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Abstract 

How great an effect does self-generated spatial structure have on logistic population 

growth? Results are described from an individual based model (IBM) with spatially lo-

calised dispersal and competition, and from a deterministic approximation to the IBM 

describing the dynamics of the first and second spatial moments. The dynamical system 

incorporates a novel closure that gives a close approximation to the IBM in the presence 

of strong spatial structure. Population growth given by the spatial logistic equation can 

differ greatly from that of the non-spatial logistic model. Numerical simulations show 

that populations may grow more slowly or more rapidly than would be expected from 

the non-spatial model, and may reach their maximum rate of increase at densities other 

than half of the carrying capacity. Populations can achieve asymptotic densities substan-

tially greater than or less than the carrying capacity of the non-spatial logistic model, 

and can even tend towards extinction. These properties of the spatial logistic equation 

are caused by local dispersal and competition which affect spatial structure, which in 

turn affects population growth. Accounting for these local spatial processes brings the 

theory of single-species population growth a step closer to the growth of real spatially-

structured populations. 
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Population Growth in Space and Time 
The Spatial Logistic Equation 
Richard Law 
David J Murrell 
Ulf Dieckmann 

Introduction 

The logistic equation has a long and distinguished history in ecology. First formulated 

by Verhulst in 1838, and rediscovered by Pearl and Reed (1920), the equation was pro-

moted to the status of a predictive law of population growth in writings by Pearl. As a 

law it proved somewhat controversial (Kingsland 1985:77 et seq.); widely cited data on 

population growth rarely give a close fit to the logistic equation (Hall 1988). Even the 

famous example by Gause (1934) of growth of populations of the protist Paramecium 

aurelia, reanalysed by Leslie (1957), contains some systematic departures from the lo-

gistic equation in the distribution of residuals (Leslie 1957, Williamson 1972:37). 

There are at least three reasons why the logistic equation may fail to give an adequate 

description of population growth. First, the per-capita effect of density on population 

growth may not increase linearly with density. This is the cause of the discrepancy in 

Gause's experiment on Paramecium: the logistic equation underestimates the strength of 

density dependence at high density (Williamson 1972:37). Such problems can be cor-

rected by introducing a third parameter into the logistic equation, the θ-logistic class of 

models, allowing the maximum rate of population growth to be achieved at densities 

other than half of the carrying capacity (Gilpin and Ayala 1973). Second, there may be a 

time delay in the operation of density dependence (Hutchinson 1948); time delays can 

occur in structured populations when density affects vital rates at particular ages or 

sizes. A time-delayed version of the logistic equation has been used with some success 

to describe the periodic time series found in certain species such as blowflies (May 

1975:94 et seq., Gurney et al. 1980). 

Third, spatial structure may make it impossible for organisms to encounter each 

other in proportion to their average density. The random collision of individuals as-

sumed in the logistic equation, often referred to as the 'mean-field' assumption (e.g. Law 

et al. 2000), may not represent interactions among organisms well. Harper (1977:4) was 

explicit in how unsatisfactory this assumption is in plant population biology, pointing 
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out that plants develop clumped spatial patterns and, in such clumps, individuals can 

experience strong effects of competition with their neighbours, even though there may 

be unexploited resources nearby. Empirical studies have shown that the 'plant's-eye' 

view of its population density can be far from the density averaged over space (Turking-

ton and Harper 1979, Mahdi and Law 1987, Purves and Law 2002a). 

Doubts about the validity of the mean-field assumption lead to the question: how 

great a departure from logistic population growth does spatial structure cause? To date 

there have been very few studies extending logistic population growth to a continuous 

spatial setting (Bolker and Pacala 1997, Bolker et al. 2000, see also Law and Dieck-

mann 2000a). Bolker and Pacala (1997) constructed an individual-based model (IBM) 

of birth, death and dispersal processes, derived a dynamical system of spatial moments 

(moment dynamics) from the IBM, and examined some asymptotic properties of the 

dynamical system. By doing this, they showed how the spatial structure at the asymp-

totic state was affected by the intrinsic rates of birth and death and the neighbourhoods 

over which interactions and dispersal take place. Parallel work in a discrete spatial set-

ting is more tractable (Ellner 2001), although it has the drawback of being less readily 

linked to real ecological events that occur in continuous space. 

This paper extends the study by Bolker and Pacala (1997) in several ways. First, we 

use IBMs to document some major departures from non-spatial logistic population 

growth that occur when dispersal and interactions are restricted to small neighbour-

hoods of individuals. Second, we change an assumption (a moment closure) that previ-

ously restricted the spatial logistic equation to relatively small departures from spatial 

randomness of individuals; this change is needed because of the large departures from 

randomness often observed in ecological communities (Condit et al. 2000, Purves and 

Law 2002a). Several moment closures are tested, including a new one that appears to 

provide a good approximation even in populations that develop strong spatial clustering. 

Third, we use the new closure to describe some effects of restricted dispersal and inter-

action neighbourhoods on transient and asymptotic dynamics of a spatially extended 

population with logistic-like properties. The study shows the spatial logistic equation 

has a richness in its dynamics, unanticipated from its non-spatial precursor, and this 

brings the theory of single-species population growth a step closer to the dynamics of 

real spatially-structured populations. 

 

Individual-based model 

At a microscopic scale, population growth is inherently stochastic: birth and death 

events occur at random creating and eliminating spatially discrete individuals (Durrett 

and Levin 1994); together with dispersal, these events lead to random variation from 

one individual to another in the neighbourhoods within which interactions occur. It is 
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therefore helpful to start with a stochastic process describing behaviour of individuals 

(often called an IBM in ecology), and to derive deterministic approximations from it. 

Both stochastic and deterministic methodologies have a part to play (Renshaw 1991), 

and recent research in spatial aspects of population dynamics has often followed this 

dual approach (Matsuda et al. 1992, Bolker and Pacala 1997, Law and Dieckmann 

2000b, Ellner 2001). 

Stochastic process 

We consider a population of organisms of a single species living in a two-dimensional 

space; the space is continuous (as opposed to a discrete spatial lattice), homogeneous, 

and large enough for edge effects to be negligible (for simulations, we use periodic 

boundaries). An individual i, located at coordinates 1 2( , )i i ix x x= , is denoted by a Dirac 

delta function ( )
ix xδ ; the state of the population at time t is given by the function 

( , )p x t , which describes the locations of all individuals, this function being the sum of 

the delta functions of all individuals (Dieckmann et al. 1997, Dieckmann and Law 

2000). 

The IBM is a stochastic process in continuous time with events comprising birth, 

death and movement; these events take place in continuous time and may depend on the 

current state of the population (a Markov process). The probability per unit time 

( , , )B x x p′  that an individual located at x produces an offspring at x′  is given by 

 ( , , )B x x p′  = ( )b m x x′⋅ −  (1a) 

where b is an intrinsic per capita birth rate, and ( )m x x′− is a dispersal kernel describ-

ing the probability density that a newborn individual comes to rest at a displacement 

x x′−  from its mother. The probability per unit time ( , )D x p  that an individual located 

at x dies is given by 

 ( , )D x p      = d    + ( ) ( , ) ( )xd w x x p x t x dxδ⎡ ⎤′ ′ ′ ′ ′⋅ − ⋅ −⎣ ⎦∫ . (1b) 

This death term comes in two parts, the first being an intrinsic per capita death rate d, 

and the second modifying the death rate in the presence of other individuals in a 

neighbourhood of x. The term ( )w x x′−  is an interaction kernel (normalised so that its 

integral over x′  is one), that weights the effect of a neighbour displaced by an amount 

x x′−  from x on the death rate at x. Multiplying by the density of individuals at x′ , and 

integrating over x′ , gives the overall effect of neighbours; the delta function ( )x xδ ′  re-

moves the individual at x, because it cannot compete with itself. 

We construct the IBM in this way to keep a close connection to the familiar non-

spatial logistic equation. The IBM corresponding to the non-spatial logistic equation 

would simply replace the integral in Equation (1b) with the density of individuals, ig-
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noring their location in space (Renshaw 1991:59). This would give a density-

independent component to per capita birth and death rates (parameters b and d), plus a 

component to the per capita death rate that increases linearly with population density 

(weighted by the parameter d ′ ). The spatial extension assumes that dispersal of indi-

viduals is linked to births and that competition among individuals is linked to deaths; 

this is for the sake of clarity in developing the arguments, and alternative assumptions 

could readily be made (e.g. Bolker and Pacala 1997). 

The dispersal and competition kernels determine the spatial component of the IBM. 

For simulating the IBM, functions for the kernels must be made explicit; we use bivari-

ate Gaussian functions 

( )m x x′−  = 

2

2

1
exp

2 m

x x

M s

⎛ ⎞′− ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠
 (2a) 

( )w x x′−  = 

2

2

1
exp

2 w

x x

W s

⎛ ⎞′− ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠
, (2b) 

each having one parameter ms , ws  that measures the width of the kernel. A small value 

of ms  means that offspring are usually located close to their mothers, and a small value 

of ws  means that competition occurs predominantly with close neighbours. For practical 

purposes the tail of each kernel is truncated at three times the parameter value; the effect 

this has on the dynamics is very small. The kernels are normalised so that their integrals 

over x x′−  are unity, M and W being the normalisation constants. 

Results from IBMs 

Figure 1 shows results of illustrative realisations of the IBM obtained using a range of 

kernel parameters, each continuous line being the spatial mean density (the first spatial 

moment) itself averaged over 20 realisations of the IBM. To see the direct effect of the 

spatial extension, the parameters for birth and death rates (b, d, d') are kept constant 

throughout, and only ms  and ws , affecting the width of the dispersal and competition 

kernels, are varied. In all cases the IBMs begin with 20 individuals placed at random 

locations in the unit arena. The constant birth and death parameters would give an equi-

librium density of 200 individuals per unit area in the non-spatial logistic equation, 

shown as the dotted line in Figure 1. 

It is striking how big a departure from the familiar non-spatial logistic growth the 

spatial extension can cause (Figure 1): compare the dotted line of the non-spatial logis-

tic equation (Figure 1f) with results from the spatial IBM (Figure 1a-e).  
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Figure 1. Spatial mean density (first spatial moment) over time from IBMs with contrasting kernel pa-

rameters for dispersal ms  and competition ws . All simulations began with 20 individuals randomly dis-

persed across the unit arena; the time series shown are averages of 20 realisations of the IBMs. Kernel 

parameters: (a) ms  = 0.12, ws = 0.12; (b) ms  = 0.02, ws = 0.12; (c) ms  = 0.12, ws = 0.02; (d) ms  = 0.04, 

ws = 0.04; the simulation is stopped at t = 60, after which it overlaps with (b); (e) ms  = 0.02, ws = 0.02; (f) 

growth of an equivalent non-spatial logistic population, shown as the dotted line. Parameters held con-

stant throughout: b = 0.4, d = 0.2, d ′  = 0.001. 

Although populations do not grow faster than in the non-spatial logistic equation at 

low density, they can increase much more slowly, and can even decrease. Both the as-

ymptotic and transient dynamics are affected by the spatial extension. Asymptotic den-

sities averaged over space can be much greater or smaller than those of the non-spatial 

logistic equation; it is even possible for a rapid, repeatable decline to extinction to oc-

cur. Transient effects on density include changes in the shape of the growth curve: 

populations growing according to the non-spatial logistic equation would reach their 

maximum rates of increase at one half of the equilibrium density, but this no longer 

holds under the spatial extension. In some circumstances, the familiar 'S'-shaped growth 

of the logistic equation is replaced by a growth transient that is approximately linear. 

Surprisingly, it is populations that stop growing at the lowest densities that take longest 

to reach the asymptotic state.  

These deviations from the non-spatial logistic equation are generated simply by ef-

fects of the dispersal and interaction kernels on spatial structure. To understand the in-
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terplay between vital processes and spatial structure, it helps to think of two forces that 

affect spatial structure in opposite ways. The first force is local dispersal of offspring: as 

the distance over which offspring disperse is made smaller (by reducing ms ), individu-

als are increasingly clustered in space. The second force is local competition: when the 

neighbourhood over which individuals compete is made smaller (by reducing ws ), mor-

tality rates of close neighbours are increased, with the result that survivors are overdis-

persed. Thus, by altering the parameters ms  and ws , the strength of forces for aggrega-

tion and overdispersion are changed. Below, we explain how this leads to the different 

kinds of population growth in Figure 1. 

First, when ms  and ws  are both large (Figure 1a, 2a, 2b), offspring disperse over 

large distances and competition occurs with individuals even if they are quite remote. In 

these circumstances there is little tendency for spatial structure to build up (Figure 2c). 

The population dynamics come close to satisfying the mean-field assumption, and the 

asymptotic average density is close to the equilibrium of the non-spatial logistic equa-

tion. 

Second, when ms  is small and ws  remains large (Figure 1b, 2e, 2f), the short dis-

tances dispersed generate a strong force towards aggregation. There is little to counter 

this because ws  is still large, and the outcome is therefore a strongly aggregated spatial 

pattern (Figure 2g). Aggregation is strong enough to increase population density in the 

region in which the competition operates above the value expected from the non-spatial 

logistic equation, notwithstanding the large value of ws . These increased local densities 

stop population growth below the level expected from the non-spatial logistic equation. 

Notice also that the asymptotic state is approached rather slowly because the space 

available for the population can only be slowly filled from the foci of the initial colo-

nists due to the short distances over which offspring disperse (Figure 1b). 

Third, when ws  is small and ms  remains large (Figure 1c, 2i, 2j), the high rates of 

mortality of close neighbours generate a strong force towards overdispersion. But there 

is now little to counter overdispersion, because newborn offspring are widely dispersed 

over space; the outcome is therefore a spatial pattern with a strong tendency towards 

regularity (Figure 2k). A consequence of regularity is a deficiency of competitors in the 

immediate neighbourhood of an individual, and this permits population growth to con-

tinue to densities higher than expected from the non-spatial logistic equation; there is 

sense in which local competition leads to more efficient packing of individuals into the 

available space. The asymptotic state is approached quickly because individuals get rap-

idly to all parts of the arena due to the large distances over which offspring disperse 

(Figure 1c). 



 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effects of dispersal and competition kernels, on spatial structure in IBMs. Simulations started 

under the same conditions as those in Figure 1; results are shown at time 100. Row 1 has ms  = 0.12, ws  = 

0.12: (a) dispersal kernel (b) competition kernel, (c) spatial pattern, (d) second radial moment of spatial 

pattern. Row 2 has ms  = 0.02, ws  = 0.12: (e) dispersal kernel (f) competition kernel, (g) spatial pattern, 

(h) second radial moment. Row 3 has ms  = 0.12, ws  = 0.02: (i) dispersal kernel (j) competition kernel, (k) 

spatial pattern, (l) second radial moment. Other parameters as in Figure 1. The second moments are given 

as functions of the radial distance of the pair and are normalised such that they would take value 1 in the 

absence of spatial structure, as shown by the dashed lines. 
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Fourth is a remarkable case of extinction when ms  and ws  are both small (Figure 1e). 

At the start it is rare for individuals to compete; this is because the initial colonists are 

low in density and positioned at random (they would have to be close together to inter-

act). The population therefore starts to increase. However, offspring of the colonists are 

only dispersed over short distances, and clusters rapidly develop. Competition in these 

clusters is intense because of the small neighbourhoods over which individuals interact; 

mortality rates are consequently high, so high in fact that they exceed the rate of repro-

duction. The spatial mean density then starts to fall, a decline that continues down to the 

last few individuals. It is immaterial that density averaged over space is small because 

offspring of the remaining individuals still come to rest close to their mothers. Put an-

other way, parents and offspring cannot escape from competition with one another, so 

the clusters implode and the population collapses. A mathematical analysis of the condi-

tions for extinction of a population with local dispersal and competition is given by 

Etheridge (2001).  

Spatial logistic equation 

Although a lot can be learnt from running realisations of IBMs, it is time-consuming to 

track every microscopic birth and death event; moreover, the ecological signal can be 

hard to discern beneath the stochastic variation, and hard to analyse mathematically. A 

formalism that deals with the dynamics of macroscopic variables like population density 

would help. 

In the case of the non-spatial logistic equation, this scaling up from microscopic 

events to macroscopic variables replaces a stochastic process of density-dependent birth 

and death events with the standard logistic differential equation, with the assumption 

that the area occupied by the population, and hence the population size, is large 

(Renshaw 1991:59). In the case of the spatial logistic equation matters are more intricate 

because of the coupling of spatial structure to birth and death events seen in the IBMs 

above; somehow the dynamical system has to hold in place some information on spatial 

structure and allow this structure to change over the course of time. Dynamical systems 

of spatial moments have recently been derived to do this (Bolker and Pacala 1997, 

Dieckmann et al. 1997, Dieckmann and Law 2000). Here we briefly describe such a 

system of equations, and give some numerical results on how the asymptotic state is af-

fected by dispersal and competition. 

Spatial moments 

The state variables of the dynamical system are the first and second spatial moments. 

These moments are defined for a spatial pattern ( , )p x t  as follows. 
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The first moment ( )N p  is the density averaged over the space A in which the popu-

lation lives 

 ( )N p  = 
1

( , )p x t dx
A ∫ . (3a) 

The second moment ( , )C pξ  is the average density of pairs of individuals, the second 

individual in the pair being displaced by an amount x xξ ′= −  from the first 

 ( , )C pξ  = [ ]1
( , ) ( , ) ( )xp x t p x t x dx

A
ξ δ ξ+ − +∫ ; (3b) 

the delta function removes a degenerate pair in which the same individual would occur 

twice. In the figures below, we normalise the second moment by dividing by 2 ( )N p . 

The second moment holds second-order information about the spatial structure, as illus-

trated in Figure 2d, h, l, and can be thought of as a spatial covariance function (although 

note that it is not a central moment). The second moment has the advantage of being 

mathematically simple, which is important for the dynamical system described below, 

and also has been independently developed and used to summarise the spatial structure 

of populations in the field (Condit et al. 2000). 

The third moment ( , , )T pξ ξ ′ , although not a state variable, appears in the dynamical 

system below, and needs to be defined. This moment is the average density of triplets, 

where the second individual is displaced by ξ  from the first, and the third individual is 

displaced by ξ′  from the first: 

( , , )T pξ ξ ′   =  [ ]1
( , ) ( , ) ( )xp x t p x t x

A
ξ δ ξ+ − +∫ ( , ) ( ) ( )x xp x t x x dxξ δ ξ δ ξ ξ⎡ ⎤′ ′ ′+ − + − + −⎣ ⎦ .  (3c) 

The integrand here is essentially the product of the three densities at the given dis-

placements, the delta functions removing degenerate triplets in which the same individ-

ual would occur more than once.  

Dynamical system 

We use a dynamical system derived in Dieckmann and Law (2000); derivation of a 

similar system was given earlier by Bolker and Pacala (1997). The system describes 

how, on the average, the first two spatial moments change over the course of time (the 

average being over the ensemble of stochastic realisations), the state variables be-

ing ( )N t  and ( , )C tξ . The differential equation for the rate of change of the first moment 

is given by  

 ( )N t&  = ( )b N t - ( )d N t - ( ) ( , )d w C t dξ ξ ξ′ ′ ′ ′∫  (4) 
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This differs from the non-spatial logistic equation only in that the term 2N  of the logis-

tic equation is replaced the integral expression. The integral carries information about 

local spatial structure and couples the dynamics of the first moment to those of the sec-

ond. 

The differential equation for the rate of change of the second moment is somewhat 

more intricate, because birth and death events happen at both points in the pair 

( , )C tξ&  = ( ) ( , )b m C t dξ ξ ξ ξ′ ′ ′− +∫  (a) 

 + ( ) ( , )b m C t dξ ξ ξ ξ′ ′ ′+∫  (b)  

 + 2 ( ) ( )b m N tξ  (c) 

 - 2 ( , )d C tξ  (d) 

 - ( ) ( , , )d w T t dξ ξ ξ ξ ξ′ ′ ′ ′+∫  (e) 

 - ( ) ( , , )d w T t dξ ξ ξ ξ′ ′ ′ ′∫  (f) 

 - 2 ( ) ( , )d w C tξ ξ′ . (g)     (5) 

Precise geometric interpretations for each expression in this equation are described in 

Law and Dieckmann (2000b). The second moment is a function of ξ , and one can think 

of Equation (5) as describing how, as time goes on, the function changes in shape as the 

spatial structure of the population changes. 

A feature of the dynamical system in Equations (4), (5) is that the rate of change of 

the first moment depends on both the first and second moments, and the rate of change 

of the second moment depends on the first, second and third moments. This means that 

the dynamical system is not yet closed: it contains the third moment which, although a 

variable, is not included in the dynamical system. The third moment has to be replaced 

by some function of the first and second moments to close the dynamical system; such a 

function is called a moment closure. (Although not generally recognised, a similar issue 

applies in the standard non-spatial logistic equation; the mean-field assumption is in ef-

fect an assumption that the second spatial moment can be replaced by 2N .) Several clo-

sures have been suggested in the literature (Bolker and Pacala 1997, Dieckmann and 

Law 2000, Law et al. 2001); these and a new closure are evaluated in the Appendix. We 

use a new closure: 

4 ( , )T ξ ξ′     =   
1

5

⎡
⎢
⎢⎣

4 ( ) ( )C C

N

ξ ξ ′
  +  

( ) ( )C C

N

ξ ξ ξ′−
  +  

( ) ( )C C

N

ξ ξ ξ′ ′−
  -  3N

⎤
⎥
⎥⎦
 , (6) 
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because this gives a closer fit to the average of stochastic realisations than solutions us-

ing previous closures in populations that develop strong spatial aggregation (see Ap-

pendix), and also works quite well in a wide range of other spatial structures. 

Population dynamics 

Figure 3 shows that the deterministic model captures to a close approximation the 

average of the stochastic realisations in Figure 1, both in the transient behaviour and in 

the asymptotic state. To match the initial conditions of the stochastic realisations in Fig-

ure 1, these numerical integrations were initially set with the first moment at 20 indi-

viduals per unit area, and the second moment at 202 for all displacements ξ  (equivalent 

to individuals being placed uniformly at random in the arena). 

The cause of the different kinds of population growth becomes clearer on examining 

the time series of the second moment (Figure 4). Immediately after the start, the disper-

sal term (c) and interaction term (g) in Equation (5) start to distort the second moment 

from its initially flat shape: terms (c) and (g) ensure that uniform spatial randomness 

cannot in general be an attracting state (Bolker and Pacala 2000:396). One can think of 

(c) and (g) as the source of spatial structure and the other terms as distributing the struc-

ture across different displacements. Because the population density starts low in the 

simulations illustrated, the effect of dispersal is greater than that of interactions 

(b d ′>> ), and the second moment starts by increasing (how far from the origin this 

extends depends on the parameter ms  of the dispersal kernel). But the interaction pa-

rameter ws  can affect spatial structure as soon as local aggregations start to develop, and 

the second moment develops a shape characteristic of the values of ms  and ws . 

A crucial feature of Equations (4) and (5) is that information on the shape of the sec-

ond moment feeds back to the first moment through the integral term in Equation (4): in 

other words, population growth is now sensitive to spatial structure. When the second 

moment is large at small spatial displacements (spatial aggregation), the negative inte-

gral term in Equation (4) becomes greater, slowing down population growth, and giving 

eventually a low equilibrium density; this can be seen in the time series of the second 

moment in Figure 4b, and the corresponding first moment in Figure 3 (line b). When the 

second moment is close to 2N , i.e. close to one after normalisation (spatial random-

ness), population growth rate and the equilibrium density are close to the non-spatial 

logistic equation (Figure 4a, Figure 3 line a). When the second moment is small for  
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Figure 3. Time series of the first moment N, obtained by numerical integration of the spatial logistic 

equation. The growth of an equivalent non-spatial logistic population is shown as a dotted line. Parameter 

values are as in Figure 1; initial conditions are set to match those in Figure 1. 

small spatial displacements (spatial overdispersion), population growth rate and the 

equilibrium density are high (Figure 4c, Figure 3 line c). 

In the transient population dynamics, ms  plays a particularly important role, because 

wider dispersal permits more rapid filling of the space available. This is evident in Fig-

ure 5, which plots the rate of increase of the first moment (mean density) at half the 

equilibrium density ultimately achieved; even near the maximum value of ms examined 

(0.12), the rate of increase shows little sign of having reached its greatest attainable 

value as a function of ms . It can also be seen from the time series in Figure 3 that, in 

contrast to the non-spatial logistic equation, the populations do not in general reach their 

maximum growth rate at half the equilibrium density. This is because local density in 

the neighbourhood of individuals is somewhat uncoupled from the spatial mean density; 

under strong spatial aggregation the effects of high local density are felt early in popula-

tion growth when mean density is still low; under strong overdispersion, mean density 

has to be much higher before the local density-dependent processes become important. 
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Figure 4. Time series of the second radial moment C(r) , obtained by numerical integration of the spatial 

logistic equation. Parameter values: (a) ms  = 0.12, ws  = 0.12; (b) ms  = 0.02, ws  = 0.12; (c) ms  = 0.12, ws  

= 0.02. Parameters b, d, and d' held constant throughout with values as in Figure 1; initial conditions are 

set to match those in Figure 1. 
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Figure 5. Rate of population increase at half the equilibrium density, as a function of ms  and ws . Parame-

ters b, d, and d' are held constant throughout with values as in Figure 1. 

In the long term, equilibrium densities are strongly affected by both kernel parame-

ters ms  and ws  (Figure 6a). These densities range from 0 to values much above the 

mean-field value of 200 and are closely related to the asymptotic spatial structure. The 

relationship can be seen from the asymptotic value of the second moment at the shortest 

displacement C*(0) in Figure 6b, which is roughly the mirror image of Figure 6a. The 

greater logC*(0) is above 0, the more aggregated the asymptotic spatial pattern is; the 

lower logC* (0) is below 0, the more overdispersed the pattern is (see Figure 2).  

As would be expected, when ms  and ws  are both large, the equilibrium density is 

close to the mean-field value (Figure 6a). However, individually ms  and ws  have quite 

different effects on the equilibrium density. On the one hand, when ms  is kept small and 

ws  is increased, the equilibrium density tends towards that of the non-spatial logistic 

equation; this is because, even though spatial aggregation remains strong, individuals 

become blind to this structure as they interact over larger areas. On the other hand, 

when ws  is kept small and ms  is increased, the equilibrium density switches from values 

smaller than to values greater than those of the non-spatial logistic equation; this is be-

cause, for large enough ms , the population is overdispersed in space, and individuals 

respond to the low density of neighbours in the immediate neighbourhood. The message 

is that wide dispersal at birth is not enough on its own to recover the mean-field dynam-

ics closer to those of the mean field). 
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Figure 6. Asymptotic properties of the spatial logistic equation. (a) Equilibrium values *N  of the first 

moment for a range of values of ms  and ws ; the dotted line shows the equilibrium value of the equivalent 

non-spatial logistic equation. (b) Asymptotic values * (0)C  of the second radial moment at zero dis-

placement; a value 1 (0 on log scale) indicates an absence of structure. Parameters b, d, and d' are held 

constant throughout with values as in Figure 1; integrations terminated when the change in N over an in-

tegration step 0.1 falls to 510− . 
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The shape of Figure 6a also matches predictions of the lattice pair approximation 

model of Ellner (2001: 443). Corresponding to Ellner's prediction 1a, the equilibrium 

density crosses from below to above the mean-field value, as ms  increases (for small 

enough ws ). Corresponding to his prediction 2, the equilibrium density crosses from 

above to below the mean-field value as ws  increases (for large enough ms ). 

Discussion 

The results demonstrate a wide range of dynamical behaviour in the spatial logistic 

equation and in the IBM from which it is derived, depending on the shape of the disper-

sal and interaction kernels. Populations differ in their transient dynamics, growing at 

different rates and having growth curves of different shapes. Populations also differ in 

their asymptotic states, with equilibrium densities ranging from zero to values much 

greater than the equilibrium density of the non-spatial logistic equation. Evidently, the 

effects of the spatial extension are fundamental. These results match and extend those of 

Bolker and Pacala (1997) on the spatial logistic equation, and are in keeping with many 

studies that point to the great importance of the spatial extension for ecological dynam-

ics (e.g. Boerlijst and Hogeweg 1991, Hassell et al. 1991, 1994, Matsuda et al. 1992, 

Keeling et al. 1997, Levin et al. 1997, van Baalen and Rand 1997).  

Evidently, a dynamical system of spatial moments, the spatial logistic equation, can 

provide a close approximation to average behaviour of the spatial moments of the IBM 

over a wide range of spatial structures. Although the new closure described above 

makes mathematical analysis difficult, there are several reasons why such analysis 

would be worth the effort, perhaps with the help of some simplifications. Quite apart 

from advantages for simulation, some basic questions are hard to answer from the IBM 

itself, and could be resolved by analysis of the equations of moment dynamics. For in-

stance, is there a single asymptotic state, or are there alternative attractors that depend 

on the initial state? We have no evidence for the latter, but this cannot be ruled out from 

simulations alone. Can the asymptotic state(s) be characterised in terms of the parame-

ters of the model, in particular the kernel parameters ms  and ws ? In taking the mathe-

matics forward, it needs to be remembered that the new closure for the third moment at 

present is only justified by the closeness of the fit of the spatial logistic equation to the 

IBM; a firmer foundation for choosing closures would be desirable. It should also be 

remembered that a dynamical system of first and second spatial moments can never be 

more than an approximation: if higher-order moments are important, the approximation 

will be poor. 

Another reason why the mathematics of the spatial logistic equation is worth devel-

oping is that it brings the modelling of population growth a step closer to dispersal 

processes that matter and can be measured in real populations. Dispersal is obviously 

limited in many, if not most, plant and animal populations, and the results show how 
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important the shape of the dispersal kernel (of offspring) is for population growth. Dis-

persal kernels can be measured and indeed much effort has gone into their study in plant 

ecology (Harper 1977:33 et seq.) with the spatial spread of species in mind (e.g. Clark et 

al. 1998); yet we are not aware that the role of these kernels in transient and asymptotic 

densities of populations has been investigated. Our results suggest the dispersal kernel 

has a strong effect on the mean density at which population growth rate reaches its 

maximum (densities other than half the carrying capacity). Such an asymmetry is 

known from empirical studies, and has led to the θ–logistic class of models (Gilpin and 

Ayala 1973); the spatial extension here suggests a mechanistic foundation for these 

models. 

The spatial logistic equation also points to the importance of interaction kernels in 

population growth. These are less well documented, although investigated by foresters 

interested in growth of wood volume (e.g. Biging and Dobbertin 1992, Soares and 

Tomé 1999); this study highlights the need for such information to tackle basic matters 

of population growth. A qualifier is that, in many plants at least, interactions depend on 

size as well as on distance; interaction kernels need eventually to be thought of as dy-

namic entities changing as competing individuals grow in size (Purves and Law 2002b). 

Size variation is not dealt with here, and there is some way to go to put dynamic kernels 

in place (but see Law et al. 2001). 

As a practical matter, the importance of spatial structure has long been recognised in 

microbial population growth, to the extent that microbial cultures are routinely stirred. 

Pearsall and Bengry (1940) compared the growth of Chlorella cultures in darkness 

without shaking (where the cells settled at the bottom of the flasks), and with shaking 

twice a day. Population growth continued to higher densities in the presence of shaking, 

analogous to the difference between graphs (b) and (a) of Figure 1; they attributed this 

to local depletion of oxygen in the absence of shaking. Hansford and Humphrey (1966) 

noted that, in continuous culture of yeast at low dilution rates, cell yields can be in-

creased by feeding the culture vessel from multiple points, and by mixing. Results of 

this kind point to the depressive effects of local aggregations on population growth. 
A striking feature of the spatial logistic equation is the extinction of populations in 

which offspring and parents cannot escape from competition (Etheridge 2001) and, 

more generally, the slow growth of populations with strong aggregation. The width of 

the dispersal kernel relative to the interaction kernel is evidently critical for population 

growth. In the context of evolution, mutants with traits that cause greater dispersal es-

cape more of the effects of competition and would be expected to replace residents with 

lower dispersal; this is consistent with evidence from observations and from simulation 

studies (Waser 1985, Ezoe 1998). Yet some formal analyses of diffusion rates show 

evolution of lower dispersal in a wide range of spatially heterogeneous environments 

(Dockery et al. 1998). These findings are less contradictory that might be supposed, be-
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cause the model here deals with local spatial structure generated by the organisms them-

selves, whereas the diffusion models deal with spatial heterogeneity in the external en-

vironment (dispersing organisms then run the risk of ending up in places bad for sur-

vival or reproduction). In reality no doubt both aspects of spatial structure matter, and 

dispersal most likely evolves to an intermediate value dependent both on the innate ten-

dency of organisms to develop spatial structure and also on the structure of the external 

environment. A formal framework incorporating both aspects of spatial structure would 

help understanding of how dispersal evolves and the levels of dispersal to be expected 

in nature. 
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Appendix 

The dynamical system in Equations (4) and (5) has to be closed by replacing the third 

moment with some function of the first and second moments. Several functions have 

been suggested as possible closures (Bolker and Pacala 1997, Dieckmann and Law 

2000). Here we evaluate these and another closure by comparing the numerical solu-

tions they give in Equations (4) and (5) with the average of many realisations of the cor-

responding IBM. The spatial moments are all functions of time below but, for notational 

simplicity, we omit the time dependence. 

The set of allowable closures is limited by two conditions that have to be satisfied 

(Dieckmann and Law 2000). First, in a population with individuals distributed at ran-

dom, the closure should take the value N3, just as the second moment should be N2 in 

these circumstances. Second, the rate of change over time of ( )C ξ  should tend to NN2  

as ξ  becomes large, which requires that ( , ) ( )T N Cξ ξ ξ′ ′=  for large enough ξ  

(Dieckmann & Law 2000:439). These conditions are necessary, but not sufficient; a clo-

sure that satisfies the conditions above and used previously by Law and Dieckmann 

(2000a, b), is now known to generate an inconsistency in the spatial logistic equation 

(Hutson, personal communication). Condition 2 applies in the presence of births and 

deaths; when there are no births and deaths other kinds of closure are feasible (Murrell 

and Law 2000). 

The closures below are called power-1, power-2 and power-3 according to whether 

they contain products of one, two or three second moments. The power-1 closure, which 

is equivalent to setting the third central moment to zero (Bolker and Pacala 1997), is  

1( , )T ξ ξ′    = ( )N C ξ     + ( )N C ξ′     + ( )N C ξ ξ′−     -    32N  . (A1) 

The power-2 closure is 

2 ( , )T ξ ξ′    =   
1

2

⎡
⎢
⎢⎣

( ) ( )C C

N

ξ ξ ′
  +   

( ) ( )C C

N

ξ ξ ξ′−
  +  

( ) ( )C C

N

ξ ξ ξ′ ′−
  -  3N

⎤
⎥
⎥⎦
  . (A2) 

The power-3 closure, which has been used in theoretical physics (Kirkwood 1935, Zi-

man 1979) and results from maximising the information content in the partition of the 

sample space (Grey 2001), is 

3( , )T ξ ξ′    = 
3

( ) ( ) ( )C C C

N

ξ ξ ξ ξ′ ′−
       (A3) 

The closures can be thought of as giving increasing values of ),( ξξ ′T  close to the ori-

gin, in the sequence power-1, power-2, power-3. 

In populations that grow with little spatial structure, all three closures give a pattern 

of population growth close to that of the non-spatial logistic equation. In populations 
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that develop regular spatial patterns, there are somewhat greater differences in popula-

tion growth with these different closures. But the contrast between the closures is great-

est when there is strong aggregation, as it is here that the third moment can deviate most 

from 3N . For this reason, populations growing with strong spatial aggregation provide 

especially sensitive tests of closures; on this basis we use ms  = ws  = 0.04 to evaluate the 

closures below. 

Figure 7 shows the spatial mean density over time obtained from the IBM (Figure 

7a), together with the results of numerical integration of Equations (4) and (5) incorpo-

rating several closures for the third spatial moment. Growth of the first moment over 

time increases in the sequence of closures: power-1, power-2, power-3 (respectively 

Figure 7b, c, d). This sequence is to be expected because the value of the closure near 

the origin increases in the same order: the larger the value of the third moment near the 

origin, the larger are the negative terms (e) and (f) in Equation (5), the smaller the sec-

ond moment is, the smaller the negative term is in Equation (4), and the larger the first 

moment is. It is clear that none of the closures provide a close approximation to the av-

erage of the stochastic realisations. The power-1 closure leads to a serious overestimate 

of the second moment at short displacements, and extinction of the population results 

(Figure 7b). Both the power-2 and the power-3 closures lead to an underestimate of the 

second moment at short distances, giving too great population growth, and too high an 

equilibrium density (Figure 7c, d). 

Quite apart from dynamic considerations, we have found that the power-2 closure 

gives a good approximation to known third moments over quite a wide range of aggre-

gated and overdispersed spatial patterns and, in particular, performs better than the other 

closures in the presence of spatial aggregation (Law et al. unpublished results). This 

motivates extending the power-2 closure above to a family of asymmetric power-2 clo-

sures that give different weights α, β, γ to the three corners that make up the triplet 

4 ( , )T ξ ξ′  =   
1

α γ
⎡
⎢
⎢+ ⎣

( ) ( )C C

N

α ξ ξ ′
  +  

( ) ( )C C

N

β ξ ξ ξ′−
  +  

( ) ( )C C

N

γ ξ ξ ξ′ ′−
  -  3Nβ

⎤
⎥
⎥⎦
 ; (A4) 

this family satisfies the necessary conditions for a valid closure given above. [The 

symmetric power-2 closure, Equation (A2), is obtained as α = β = γ = 1.] Our numerical 

studies have shown that, by giving the first corner a weight about four times that of the 

others [see Equation (6)] dynamics close to those of the IBM are obtained (Figure 7e); 

this closure is therefore used for numerical integration in the text. In earlier studies  
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Figure 7. Numerical integrations of the spatial logistic equation with various closures. (a) Spatial mean 

density over time from the IBM (average of 20 realisations, against which the closures are evaluated; (b) 

symmetric power-1 closure; (c) symmetric power-2 closure; (d) symmetric power-3 closure; (e) asymmet-

ric power-2 closure with α = 4, β = 1, γ = 1; (f) asymmetric power-2 closure with α = 1, β = 0, γ = 0. Pa-

rameter values: b = 0.4, d = 0.2, d ′  = 0.001, ms  = 0.04, ws  = 0.04. 

(Law and Dieckmann 2000a, b), an extreme version was used (α = 1, β  = γ = 0); this is 

clearly not satisfactory for patterns with strong aggregation, such as the one used here 

(Figure 7f). 

Although the asymmetric closure works well, two points should be borne in mind. 

First, in giving corners of the triplet different weights, a sixfold symmetry of the third 

moment is destroyed. The corners of the triplet are not interchangeable in the dynamical 

system, but the asymmetric power-2 closure should perhaps be seen as no more than a 

tool that permits computations, until this issue is resolved. Second the power-1 and 

power-2 closures contain a negative term that could lead to negative value under suffi-

ciently strong overdispersion; this would be inconsistent with the fact that the third 

moment, being a product of densities, cannot take negative values. 
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