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Abstract

In this article a new equation is derived for the optimal
feedback gain matrix characterizing the solution of the stan-
dard linear regulator problem. It will be seen that, in
contrast to the usual algebraic Riccati equation which requires
the solution of n(n + 1)/2 quadratically nonlinear algebraic
equations, the new equation requires the solution of only nm
such equations, where m is the number of system input terminals,
and n is the dimension of the state vector of the system.

Utilizing the new equation, results are presented for the
inverse problem of linear control theory.
I. Introduction

We consider the problem of minimizing

J = J [(x,0%) + (u,w] 4t ,
0
over all piecewise continuous control laws u(t), where the state x and

the control u are connected by the linear differential equation

= Fx + Gu , x(0) = ¢c .

Q-|O.-
el

Here x and u are n, m-dimensional vectors, respectively, F, Q, and G
are nxn, nxn, and nxm constant matrices, with Q non-negative definite.
Well known [l] results from optimal control theory state that the solu-

tion to this problem is

Jin = (c,Pc) ,

Uninlt) = -G'px(t)
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where P is the unique non-negative definite solution of the algebraic

Riccati equation
Q + PF + F'P - PGG'P = 0 . (ARE)

The quantity H' = G'P is, for obvious reasons, called the optimal feed-
back gain matrix and, if the pair (F,G) is controllable while the pair

.(F,Q%) is observable, then it can be shown that the closed loop system

= = (F - GG'P)x ,

is also asymptotically stable.

The inverse problem of linear control theory is the following:
Given an asymptotically stable control law G'P, characterize all posi-
tive semi-definite matrices Q leading to the given control law through
the ARE.

Notice that the ARE represents a set of n(n + 1)/2 quadratically
nonlinear algebraic equations for the components of P as P is symmetric.
Various successive approximation [10] and direct [11] methods have been
proposed for finding the positive semi-definite solution of ARE.

In this paper, we shall present a new equation which is also
quadratically nonlinear but in the components of H and not P. Since H.
is an nxm matrix, the new equation represents only nm algebraic equa-
tions which, if m < (n + 1)/2, represent fewer equations than those
needed for the ARE. Also, it will be seen that the new equation has
some analytic features which enable us to easily obtain some useful re-

sults relating to the inverse problem.

II. Main Results

Before proceeding to the principal results, recall a few useful
facts from matrix theory: let A and B be nxm, pxg matrices, respective-
ly. Then the Kronecker product of A and B, denoted A & B, is the

npxmg matrix whose (i,j)th element is aijB' i=1,...,np, j =12,...mq.



Next, let A be an nxm matrix. By o(A) we denote the nmxl matrix
formed from A by "stacking" the columns of A beginning with the first.

Thus,

g(A) = a see a_ ).
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In terms of the operations ® and o, we can obtain the useful formula [Z
o(PAQ) = (Q'8P)o(A) , ' (n

valid for any three matrices P, A, Q for which the product PAQ makes
sense. This result will be exploited below. Note also that o (A + B)

= o(A) + o(B) and o(ad) = ac(A) for any scalar a, so that o is a linear
operator from the space of mxn real (or complex) matrices to R (or Cnm).

We use these facts now to prove our

Main Theorem. Assume the system matrix F has no characteristic

roots on the imaginary axis. Then the optimal feedback gain matrix H

satisfies the equation.

G(H) = (G'®I) (I8F' + F'®I) To(HH' - Q) . (HE)
Proof. By definition H = PG. Thus, the ARE may be written as

Q + PF + F'P - HH'

|
(=)

Applying the operation ¢ and relation (1) we obtain
(I®F' + F'®I)c(P) = o(HH' - Q) .
The assumption on F insures that ([®F' + F®I) is non-singular. Thus,

1

o(P) = (IBF' + F'®I) ~o(HH' - Q) . (2)

However, o(H) = o(PG) = (G'®I)o(P). Thus multiplying (2) by (G'®I), we

obtain (HE).

Remarks. i) As noted above, HE represents nm quadratically
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nonlinear algebraic equations for the components of H. Thus, the
"algebraic degree" of difficulty in solving HE is the same as that in
solving the ARE. However, if m < (n + 1)/2, there are fewer equations
in HE and so it would appear the computing burden is reduced. More dis-
cuésion of this matter is given in Section ITI.

ii) From the point of view of applying various successive approxi-
mation methods, HE is in better form than ARE since the unknown quanti-
ty H stands alone on the left side of HE. This enables standard algo-
rithms to be applied without further manipulation.

iii) The solution of HE is the limiting function for the generalized
X-Y equations introduced in [},4,5,9]. It is interesting to observe that
HE cannot be obtained by a simple examination of the critical points of
the finite interval Cauchey problem, but must be approached through the
procedure employed above.

iv) It is toc be expected that all properties of the ARE such as
uniqueness of the positive, semi-definite solution, monotonicity of
approximants in numerical schemes, etc. may be extended to the HE, the
appropriate definitions and interpretations being induced by the defini-
tion H = PG, e.g. the natural ordering Hl > H2 would follow from Pl

> P where H, = P G,H2 = PZG' We now employ the HE in order to prove

2! 1 1

an important result for the inverse problem of linear control theory.

Inverse Problem Theorem. Let (F,G) be controllable and let Hl‘ H2

D

be t..e solutions of the equations

~
[}

(G'®T) (I8F' + F'@I)—lo(HlHi - Q) (*

) = (G'®I) (IQF' + F‘@I)_lo(HZH; -0 (**)

1
Wi L€ Ql’ Q2 are positive semi-definite, (F,Q{), (F,Q?) being observ-

zble. Then a necessary and sufficient condition for (*) and (**) to

hive the same positive semi-definite (see note iv above) solution is




0(Q; - Q,) e ker [(G'@I)(I@F' + F'@I)_l]

Proof. We first remark that the contfollability, observability,
and definiteness assumptions imply, through standard arguments and thé
definition H = PG, that both (*) and (**) have a unique, positive, semi-
definite solution. We denote this solution by HI,H;, respectively. We
first prove necessity.

+

Let HI = H2. Subtracting (**) from (*), we have

0 = O(HI) - O(H;) = (G'®I) (I8F' + F'®I) 1

o tIH]) - o UKD + a0y - ooy ]

Thus, o(Q, - Q) € ker [(G'@I)(I@F' + F‘@I)'l]

On the other hand, let the condition be satisfied. We write (%*)

and (**) as

1

(G'®I) (IBF' + F'®I) ~o(H;H) - o(H))

= (G'®I) (I8F' + F'@I)_lo(Ql) , (*)
(G'®I) (IBF' + F‘@I)_la(HzH;) - o (H,)
= (G'®I) (IRF' + F'@I)_IU(Qz) . (**)

Thus, since the right-hand sides of (*) and (**) are the same, we see
that Hl and H, both satisfy the same equation and, since this equation

has a unique positive semi-definite solution, the theorem is proved.

Remarks. 1) Since o(Q2 - Ql) contains n2 elements, while
ker [(G'@I)(I@F' + F'@I)_l}is of dimension nm, there are n(n - m) de-
grees of freedom in selecting an element Q2 - Ql € ker[-]. However,
the semi-definiteness and controllability reguirements may reduce this

to a lesser number, depending upon the structure of F.



ii) The foregoing result easily enables us to characterize all Q2
which are equivalent to a fixed Ql’ in the sense of generating the same

feedback law. Explicitly, for all such 0, we have

0(Q,) = c.(ol) ® ker [(G'@I)(I@F' + F'@I)_l] .
when & denotes the direct sum of two vector spaces.
III. Discussion

In this paper, we have presented a new equation characterizing the
optimal linear regulator gain matrix and have used this equation to ob-
tain some new results for the inverse problem of linear control theory.
Several topics associated with these results are currently under inves-
tigation and will be reported on in future publications. Among these
are:

a) Computational procedures - even though HE usually results in a

fewer number of equations to solve than ARE, the presence of the term
(IQF' + F'@I)-l, requiring the inverse of an n2xn2 matrix, introduces
scme nontrivial computational considerations. By various partitioning
methods this inverse may be calculated in O(nd) multiplications, but it
is not yet clear that solving HE always results in a faster computation
than solving ARE. Also, comparative investigations of direct vs. itera-
tive methods need to be carried out, as well as studies for the case

when F has multiple characteristic roots;

b) Analytical Studies - the equation HE is a substantial generali-

zation of the H-equation of radiative transfer, which was originally
cstudied by Ambartsumian and Chandrasekhar. Several interesting proper-
ties of the H function have been obtained in the radiative transfer
case, and it is now a matter of some interest to see if generalizations
may be obtained. From the results of [7,12], it would appear promis-
ing, but the details remain to be worked out.

Also, it is well-known that there exist intimate connections
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between the.Riccati equation and linear differential systems. It would
be interesting to know if the solution of the HE also has such connec-
tions, particularly since one of the primary methods for solving the
ARE is based upon this connection [11];

c) Infinite-Dimensional Problems - the infinite-dimensional, finite
time, quadratic cost-linear dynamics control problem was studied in
EGJ from the point of view of obtaining alternates to the operator
Riccati equation for characterizing the optimal feedback law. It was
shown that whenever there are only a finite number of places where
control may be exerted or measurements made, the new equation resulted
in a computational improvement over the operator Riccati equation. It
seems natural to conjecture that the HE may be extended to the opera-
tor situation with no substantial difficulty but again the details are

still under investigation.
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