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Abstract 

This paper presents an alternative approach in estimating the effect learning has on the 
cost structure facing individual firms. The suggested method is applied to the Swedish 
kraft paper industry and relies on a comprehensive dataset for eight individual 
integrated kraft paper mills. The analysis is conducted through two steps. First, using a 
flexible cost function, utilizing mill-specific dummy variables, a cost reduction index 
can be estimated devoid of scale and price effects that if not dealt with can produce 
spurious results when estimating learning effects. The second step is to regress the 
estimated cost reduction index on the traditional determinants that are thought to 
influence the learning process. The results suggest that the Swedish kraft paper industry 
has relatively little to gain in terms of cost reduction through a further learning process. 
However, the method performed well, producing intuitive and statistically significant 
estimates indicating its usefulness in further analyses. 
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On the Existence of Learning Effects in 
Swedish Kraft Paper Mills 
Robert Lundmark 

1 Introduction 

The fact that the workforce, management and even machines improve their 
manufacturing performance as experience is gained by increases in cumulative 
production is an accepted concept in the economic debate. By gaining experience as 
production accumulates the workforce will be able to achieve higher output at lower 
cost. Hence, learning effects can have a profound impact on the cost structure facing a 
firm. As a consequence, on an aggregate level, the productivity within an industry 
sector might improve as production accumulates, which might contribute to overall 
economic growth in a region or in a country. Another aspect of firm behavior derived 
from learning effects involves pricing strategies. For example, the existence of 
learning effects might provide a rationale for firms to price low ― even predatory 
pricing might be rational ― in the hope of gaining increasing market shares and 
thereby speeding up their production and gaining learning effects faster. It has also 
been argued that the existence of learning effects might create entry barriers and 
protection from competition by conferring cost advantages on early entrants and on 
those who achieve large market shares (Spence, 1981). Moreover, in the formulation 
of trade policy it has also been argued that governments should provide limited and 
temporary protection to domestic firms from foreign competitors (e.g., Helpman and 
Krugman, 1985). Thus, the existence of learning effects can provide strategy and 
policy instruments, not only for firms but also for policy makers. 

Industries vary considerably in the rates at which they learn. Whereas some sectors 
show extraordinary rates of productivity growth as cumulative production increases, 
others fail to show expected productivity gains from learning. As a general rule, it 
may be stated that the more capital-intensive the industry is, the lower the elasticity of 
the learning curve (Isoard and Soria, 2001). A capital-intensive industry, which also 
has a considerable impact on national and local economies in Sweden, is the pulp and 
paper industry. Given the economic importance the pulp and paper industry has on the 
Swedish economy, it is surprising how little empirical research on learning effects has 
been done. The present paper will attempt to remedy this research gap by not only 
providing an analysis regarding the learning effects for the pulp and paper industry 
but also by presenting an alternative procedure in the estimation of learning 
elasticities. Thus, the purpose of this paper is to estimate and analyze the learning 
effects in the Swedish kraft paper industry using an alternative two-step procedure. 

Figure 1 depicts the relation between labor input per unit of output and cumulative 
production for eight kraft mills in Sweden over the period 1975–1994. Due to 
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different levels of cumulative production the units have been omitted. As a 
consequence, comparison between the mills is not possible but Figure 1 still suggests 
some interesting findings. As is evident in the Figure, all eight kraft mills exhibit a 
decreasing trend in the labor input needed as the cumulative production increases, 
indicating that the workforce has gained some type of experience as the cumulative 
production increased. Furthermore, the latter part of the curves in Figure 1 suggests 
that some degree of maturity is reached where additional gains in experience have 
little to no effect on the cumulative production.  
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Figure 1: Relation between labor input per unit of output and cumulative 
production for eight kraft mills in Sweden (units omitted).     

However, as mentioned above and what will be further developed in latter sections in 
this paper, learning effects can also include the learning of capital equipment or 
infrastructure. For these reasons no decisive conclusions can be drawn from Figure 1 
without considering the effects of learning by capital equipment. Since, in the kraft 
industry, a large part of the capital equipment is conceived, manufactured and 
supplied by other firms it becomes important to distinguish between embodied and 
disembodied learning effects of capital equipment. The embodied learning effects are 
defined as the learning effects achieved by suppliers of capital equipment, while the 
disembodied learning effects are the learning effects achieved by individual kraft mill 
operators. 

The paper proceeds with a short presentation of the fundamental aspects of the 
learning concepts, which are followed by theoretical models. In section four the 
empirical specifications are introduced together with a description of the data. Finally, 
the results and conclusions are presented in the last two sections. 
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2 Learning Effects Fundamentals 

Since its inception, the learning effect concept has found a solid place in economic 
literature (e.g., Wright, 1936; Hirsch, 1952; Andress, 1954). The first applications 
involved a manufacturing process that had high labor intensity. For example, Wright 
(1936) reported that unit labor costs in airframe production declined with cumulative 
output. Learning effects can arise from at least three different sources. First, the labor 
force will accumulate experience over time, which reduces the labor input needed to 
produce a constant level of output, ceteris paribus. Second, managers can also gain 
experience and thereby improve the management of the production process by, for 
example, modifying work task assignments. Finally, technical improvement due to 
repeated use might be considered as experience gained by the infrastructure of the 
production process, e.g., machines, tools, etc. Machines that have a new technology 
embodied might even replace older machines that are based upon an obsolete 
technology.  

As a consequence, unit costs incline to decrease as these different aspects of 
experience accumulate. Some of the literature makes a distinction between these 
learning concepts; however, in the following text the term ‘learning curve’ will be 
used as the measurement of all the learning effects on the cost patterns, whatever their 
source might be.1 Hence, the learning effects and the associated learning curve 
concepts represent the “technological progress associated with a technology, i.e., the 
improvements induced by experimentation, implementation and research and 
development throughout the production process, directed by social and economic 
policies as well as economic opportunities” (Isoard and Soria, 2001). It is an indicator 
of the marginal innovation, which occurred in a technology or, alternatively, is the 
product of increasing productivity induced by experience (Arrow, 1962). 

3 Theoretical Framework 

The effect learning has on the cost structure facing a firm can be formulated in a 
variety of ways. It is crucial, though, to adjust the modeling so that it fits the industry 
or sector under investigation. The focus here is to analyze the effect learning has on 
the cost structure for kraft paper producing mills in Sweden. In general terms, the unit 
cost of production is, for a specific mill, depending upon learning processes 
undertaken by its staff and machinery. In addition, kraft production is using 
substantial capital equipment developed and manufactured by other firms, hence, 
making it necessary to also include “supplier learning” so that the entire learning 
aspect is captured (Joskow and Rozanski, 1979; Chung, 2001). The learning curve can 
then be expressed as: 

( ) ( )qhygcu =  , [1] 

where cu is the unit costs of production, y and q are increasing measures of experience 
by the operator and supplier, respectively. The functions g(y) and h(q) describe the 
                                                 
1 The distinction is usually made between learning curve effects and experience curve, or 
organizational curve, effects, e.g., Argote and Epple (1990) and Isoard and Soria (2001). The former is 
defined as the learning effects of workers on unit costs, while the latter incorporates all of the effects of 
experience on unit costs, e.g., workers learning, and technical and managerial improvements. 
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disembodied learning process by operators and the embodied learning process by 
suppliers. The distinction between the two learning concepts is presented in Figure 2 
where A is the asymptotic value of the cost reduction. 
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Figure 2: Schematic representation of learning concepts. 

The cost function for a representative pulp and paper mill can be expressed as: 

( )[ ] ( ){ }yVtAycc ∈≡=
≥

xwxw
x

:min,,
0

 , [2] 

where y is the level of output, w is a vector of strictly positive input prices, wx is the 
inner product, A(t) represents the state of technological knowledge at time t and V(y) 
is the input requirement set, i.e., all input combinations capable of producing output 
level y. Equation [2] allows for the separation of scale effects, price effects and 
technological knowledge in the cost structure for specific mills. Devoid of scale and 
price effects, the technological knowledge represents pure cost reductions over time 
or, using another terminology, the learning effects present in the Swedish kraft 
industry. 

4 The Empirical Specification 

Technological knowledge and economies of scale are two important variables when 
assessing cost reductions in the production process for industry sectors of an 
economy. While economies of scale represent a movement along the average cost 

Experience 
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curve, technological knowledge represents a shift in the same. Other important 
variables that affect the cost structure are, of course, the input prices. When 
empirically estimating learning curves it is important to employ a cost variable that 
reflects only the pure cost reductions over time devoid of any scale or input price 
effects unless these effects are explicitly accounted for in the model. To reflect this, 
the approach suggested in this paper relies on a two-step estimation procedure. First, a 
variable Translog cost function is derived containing a technological knowledge index 
using -pecific dummy variables. This step allows for the separation of the scale and 
price effects from the learning effect. Furthermore, the technological knowledge index 
is constructed so that it can be decomposed showing technical biases as well as a pure 
technological knowledge index, i.e., a pure cost reduction over time devoid of other 
effects than time itself. Second, the estimated technological knowledge index is then 
used to estimate the learning curve and the associated learning elasticities using a two-
factor learning curve (2FLC) model. 

4.1 Variable Translog Cost Function 

Empirical studies analyzing learning curves have often relied on different 
specifications of the traditional Cobb-Douglas functional form for their cost- or 
production functions. This approach has the same disadvantages as employing the 
Cobb-Douglas function in other empirical economic analyses, namely, the inability to 
allow a desirable flexibility in the estimated parameters. Using a transcendental 
logarithmic (Translog) approximation function permits the estimation of the 
parameters of the underlying production technology as well as a technological 
knowledge index, i.e., unaccounted cost reductions over time, which may be both 
scale augmenting and non-neutral. Hence, to impose as few restrictions on the 
variable cost function as possible, a Translog approximation of the cost function is 
used. This function is obtained by a second-order Taylor expansion of the logarithm 
of equation [2] (Christensen et al., 1971; 1973).2 Furthermore, we also assume the 
existence of a short-run cost function, i.e., one in which the capital stock, z, might be 
fixed at a level other than its full-equilibrium value. In most previous studies long-run 
cost functions are employed to analyze the cost structure of the pulp and paper 
industries in various countries (for a review see Stier and Bengston, 1992). Implicit in 
the long-run formulation is, however, the assumption that the industry is in (long-run) 
static equilibrium at all times. This assumption is not likely to be valid for industries 
where the capital embodied has a long lifetime, and where adjustments are costly. 
This is particularly true for heavy industries, such as the pulp and paper industry, 
where capacities are planned and built on long-term forecasts, which can easily be 
inaccurate. In addition, excess capacity is often maintained to meet sudden increases 
in demand. This implies that the capital stock is quasi-fixed and that the firms are 
often not in static equilibrium. Under such circumstances a variable (short-run) cost 
function represents a more appropriate representation of the underlying production 
structure. Moreover, our choice of estimating a short-run cost function also appears 
                                                 
2 While the development of flexible functional forms has facilitated a more complex representation of 
production technologies, such forms do not guarantee meaningful results. The Translog functional 
form, for example, can yield unrestricted estimates of substitution elasticities, but at the cost of possibly 
violating global regularity conditions on the concavity of a production function (or the convexity of a 
cost function). A comparison of the properties of the most common flexible functional forms and their 
implications for the estimation of parameters of the production technology can be found in Fuss and 
McFadden (1978). 
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appealing since short-run disequilibria are likely to have been operative during the 
period under study (1975–1994). For instance, the sudden energy price increases 
following the oil crises in the 1970s represent important causes of such disequilibria.  

Since A(t) in equation [2] is unobservable, it is impossible to derive an approximation 
that is directly possible to estimate. However, by employing time-specific dummy 
variables and a pooled data set it is possible to derive a variable Translog cost 
function that is possible to estimate (Baltagi and Griffin, 1988; Lundmark and 
Söderholm, 2003). The Translog variable cost function can then be formulated as: 
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where the subscript m=1,…,M indexes the number of kraft paper mills. Dm 
represents mill-specific dummy variables. VC is the variable costs of production, and 
is a function of N variable input prices (wi, i=1,…,N), the level of paper output (y), 
the amount of quasi-fixed input (z), in our case the capital stock. The index of 
technical change [A(t)] is replaced by time-specific dummy variables denoted by Dt   
(t=1,…,T).  

By differentiating the variable cost function with respect to input prices and 
employing Shephard’s lemma, the corresponding cost share equations (for inputs 
i=1,…,N) can be derived: 
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The symmetry restriction, βij=βji, is imposed on the model. To ensure that the cost 
shares add up to one (1) and that the cost function is linearly homogenous in input 
prices, the following parameter restrictions are also imposed: 
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The rate of technological knowledge, 
•
T , can be obtained by differentiating the 

variable cost function with respect to time (t). We then obtain: 

t

VC
cu ∂

∂= ln
 . [6] 
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Technological knowledge is defined here as cost diminution over time, ceteris 
paribus. Thus, in equation [6] a negative sign indicates technical progress while a 
positive sign is a sign of technical regress.3 

4.2 The Two Factor Learning Model 

In general, the learning curve specification estimates the extent to which accumulation 
of production experience contributes to the reduction of costs. Incorporating the 
notion of embodied and disembodied learning effects mentioned above, the functional 
form for the learning curve can be written as:  

εαα eqyccu
21

1=  , [7] 

where c1 is the initial cost reduction, y is the cumulative production of kraft paper, q is 
the gross mill capacity (i.e., rated capacity), the α´s is the learning elasticities to be 
estimated ( 10 −≥≥ iα ) and ε is a stochastic disturbance term. The time notion has 

been dropped for convenience. It is important to notice that even though the capacity 
is used as a measure for supplier learning, it will only measure the cost reduction 
associated with learning effects since the scale effects has been removed in the 
Translog variable cost function. Taking the logarithm of equation [7] it becomes 
possible to estimate using least squares methods:   

εαα +++= qyccu lnlnlnln 211  . [8] 

Furthermore, since panel data is employed and because it is of interest to capture 
within-mill variations among the kraft industry, a fixed effect error specification is 
chosen. The fixed effects specification assumes that all mills have the same slope on 
the learning curve, i.e., the same slope parameter, but that they have different 
intercepts.   

4.3 Data 

The data employed is a panel set consisting of eight integrated kraft paper mills over 
the period 1975–1994 resulting in a total of 152 observations.4, 5 The variable cost 
function of kraft paper production equals the sum spent on the following inputs: labor, 
energy, recycled paper, woodpulp, pulpwood and woodchips. The data have been 

                                                 
3 The possibility of increasing costs over time (or negative technical change) deserves some further 
attention. In the case of constant returns to scale, any improvement in efficiency or productivity must 
be attributed solely to technical change. When, as in this paper, no restrictions on the returns to scale 
parameters are imposed, any change in productivity must be divided between returns to scale 
(movements along the production function) and technical change (shifts in the production function). 
Thus, negative technical change implies that after gains owing to scale are removed there has been a 
decrease in productivity. Hence, the gross effect on productivity might be positive even though 
technical change has been negative. 
4 1994 was the last year that Statistic Sweden (SCB) collected the necessary data for the present 
analysis.  
5 The kraft paper mills correspond to branch code 341 according to SNI 69 and branch code 21 
according to SNI 92, where SNI refers to the Swedish industrial classification systems. Furthermore, 
only mills producing at least 90% of its output of the good categories 4801, 4804 and 4805 are included 
(with subcategories). 
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obtained from Statistic Sweden’s annual Industrial Statistics. The corresponding input 
prices have been derived from the ratio between expenditures and consumed 
quantities and are measured in 1,000 SEK/metric ton for woodpulp and recycled 
paper, in 1,000 SEK/m3 for pulpwood and woodchips, in 1,000 SEK/MWh for energy 
and, finally, in 1,000 SEK/employee for labor. Production data are measured in 1,000 
metric tons. The determinants of the learning curve, the cumulative production and 
production capacity are also derived from statistics obtained by Statistic Sweden’s 
Industrial Statistics and are measured in 1,000 metric tons. 

The capital stock variable was constructed using the perpetual inventory method as 
outlined in equation [9]: 

( ) 11 −−+= ttt zIz δ  , [9] 

where zt is the capital stock in time t, It is the investment and δ is the capital 
depreciation rate. The capital stock for the initial year was constructed by using a 
industry-specific aggregate capital stock obtained from Statistic Sweden, weighted by 
mill-specific production. Unfortunately, investment data could only be obtained on 
the firm level and not on the mill level. This problem was solved by disaggregating 
the firm-level investment data by using the increases in mill-specific production levels 
between year t and t+1 as weights.6 The depreciation rate is assumed to be constant 
over time as well as across mills. Following Samakovlis (2001) and Hetemäki (1990), 
δ is set at 7%. Descriptive statistics can be found in Table A1 in the Appendix. 

Some mills do not use all of the four raw materials, and the prices for these can only 
be derived conditionally on the realization of a strictly positive demand for that raw 
material (see above), i.e., the mills must have purchased the raw material. This 
implies that for some observations we have zero cost shares and missing price 
observations, and this can cause biased estimates of the parameters (e.g., Bousquet 
and Ivaldi, 1998). With no special account of zero expenditure, standard estimation 
methods, such as the maximum likelihood estimator, may yield inconsistent estimates. 
However, simply deleting observations containing zero expenditure does not cure the 
problem as it instead may lead to a sample selection bias. In addition, it reduces the 
sample size. In this paper an approach suggested by Lee and Pitt (1986, 1987) (see 
also Samakovlis, 2001) is used by replacing the missing price observations by price 
averages. 

In order to estimate the system of equations given by the Translog cost function in 
equation [3], the N-1 of the factor cost shares in equation [4], and with the parameter 
restrictions in equation [5] as well as the symmetry condition imposed, we have to 
specify the stochastic framework. Error terms, VC

mtε  and i
mtε , are added to the VC- and 

share-equations, respectively. Furthermore, the error term of the variable cost function 
is decomposed so that: 

mtm
VC
mt νµε +=  , [10] 

                                                 
6 The rationale behind this procedure is that it can be expected that mills that expand their production 
more rapidly than others would be more likely to have invested relatively much in the near past. 
Regardless of whether the mills have invested in order to replace worn-out capital or to meet higher 
demand, investments at time period t are likely to result in a higher production level at t+1 than would 
otherwise have been the case. 
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where mµ  is the mill-specific component, and mtν  is the white noise component, 

which varies randomly across mills and over time. The mill-specific errors are 
interpreted as unobserved differences in the cost structure due to, for instance, 
remaining differences in the output mix (although these should not be large given that 
mills with relatively low product shares have been removed from the sample). We 
assume that these differences are fixed over time for a given mill, and we can then 
eliminate the mill-specific disturbance component by introducing dummy variables 
for each mill. This fixed effects approach overcomes the bias of the estimation results 
that can occur in the presence of unobserved mill-specific effects that are correlated 
with the regressors (e.g., Baltagi, 1995). The disturbance vector for the cost share 
equations, i

mtε , are assumed to be multivariate normally distributed with mean vector 

zero and constant covariance matrix.  

Finally, the energy cost share equation is dropped from the estimation to avoid 
singularity in the disturbance covariance matrix. Since the system of equations is 
estimated by the method of maximum likelihood (using the TSP software) the results 
are invariant to the choice of cost share equation dropped (Berndt, 1991). 

5 Results 

The regression results from the Translog variable cost function and from the learning 
function is presented in Table A2 in the Appendix and in Table 1, respectively.7 The 
changes in unit costs over time and between mills are estimated by the Translog 
variable cost function. In the estimation procedure, the derived unit cost estimates are 
cleared from scale and price effects leaving an index of pure technological 
knowledge. The unit cost changes are plotted in Figure 3 by mill. As seen in the 
Figure, all mills have had a positive cost reduction over time of about 0.25% annually 
due to learning effects. Most mills experienced a significant decrease in cost 
reductions in the late 70s and early 80s indicating that some occurrences affecting 
most of the industry happened. It is difficult to pinpoint events that might have caused 
the decline in the unit cost during this time. A low capacity utilization during that late 
70s and early 80s together with the aftershocks of the oil crises might explain part of 
it.   

As seen in Table 1, the regression results for the learning function is in line with 
expectation ( 10 −≥≥ iα ) and exhibits at least a 10% statistical significant. It is also 

noteworthy that a likelihood ratio test indicates that a common intercept for the mills 
can be rejected supporting the use of a fixed effect model. This suggests that 
significant within-mill variations exist. In the specific context of this study it means 
that every mill has the same learning parameter, i.e., slope of the learning curve, but 
the specific unit cost decline at unit cumulative production and unit capacity are 
different between the mills. 

 

 

                                                 
7 The theoretical consistency of the Translog variable cost function is presented together with the 
estimates in the Appendix.  
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Figure 3: Changes in unit cost reductions over time and by mill. 
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Table 1: Least squares estimates for 2FLC. 

 Coefficient t-ratio 

Capacity -0.04 1.84 
Cumulative Production -0.03 2.01 
Mill 1 -1.20 3.64 
Mill 2 -1.25 3.91 
Mill 3 -1.29 4.03 
Mill 4 -1.28 4.20 
Mill 5 -1.44 5.41 
Mill 6 -1.24 3.77 
Mill 7 -1.22 3.82 
Mill 8 -1.31 4.59 

R2 (adj) 0.37 (0.33)  

Note: t-ratios are presented in absolute values. 

Since the learning curve function is specified as a logarithmic function the estimated 
parameters can be interpreted as elasticities. Hence, a 1% increase in cumulative 
production would result in a cost reduction of 0.03%. Likewise, a 1% increase in the 
capacity would result in a cost reduction of 0.04%. The low elasticities reflect the fact 
that the pulp and paper industry is a capital-intensive sector, which, in the 
manufacturing process from wood chips to finished kraft, is fully automated leaving 
little room for quality variations.  

Alternatively, many studies report the learning rates, which, for example, state the 
effect that a doubling of cumulative production has on the cost. The learning rates are 
defined as iα2 . This indicates a disembodied learning rate of 2.06% and an embodied 
learning rate of 2.73%. In other words, a doubling of cumulative production would 
reduce the unit cost to 97.9% of its previous value while a doubling of capacity would 
reduce the unit cost to 97.3% of its previous value. 

Although relatively low, the learning rates are similar in magnitude indicating that 
learning effects are present both within a specific mill and for the supplier to the mills. 
The reason for this relative low learning rate can be traced to the fact that the kraft 
industry is capital-intensive, as mentioned above, and has reached a high degree of 
maturity. The level of maturity can be illustrated by Figure 2 in which the cost 
reduction increases with learning but at a diminishing rate. The results would thus 
indicate that the kraft industry has reached a point where further cost reduction 
through learning is small.  

It is, however, difficult to compare the results to other studies concerning the kraft 
industry mainly because of the scarcity of previous studies. But examining studies of 
other capital-intensive industry sectors the estimated learning elasticities and learning 
rates seems reasonable. For example, Kouvaritakis et al. (2000) found similar low 
learning elasticities and learning rates for large hydroelectric power plants and nuclear 
power plants.  
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6 Conclusions 

Although learning effects can be found in many industry sectors, there is a great 
variation in the rate at which various industries learn, ranging from little or no 
learning to those with impressive productivity growth. This paper limits the analysis 
of learning effects to the Swedish kraft paper industry, which is an important and 
relatively homogenous part of the pulp and paper industry. The method proposed 
herein consists of two steps. First, specifying a flexible cost function that includes a 
technological knowledge parameter, i.e., by utilizing mill-specific dummy variables, 
allows for the estimation of a pure cost reduction index over time and by mill. This 
cost reduction index has the advantage of being devoid of scale and price effects that 
could otherwise produce spurious results when estimating the learning curve. Second, 
building on the learning curve literature, the estimated cost reduction index is then 
regressed on cumulative production as well as on capacity data to reflect both operator 
and supplier learning effects. 

The result suggests the presence of small learning effects for Swedish kraft paper 
mills, which is consistent with previous findings regarding capital-intensive 
industries. In addition, the kraft industry has reached a relatively mature state where 
additional learning effects are difficult to achieve. These two notions can, at least in 
part, explain the relatively inelastic learning effects. As a consequence, arguments that 
support the implementation of protective measures ― as mentioned in the 
introduction ― on international kraft paper trade to shield the domestic production 
from competition until sufficient cost reduction through the learning process has been 
achieved may fall short. Furthermore, predatory pricing is unlikely since larger market 
shares, and thereby an increasing cumulative production than would otherwise be the 
case, would not result in any significant cost reduction.  

Overall, the methods presented herein could provide policy makers with a tool when 
assessing aimed subsidies, regulations or specific research programs. For example, 
technology policies that stimulate innovation could make it possible to recoup high 
up-front costs in the long-run after achieving cost reduction gained through learning. 
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APPENDIX 

Table A1: Descriptive statistics. 

Variable Definition Mean Std. Dev. Min Max Skewness Kurtosis 

VC Variable Costs 626341 436216 44494 1615559 0.80 -0.59 
SRP Recycled Paper 

Share 0.05 0.07 0.00 0.26 1.19 0.02 
SPW Pulpwood Share 0.16 0.22 0.00 0.76 1.22 0.24 
SWP Woodpulp Share 0.27 0.19 0.00 0.73 0.19 -0.61 
SCH Woodchips Share 0.17 0.10 0.00 0.39 -0.10 -0.73 
SWA Labor Share 0.22 0.10 0.12 0.62 2.13 4.26 
SEN Energy Share 0.13 0.07 0.02 0.49 3.06 11.00 
RP Price recycled 

Paper 1.13 0.56 0.59 5.32 3.17 19 
PW Price Pulpwood 3.44 1.28 1.87 7.08 0.82 -0.02 
WP Price Woodpulp 417 93 212 907 2.04 7.69 
CH Price Woodchips 164 52 98 433 2.96 9.82 
WA Price Labor 172 24 75 246 0.63 2.28 
EN Price Energy 0.22 0.06 0.09 0.50 0.90 3.56 
Y Production 240191 150071 16986 610608 0.24 -0.85 
Z Capital Stock 1181900 948681 79512 4202241 0.95 0.11 
y Cumulative 

Production 2212761 2046955 23596 8562433 1.09 3.43 
q Capacity 262240 161615 18854 659456 0.20 2.09 
Obs. 152       
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Table A2: Estimation results from the Translog variable cost function.  

Coefficient Estimation t-ratio Coefficient Estimation t-ratio 

αRP 21 DV  βWPWP 0.22 5.85 
αPW 21 DV  βRPWP -0.08 5.31 
αWP 21 DV  βPWPW 0.01 0.15 
αCH 21 DV  βRPPW 0.06 2.77 
αWA 21 DV  βRPRP 0.02 1.17 
αEN 21 DV  βPWZ 0.03 2.47 
αY 21 DV  βWPZ 0.07 4.29 
αZ 21 DV  βCHZ 0.00 0.48 
η 21 DV  βWAZ -0.02 3.24 
Mill 1 0.49 5.49 βRPZ -0.04 7.47 
Mill 2 0.17 2.75 βPWY 0.08 5.66 
Mill 3 0.17 2.46 βWPY -0.18 9.34 
Mill 4 0.05 1.07 βCHY 0.05 5.38 
Mill 5 -0.36 5.95 βWAY -0.02 2.84 
Mill 6 0.96 10.9 βRPY 0.06 9.94 
Mill 7 0.70 10.2 βYZ 0.06 2.38 
Mill 8 0.57 4.54 βYY -0.33 3.77 
βPWWA 0.03 1.64 βZZ 0.05 2.25 
βWPWA 0.00 0.21 βENY 0.01 1.20 
βCHWA -0.01 0.91 βENZ -0.03 6.25 
βWAWA -0.04 1.56 βRPEN -0.04 3.50 
βRPWA 0.06 4.25 βPWEN -0.03 2.46 
βPWCH 0.08 2.88 βWPEN 0.07 6.23 
βWPCH -0.07 3.02 βCHEN -0.04 3.54 
βCHCH 0.07 2.39 βWAEN -0.04 3.22 
βRPCH -0.02 1.40 βENEN 0.08 7.60 
βPWWP -0.14 4.14    
Log    1343    

Theoretical consistency of the Translog variable cost function is important to establish 
so that inference regarding the behavior of the model can be made. First, monotoncity of 
the variable cost function was checked by determining if the fitted factor cost shares 
were positive. This check showed that 65 out of a total of 912 fitted cost shares had a 
negative sign. Second, concavity in input prices were checked by examining whether 
the bordered Hessian matrix is negative semi-definite, which is a necessary and 
sufficient condition. The test indicates that 155 of the observations do not fulfill the 
requirements. Even though not completely satisfactory the Translog variable cost 
function is behaving reasonably well. 

 


