use of the algorithm MLEST
are given, several additional comments are in order concerning

the reliability of maximum likelihood estimates.

As stated above, the uncertainty of the various unknown
parameters is fully characterized by the probability distribu-
tion (6.68) which--in the case of a very flat prior distribu-
tion (6.71) -- is proportional to the likelihood function (6.81).
The maximum likelihood estimate of the set of unknown param-
eters is the point at which this function reaches its maximum.
This means that to a small region around this point a higher
probability has been assigned by observed data than to the
region of the same size around any other point in the space of

all possible values of unknown parameters. It is evident that



-78-

the maximum likelihood estimates (as well as any other point
estimates) can be very unreliable if the probability density
function (6.81) is very flat or if it has a form of a ridge
with almost the same height along some direction. We shall
not go deeper into these details; however, we feel the neces-
sity to emphasize that caution should be exercised in dealing
with maximum likleihood estimates. The problem is not very
critical in the case of the parameters Cir but it may be very
critical in the case of parameters a; .*) The reason can be
seen well from the sensitivity analysis of the two-dimensional
competition performed at the end of Section 5 (see Figures 12
and 13). This sensitivity analysis has shown that within the
take~over time the model output is not very sensitive with
respect to the ratio a;, = u1/a2. Conversely, the historical
data contain little information about this parameter and when
the data are noisy it may be very difficult or even impossible
to extract this information. However, in this case the simpli-
fied model developed in Section 4 under the assumption that

aj, = 1 for all i may serve as a reasonable approximation.

For this reason the FORTRAN - subroutine MLEST listed in
Appendix C provides the user both with the ML-estimate of all
parameters (including a; . if possible) and with ML-estimates
of c¢._ and R for a;. = 1, 1i=1,2,...,n. The user has to

ir
choose the alternative which suits his case.

Example 3. Substitution of steam locomotives by diesel

locomotives in the USA

Table 2, taken from Mansfield [9], gives the numbers of
steam and Diesel locomotives in the USA in the years 1925 to
1959. The market shares within the time period 1939-1959 have
been used as input data for parameter estimation. The result
obtained by application of the subroutine MLEST is

A _ A _ -1 =2
dq, = 1.56 , Sy = -0.505 year , R=20.75 10 .

*In the next section it will be shown that, for the
purpose of forecasting, there actually does not exist a single
number (point estimate) by which the uncertain parameter a,r
could be replaced.
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Table 2. Number of diesel and steam locomotives, USA, 1925-1959.

Source: E. Mansfield, Intrafirm Rates of Diffusion of an Innovation, Review
of Economics and Statistics, 45 (1963), pp. 348-359.

YEAR Diesel Locomotives Steam Locomotives
(Dec.31) Number Share Number Share
1925 1 * 67 713 **
1927 14 * 64 843 b
1929 25 * 60 572 *x
1931 80 * 57 820 *k
1933 85 * 53 302 *
1935 130 * 48 477 **
1937 293 * U6 342 T
1939 639 044 43 604 .9856
1941 1 517 .0349 41 911 .9651
1943 2 476 .0557 41 983 .9443
1945 4 301 .0949 41 018 .9051
1947 6 495 . 1495 36 942 .8505
1949 12 025 .2838 30 344 .7162
1951 19 014 L4570 22 590 .5430
1953 24 209 .6636 12 274 .3364
1955 26 563 .8091 6 266 . 1909
1957 29 137 L9179 2 608 .0821
1959 30 097 .9719 871 .0281

*lLess than 1%
**More than 99%
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To check the fit of the model with the true data the process
has been recalculated using the subroutine PENETR with the

parameter values modified according to (5.42) and (5.43)

O)
-

Hi
Q
[oR

I

>

1
o
Q

"
jw

1 127

and with the initial condition f10 = 0.0144,f20 = 0.9856,
corresponding to the year 1939 (see Table 2). The calculated
and the true process are compared in Figure 14a,b. The bended
lines in Figure 14b indicate that the process is nonlogistic
but, as it can be seen, within the take-over time (10% - 90%)
the simple Fisher-Pry model could still be a reasonable ap-

proximation.

Example 4. Substitution of primary energy sources in

world energy consumption.

In this example a typical sample of calculations performed

on world energy data is recorded.

During the derivation of the model in Sections 4 and 5 it
has been shown that the variations of the most important param-
eters Cir (i =1,2,...,n) are smoothed by integration so that
the model output is not very sensitive to their fluctuations
around some mean value. Nevertheless it is hard to believe
that they could be even approximately constant for a very long
period of time covering two world wars. To investigate this
guestion several time periods have been considered for parameter
estimation separately. In spite of the fact that the estimates
obtained from different time periods are slightly different
(estimates of a; . sometimes very different), in all cases a remark-
ably good fit with all historical data, both forwards and back-
wards, has been obtained. This indicates a high stability of
the process and supports the confidence in the forecast based
on the model. To demonstrate this favorable feature of the model
at least several of these calculations will be reported in detail

so that the interested reader can easily reproduce them himself
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1.0

STEAM ~ 1

05 ¢ DIESEL ~ 2

00 : , ; ,
1925 1935 1945 1955 1555

5 STEAM

DIESEL

Figure 14a.b. Replacement of steam by diesel
locomotives in the USA.
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using the FORTRAN - subroutines in Appendix C.

In Table 3 the market shares of the main primary energy
sources in the world energy consumption are registered for the
time period 1920 to 1971. They have been calculated from world
energy data collected at IIASA by N. Nakicenovic [12]}. As the
data on wood since 1951 have not been available they have been
replaced by predictions obtained from the past history of the
substitution process in order to make the table complete. No-

tice that these artificial data are relatively insignificant.

When all data from Table 3 are used the following estimates

are obtained.

0.0884, & 0.0601, 634 0.0353,

I (chyy = 0)

]
]
It

a

14 0.826, a 0.867, a 0.325, (a

24 34 gy =1

where the indices have the following meaning: 1~ wood, 2 ~ coal,
3~01il, 4 ~ natural gas, and one year is taken as time unit.
Natural gas is chosen as the reference competitor; however,
using the relations (5.13) and (5.15) the estimates can be easi-

ly recalculated to any other choice.

The smoothed curves in Figures 15a,b show the output of the

deterministic model (subroutine PENETR with parameter values

c; = éiu, o; = éiu’ p = 0) for initial market shares in 1920

taken from Table 3.

As discussed above, the estimates of the parameters

a,; are rather unreliable but also not very significant from the

point of view of the model output. If all of them are set to
one the following estimates of the parameters ci, are obtained
(subroutine MLEST in Appendix C gives both these results at the

same time) :

Cqiy < 0.0973, Coy = 0.0622, Cqy = 0.0119, (c44 = 0)
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Table 3. Market shares of primary energy sources in world
energy consumption.

Year : Wood Coal 0il Nat.Gas
1620 : 0.15118 0.75531 C.0723n7 c.02cel
1921 : 0.1€953 C.71997 0.00107 0.01853
1022 : 0. 15714 Q.T2UES 0.C3705 0.02013
1023 : 0,13403 C.73715 G.10307 0.02325
1924 : C.13537 C.7327¢& c.AnaT7 0.02707
1625 : C.132222 C.72067 C.100L2 G.c2fec
1926 : G.1221F C.72U56 C.11228 c.G3c90
1927 : 0.1230u2 0.72286 C.1217¢ 0.02196
1c28 : c.11217 0.72:c08 C.1103k C.03251
1029 : N, 11042 OLT1ETT 0.12202 0.03988
1030 : G.11F0P 0.70840 £.13571 0.04241
1931 : 0.12¢€509 C.EERES G.1l4ra7y C.CL179
1932 : C.134RE C.EECTT C.15282 c.clzs2
1633 : ¢.127225 0.6€084 C.16C63 0.cu127
1034 : 0.1156F2 0.681€2 0. 15762 C.OURER
1935 : C.11CUR C.67032 C.16£15% 2.clugo
1636 : C.10005 C.E8468 C.16N04¢8 ¢.05081
1037 : C.084L0k C.67701 C.17578 C.05318
1938 : 0.1¢cCT1 0.70662 C.13574 0,C5692
1639 : 0.c8a2sg C.678EG 0. 17245 0.05461
1940 : 0.CACUY C.EGUZY 0.1723¢C 0.65302
1901 : C.CT611 C.69820 C.17111 0.05kL¢8
1942 : C.0TH22 0.70751 C.16118 0.05709
1643 : C.CT7072 G.EGRTE 0.16273 C.CE1TR
194y : 0.CERER 0.67301 C.10208 0.0RELT
1045 : n0.c7918 0.61066 G.202f"%0 0.CCH16
16U6 : C.oThUL c.C1u04 C.o2R 07 C.063k8
1047 : 0.C06510 £.02203 c.r2(c8 0.CR2GY
1048 : C.GEQPR n.€¢720 C.2u3e7 0.ce000
1049 : 0.G6115 £.50318 C,2uP30 0,00734
1050 : C.05%515 C.5¢671 ¢.ou358 C.1ChERA
1951 : c.checz|*) c.sfuo7 0.2522h 0.11277
1652 : C.ous8s 0.57268 £.2€228 0.1160¢
1653 : 0.0h214 C.56CH2 G.2722% 0.12359
1050 : Q.0kCE2 0.50817 c.2tzaf 0.12823
1985 : C.02501 C.5h438 0.20295 C.182FRR
1656 : 0.03842 f.5h230 C.2¢791 C.12u27
1657 : 0.032321 0.53893 0.0072% 0.1205C
1058 : 0.cr007 €.53h ¢.30005 0.12267
1959 : Cc.CoPo6 G.52412 0.30542 C.1h1UE
1060 : C.026PY 0.51580 Q,21156 n,1hs75
1661 : 0.c2hay c.hata2 C.22364 C.15351
1662 : G.02231 ¢ 16161 0.22743 0.15725
1663 : 0.02150 CoHETRU C¢.32103 0.15622
1064 : C.C1oal 07T C. C.ieheh
1965 : C. 01561 0. HUR2Z o Cc.17790
1666 : c.n1700 C.hhugo 0. . 17611
1667 : C.C1E0Y c.4210¢ o 0, 1nrey
1068 : 0.0 1ues Q. 2IOLR coheigr fo1a810
1669 : C.C1302 0.37173 ouh1002 0,202
1070 : 0.01829 C.ERTEE A hnzes C.o0nal
1071 : c.ctin 0.2L00E 0.3z nLe1nET

*The data on wood consumption for energy production since 1951 have not been
available. These numbers are estimates based on the past history of the
substitution process (1885-1950).
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Figure 15a,b. Primary energy substitution: all model
parameters estimated from the period
1920-1971.
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The corresponding model output for the starting point in 1920
is shown in Figures 16a,b. In spite of the great difference in
parameters a;y (especially in a3u) the difference in the model
outputs is not so great as one could expect. The comparison of
fits with historical data indicates that in this case the as-
sumption ay, = 1 (for all i) may be more realistic than to rely
on uncertain ML-estimates of these parameters. The important
question, how the uncertainty of parameters has to be projected
into the future, will be studied in detail in the next section

where we shall deal with forecasting.

One could expect that the 2nd World war and the intensive
technical development after this war could cause a significant
change in the model parameters. If this were true then the pre-
war data should not be used in forecasting the future develop-
ment of the substitution process. To clear up this question
only the postwar data from the time period 1945 to 1971 have
been considered in parameter estimation and the model has been
used to "backcast" the past history of the process. Due to the
relatively low number of data with narrow range of their ampli-
tudes only the simplified model under the assumption a ;. = 1
(for all i) could be obtained in this case. The estimates of

the remaining free parameters are

& = 0.1107, & = 0.0586, & = 0.0114,

Sy Coy 34 0 -

(Cyy
The comparison with historical data, for the starting point in
1971, is given in Figures 17a,b. The bad fit of the curve sep-
arating the market shares of wood and coal in Figure 17a cannot
be considered as a failure. Notice that only six points of used
data on wood (1945 to 1950) are true. The remaining 21 points
are artificial and smoothed and were taken by the estimation
procedure as very precise. This, of course, drastically in-
fluenced the result of estimation. To overcome this difficulty,
wood (which is insignificant for the future development of the
process) and coal have been aggregated (by summing up the two

corresponding columns in Table 3) and considered as one competitor.
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Figure 16a,b. Primary energy substituion: parameters
a set to 1;remaining estimated from the
period 1920-1971.
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Figure 17a,b. Primary energy substitution: parameters

a set to 1;remaining estimated from postwar
data 1945-1971.
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The result of the repeated calculation is

Cqq = 0.0621 , 8,3 = 0.0114 ,  (cy3 = 0) ,
where the indices mean: 1~ wood + coal, 2 ~o0il, 3 ~natural gas.
Considering the "goodness-of-fit" with historical data for 70
years backwards, shown in Figures 18a,b, it is hard to believe
that the law governing the substitution process should be much
different in the near future. The opponent, who is of different
opinion, should attack the assumptions on which the model is
based and show why and how much, whether significantly, they
will be violated. Of course, the future development of the
substitution process can be considerably influenced when a new
and competitive energy source, like nuclear, enters the market.

This will be shown in the next section.

7. FORECASTING

In this section the problem of forecasting is studied with

emphasis on the following objectives:

- to clear up the relation between the deterministic and prob-
abilistic models developed in previous sections in order to
give a precise probabilistic meaning to the curves generated
by the deterministic model, which -- of course -- can never be

precisely true;

- to investigate the suitability of maximum likelihood estimates

for the purpose of forecasting;

- to show how the uncertainty of parameters can be projected

into the future;

- to show, by the example of nuclear energy, how a new techno-

logy can be incorporated into the model.

To follow this program let us show first that the output
of the deterministic model, calculated for some particular time

point t and for given parameters and initial conditions, is
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Figure 18a.b. Wood and coal aggregated. parameters a set
to 1 :remaining estimated from postwar data

1945-1971.
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neither the maximum of the probability density nor the mean
value but the median. In the two-dimensional case (n = 2) it
means that with probability one half, the possible true value
lies on one side of the calculated curve and with the same
probability on the other side. Before we prove this statement,

let us formulate it more precisely and generally for the multi-
variate case.

The output of the process at time tk+1 is fully determined
by the vector y(k+1)(y(k+1)i = f(tk+1)i,1=#r). Let us denote
the output of the deterministic model by y7k+1) to be distin-
guished from any other possible output y(k+1). Further, let us

introduce the following spaces of possible process outputs.

= - * .
(ke 1) {Y(k+1)'Y(k+1)iiY(k+1)ir’V‘l+r}
yt - . S ok v .
(k+1) Y (x+1) Y (ke1yi T Yik+1) 1! itr .
What we are stating is: Given the model parameters K = {c,a,$}

and the initial condition Y (k) the probability that the output
Y (k+1) will lie in the space V;k+1) 158 the same as the probabil-

"4 4 . . . +
1ty that the output will lZe in the space V(k+7).

- _ +
Pr{Y 141) SEe ly(k),K) = Pr(y(k+1)€V(k+1)|y(k),K) . (7.1)

To prove this statement let us calculate the probability
on the left hand side of (7.1). Using the regqular transformation
between the random vectors Y (k+1) and € (k+1) ! and considering

that y7k+1) is calculated for e(k+1) = 0, we obtain



-91-

_ Yik+1)
Pr(y(k+1)ey(k+1)|y(k)’K) f p(Y(}<+1)|Y(k)’K)dY(k+1)
0 w
= J p(e(k+1)]y(k),K)de(k+1) = J p(e(k+1)[y(k),K)de(k+1) o (7.2)
-— O 0

The last equality in (7.2) follows from the fact that the dis-

tribution of e( is normal, according to assumption (6.53),

k+1)
and proves the statement.

Now, let us follow the question of what happens when some
or all model parameters are not precisely known; how is the uncer-
tainty of the parameters reflected in the uncertainty of the fore-

cast. The precise Bayesian answer to this question is as follows.

Let y(N) be the last output of the process which is known

N+1 > tN we want to

forecast. TIf the set of all model parameters K were known, then

be the f t i
and Y(N+1) e future output at time t

all that could be said about the future output is contained in

the probability density p(y ,K) defined by our model.

1) Y (o)
When all or some of the parameters are unknown or uncertain this
probability density is not available. Consider the parameter

set K decomposed into two subsets

(7.3)

K = (KK ]I ,
where Ku is the subset of unknown parameters while the param-
eters K, are considered as certain. Not knowing the parameters
- . (N}
Ku we have to look for the probability density p(y(N+1)ly(1),Kc)
where the information about the unknown parameters is replaced
by the information contained in the known past history of the
process. Forecasting under the lack of parameter values is
nothing else than calculation of this probability density which
can be performed using two basic formulae (6.2) and (6.1) in

the following way.
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N) _ (N)
p(Y(NJr1 Iy 1) ¥e ) = f p(y(NH)Iy ) Ko rKy ) ( (ym,x )dKu

(7.4}

In our case, both probability density functions which are
reguired on the right-hand side of (7.4), are already known.
The first one is given by (6.66), the second one -- for all

parameters unknown -- by (6.83), (6.82) and (6.84).

The formula (7.%) indicates under what conditions the un-
known parameters K can be simply replaced by their maximum
likelihood estimates. Consider the probability density
p(y(N+1)\y(N)’Kc'Ku) as a function of K, for given Y(N
but fixed y

and any

)
If the probability distribution for K, is

(N+1) ° N
highly concentrated around the ML-estimate K,r as shown in
Figure 19a, it is evident that a good approximation of the in-
tegral (7.4) can be obtained if the variable Ku in the first

part of the integrand in (7.4) is simply replaced by the fixed
point Ku

N)
p(y(NJr1 !y ),K>xp(Y(N+1)|Y(N),Kc,Ku) . (7.5)

However, if the situation is like Figure 19b, the approxima-
tion (7.5) does not hold and the integration in (7.4) has to be
performed. Unfortunately, it is not easy to recognize what

situation occurs without a more detailed investigation.

y® N)
P(Y(le (1) KK ) p(YN+1)|Y(1)’KC’Ku)

K
u

o ~———
<

|

|

i

|

!

|
L
R

u

Figure 19a.b. Two extreme situations in Bayesian forecasting.
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In our case the integration (7.4) can be performed analyt-
ically for the unknown parameters Ku = {c,Q} but only numerical-
ly when also the parameter vector a is considered as unknown.

To facilitate the integration let us bring the formula (7.4)
into a more convenient form. When the density p(Ku|yE§;,Kc) is

expressed by the Bayes formula (analogous to (6.70))

)
() ﬂy(zﬂym"‘c'Ku)p ulKer¥ (1))
ok Iy 1)k, ) = (7.6)

(M)
JP(Y(z) |Y(1)'Kc'Ku)P“u'Kc'Ym) Iy

and the relation (again the basic formula (6.1))

(N) (N) - (N+1)
P(Y(N_H)|Y(1),KC,KU)P(Y(2)lY(1),KC,Ku) = p<y(2) |y(1),Kc,Ku) (7.7)

is applied, the formula (7.4) gets the form

(N+1)
fp(y(Z) ¥ (1) 'Kc'Ku) P (KylKery (q))aK,

(N) _
p<Y(N+1)|Y(1)'Kc) = .
J'p<y(2)|y(1)'Kc'Ku) p(Ku|Kc'y(1))dKu

(7.8)

Notice that the initial condition Y (1) for our stochastic model
can be, actually, considered as one of its parameters which is
known. If it can be assumed that the prior distribution for the

unknown parameters p(Ku|y(1 ,Kc) is very flat even when K, and

)

y(1) are a priori known, then -- under conditions specified in
Section 6 -- the following result is obtained.
(N+1)
K _,K dr
(N) fp<y(2) ¥4y Kg u) u
PAY a1y 1Y (1) 1K) = (7.9)

()
fp(y(z) 1¥ (1) 'KC'Ku) dKy

Notice that the probability densities in (7.9) are, in fact,

likelihood functions given by formula (6.81).
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(N+1) (N+1)
p(y(z) Iy(1)’Kc’Ku) L(c,a,Q,y(1) ) ' (7.10)

(N) (N)
p(y(z)ly(1),Kc,Ku) LG:,a,Q,y(1)) . (7.11)

Of course, the variable y incorporated into (7.10) has to

(N+1)
be considered not as fixed but free.

We shall exploit the general formula (7.9) in two steps.
First, it will be assumed that the parameter vector a is known.
In the second step the solution will be generalized for the

case when also a is unknown.

7.1 Parameter Vector a Known

In this case we have

K, = {c,Q} , K, = {a}

and the formula (7.9) can be written

(7.12)

, (7.13)

where M stays either for N+ 1 or N.

The ratio on the right-hand side of (7.12) is given by
Theorem 5 in Appendix A. According to this theorem the proba-
bility distribution for the future output of the process, given
only the past history of the process and parameter vector a, is
(for the sake of simplicity we omit the normalizing factor in
(A. 40)
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£T A
) a (N+1) 1 "
o«
P y(N+‘I)\y(1)' m(f ) \ N+n ' 7 )
(N+1) T -1 o -
T+He e Y (N+1))
where
€ N+ 1) AX(N+1) ) (Ener T EY (7.15)
_ f(N+1)i
X(Ne1)i " n : , Vi (7.16)
(N) i
t -t
_ N+1 1 T
Yoy = (gt ty) o AHy A (7.17)
N 1
and & is the maximum likelihood estimate (6.98) of the param-

(N)
eter vector ¢ available at time ty-

Notice that the transformation between the random variable
Y (N+1) and the variable é(N+1) introduced by (7.15) is the same
as in (6.65); only the true parameter vector c is replaced by
its ML-estimate. Using this transformation, the Jacobian of

which is reciprocal to (6.64), we can calculate

(N)
pié Y a) « . 7.18
( (N+1)| (1)’ ) N+n ( )
AT -1 4 2
e e Yo Gy
Hence, the random variable é(N+1) has the Student's t-distribu-

tion with zero mean and with the covariance matrix

A AT (N) 1 _ _ A
E[}(N+1)e(N+1)‘Y(1)’a] =5z Yo T Cner T BBy (7-79)
where
t -t
A 1 "'N+1 T 5 T
Ry = ®7 &, -t 22 (7.20)
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t -t H. H . H
& :N%EH%J H. . - AT _ T3 . _xr ) (g 97
(N)13 N 1 +J ajr ir air jr
. A . X A _ A=
Notice that R(N) is related to the ML-estimate R(N) = Q(N)
(6.93) in the following way:
A T R (7.22)
= - N . .
(N) ty~ g (N)

From these theoretical results the following practical con-

clusions can be drawn:

- The deterministic model in which the unknown parameters Cipr
¥Yi#+r, are replaced by their ML-estimates, gives the point
of the distribution (7.14) where é(N+1) 0. As the Student's
t-distribution (7.18) is symmetric (and for N>>n-1 close to
normal) the deterministic forecast has the same meaning as if

these parameters were known, i.e. the meaning of median.

- The increase of uncertainty in the forecast due to uncertain
parameters ¢ and Q is reflected in the covariance matriz (7.22)
and in the change of the shape of the probability distribution

l Student’'s.
p(e(N+1)|y(N)'K) from the mormal to Studen

- For given parameter vector a the best estimate of ¢, for the
purpose of forecasting, is the ML-estimate. The ML-estimate
of the covariance matrix R has to be corrected according to

(7.22).

Unfortunately, this is also not true when the parameter vector

a is unknown, as we shall show now.

7.2 Parameter Vector a Unknown

If no parameters can be considered as known, then the

parameter sets in the general formula (7.9) are

Ku = {c,a,n} , K, = g .
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and, according to the general formula (7.9), instead of (7.12)

we now have

(N) Sa
P(Y Y ) = . (7.23)
(N+1) (1) [K(y(N;,a>da

Using the formulae (A.37) from Theorem 5 and (A.16) from Theo-
rem 3 (Appendix A), it can easily be verified that the following
proportionality holds:

N+1

i (f?k) 3)
ofy \y(N) 1 k=2 a 7.20)
(N+1) 15.(1) (£ 41 f nen 020 -
(N+1) (N+1)
For any chosen y(N+1) (oxr f(N+1) fulfilling the condition

Zf(N+1)j_=1) the right hand side of (7.14) can be evaluated by
numerical integration. In this way the entire probability den-
sity (as a function of the variable vector y(N+1)) can be ob-
tained in the form of a numerical table and any of its charac-
teristics can be calculated numerically. This numerical calcu-
lation can be facilitated using the formulae proved in Theorem 4

(Appendix A):

-1 _-1 -1 T -1

H - H 5 la a H )
(N+1) @ 7 Yy e e Tosn (7.25)
dNt1) T Xy T Py Baer T Y (7.26)
y =9 + at il g (7.27)
(N+1) (N+1) (N+1) 7 (N) ~ (N+1) .
 (ne1) (Enar = By) (Eyyq — 8/ (e~ ) (7.28)
H ey b= O neny 1Y (na) (7.29)
where X(N+1) is defined by (7.16). Notice, that the determinant

7.29 t t i .
( ) can be taken out from the integral (7.24) and e(N+1)|H(N)|

can be omitted being a part of the normalizing factor.
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The following practical conclusions have to be drawn:

Generally, there does not exist a single number - a point
gstimate - by which the unknown parameter a could be re-

placed for the purpose of forecast

v

ng (neither in determin-

tstic nor in probabilistie models). An exception is the

sttuation shown In Figure 15a, which occurred in Ezample 3

(Diesel wersus steam locomotives in the USA). In other

cases the maximum likelihood estimate of the parameter vector

a has to be handled with caution. Fortunately, withir the

most important period of transition the model output is not

very sensitive with respect to this parameter, as it wae

shown by the sensitivity analysis of the two-dimensional case

in Seetion 5.

serve as a good approximation. Because of

Usually, the assumption a; . = 1, ¥1i, can

f these reasons the

subroutine MLEST in Appendix C provides the user both with

ML-estimates c¢f all parameters and with ML-estimates of the

parameter vector c and covariance matrix R under the assump-

tion a, =1,
ir

¥1i. Whether the question i{g critical, 1t can
1 B

be recognized by plotting the ratios of market shares versus

time in semilogarithmic scale, like in Figures 7a,b,c,d.

- If the user has a reason tc assume some other value of the

arameter a than suggested, he can recalculate the estimates
g3

& and R using

the fermulae (6.98) and (7.21). 7The vestor b

and the matrix H, which enter these formulae are also supplied

by the subroutine MLEST.

Now, following these rules, we shall show by the example

of nuclear energy, how a new technology can be incorporated into

the model.

Exumple &,

Forecast of market penetration by nuclear enerqy.

In Example 4 only four main competitors in the world energy

market have been considered: wood (i = 1), coal (i = 2), oil (i =3)

and natural gas

(i = 4). If we want to forecast the future de-

velopment of this substitution process we have to consider the
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possible newcomers. In this example it will be shown how this
can be done 1in the case of nuclear energy (i = 5). However, the
same or similar procedure can be applied for any other addition-

al competitive energy source.

To be able to apply the deterministic model (with the prob-
abilistic interpretation given above) we have to determine the

parameters Cij’ characterizing the relation between each

a. .
1]
pair of competitors. Only 2(n-1) = 8 of them are independent,
the rest being determined by relations (5.13) to (5.15). if,
for instance, natural gas is considered as the reference compe-

titor (r = 4) then the full set of model parameters is
Cigr @5y ¢ L = 1,2,3,5 .

If we have no reasons to expect a significant change in param-
eters characterizing the competition between the main existing
energy sources -- as shown in Example 4 they could be considered
as constants for more than the last seventy years -- we can use
their estimates based on historical data. Using the data from
the time period 1920 to 1971 we have (see Example 4) for ag, =
Ay = 33y =1

C = 0.0973 , ¢& = 0.0622 , ¢& = 0.0119 ,

Sy 24 34 = 0.

(Cyy
Notice that wood is no longer significant; it is considered only

for completeness.

To complete the set of parameters we have to determine the

remaining parameters c and a Having almost no historical

experience with nucleaiuenergy5£e have to use the economic
assessment of this newcomer relative to some existing and
significant competitor. For the purpose of demonstration the
comparison between nuclear energy and oil, as primary energy
sources for electricity production, given by FRG Ministry for
Research and Development [19] has been used. According to this
source the specific investments and total production costs for

LWR-nuclear plant and natural gas plant, both for a base load
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of 4000 h/a, are:

1150 DM/kW, c 0.063 DM/kWh

552 DM/kW a

nuclear - o

5 5

gas - 755 DM/kW, c 0.075 DM/kWh = 657 DM/kW a

n
Expecting that the competition will take place -- at least in the
first stage -- in the field of electricity production, the growth
rate factor p = 0.06 a_1 has been assumed. Substitution of these

figures into the formulae (5.11) and (5.12) gives

o
5 _
a54—q—1.52
c.-c¢ a _
e, = 2% o[22 1)p = - 0.139 + 0.031 = - 0.108a .
54 au au

Taking the last known market shares in the year 1971 as initial
conditions (f10 = 0.0114, f20 = 0.3406, fig9 = 0.4322, fuo =
0.2159, f = 0) the market shares in the time period 1885-1973

have beensgalculated using the subroutine PENETR with parameter
values modified according to (5.42) and (5.43). In the year
1973 1% market share of nuclear energy, (f5 = 0.01) has been
introduced and the remaining market shares have been corrected
accordingly. For these new initial conditions the substitution
process has been calculated until the year 2050. The result is

plotted in Figure 20a,b.

The economical assessments performed by various authors
diverge considerably. To see how much the forecast is affected
when rather different input data are used, the calculation has
been repeated using the assessment given by Michaelis {20] for
electricity power plants using LWR - nuclear energy and oil as
primary energy sources. According to this source the specific
investments and total production costs for the base load 7000 h/a

are:
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MUCLEAR

Figure 20. Foreeast of market penetration by nuclear energy--
economic assessment from [19].
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0.0429 DM/kWh = 376 DM/kW a

nuclear - Og 1500 DM/kW, Cg

I
Il

0il -

3 720 DM/kW,

C3 0.0639 DM/kWh = 560 DM/kW a

For these figures and p = 0.06 a_1 the formulae (5.711) and (5.12)

give
[¢]
- 5 _
a3 = 5 - 2.08
C - C [¢]
cyy = —55——1 + (55-— 1)0 = -0.256 + 0.065 = -0.191a | .
3 3

Choosing o0il as the reference competitor in this case, the
estimates of the parameters Cipr given above for r = 4, have
been recalculated for r = 3 (oil) using the formula 613 =

843(6iu - 63u) following from (5.15).

& = 0.0854, ¢& = 0.0504,

13 c23 = 0), & = =-0.0119

(€33 43
The corresponding model output, obtained for the same initial
conditions as in the previous case, is plotted in Figures 21a,b.

To make the comparison complete the parameter values

854 = 2.08 , 65& = -0.172
have also been determined using the formulae (5.11) and (5.12).
Notice the great difference in these parameter values when com-
pared with the previous case. In spite of this great difference
the model outputs given in Figures 20a,b and Figures 21a,b do
not differ so drastically as one could expect. This again shows
the very high stability of the substitution process and explains
the technological "fate" observed by Marchetti [2].

The possible objection that the economical assessment made
for FRG may not be representative for the whole world is fully
justified. Nevertheless, the rather low sensitivity of the

model output with respect to its parameter values demonstrated
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Figure 21. Forecast of market penetration by nuelear cnergy-
economic assessment from (20)].
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in this example, indicates that this gquestion may be not very

critical.

The meaning of the curves presented in Figures 19a,b and
20a,b corresponds to the probabilistic interpretation of the
output of the deterministic model given in this section, under
the assumption that the parameter values Cgyr Agy (in the first

case) and c (in the second case) are certain. This is,

537 953
of course, not true. If we wanted to be more objective it would
be possible to construct a "subjective" probability distribution
for these uncertain parameters, based on all available assess-
ments and opinions, and to project this uncertainty into the
future as outlined in this section. 1In this way the probability
distribution of the future process output conditioned on the

present knowledge could be obtained.

8. CONCLUDING REMARKS

Any scientific approach to the problem of forecasting cannot
be anything else than drawing conclusions on the basis of certain
assumptions. It is possible to check whether these assumptions
have been fulfilled in the past but, strictly speaking, it never
can be guaranteed that they will not be violated in the future.
Employing mathematics in this study, it was possible to base the
forecast on a few simple and well understandable assumptions and
to maintain consistency of reasoning even in rather complex situa-
tions. This makes it possible to reduce the discussion about the

possible future to a criticism of the basic assumptions.

Perhaps the most important assumption, on which the presented
theory is based, is that in the long term a particular technology
has to live and grow on its own account, i.e. that the mean value of
the external capital flow is zero. The assumption that the mean
values of certain economic characteristics do not change in time
restricts the validity of the model to the situations when the
technology starting to penetrate the market is already well estab-
lished. The model also cannot predict the birth of a new technology.

It must be introduced into the model exogenously.
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The penetration of a market by new technologies is a very
complex interplay between producers and consumers. This study
emphasizes the macroeconomic view on the producer side. The
consumer side, as discussed at the beginning of Section 4, is
reflected in the correction by which the total production costs
have to be reduced in order to respect the difference in market
price the average consumer is ready to pay for the higher quali-
ty of satisfaction of his need. 1In some cases this correcting
term cannot be considered as stationary and can be influenced
by advertisement and/or by official propaganda. In these cases
the consumer side and the spread of information should be con-

sidered in more detail.

In soclieties with planned economies the mechanism of an
open market is replaced by economic balances and decisions
made by planning institutions and committees. However, not even
a planned economy can afford to support a loser without special
reasons. The planners also have to respect the social demand
in order to ensure a fluent and regular distribution of products
but they can control the substitution process, by setting taxes
and different prices (both can be reflected in the model in
total production costs), in order to achieve some goals. It is
believed that the model developed in this study could serve as

a planning tool for these purposes.

Speaking about possible control of the substitution process
another important point has to be mentioned. As pointed out in
Section 4 no technology can start from zero without external
financial help. The magnitude of the initial external invest-
ment actually determines the initial conditions for the model
and may considerably accelerate (or delay if it is too small)
the substitution process, especially when the new technology is
profitable but requires high investments. This is clearly seen

from the sensitivity analysis performed in Example 2.

In Example 5 the forecast of penetration of the energy
market by nuclear energy, based on its economic assessment,

has been given. Recently, much attention has been paid to the
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question whether such a technological development would not be
too risky. Many other technologies are risky, too. (Consider,
for instance, the automobile -- one of the main killers of man-
kind.) Whether a risk has been taken or not is also an econom-
ical question. The presented model could help to evaluate the
economic loss the society should accept in order to avoid the
risk. 1In this way it would be possible to base the decision on

a more objective (and less emotional) basis.
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Appendix A. Mathematical theorems and proofs

To simplify the proofs of theorems used in the main text

four known Lemmas will be stated first.

Lemma 1. Let A and D be nonsingular square matrices, may-

be of different orders, and B and C matrices of appropriate

dimensions. Then the following relations for determinants hold:
A S |A||D—BA_1C| = |D||A—CD—1B| (A.1)
|a-cp 8| = Jr‘f;—HD—BA"1C| (A.2)

Proof: See, e.g., Rao [18], supplement to Chapter 1b.

Lemma 2. Let A be a nonsingular square matrix, b a vector

and y a scalar. Then

-1
{A+b1— bT] =2 - — L —— abp"a! (A.3)
Y Y+b'A 'b
1.7 1.7 -1
|A+b?b| —A(1+7bA b> X (A.4)

Proof. To prove (A.3) multiply both its sides by (Ai—b%;bT).

The second equality (A.4) is a special case of (A.2).

Lemma 3. Let M be a positive definite matrix of dimension

(v xv). Then

<

fexp (-4 (x-c)TM(x-c)ldx = (2Tr)2 |M]| (A.5)

Y

PaI—

R

Proof. See, e.g., Anderson [17] $2.3.
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Lemma 4. Let SQ be a space of all positive definite

matrices 2 of dimension v and let ¢ be also positive definite.

Then
1=
( |Q]2exp{— Ltr(Qe)ldQ
Sg
V-1 2 v _ H+Vv+1
ptv+1 20 +V+2-3 2
P L i r(%l) kY . (A.6)
3=1
where T'(+) is the gamma-function.
Proof. See, e.g., DeGroot [14] §5.5.
Theorem 1. The transformation between two v-dimensional

real vectors {ei: i=1,2,...,v} defined by relations

&n fi--ai n fv + ki = e, , i=1,2,...,v (A.7)

v
£ = 1- 7 £, (A.8)

where all a; are positive and real, is regular (one-to-one) and

its Jacobian 1s

v
L f.a. + f
J = i=1 11 V+1 (A.9)
V+1
n £,
i=1 *t

Proof. Notice that the transformation is continuous. To
prove its regularity it is sufficient to show that all partial

derivatives Bei/afj are positive. From (A.7) and (A.8) we have
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Bei ai
j o+ i : e = > 0 (A.10)
& L
9e; 1 a;
= — 4 > 0 (A.11)
of £

and the Jacobian can be expressed as follows:

f-1 1 a T
1 1
-1 0
f 1 a
5 - 2 . 1 2
f
v+ 1
0 -1
fv _1_ -a _
Application of (A.2) with A | = diag (£416y0..0 £, CT =
f1,1,...,11, D = f\)+1 and B = [a1,a2,...,av] proves (A.9).
Theorem 2. Let £(R) be a scalar function of a positive

semide finite matrix Q of dimension v defined by

p
7 -1
£(2) = |p|? e 2ETED) (A.12)
where D is positive definite. The maximum of £(Q) is taken on
at
- -1
Q@ = pD (A.13)

and the maximum 18

v _e
£(pp ) = (3)2 o] 2 . (A.14)

Proof. See Anderson [17] §3.2.

Theorem 3. Let H be a symmetric nonsingular (nxn) matvrir
and

A = [T, -a] ' (A.15)
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where I is an i{dentity matriz of dimenstion n-1 and a is a
column veetcr. Then the following equality holds

asaT] = Ju| @Ta A (A.16)

where a is the vector a extended by 1.

Proof. Consider the matrix H and its inverse G = H-1

partitioned in the following way
H = , G = , (A.17)

where h,g are vectors and n,y scalars. From the equality HG = I

the following relations are obtained.

-1

G = (H - hlhT> (A.18)
r r n
I R Y 5

(= ++5nTen (A.19)

n
= -G_ht (A.20)
g Lhe )

Using the definition (A.15) of the matrix A we have

T

|AHA

I
=
I
3
a1
|
a1
>
+
1]
|
a7l

N
=
=
=
+

a1

|

|
=
3
()

|

=1
=



-111-

Making use of (A.4) we obtain

_‘l
T 1. T 1 T 1.7 1
= -h— L -h — - = .22
|aH A" | \Hr hnh,(1+n<a nh) (Hr hﬂh) <a nh)) (A )

and reversed application of (A.1) gives

I
Hy hnh’ - n|H|
Considering also (A.18), (A.19) and (A.20) we can continue

in rearranging of (A.22) as follows

ml(% . (a-;_h)TGr(a-%hD

1 T n-1nT6 acaTe nl 4 aTe )
n 2 r n r r n r

i

|AHAT|

]

|5

1| (Y + gta + aTg + alGra) ) (A.23)

However, the last expression in (A.23) can be written also in

this way
T T ~ ==
laga| = [B] [a",1] [G, gwa
T
ERNNIL]
which completes the proof.
Theorem 4. Let H(N+1) be a (nxn)-matrix defined similarly
to (6.88)
H = ¢ - b T bT (A.204)
(N+1) (N+1) (N+1) “(N+1) T(N+1) :
where, according to (6.77) and (6.80)
5 = NF 1 kT (A.25)
(N+1) z, T (k) © (k)
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Ty = tx = trq (A.26)
Ty T et T E1 (8.27)
and b(N+1) is a n-vector the components of which are defined
accecording to (6.87)
b = LIS e vi (A.28)
(N+1) 3 T(N+1) T
Then the following recursive relations hold:
Ty = Ty T T (A.29)
T(N) *+1)
b = —2) [p —0 (A.30)
(N+1) T(N+1) (N) T ()
H “H, o+ (x -7, .b,_)(x -1, b, )T (a.31)
(NH+1) (N) 2 (N+1) (N+1) (1) 7 (N) (N+1) (N+1) 7 () :
o _ T D)
(N+1) T (A.32)
-1 -1 1 T
H = H - ——a a (A.33)
(N+1) (N) Y (N+1) (N+1) 7 (N+1)
d(n+1) ey T T P! (A.34)
¥ = @ +at wla (A.35)
(N+1) (N+1) (N+1) 7 (N) " (N+1) :
[ a1y | ey gy 1Y (a1 (A.36)

Proof. Relation (A.29) directly follows from the defini-

tions of 1 (A.27) and T (A.26) .

(N+1) (k)
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The i-th component of the vector b (A.28) can be

(N+1)
written as follows:

£ .
1 (N) i (N+1) i
b . n + in
D Ty fi () i
T
(N) 1
T T b(N)i+T(N)_x(N+1)i ,

which proves (A.30).

Using (A.25) and (A.30) the matrix H(

expressed in the following way:

N+1) (A.24) can be

1 T
H = 4 o x X
(N+1) (N) T(N+1) (N+1) 7 (N+1)
X (v+1 T2( X (1 !
- b(N) + N+1) N) b N)+ N+1)
Ty ) Ty \ T (N)

and after a simple rearrangement, (A.31) is obtained.

Application of (A.3) and (A.4) to (A.31) gives (A.33) and
(A.36), respectively, which completes the proof.
Theorem 5. Let l.@,a,Q,yE?;) be the likelihood funetion
defined by (6.81) for M = N, whaxe C(ESC 78 a (n-1)-vector and
EIESQ a (n=-1) x (n-1)-matrix. The integral of this function
taken over the (n-1)-dimensional space Sc‘iRn—1 and over the
space SQ of all positive definite matrices of dimension (n-1)

x (n-1) <s

M
K(anl;ra> = I f L<c,a,Q,yE:1;>dch =

cont./...
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2 n (f a)
=1 -1 : (k)
2h n - =2
= - nor (. k
M-z N 3=1 1;[4 HE )
) T
kop (K k=2 K
M+n-1
T 2
A,
X [AH g A (A.37)
where T (+) means gamma-function and |+| means determinant. For

M = N+ 1 the determinant in (A4.37) can be expressed as follows:

T T AT -1 A
AH gy A i a8 ) A i (”e(NH;"’(N)e(NH)) (a.38)
Saven) T BXnen) T S Ty (A.39)
T
(N+1) T
Y T ————— AH A R
(N) (N+1) T(N) (N)
where X (N+1) is the vector introduced by (6.61) and (6.62), and
é(N) 15 the maximum likelihood estimates (6.90) of the parameter
vector ¢, available at time tN. Hence
(N+1) n-1 T
N+ N+n-1 2 3
K Y(1) Ia) . T :z ) ™ f(N+1) a
N |
K(ymra) (3) el TEen)
1
. (A.40)
N+n
AT -1 A 2
e T S )

Proof. To proof (A.37) rearrange the exponent in the
likelihood function (6.81) according to (6.85) and apply Lemma 3

first and Lemma 4 afterwards.
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Using (A.31) the determinant on the left-hand side of

(A.38) can be expressed as follows:

T
|25 g1, 2 |
_ T _ ___1_ _ T,T
= |AH(N)A A T Tann P By, Fewn T TewnPan) A
According to (6.90)
Abny = S
and consequently
T| _ T | o4 1 AT
Al g1y A I = |AH(N)A + e(N+1)—§-&+—1)—e(N+1) '
where é has been introduced by (A.39). Now apply (A.4)

(N+1)
to prove equality (A.38).
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Appendix B. An optimization method

In Section 6 we had to find the vector a maximizing the

function
N
o f
\ k=2 K)a 1
= B
(a) — . (B.1)
[5TH_15] 2
where
a
a = . (B.2)

In the sequel we shall propose a simple and effective numerical

method which serves this purpose.

As already pointed out, the value of the function A

does not change when a in (B.1) is substituted for

where y is any nonzero number, not necessarily constant. Let
us choose y as follows:
y = k@ETH oyt
where k is an arbitrary constant. Then the function (B.1) gets
a simple form
N p—
ra) = mf a (B.4)
k=2

but the vector a, the last component of which is no longer fixed
to be one, is restricted by the condition

aty 'y = L. (B.5)

In this way the optimization problem is transformed into

the problem of finding a point a* on the ellipsoid (B.5) at
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which the function (B.#4#) is maximal. In other words, we have
to find the point a* at which the direction of the gradient
with respect to the ellipsoid

9. (3) = grad (a1 'd} =H '& (B.6)
and the direction of the gradient with respect to the function
A(a)

g,(a) = grad (A (a)}
N N f.
—_ T — 1
gy@; = 1 £, a" : — (B.7)
= =2 f
m=2 k (k)a
coincide, as shown in Figure Bt1. ©Notice that only directions

are significant.

Figure B1. Optimization algorithm.
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The optimum point a* can be found using the following

Algorithm AMLE:

1. Choose any starting point 7™ = 0, say 30 1,1,
2. Calculate the direction of the gradient with respect to the
function A
g)\(a(m)) « g (m
N £ .
TR TL)—J(-mT . (B.8)
k=2 f(k)a
3. Find the next point a(m+1) in which the gradient ge(a(m+1))

with respect to the ellipsoid (B.6) has the same direction

as the gradient gA(a(m)).
g lgimen) ()
Fml) _ ggm (B.9)
. —(m+1) .
4. Normalize the vector a , say to unit length, and
repeat 2 until the vectors E(m) and 5(m+1) coincide with

given precision.

The FORTRAN - subroutine realizing this algorithm can be
found in Appendix C.

No convergence proof is available for the optimization
algorithm described but it never failed on a number of examples

and appeared to be very fast.
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Appendix C. FORTRAN Subroutines

subroutine penetr(n,c,al,ro,f@,t,f)

function - market penetration - prediction
of market shares
usage - call penetr(n,c,al,ro0,£f2,t,f)
parameters n - number of competitors , max.ld
¢ - n-vector of production costs;

as the result depends only on differencies
between costs any number can be substracted
from all c¢'s.
al - n-vector of specific investments;
only nonzero components are allowed
ro - growth rate factor of total oroduction of all
competitors
f@ - n-vector of initial market shares at t=8;
the sum of all f@'s must be egual to 1
t - the value of time for which the prediction
is calculated; t can be negative.
f -~ output : n-vector of predicted market shares;
the sum of all elements of f is egual to 1.9

precision - 3 decimal digits behind the decimal point

of all f's; if higher precision is required
see cl

dimension c(1},al(l),fa(1),f(1)
dimension a(l#4) ,beta(19)
calculate alm
alm=¢.
sum=§g.
do 5 i=1,n
ali=al (i)
alm=alm+1l./ali
sum=sum+l./(ali*ali)
alm=alm/sum
calculate a,beta and initial psi
sum=§.
do 18 i=1,n
a(i)=alm/al(1i)
beta(i)=(c(i)+al(i)*ro)/alm*t
sum=sum+£4 (i) *exp(-beta(i))
psi==-alog (sum)
iterative solution of egn. xi(psi)=%
xi=-1.
dxi=9g.
do 20 i=1,n
f(i)=£f@ (i) *exp((psi-beta(i))*a(i))
xi=xi+f (i)
dxi=dxi+a(i)*f (i)
if(abs{xi).1lt.0.5e-3) go to 25
if higher precision is reaguired change
0.5e-3 to 9.5e~-d where d is the number
of decimal digits behind the decimal point
of f's which have to be guaranteed
psi=psi-xi/dxi
go to 15
return
and
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subroutine mlest(n,ir,t,f,kf,kl,cir,air,r,clir,rl,
*h,b,tau,it,itest)

function

usage

parameters
input: n
ir
t

£

kf
k1
cir
air
r
clir

output:

rl

h

b
tau
it

itest

- market penetration - maximum likelihood estimation
of model parameters

- call mlest(n,ir,t,f,kf,kl,cir,air,r,clir,rl,
*h,b,tau,it,itest)
reguires the subroutine amle

- number of competitors,max.7

- index of the reference competitor

- vector of time pointe for which the market
shares are given

- matrix of market shares, f(k,i)=f(t(k),1),
sum f{k,i):i=1,n must be 1.

- first row in t and f which is considered in estimation

- last row in t and f considered,kf.lt.kl.1le.10@

- nl-estimate of c(i,ir):i=1,n; c(ir,ir)=2.

- ml-estimate of 3(i,ir):i=1l,n; a(ir,ir)=1.

- ml-estimate of covariance matrix r

- ml-estimate of c¢(i,ir) under assumption a(i,ir)=1
for all i.

- ml-estimate of covariance
a(i,ir)=1 for all i.

- auxiliary matrix reouired for bayesian forecastina

- vector for hayesian forecasting

- 3calar narameter for bayesian forecasting

- number of iterations verformed in calculation
of air, maximum it is set to 58, if it=5a
the iteration has not been comnleted.

~ regular case itest=1. if itest=2 then the calcu-
lation could not be completed because one or more
a's ara zero, in that case cir and r are set to zero
and a,i=1,n is given out on the place of air.

matrix r under assumption

dimension t(19@),£(12¢,7),h(7,7),b(7),a(7),
&air (7),cic(7),clic(7),c(7,7),c1(7,7)

m=k1-kf

tau=t (k1) -t (k)

ks=kf+1
calculate vector b

do 12 i=1,n

12 b(i)=alog(f(xl,i)/f(kf,1)) /tau

calculate matrix h

do 16 i=1,n

do 16 j=1,1

sum=9,

do 14 k=ks,xl

1=k-1

dt=t(k)-t(1)

sum=sum+ (alog (f(k,1i)/f(1,1))/dt-b(i))
&*(alog(f(k,3)/£(1,]))/de-b(J))*dt

14 continue

n(i,j)=sum
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16 h(j,i)=sum
calculate estimates of a
call amle(n,f,ks,kl,h,a,it,itest)

if(itest.qt.%)go to 29
do 18 i=1,n

cir(i)=4a.

air(i)=al(i)

18 r(i,j)=h.

go to 28
calculate vectors air and cir
20 do 22 i=1,n
air(i)=al(ir)/a(i)
22 cir{i)=b(ir)-air (i)*b (1)
calculate covariance matrix r
do 26 1i=1,n

do 26 j=1,i
r(i,j)=(h(i,j)-n(i,ir)/aic(j)-h(ir,j)/air(i)+
shiir,ir)/air(i)/air(j))/m
26 r(j,i)=r(i,J)
calculate vector clir
28 do 33 i=1,n
3¢ clir(i)=b(ir)-b(1i)
calculate covariance matrix rl

do 32 i=1,n

do 32 j=1,1

rl(i,j)=(a(i,j)-h(i,ic)-h(ir,j)+h(ir,ir))/m
32 rl(j,i)=cl(i,])

return

end
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subroutine amle(n,f,ks,kl,h,a,it,itest)

function - market penetration -maximization of likeli-
- hood function with respect to vector a
usage - call amle(n,ft,ks,kl,h,a,it,itest)
parameters - see sukbroutine mlest
remark - output vector a is normalized to unit length.

121

12

123

6

187
128

139

dimension a(7),ap(7),9(7),£(10A4,7),nh(7,7)
it=0

xn=n

sum=1./sqrt(xn)

do 121 i=1,n

ap{i)=sum

itest=1

do 123 i=1,n

g(i)=0a.

do 145 k=ks,kl
sum=0.

do 1?24 i=1,n
sum=sum+£f (k, 1) *ap (i)
do 1i¢5 i=1,n
J{1)=g (i} +£f (k,1)/sum
ra=2,.

do 128 i=1,n

sum=3.

do 106 k=1,n
sum=sum+h (i,k)*g (k)
if (sum.gt.d.)go to 147
itest=¢

sum=3,

a{i)=sum
ra=ra+sum*sunm
ra=sgrt(ra)

sum=0,

o 139 i=1,n
a(i)y=al(i)/ra
sum=sum+(a(i)-ap(i))**2
ap(i)=al(i)

it=it+l

if (sum.lt.l.e-6)go to 114
if(it.1t.5@)3o to 132
return

end
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