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Preface

The issues addressed by the Human Settlements and Services Area
at ITASA range from short-term planning problems, such as the real-time
management of urban traffic and emergency services, to long-term prob-
lems, such as the formulation and implementation of national policies
of urban growth. This paper focuses on the control of urban traffic sys-
tems. It reports on research conducted by the Automatic Traffic Control
Study at ITASA. In the first part, Professor Strobel presents a state-of-
the-art review of urban traffic control models. The potential practical
applications of the models and the estimation of their parameters are
then illustrated by means of a case study: the North-South-Connection
in Dresden, German Democratic Republic.

Frans Willekens
April 1977
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Summary

This report deals with the following questions: which dynamic
models and which advanced methods of identification theory are used
or could be used in urban traffic control systems analysis; and which
problems are still unsolved. A survey of basic approaches is presented,
and particular attention is devoted to the state and input-outpul models.
Their significance for the analysis of traffic control systems is then dis-
cussed. Finally, the paper reports on real-time identification methods
for the determination of input-output model parameters. The imple-
mentation of the methodology is illustrated by a case study.
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Traffic Control Systems Analysis by Means of

Dynamic State and Input-Output Models

MOTIVATION*

A general systems analysis approach to transportation

involves three levels:

- transportation systems planning (from a socio-economic
point of view);
~ operational planning (scheduling, routing); and

- control and guidance.

For an analysis of the problems occurring at these levels, a set
of specific mathematical models is needed to enable us to de-
scribe the dynamics of the relevant processes. This paper deals
with the dynamic models needed for an analysis of the lowest
level of the hierarchy, i.e. large-scale computerized traffic
control and guidance systems restricted to urban street and
freeway traffic. The main consideration is which dynamic models
and which advanced methods of identification theory are already
used or could be used in traffic control systems analysis, and
which problems are still unsolved? For this purpose, a survey
of basic approaches of dynamic traffic flow modelling is given
first, and the significance of the different state and input-
output models then discussed, with respect to the role these
models play in the analysis of traffic control systems. The
conclusion is that the real-time identification of input-output
model parameters, though important for the implementation of

route guidance and other advanced traffic control systems, so

*Parts of this report have been presented in an invited paper
entitled "Application of Parameter and State Identification
Methods in Traffic Control Systems" at the 4th IFAC Symposium
"Identification and Systems Parameter Estimation" held in
Tbilisi, USSR, September 21-27, 1976, as well as in a survey
paper presented at the IFAC-IIASA Workshop "Optimization Applied
to Transportation Systems" held in Vienna, Austria, February
17-19, 1976.



far did not set much interest in fundamental or applied research.
The second part of the paper is therefore a case study of the
application of explicit and implicit identification methods for
determining input-output models of road sections, long streets

with signals at intersections, and street networks.

PART I: DYNAMIC TRAFFIC FLOW MODELS: A SURVEY

STATE MODELS

The dynamic behavior of a system can be described by two
different types of models [70]:

- State models, which describe the relations between a set
of input signals or control variables, a set of output signals or
measurable reactions, and a set of state variables characterizing
the state of a system in a rather general sense. One obtains
these models by means of laws valid for specific systems, e.g.
the Maxwell or Kirchheff laws for electrical systems, the Newton
laws for mechanical systems, the laws of traffic flow for traffic

systems, etc. The so-called state equations, in the form of a

system of linear or nonlinear differential or difference equations
of first order, result.

- Input-output models, which describe only the relations

between the input or control variables and the output variables,
i.e. they do not consider the state variables in an explicit form.
Hence, input-output models can describe the dynamics of a system

completely, only

- if all state variables can be changed by the input
(control) variables in a prescribed manner, i.e. if
the system is controllable, and

- 1if all state variables can be reconstructed by eval-
uating the (measurable) output variables, i.e. if the

system is observable.

Therefore an input-output model can describe only a system which

is controllable and observable, or the observable and controllable




part of a general system, respectively*. On the other hand,
input-output models have the advantage that they can be designed
in many cases without a detailed knowledge of the mathematical
laws valid for the specific system. This is of special interest
in those systems (e.g. social, envirommental) for which such
mathematical laws are not available, so that the model can be
constructed only on the basis of sets of input-output data. As
a result of the application of a parameter identification pro-
cedure, one obtains

- nonparametric models, in the form of impulse responses
or frequency responses (in the linear case), or Volterra
expansions (in the nonlinear case), or

- parametric models, in the form of linear or nonlinear

differential or difference equations of the nth order,
transfer functions, Hammerstein models, Wiener models,

etc. (see [70] for more details).

In this section the description of traffic by state models
is discussed; input-output models are the subject of the next
section. The following two basic approaches may be used for
obtaining dynamic traffic flow models [19]:

~ Description of the traffic flow starting from a model
of the movement of the individual vehicles (mZicroscopic
traffic flow models);

- Consideration of the traffic as a fluid continuum (macro-

scopic traffie flow models).

By these two approaches, a fairly well developed and documented
traffic flow theory evolved during the fifties and sixties (cf.
{10, 17-19, 22-24, 27, 33, 34, 36, 45, 60-62, 77]). The follow-
ing consideration uses those elements of the traffic flow theory

important to dynamic modelling of freeway and street traffic.

*Mathematical conditions for observability and controllability
were presented by Kalman at the beginning of the sixties[70].



Microscopic Traffic State Models

In the microscopic traffic modelling approach, it is assumed
that every driver who finds himself in a single-lane traffic sit-

uation reacts according to the relation:
reaction of driver i at time t = Ai{stimulus at time t - Ti}

to a stimulus from his immediate environment, especially from the
car, 1 - 1, in front of his own car, i (Figure 1). The reaction
of the driver may be expressed by the acceleration, El(t), of his
car. Ai describes the sensitivity of the driver's reaction to a
given stimulus, and T is a reaction time lag. It has been shown
that the main stimulus is caused by the speed difference,

vi_1(t) - vi(t) = éi_1(t) - éi(t), resulting in the nonlinear
state {car-following} model

0]
(ad
t

v, (t)

v.(t) = x.{v.

i i 1—1(t - Ti) - Vi(t - Ti)}’

with

m
N {v (e - Ti)}
i i0 (s.
i-

(2)

2
(8 - Ti) - s;(t - Ti)}

containing the position, S and the speed, Vi of car i as state

variables, and the speed, v of the leading car, i - 1, as the

s _q
control (input) variable. ;qlation (2) describes the observa-
tions that the sensitivity of the reaction of a driver depends

on the speed, éi = Vi’ of his own car, and the distance, Si_q " Sy
between his own car and that in front of him. This is illustrated
by the signal flow diagram shown in Figure 2a for a system of two
cars only. In the case of a string of N vehicles, one has to
couple N of these driver-car models, resulting in a highly non-

linear model for the whole system that is very difficult to handle
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Figure 2a. Nonlinear car-following model for a system of two cars

(cf. equations (1) and (2)).
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Figure 2b. Linear car-following model for a string of N cars
(cf. equations (3) and (4)).



in studying traffic flow dynamics. Therefore, a special case
of Ai from Equation (2) with £ = m = 0 is very often preferred.

The so-called linear car-following model,

si(t) = v, (t)
(3)

A v
10!

v, (t) joq(E -1 —vie =T},

is obtained, which, for a string of N cars, results in the gen-

eral state model
x(t) = (RA)x(t - 1) + (Blult - 1) (4a)

with the state vector
XT() = (5,(8) v, (£) s nnysy (B), v (0)) (4b)

the systems matrix

0 o 0 0 0 0 e
0 Ay, O 0 0 0 e
0 o o 1 0 0 ees
@W=|0o ay, 0 Ay 00 el (4c)
0 o 0 0 0 1 ees
0 0 0 Ry 0 Thye Tt

and the control variable u(t). This equals the speed of the
leading car,

u(t) = V1(t) ’ (4d)

and the input matrix (B), which in this special case is a vector



of the simple form
(B ":= (0 A 0 0 ««¢) (4e)

(cf. Figure 2b).

As shown in Figures 2a and 2b, this model of traffic flow may
be considered as a series of interconnected control loops.
Each control loop can become unstable for certain values

of the time delays, Tir and the sensitivity coefficients, AiO'
Instability means in this context that collisions will occur
even if one considers a system of two cars only. On the other
hand, stability of the individual control loops shown in Figure
2b will not give any guarantee that a collision will not happen
in a long string of vehicles. To check the conditions for the
occurrence of collisions in a queue of N cars, one has to study

the time responses of the distances, Asi = s Sy between

the cars resulting from changes of the contrél1variable (4d),
i.e. of the speed of the leading car. The model ((3) to (de))
permits such studies only if estimates of the model parameters
T; and AiO are available. By means of special experimental
studies on the driver-car performance, Herman and his co-workers
(cf. [19, p. 89 ff.]) have obtained for 8 different drivers the
following estimates for A, T, and At and the mean values i,

E, and At:

0.17 57" < A;q < 0.74 87 with X, = 0.37 s
1.00s < T, <2.2 s withtT =1.55s (5)
0.18 S ATy < 1.08 with X;T = 0.56 .

For more details on microscopic traffic models see [10, 19, 22-
24, 33, 34].

Macroscopic Traffic State Models

Macroscopic traffic flow theory was founded by Lighthill
and Whitham [45] and by Richards [62] during the fifties. They



considered a traffic stream as a fluid continuum described by

the 3 aggregated traffic variables

- volume

xB(s,t) (cars/h)
- density xD(s,t) (cars/km)
and
- speed xv(s,t) (km/h)
(cf. Figure 1). Since these three variables are related to

each other by

xp(s,t) = (s,t)x,(s,t) {6)

Xp

it is sufficient to introduce only two of them, e.g. Xp and Xy
as state variables. Hence only two differential equations of
the first order are needed for a traffic state model of a single
long lane for which overtaking may not be permitted. Using the
principle of conservation of cars, one gets the first state
equation in the form of the well-known partial differential

equation

X, (s,t) BxB(s,t)

D -
5T + 55 =0 . (7)

For the second state equation, which has to describe the accel-
eration of the traffic stream, Payne [55] and Isaksen and Payne

[39] have proposed the relation

dxv(s,t)

ax_(s,t)
v __1 _ v 1 D
dt - T{xv(s't)

T xD(s,t) 9s

;V(XD)} -
where the term containing v represents the average reaction of
drivers to a change in density ahead. The parameters v and T

may be considered as the sensitivity coefficient and the reaction
time constant, respectively. The first term on the right-hand
side of equation (8) takes into account the average behavior

of drivers to keep the speeds of their cars close to the speed
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EV(ED) that occurs under constant traffic conditions. For this

speed, the so-called Greenshields model

), with x; = A/xD ’ (9)

Xy = xf(1 - xD/xDmax

can be determined by means of the linear car-following model

(3), where Xe is the free traffic speed and Xpnax’ the jam con-

centration [19, 77] (cf. Figure 3). The nonlinear car-following
model (2) delivers, for £ = 1 and m = 0, the so-called Greenberg
model [27, 22, 19]

X, = X &n {x

- /ED} . (10)

Dmax

There are, of course, further possibilities for describing the

interrelation between the stationary values, x. and x., of speed

A\ D
and density--for example, the equation

(1)

used successfully by Isaksen and Payne [38] with n = 3 for the
Los Angeles Freeway, the relation
Xy = Xg (1 - xp/x ) (1 = oxp/x ) (12)

Dmax Dmax

with -1 < a < 1 (cf. [54]), or the expression

= 12
_ X
%, = b exp {— 17[3"] } (13)

successfully applied for studies in New York's Lincoln Tunnel
by Szeto and Gazis [76]. These static models represent, together
with the equation

XB = XpXy (14)
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for the traffic volume (see equation (6)), the "fundamental
diagram of traffic" (see Figure 3) which explains some essential
traffic flow phenomena as shock waves (see [10, 18, 19, 33, 43]

for more details).

Equations (6)-(14) describe a nonlinear distributed param-
eter model that can be applied for the analysis of traffic con-

trol systems in a simplified, i.e. aggregated, form only.

=
. Xf 1 'E, INCREASED SENSITIVITY
= % TO DISTURBANCES
£ 1
- -
S w
1 =
d o
w S CONGESTION
o >
v FREE-FLOW

_ X _ X
DENSITY Xp[veh./km] Dmax DENSITY Xy{veh./km] Dmax

Figure 3. Fundamental diagram of traffic.

Aggregated Macroscopic Traffic State Models

The necessary simplification is effected by dividing the
freeway, the tunnel, or the bridge into sections, Asi, of the
length, and by introducing the aggregated state variables (cf.
Figure 1)

51+A51
section density, XDi(k) = K%T-/A xD(s,tk)ds ' (15)
i
55
and
s.+As
1 i i
section speed, xvi(k) = KET./. xv(s,tk)ds , (16)
13
i

in the form of spatial means of xD(s,t) and xv(s,t) for discrete
time intervals tk = kAt. For the traffic volume at the section
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boundaries, the temporal means,

1 Fk
xgy (K) = 3¢
t -ot

x_(s,t)dat , (17)

B

are used. With these definitions, it is possible to approximate
the partial differential equation (7) by the simple difference

equation

(k + 1) = x_.(k) + —{x_. (k)

b5, i x)} . (8

*pi T *Bi+1

if 8xD/at is replaced by {xDi(k + 1) - xDi(k)}/At and 3xp/3s by
{XBi - xBi+1}/ASi' This eguation illustrates the principle of
conservation of cars. It is guite obvious that the number of
cars, (k + 1), at time (k + 1)At in section i results from
. (k), stored at kAt, plus the difference

D1
of the numbers of cars entering, Athi(k), and leaving, A (k),

As,x_ .
1" D1
the number of cars, Asix
tXp4q
the section during the time interval (k - 1)At < t < kAt. For
a freeway section connected with on- and off-ramps carrying the
traffic volumes ui(k) and wi(k) (cf. Figure 1 for level IIC),

equation (18) has to be enlarged to the more general relation

_ At
xDi(k + 1) = xDi(k) + ZEE{XBi(k) - xBi+1(k) + ui(k) -w. (k)} . (19)

1

If the same simplification method as used in equation (7) is ap-

plied to (8), then the nonlinear difference eqguation

2Atxvi(k)
"

—

xgp e+ 1) = x; & {agy B = %y (0

Si41,1i-1
(20)

L P S N — ) = x_. (K)1/%; (k)
T 1%vi Xi BS o 1 XDi+1 Xpi *pi '

with Asrj = s_ - Sj’ is obtained (see [54, 55] for more details).
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The second term introduced on the right-hand side of this
equation allows for the section speed, xvi(k), possibly changing
at the section boundary, i.e. for xvi(k) # xVi-1(k) (cf. Figure 1).
For the first section (i = 1), it is obviously justified to choose
X0 = Xyq and to neglect that term, while for the last section
(i = N), it is reasonable to assume that XN is equal to XN+
and to exclude the term involving the sensitivity coefficient, v.

In this way, with
xBi(k) = xDi-1(k) xvi—1(k) (21)

(cf. equation (6)) for a three section freeway as an example

(cf. Figure 1), one gets the state equations

X (k + 1) = Xyq (k) + 5= [~ xD1(k)xv1(k) + XB1(k) +u k) -w k1,

2vAt o -
Kk M =2 00+ e [1- %01 ) 00 - Ryl

g + 1) = 3 (0 + o= [ty (K () + 355 () () 4wy (9 = 0]

2vAt [1 i "03”‘)]

k+ 1) = (k) + (22)
X2 X Ths,,, XDZ(k)
At - 20t
-7 [xvz(k) - Xl - @xvz(k) [xvz(k) - xus K1,
xD3(k + 1) = xD3(k) + — —xD3(k)xV2(k) + %z(k)xvz(k) +u, (k) - w3(k)] ,

and

xv3(k+1)-xv3(k)--—[xv3(k)-:g,.3 xvz(k)]
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representing a nonlinear traffic state model of the form
x(k + 1) = £(x(k), u(k)) , (23)

with the six-dimensional state vector

T
xTK) = (kg () %y, () %, (K) %y, () xp3 (K xg5 (K)) , (24)

and the three-dimensional control vector

ul (k) = (w, (K)u, (K)uy (k) . (25)

3
This freeway traffic model can be changed to a tunnel or bridge
traffic model by putting u; =w, o= 0 and introducing the input
traffic volume XB1(k) at the first section as a control variable,

u1(k).

The aggregated traffic model (19)-(22) is still complicated,
especially because of the nonlinear equation (20). 1In specific
applications, it may be necessary and possible to substitute a
further simplified expression for this relation. Nahi and
Trivedi [52], in connection with a density estimation problem

in one freeway section, have used the difference equation

xv(k + 1) = axv(k) + n(k) , (26)
here n(k) is a stochastic disturbance causing speed changes.

For the solution of the same problem in tunnel traffic, Szeto

and Gazis [76] successfully applied static model (13) as a dy-
namic model after introducing a noise term & (k):

) %[XD;k)}Z

+ E(k) . (27)

xv(k) = b exp

The application of equations (20), (21), (26), and (27), given
here as models of the speed behavior of a traffic stream, is
not possible in the case of urban street networks containing

signals at intersections. The dynamics of traffic flow in urban
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streets changes rapidly with traffic volume, and so it is not
possible to present one dynamic model valid for all possible
traffic conditions.

A relatively simple model can be designed for the compli-
cated case of a network of oversaturated intersections charac-
terized by the traffic supply being smaller than the traffic
demand so that queues of cars are always waiting. In this spe-
cial case, the travel time between intersections is much smaller
than the waiting time at the intersections, and so the speed
dynamics in equation (20) can be neglected; only the principle
of conservation of cars expressed by equation (19) need be used.
This applied to the simple one-way network shown in Figure 1,

for example, results in the state model

Xtk + 1) %5 (k) -1 0 0 0 a, (k) *pq (K)

' =" P T T I o0

: : 0 0 -1 0 : %53 (k) (28)
Kok + | Ry (0) T T N ST

2R+ 1) = 20+ (B) © k) o+ zk) o,

where iDi(k) is the number of cars waiting in link i at the
corresponding intersection, ﬁi(k), the control variable (i.e.
the number of cars leaving the link when the green traffic

light is flashing), and iBi(k), the number of cars arriving at
link i during the time interval (k - 1)At < t < kAt. The param-
eters S; and r, describe the percentage of cars ﬁi(k) going
straight ahead, si, or turning to the right or left, ri (see

{3, 16, 20, 46, 73] for more details).

If it is not reasonable to neglect the travel times Ty

then equation (28) has to be changed to the more complicated
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Bk + 1) =% (k) + @®EK + B3k - 1,) + B),80k - T,) + ... +z(k) (29)

as shown by Singh, et al., [68].

For light traffic conditions, without permanent gqueues at
the intersections, the dynamics of the group of cars (platoons)
formed at intersections with signals have to be considered. Pla-
toon models, however, are discussed in the following paragraph

on input-output models.

INPUT-OUTPUT MODELS

An overview of models is now presented where the state vari-
ables are not considered explicitly, and where the main interest
is in the dynamic relations between certain control or input vari-
ables of the system and the reactions of the system measured by

output variables.

Microscopic Input-Qutput Models

If one introduces as the input signal the speed of the lead-
ing car, xe(t) = v1(t), and as the output signals the speed,
xa1(t) = vN(t), and the position, xaz(t) = SN(t)’ of the Nth car
in a string of N cars, then the linear car-following model illus-

trated by Figure 2b results in the two transfer functions:

—p.
( 2 {vy (1)} N A ge + X 1 (P)
G,(p) = — ™ = I — =
! vy ()} i=2 g PTi  x_(p)
and
2{sy(t)} X_,(p)
Gy(p) = ———— = L6 (p) = 25—
2{v, (t)} X, (p)

These input-output models have not yet attracted much
attention in traffic flow theory literature (cf. [10, 19, 331),

though they provide an excellent basis for the application
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of the well-developed classical control theory on stability and

collision analysis.

Macroscopic Input-Output Models

This approach to dynamic traffic flow modelling has so far
been studied only by a rather small number of authors (cf. [11,
74]1). The input-output model describes the interrelations between
macroscopic traffic variables at those points of a freeway, tun-
nel, rural road, or even urban street network that are of special
interest and may be defined as inputs and outputs of the traffic
system. Traffic volume will be introduced here as the input and
output variables.

First, a single traffic link and a long street including
intersections, or a freeway with on- and off-ramps will be

considered.

The Traffic Route Model

For a single driving route, it is reasonable to introduce
as input and output variables the number of cars entering,
xBe(k), or leaving, xBa(k), the route during the time interval
(k ~ 1)At < t < kAt (cf. Figure 5). According to

Xg, (K) = QBa(k) + x__ (k) (30)

Bz
the output traffic volume xBa(k) consists of the number of cars
coming from the input, gBa(k), and the number of cars entering
the route through other access points, sz(k). sz(k) may be

considered as a disturbance, while gBa(k) is assumed to depend

on those values xBe(k -m),... (k - n) of the input traffic

' X
Be
volume xBe(k) that are delayed by the travel time interval

Trmin - mAt < TR < nAt = TRmax

in comparison with the time t, = kAt:
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o _ . -
%x__(k) = f{xBe(L m),.. (k n),k} . (30a)

Ba - *ge
By developing f{...} into a Taylor series and neglecting the

nonlinear terms, one obtains
Q ~ -
xBa(k) = g(m,k)xBe(k -m) + ... + g(n,k)xBe(k - n) ,

where the parameters §(s,k) describe the percentage of cars
reaching the output within the travel time interval (s - 1)At
< Tp < sAt. If we assume that the expectations, E{J(s,k)} =
g(s), of the time varying parameters are constant, then it is

reasonable to use the model

Xpa (K) = xpy, (k) + 3, (k)
(31)

]

g(m)xBe(k -m) + ... + g(n)xBe(k -n) + sz(k) ’

where the sum

S
his) = } g(i) (32)
=m

characterizes the proportion of cars with a travel time TR < sAt,
and h(n) describes the number entering the route via the input
and leaving it via the output. This parameter h(n) (henceforth

called the "split coefficient") can take values within the in-

terval

0 <h(n) <1 . (33)
For h(n) = 1, no car out of xBe(k) leaves the route before
reaching the output; for h(n) = 0, all cars xBe(k) leave the

route before reaching the output.

From h(n) and g(s), it is possible to obtain the relation

F(s) = h(s)/h(n) = P{TR < sAt} (34)
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for the probability distribution of the travel time TR = sht,

and the corresponding formula for the density

£(s) = g(s)/h{(n) = P{(s - 1)At < Tp < sbt} (35)
resulting in
n
Tem = L (s8t)£(s) (36)
sS=m

for the mean travel time, TRM’ that the traffic stream takes to

pass between input and output (cf. Figure 5).

The coefficients, g(s), in equation (31) may be considered
as discrete values of the impulse response, g(t), of the street.
Thus, equation (31) results, with g(s) = 0 for s = 0,...,m-1,n+1,

..+, 1n the convolution sum

Xpya (K) = -Zog(i)xBe(k - i) (37)
1=

or in Duhamel's convolution integral

o

xBMa(t) = J[g(T)xBe(t - 1)dt = g(t)*xBe(t)
0

if very small sampling time intervals, At, and continuous time

functions are used. Two interesting statements can thus be made:

- The impulse response of the route is proportional to
the travel time probability density function (cf. equa-
tion (35))

- The step response of the road describes the probability
distribution function according to equation (34), with
the final value h(n) being the split coefficient that
characterizes the percentage of cars passing the whole
route between the input and the output without leaving

it anywhere (cf. Figure 5).
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Connection in Dresden (At = 10,p= electronic traffic detectors).
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The model (38) obtained here is a nonparametric one [70],
giving rise to questions about the applicability of parametric
models in the form of difference or differential equations.
The so-called platoon dispersion model

XBMa(k + 1) = (1 - F) (k) + Fx e(k - N+ 1) , (38)

XBMa B

with T = NAt = 0.8T., and F = 1/{1 + 0.5N}, proposed by Robertson
[63] (see Figure 4), may be considered as such a parametric model
that has been successfully used for the simulation of platoon
dynamics, i.e. for traffic links connecting neighboring inter-
sections. For small sampling intervals, At, the difference
equation (38) can be approximated by the differential equation

>‘<BMa<t) + Fx (t) = Px_ (t - 1) , (39)

BMa Be

with F = F/At, resulting in the well-known transfer function

e Pt
G(p) = ———— . (40)
1 + p/F

The applicability of other parametric models, e.g. of the Rstrom-

model (see [70]), has been studied by Doormann [11].

The Traffic Network Model

The traffic route model (31) can be enlarged to a network

model by using

xBa1(k) 911(k)...g1r(k) xBe1(k) XBz1(k)
N L R (P A Y FE
Xgap (K 911(k)---glr(k) XBer(k) Xle(k)

where * is the convolution symbol. For the network shown in

Figure 6, for example, one obtains for output 1
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Figure 6. Macroscopic input-output model of a traffic network.

The percentage of cars traveling from the input x

put x

h..
1]

and for the corresponding travel time distribution functions

(n.

1j)

Bej

Bai is given by the split coefficient

nlj
gij (s) ’
S=mij

one obtains the general expression

resulting in

fij(S)

n,.
i3
gij(S/Z 954 (s) , with 934 (s)
s

=m. .
1]

Z (sAt)fij (s)
m

(42)

to the out-

>0

7

(43)

(44)

(45)
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for the mean travel time TRM that the individual traffic
ij
streams need for going from the input j to the output i.

THE ROLE OF STATE AND INPUT-OUTPUT MODELS IN THE ANALYSIS OF
TRAFFIC CONTROL SYSTEMS

We now describe what role the models summarized in the two
preceding sections already play or are expected to play in the
analysis of computerized traffic control systems. A brief sum-
mary of the existing fundamental traffic control concepts is

given first.

Traffic Control Concepts

The basic concepts proposed for freeway and area traffic
control may be considered as hierarchically structured control

systems containing three levels (cf. [71, 72] and Figure 1):

- Optimal guidance of main traffic streams through a
network of freeways and service streets (route control)

- Optimal traffic flow control on freeways, in tunnels,
on bridges, and in urban street networks

- Vehicle movement control, e.g. merging control and

distance regulation in a string of moving vehicles.

A survey of the state of implementation of these concepts
and the experiences gained from real applications is given by
Strobel in [71, 72]. Here only those methodological aspects of

interest from the identification viewpoint are described.

Models Needed for Route Control Analysis¥

A route control system assists drivers in finding the (in
some sense) best route from a certain origin to a desired des~
tination. Due account is taken of changing traffic conditions
in different parts of the network caused, for example, by ac-
cidents, weather, and maintenance operations (cf. Figure 1,
level IC).

*These are described in [2, 4, 7, 14, 53, 64, 71, 72, 81].



A computing system is provided and, from information given
by traffic detectors, it evaluates the traffic situation and
determines the optimal routes in real-time operation. These
routes are shown to drivers by changeable computer-controlled
road signs located at freeway off-ramps and essential intersec-
tions of the arterial street network [1, 8, 12]. The use of

displays within cars [15, 31, 50] is sometimes included.

For the determination of an optimal route, two criteria
should be taken into account:

- Minimization of mean travel times between origin and
destination points (Wardrop's first principle)

- Minimization of traffic density in different parts of
the network, i.e. of the weighted sum of all densities

(Wardrop's second principle).

In route control systems so far installed, the travel time
criterion is preferred in general. Thus, a route control algo-

rithm contains the following two parts:

-~ An identification part dealing with the estimation of
the mean travel times, and the split coefficients de-
scribing the distribution of the traffic streams within
the network. This task has to be solved in an on-line
real-time operation mode with the use of traffic detec-
tor data only.

- A real-time optimization part dealing with the selection

of optimal routes.

It is gquite obvious that the solution of the identification
task of the first part needs a traffic model similar or equal to
that presented in the section on macroscopic input-output models.
But it is interesting that none of the route control systems im-
plemented in the past have used such a macroscopic input-output
model. One may conclude that the application of input-output
models in route control systems presents an unsolved problem

which is a subject of fundamental research (cf. [11, 74]).
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Models Needed for Flow Control Analysis

Freeway and Tunnel Traffic*

The capacity of a traffic lane decreases if the traffic
density gets larger than an optimal value. This well-known
phenomenon, illustrated by the fundamental diagram in Figure 3,
explains the occurrence of natural congestion on freeways and
in tunnels when too many cars enter traffic links. The aim of
a traffic flow control system is therefore to maintain traffic
demand along all parts of the freeway below the critical level
by restricting freeway access by means of traffic lights at the
entrance ramps. The necessary traffic light control algorithm

requires the solution of the following two optimization problems.

-~ Static optimization and open-loop control [26, 38-40, 58]:
With the use of demand patterns obtained from historical
data, nominal values for the input flow rates, u, . have
to be determined in such a way that the overall traffic
throughput is maximized. These control variables, u;
are, of course, no longer the optimal ones if distur-
bances, e.g. an accident, occur. For such situations,
one uses:

~ Dynamic optimization and feedback control [21, 35, 37-40,
47, 59, 771: The task of this control system is to min-
imize deviations between the nominal, precomputed state

and their actual

variables density, x and speed, x

Di’ Vi’
values, by real-time computation of corrections to the
nominal values that take account of control variables,

u; (cf. Figure 1, level IIC).

Fundamental contributions to the solution of these problems
were presented by Isaksen, Payne and their associates [29, 30,
37-40, 49, 55-59]. They used for the first time the aggregated
macroscopic state model (19)-(25). The application of this
model reguires the solution of the following state and parameter

identification problems which is still a subject of fundamental

*see [5, 12, 17, 19, 21, 25, 26, 28-30, 35-42, 47, 49, 51, 52,
54-59, 66, 71, 72, 80, 81].
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research [5, 9, 25, 28, 30, 35, 42, 49, 51, 52, 54-57]:

- The parameters of the dynamic equations (20) and (22),
and of the static models (9)-(13), change with weather
conditions, traffic incidents, etc. They have to be
determined by means of an on-line real-time method.

- It is not possible to take direct measurements of the
state variables section density, xDi(k)’ and section
speed, xvi(k). Traffic detectors measure traffic volumes,
xBi(k)’ and mean speeds only at fixed points, i.e. at the

section boundaries (cf. Figure 1).

One has to deal therefore with a combined state and para-
meter estimation problem, leading to the application of the
extended Kalman filter [13]. This problem has been studied by
Orlhac, et al. (54] for the three section freeway model (22).
The complicated form of this model has not yet permitted algo-
rithms reliable and robust enough for practical application to
be developed. Thus this problem, too, is still a subject of
fundamental research, especially with respect to the use of
decentralized principles for control and identification [54,

57, 67]. The situation is different if one considers only one
freeway section and tries to solve the state identification
problems for the individual sections independently of each
other. First successful applications of modern identification
methodology to this simplified problem have been reported by
Gazis and his co-workers [5, 25, 76] and later by Nahi [51, 52].
Szeto and Gazis [76] used eqguations (18) and (28) for a model

of a tunnel section and introduced the time varying model param-
eters, a and b, as additional state variables with the simple

state equations

qg+1 T A and by g = Db
Experimental tests carried out for New York's Lincoln Tunnel
delivered reliable and sufficiently accurate estimates for the
section density and speed by the application of the extended

Kalman filter (see [25, 76] for more details). Similar promising
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results have been obtained by Nahi and Trivedi [51, 52] for a
freeway section with the use of a recursive minimum square esti-

mator, and model equations from relations (18) and (27).

Urban Street Networks*

The most widely used traffic control concept is traffic
light control and coordination. The methods in use can be

classified under:

- Precomputation of optimal signal programs for time-of-
day, open-loop control by heuristic methods, mathemati-
cal programming methods, or simulation techniques;

- traffic-responsive signal program selection, i.e.
adaptive open-loop control;

- traffic-responsive signal program modification and
generation, i.e. feedback control (cf. [10, 19, 36,

48, 65, 781).

Problems of parameter and state estimation do not play an
important role for the first two methods. A particular excep-
tion is the application of simulation programs for the determi-
nation of optimal signal programs. These simulation programs
use a simple model describing the principle of the conservation
of cars at intersections (cf. equation (18)), and a platoon dis-
persion model simulating the traffic flow between intersections.
This is true, for example, for the well-known and widely used
TRANSYT simulation program of Robertson [63] which contains the
input-output model (38) as the platoon model.

Situations where modern identification methods are going
to be an important and useful tool occur under complicated
traffic conditions that require implementation of feedback con-
trol algorithms. 1In such situations, the traffic control problem
must be handled by a multicriterion approach with consideration
of the following hierarchy of criteria [36]:

- stoppage mode for light traffic,

*See [3, 16-20, 36, 46, 48, 63, 65, 68, 73, 77-79].
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- delay mode for medium traffic,
- capacity mode for saturated intersections,
- queue mode for very dense traffic, and

- Jjam mode for congested conditions.

The first two criteria are generally used for the pre-
computation of signal programs [10, 17-19, 36, 48, 65, 78].
The last three, needed for heavy traffic conditions, can be
implemented only as a feedback control algorithm. For the last
criterion, for example, an optimal control strategy for time
optimal congestion removal can be obtained by means of the state
model (28) with the use of Pontragin's maximum principle [16, 46,
731. Here the identification problem consists in the determi-
nation of parameters siand ris i.e. of the percentage of cars
driving straight ahead, and turning to the right and left. As
shown earlier, such a task is the same as the identification of

the split coefficient, hi (n..), according to equation (43) and

the macroscopic input-out;utl%odel (42) .

The same is true for the model (29) that has been used for
the design of control strategies fulfilling the third and fourth
optimizing criteria (cf. [68]). For both models (28) and (29),
a state estimation problem occurs if one has to determine the
queue lengths, i.e. the numbers, iDi(k), of waiting cars at dif-
ferent intersections, by means of noisy detector measurements
of traffic volume at selected points along the traffic links
[73, 76].

Models Needed for Vehicle Movement Control Analysis¥*

The lowest level of the control hierarchy shown in Figure
1 mainly concerns the problem of distance regulation in a string
of moving highway vehicles, with the aim of reducing the danger
of collisions and increasing the freeway capacity. It is obvious
that such problems require the application of microscopic models

and the microscopic traffic flow models discussed earlier can

*These are described in [6, 32, 69, 71, 72, 75, 78].
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be used to illustrate the significance of the problem. The
linear car-following model ((1), (3), and (4)), for example,
permits the phenomenon of traffic queue instability to be
explained. It can be shown by equations (3) and (4) that a
system of two cars is unstable for AioTi > /2, and that
oscillations with damped amplitude for 1/e < AioTi < /2 result.
Instability and oscillations occur if a driver reacts too slowly
(large Ti) or too much (large Aio) to speed changes of the lead-
ing car. Small speed changes of that car are amplified result-
ing, in long strings of vehicles, in collisions of the cars at
the end of the queue. If one assumes the same model for all
drivers, i.e. Aio = A,Ti = T, then this result occurs as soon as
AT > 0.5--a value of the same order of magnitude as the experi-
mentally determined values given in equation (5). This agrees
with the feeling of many drivers that, when driving in long
strings of vehicles at high speeds, they are often close to the
limit of stability. To reduce this danger of collision, one
should provide the drivers with certain driving aids that would
assist them to have stable control parameters, Aio and Ty-

Radar distance measuring devices [69] and special head-up driver
displays might fulfill this task [75], but since these problems
are the subject of fundamental research, certain identification
problems may occur concerning the simulation of driver behavior.
On the other hand distance regulation systems already play a
significant role today in the development of so-called "auto-

mated guideway transit systems" (cf. [71, 72]).

Conclusions

The following conclusions may be drawn from the state-of-

the-art survey presented above:

- The essential foundations for dynamic traffic flow
modelling were created by the development of the micro-
scopic and macroscopic traffic flow theory during the
fifties and sixties [10, 19, 33]. The application of
modern identification methods, however, has been the

subject of theoretical and experimental studies carried
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out during the last five years or so, and is still a

subject of fundamental research work.

- This is especially true for the application of the
extended Kalman filter and related methodology for
parameter and state estimation problems occurring with
the computer control of freeway and tunnel traffic [5,
19, 25, 28-30, 41, 42, 49, 54-57]. Research activities
have resulted in an enlargement of macroscopic traffic
flow theory by introducing the Isaksen-Payne model ((8)
and (2)). The papers published during the last 2 years
give the impression that, in several parts of the world,
control scientists are dealing with the application of
modern identification methodology to traffic state and
parameter estimation problems with respect to traffic
flow control tasks (cf. Figure 1, Level II), and that
they are focusing on the development of decentralized
algorithms that can be implemented by spatially dis-

tributed control systems with microprocesses [35, 54].

- On the other hand, it is interesting to note that iden-
tification problems at the first level (cf. Figure 1)
have not yet had much attention from control scientists
(cf£. [11, 76]), though, as shown here, the identifica-
tion of macroscopic input-output models could play an
important role for certain high level traffic control

problems, e.g. for the creation of route guidance systems.

Therefore, it seems to be useful to complete the general
survey presented above by a special case study on the identifi-

cation of macroscopic input-output models.
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PART II: IDENTIFICATION OF DYNAMIC INPUT-OUTPUT
MODEL PARAMETERS: A CASE STUDY

THE MODELS AND IDENTIFICATION METHODS STUDIED

The Aim of the Case Study

The knowledge of models (31) and (41) described earlier
presents very valuable information on the distribution of traf-
fic streams within a traffic network, and on the corresponding
mean travel time. If it were possible to determine the model
parameters, g(s) or gij(s), automatically, by a computer coupled
via traffic volume detectors with the street network, then a
very valuable tool for the solution of several traffic control
and guidance problems would have been obtained (cf. the last

section of Part I).

The purpose of this Part is to investigate if this identi-
fication task can be solved, and how accurate it would be for

conditions near to real traffic situations.

Introduction of Stationary Input and Output Signals and of
Modified Model Structures

Whether parameter estimation algorithms may be considered
as optimal depends mainly on the statistical properties of the

noise signals and the form of the mathematical model (cf. x__ (k)

Bz
in equations (31) and (41)). Figure 7 shows a stochastic dis-
turbance, sz(k), obtained at the so-called North-South-
Connection in Dresden (Figure 5). This disturbance is caused

by traffic entering the route via intersections located between
the two traffic detectors shown in Figure 5. The mean value,
iBz’ of the disturbance is, of course, larger than zero. The
same is true for the mean values, Xpe and Xpar of the input and
output traffic volumes (cf. Figure 7). Moreover, these mean
values change in the course of the day. There are two possible
ways of avoiding the application of nonstationary stochastic
signals in an identification algorithm:
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Figure 7. Traffic volumes, xpe. Xg . gBa’ and xp,, and input. x.
output, x,. and noise, z, signals obtained for the Dresden
N-S-Connection (cf. Figure 5).
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- to use the differences between the volumes and their

mean values according to

X, (k) = Xpe (K) = Xpg
ia(k) = xBa(k) - Xg, (46)
Z(k) = xp, (k) = Xp,

or--what is more convenient for real time
computations--

- to use the differences between the volumes at times
kAt and (k - 1)At, 1i.e.

xe(k) = xBe(k) - xBe(k - 1)
xa(k) = xp (k) = xp (k= 1) (47)
z{k) = xBZ(k) - sz(k - 1)

For the output signals ia(k) and xa(k), one now obtains

instead of equation (31) the new relation

ia(k) = g(m)ﬁe(k -m) + ... + g(n)ie(k - n) + Z(k)
(48)
= iaM(k) + z(k) ,
and (with certain approximations)
xa(k) = g(m)xe(k ~m) + ... + g(n)xe(k - n) + z(k)
(49)

= xaM(k) + z (k) .

In the same manner, one obtains from equation (41) the new

multivariable model of a street network*:

*For convenience, here and in the following equations, a restric-
tion is made to the variables (47).
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r
(k) (k) + z. (k)"}i: :z: 9 (s)x (k - 8) + z; (k) (50)

3=1 s=m

for i = 1(1)%.

The noise terms, Z(k) and z(k), may now be considered as
stationary stochastic discrete signals that are, moreover, ap-
proximately uncorrelated for kAt and kAt + sAt. This is illus-

szsz(T) = lpZZ(T)

=2 . . . -
+ Xp, shown in Figure 8. The relatively large negative value of

trated by the correlation functions ¢ZZ(T) and ¢
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Figure 8. Estimates of the correlation functions of the noise signals,
xpg(k) and z(k) (cf. Figure 7).

wzz(T) at 1 = tAt is caused by computing z (k) with the neighbor-
ing values sz(k) and sz(k - 1) taken from equation {(4#7). 1In

spite of this, the correlation between z(k) and z(k + s) may be
considered as low, at least for |s| > 1, and so the application
of a minimum squares estimation technique seems to be justified
if the noise amplitudes z(k) are normally distributed. This is,
of course, not the case, as can be seen from the frequency dis-
tribution f(z) (Figure 9) computed by means of the disturbance

z(k) (Figure 7), obtained from real traffic measurements (cf.
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Figure 9. Empirically determined frequency distribution of the noise
magnitudes, z(k), compared with the Gaussian distribution, f ¢ (z).

Part I, Conclusions). Nevertheless the principal form of this
distribution f(z) and the Gaussian distribution are similar
(Figure 9). Therefore, it has been decided not to use the
maximum-likelihood method, but to prefer least squares estima-
tion techniques. This decision also seems reasonable from the
viewpoint that the chosen estimation algorithm should be appli-~
cable with acceptable storage and computing time requirements

in a real-time process computing system.

The following algorithm has been taken into account:

The Explicit Methods Used

For the one-dimensional model (49), one obtains with the

error equation system

e (k) x, (k) X (k = m) eew x (k- n) g (m)

. = 1. I . T (51)
ek - N) x (k = N) x,(k -m-N) ... x (k-n-N g(n)
= e = X - (V) - b,

and the minimization criterion

0=¢'e=min , (51a)
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the well-known normal equation system

T

WTwb = T, = @b =a (52)

a

for the estimate E, where the elements, aij and aj of the matrix

(A) and the vector a, respectively, are given by

21

I
M =
mDC

(k = i = V)Xe(k - J - V)

ij
v=0
(53)
N
a; =er(k—1—v)xe(k-]—v)
v=0
These elements are for stationary signals approximately propor-
tional to the correlation functions
N-s
N 1
Uy o (8) T g D X (x (k +5)
e’e
k=1
N-s (54)
1
wx x_(s) "N - s Xe(k)xa(k +s)
e“a
k=1
This leads to the equation
¥ (0) e ¥ (m - n) g(m) ¥ (m)
XHe XXe X&a
. . A = |- s @b=3 ,
by y B-m ooy (0) g(n) Yy « () (55)
ee e | e"a

which is well-known for its application to the estimation of
discrete impulse response values by correlation analysis [70],
i.e. the convolution integral (38), and the resulting Wiener-
Hopf's integral equation (cf. (67)).
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It is to be expected, and will be shown in the following,
that both estimation algorithms, i.e. equations (52) and (55),
deliver similar estimation results both for the use of rela-
tionship (47), and for stationary signals generated by equa-
tion (46).

The Implicit (Recursive, Adaptive) Methods Used

The intended application of a process computer requires
recursive computing techniques. In general, recursive estima-

tion algorithms use the relation

b(k + 1) = b(k) + T(k)e(k + 1) , (56)
with
ek + 1) =x_(k+ 1) -u (k+ Db , (56a)
and
T = -
u (k) = (xe(k -m) ... xe(k n)) , (56b)

i.e. the k + 1 estimate g(k + 1} is determined by the kth esti-
mate §(k), plus a certain correction term containing the model
error ¢(k + 1), and a weighting vector ['(k). The latter can be
calculated in the case of the recursive least squares method by
the formula

I(k) = (Clk + 1)u(k + 1) , (57)
with
T
clk k + 1 k + 1) (CIk]
(Clk + 1]) = 4%-(C[k])— (2[])9( Ju ( ) (CIk]) . (57a)
w wo o+ ub(k + 1) (CIkDu(k + 1)

and w = 1. For w < 1, equation (57a) corresponds to the re-
cursive least squares method with "exponential forgetting”.
This uses the minimization criterion
ket 2 2 2 2 2
Qk+1) = Ve Ww] = €k + Nw ., + .o + € (Mw] =min
i=1 (58)
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2 _ 2lkH-il 0 a e <1, (58a)

i.e. wi+1 = w0 =1, w2 = w2,...,w$ = w2k . (58Db)
Criterion (58) makes it possible that the latest measured values,
xa(k + 1),xa(k), ... etc., will influence the estimated result
more than the older ones, i.e. xa(1),xa(2),.... Figure 10 shows
this "forgetting" factor wi for 0.950 < w < 0.999. One can see
that for w = 0.980, for example, only the last 20 measured values
influence criterion (58) with a weight greater than 0.4, while

this is true for the last 110 measured values for w = 0.996.

1 ’WiZ:wz[k+1|—i]/ w : /1000
4 | 0999
08 0.998

- A\K\X\\\
N | e

k+1 k+1-40 k+1— 80 k+1-120

Figure 10. The “‘forgetting” factor, wi2.

This property of "forgetting" old measured values is obvi-
ously very important for nonstationary traffic conditions with

changing travel times, T and parameters, g(s).

RM’
Besides the recursive least squares method, the following

simplified algorithms need to be taken into consideration [70]:
- the stochastic approximation, with

€4

L(k) = g7 uk + 1) (39)
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- the relaxation method, with

u(k + 1)
ul(k + 1) u(k + 1)

I'(k) =c ’ (60)

2
and

- the so-called quick and dirty regression, with

K+1
I(k) = cju(k + 1) 1/2 uT(r)u(r)} . (61)
r=1

It has been reported that these methods require remarkably
less computing time than the least squares method: 8 times less
for the first algorithm, 5 times for the second, and 3 times for
the third (cf. [70, 91]).

The methods summarized here will be studied in the following

paragraphs for:

- Stationary traffic conditions, i.e. the model parameters
g(s) and gij(s) of equations (49) and (50) are considered
as time invariant.

- Nonstationary traffic conditions with parameters g(s)
and gij(s) varying, i.e. the mean travel times are sup-
posed to be changed by accidents, changing weather con-

ditions, etc.

First, the studies are carried out with simulated traffic
processes. The results obtained are then compared with those
from an experiment carried out under real traffic conditions in

the North-South-Connection in Dresden (cf. Figure 5).

SIMULATION STUDIES

Stationary Traffic Considerations

The measured real traffic volumes xBe(k), shown in Figure 7,
are used in the following studies also as input volumes, in order
to have simulated traffic conditions similar to real ones. With
the use of xBe(k) and an uncorrelated discrete noise signal,

sz(k), input, xe(k),ie(k), and output, xa(k),ia(k), signals
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have been determined by equations (46)-(49). To describe the

noise/signal ratio, the coefficient

sum of cars entering the route

vz = *Bz ~ between input and output (62)
[} sum of cars flowing
*Ba from input to output

is used. For the travel times, a probability distribution as

shown in Figure 11 is considered valid.

g(s)

033317——

5 10 — s

Figure 11. Travel time distribution used in simulation studies.

Explicit Methods

Table 1 summarizes the results obtained by explicit methods.

The following conclusions may be drawn:

- There is no significant difference between using
equation (46) and (47) for the creation of stationary
signals (cf. rows 2 and D in Table 1), so equation (47)
is used in the following.

- As expected, there are no remarkable differences in the

estimation of the mean travel time, T and the split

’
coefficient, h(n), if one uses correlgﬁion analysis
(cf. equation (55)) instead of the least squares method
(cf. equation (52), and examples 1.1 and 2.1, with 1.2
and 2.2 in Table 1).

- For the undisturbed system, with vz = 0 representing a

street section without intersections between input
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detector and output detector, it is possible to obtain
very accurate estimates for the impulse response values,
g(s), as well as for the mean travel time and the split

coefficient (cf. Table 1).

Table 1. Application of explicit identification methods (LS, least
squares estimation; CA, correlation analysis; Z, equation
(46) used; D, equation (47) used).
h(n)
s = s =5 s =6 s =7 s = 8 TRM/s n
L g
S=m
gts) | o 0.333 | 0,333 | 0.333 o
True values £(s) | 0 0.333 | 0.333 | 0.333 | o 60.0 | 1.00
Street 1.1, _14§(s) | 0.00 | 0.32 0.33 0.30 0.02
section| ¢ t2126) | 000 [0.33 | 0.3¢ | 0.31 | 0.0z | 692 |©:97
I } g‘ia(s) 0.00 | 0.32 0.34 0.30 0.03 60.3 | 0.99
vz =0 | | B(s) | 0,00 | 0.33 0.34 0.31 0.03 : :
I T T =
| §(s) | -0.01 | 0.33 0.35 0.29 0.02
|12 L—z! £(s) | 0 0.33 | 0.35 |0.20 | 0.02 | %0 |©-98
CA [ ,,3(s) | 0.00 [0,34 0.35 0.31 0.03
! ' Pl2s) | 0.00 |0.33 | 0.3¢ | 0.30 0.03 | 60-4 | 1.03
1 v T
R 2.1 1 3(s) | o.10 [ 0.31 0.28 0.35 -0.02
e |2t L l'2(s) | 0.10 | 0.30 | 0.27 | 0.33 | o 8.3 | 1.02
T
_| s §(s) | 0.09 | 0.30 [ 0.26 0.32 -0.03
i:gf‘ , I pl2e) | 0.09 |0.31 | 0.27 | 0.33 o 58.3 0.94
! | g(s) | 0.06 | 0.32 | 0.28 | 0.35 | -0.03
. 2.2 lg ° . . . .
tions I b2 2(s) | 0.06 | 0.32 | 0.28 | 0.35 o 9.1 | 0.98
_ ca T _T3(s) | 0.07 [0.32 0.27 0.37 -0.03
va = 1 { } P ,f(s) 0.07 | 0.31 | 0.27 | 0.36 o 9.1 | 1.00
- PFor the large noise/signal ratio of vz = 1, i.e. the

number of cars entering the route via intersections or
on-ramps between input and output is equal to the num-
ber of cars flowing from the input to the output, large
estimation errors occur for g(s) values. If one nor-

malizes them with respect to the mean value
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§ = ——— )} §(s) , (63)

then the relative error takes values within the interval
-35% < A@(s)/§ < 50%, where negative estimates, §(s),
occur for g(s) = 0 at s = 4 and s = 8. Since a negative
frequency or probability does not have any physical mean-
ing, these negative estimates of §(s) cannot be used for
the calculation of f(s), and the mean travel time, TRM’
has to be determined by means of the non-negative esti-

mates of §(s) only:

0 for g(s) <0

£(s) = n (64)
§(s)/ ) &(s) for §(s) > 0
s=
~ 'n ~
Tew = L (sBt)f(s) . (64a)
s=m
On the other hand, there is no reason to neglect the nega-
tive estimates of §(s) in the estimate
~ n —-—
h(n) = } §(s) = [n-m+ 118 (65)
s=m
for the split coefficient fA(n). If one assumes that the estima-

tions, §(s), are unbiassed, i.e. E{A8(s)} = 0, and that the esti-
mation errors, A§(s), are nearly uncorrelated, then the determi-
nation of the mean value, 6, by equation (63) results in a certain
smoothing effect of the statistical errors, A§(s). Therefore one
may expect that the estimate of the split coefficient obtained by
equations (62) and (65) is more accurate than the estimates of

the impulse response values, g(s). This statement holds true

for examples 2.1 and 2.2 where, in spite of large estimation er-

rors, A8(s), the relative errors of the split coefficient lie
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within the relatively small interval -6% < AR (n) < 3%. Even
more accurate estimates have been obtained by equations (64)

and (64a) for the mean travel time with -2.8% < ATRM/TRM < -1.5%
(cf. Table 1).

This interesting result is characterized by small travel
time errors, in spite of large errors of the impulse response
values, and the following explanation can be given: If one

~

assumes that all cars need the same time, T for traveling be-

RI
tween input and output, then one would get a response for the
route in the form of a Dirac-impulse with an area equal to the

split coefficient h(n):
g(t) = h(n)s(t - To) . (66)

Substituting g(t) in the Wiener-Hopf integral équation

e a

by o (1) = f 9Oy (1 = 9o (67)
0

one finds the very simple relation

¥ (t) = h(n)¥ (t - T.) (68)
XXy X Xg R
between auto- and cross-correlation functions illustrated by
Figure 12. To estimate the travel time, TR, it is obviously
sufficient to know only rough estimates of the cross-correlation

function wx x (t). It is completely sufficient to know the posi-
e"a

tion of the maximum of wx X (1), which in general can be deter-
e’a
mined reliably with just a small number, N, of measured values

of xe(k) and xa(k), e.g. N = 100 as in the examples of Table 1.

The explanation given here for an idealized traffic situa-
tion holds true also for a real one, as was proved by estimation
of the travel time in the way shown in Figure 12 for several sets
of data obtained at real traffic processes.
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1 ‘I’xexe(‘r)

\leaxa(r) = h\leexe(‘r - ?R)

AN

?R T

Figure 12. Determination of a rough estimate of the travel time by means
of the cross-correlation function.

Implicit Methods

The implicit methods characterized by equations (56)-(61)
are studied under the same conditions chosen for example 2.1
Z of Table 1 for the investigation of explicit methods. The
results obtained after 100 iterations for the initial estimates
(ao(s) = 0.2 for s = 5, 6, and 7, and ao(s) = 0 for s = 4 and
8) are summarized in Table 2.

Table 2. Estimates of §(s), f(s), TRM' and h(n) obtained by

means of implicit methods (cf. equations (56)-(61)) .

s = 4 s =5 s =6 s =7 s =8 f‘RM/s h(n)
True ! g(s) 0,000 0,333 0,333 0,333 0.000 60.0 1.00
Values | f(s) || 0.000 0,333 | 0.333 | 0.333 0.000 ’ ‘
Stochastic | §(s) [ 0.00 0.30 0.31 0.40 -0.09 61.6 .92
Approx. [ £(s) || o.00 0.30 0.31 0,40 0 : .
Relaxa- g(s) 0.08 0.31 0.26 0.29 -0.08 58.6 0.86
tion f(s) 0.09 0.33 0.28 0.31 0
Quick and | §(s) [|-0,03 0.40 0.38 0.11 -0,01 56.7 0.85
pDirty Reg. | f(s) [ © 0.45 0.43 0.12 0 : ‘
Recursive G (s) 0.10 0.31 0.28 0.35 -0.02

58.3 1.02

|
Regression |r f(s) 0.10 0.30 0.27 0.33 o]
\
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The following conclusions may be drawn:

~ The recursive minimum sguares estimation method gives,

of course, the same results as the explicit version of
this method (cf. equation (52) and Table 1).

- The stochastic approximation provided the sufficiently

accurate estimates shown in Table 2 for a special value

of <, in equation (59) only. By several trials, the

optimal value, ¢, = 0.005 depending on the statistical

properties of the noise signal z(k), was found. It
appeared that even small deviations from this value
result in serious convergence problems.

and c, of the

2 3
relaxation method and the quick and dirty regression

- The same is true for the coefficients c

(cf. equations (60) and (61)). Small changes of the
empirically determined optimal values c, = 0.1 and

c3 = 0.01, for which the results are given in Table 2,
led to quite different estimates of g(s), T and

h(n).

RM'

Since it seems not possible to precompute reliable values
of Cyr Coy and C3 by means of a priori information available
from real traffic measurements, the practical applicability of
equations (59)-(61) is very uncertain. The following studies
are therefore restricted to the application of the recursive
regression where the identification of the multivariable model

(50) is first investigated.

Identification of Multivariable Models

For the street network shown in Figure 6, for example, one

obtains for the output volume, and the input volumes,

XBat’

and x the model equation

Xge2’ *pe3’ Bel’
N2
*0k) = x (k) = 3 g, (8)x,(k - s)
S=m

12
(69)
13 Ny
+ 2: g13(s)xe3(k - 8) + z: g1u(s)xeu(k - s) + z1(k) ,

S=m,] 3 s:m1 4
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if one uses the differences xei(k) = . (k) - XBei(k -~ 1) and

X
Bel
xa1(k) = xBa1(k) - xBa1(k - 1) as the necessary stationary sig-

nals (cf. equation (47)).

For this model, the vectors u and b from equations (56a,b}

take the forms

T - ) - - ; .
u (k) = (x5 (kmg,)e..x (ko) X 5k M)« o oX g lknya) x ) (kemy ) eeex ) (kngy))
(70)
and
T _
7= (gpmp) 2995 (010) Gy30my3)--e993(0y3) gy (Myy)-e-gqy (0gy)) o 71

where the true values of g1j(s) shown in Figure 13 have been
chosen corresponding to the true travel times TRM12 = 60.0
= 45.0 s, TRM1u = 30.0 s and the true split
12(Rq) = By3(ng3) = hyyng,) = 1.00.

seconds, TRM13

coefficients h
The following examples have been studied (cf. Table 3):

Example 1: The noise/signal ratio, vz, of equation (62) can be
reduced to zero if one measures the whole traffic entering a
route on a network by volume detectors. For the network studied
here (cf. Figure 6), such a situation occurs if there are no

traffic input volumes other than the # variables Xpe1’ Xpe2’

and x If one assumes that the identification of the

XBe3’ Bel®

mean travel time, and the split coefficient, hn12(n12),

TrM127
is of primary interest, then the use of additional measurements
should result in a more accurate estimate.

for x and x

Be3 Bel .
As shown in column 1 of Table 3 and the estimates, g1j(s),
marked by crosses in Figure 13, it is actually possible in such

a case to obtain unknown parameters with very small errors.

Example 2: The experiment of example 1 is repeated for an un-
disturbed two-dimensional model, i.e. with g1u(s) = 0, resulting
again in very accurate estimates (cf. Table 3 and example 2a of
Figure 13). Next it is assumed that no measurements are taken

for x i.e. the number, xBe3(k), of cars entering the network

Be3’



47~

(€ 21qeL $9) ([vlay
‘[w]ep sojdurexs) ¢ *z = za pue *([o]qg *[o]eg sejdurexs) 7 [ = za

‘(lolqz [o]eg ‘ [x]1 sorduexa) g = za 10§ va_.<,@ Jo sojewnsy g Indig

1 L
v o
A YA jul
S o S o L S - v
S v £ T 1 0 S v £ 7 | B, v g R L
N O & 1 N c |m { f M 1
X ﬁw >
a
L 70 il 70 o 3
\%
¥ N [ i ) ;va—.m
P \I'. [+)
(s)tlg L 70 (s)€lg L0 ° 3
v m]
X
L 90 -9°0
Amv.—w—.mk vamFo v vaN—m k




-48-

at input 3 is now playing the role of a disturbance (example 2b
of Figure 13). A comparison of the estimates obtained for these
two examples from Figure 13 illustrates (cf. Table 3) that the
additional disturbance caused by the non-measured input volume,
Xpe3? leads to much larger estimation errors of the impulse
response values, §1z(s), and the split coefficients, 312(n12).
On the other hand, the estimation error for the mean travel time
@RM12 remains small (only -0.98%). Thus one may conclude that
the algorithm used is capable of withstanding disturbances in
travel time estimation. This statement holds true if additional

disturbances occur (see examples 3 and 4 below).

Table 3. Estimated travel times, TRMij' and split coefficients,

hij(nij)’ for the simulated traffic network shown in
FPigure 6.

Example 1 2a 2b 3a 3b 4a 4b
vz 0 o] 0 1.2 1.2 2.3 2.3J
Tru12 60.55 | 60.01 | 59.51L | 57.55 | 57.10 | 6€9.55 | 68.08
Tru13 44,95 | 45,00 - 47.02 - 42.40 -
Tam14 30.03 - - - - - -
Ty, ® +0.92 | +0.01 | -0.98 | -4.3 -4.8 | +15.9 | +13.5
bt ™ -0.11 0.00 - +4.5 - -5.8 -
T, (%) +0.10 - - - - - -
SPAUPY 1,014 | 0,997 | 1.158| 0.521| o0.705| 0.646| 0.728
SRS 1.103 | 0.997 - 1.094 - 0.733 -
Bigfnig) 0.994 - - - - - -
Shp, +1.4 -0.3 15.8 | -48.0 | -29.5 |-35.4 |-27.2 |
Shyy () +10.3 -0.3 - +9.4 - -26,7 -
Shy, 0.6 - - - - - -

W 0.996 0.995 0.995 0.995 [ 0.995 0.997 omﬂ
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Examples 3 and 4: Here the same two-dimensional model is used
as for the preceding example, but, instead of vz = 0, a noise/
signal ratio of vz = 1.2 (example 3a, 3b) and vz = 2.3 (example

4a, Ub) is assumed, i.e. the number of cars entering the network
unobserved and passing output 1, is 1.2 times (example 3a, b),

or 2.3 times (example 4a, b), the number of cars going from

input 2 and input 3 to output 1 (cf. Figure 6). Also, under
these very complicated circumstances, it was possible to obtain
sufficiently accurate travel time estimates even when large er-
rors in the estimates of the split coefficients, and even larger
ones in the impulse response values, were occurring (cf. Figure
13 and Table 3).

In summary, one may conclude that the method studied will
lead to robust and reliable travel time estimates, even under
complicated traffic conditions, i.e. if many cars are entering
the analysed route or network unobserved. But larger estimation
errors for the split coefficients are to be expected under these

conditions.

Nonstationary Traffic Conditions

It will be assumed in the following that changes of travel
time may occur. The question is: How fast and accurately can
these changes be identified? As is well-known [70], any adaptive
identification method implies a compromise between the "quickness"”
and the "accuracy" of the identification process. For the recur-
sive regression method of equations (56)-(57a), this compromise
has to be made by a suitable choice of the forgetting factor, w
(cf. Figure 10). A fast reaction to parameter changes requires
a small value of w; a high accuracy requires a large one that
deviates only slightly from the maximum value, w = 1. To study
the problems of choosing a proper forgetting factor is, there-
fore, the purpose of the investigations presented here. These
are carried out for the extreme case of a sudden increase in
travel time from Tpm t 35 s for t < 0, to Tp, =75 s for t > 0,
i.e. for a sudden change of the impulse response (or travel

time distribution) values, g(s), from
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0.5 for s = 3,4 0 fors 7,5,8
g(s) = to g(s)=
Q for s < 3, s > i 0.5 for s = 7,8

(cf. Figures 14 and 15). The following examples are considered.

- Road sections without intersections between input and

output; i.e. vz = 0. The curves obtained for the esti-
mates ak(s) in Figure 14 and TRM(O,k) in Figure 15
illustrate that for 0.986 < w < 0.994 the beginning of
a travel time change can be discovered after 20 itera-
tions. After 80 iterations the remaining relative
travel time errors are 4% for the smaller value w =
0.986, and 11% for the larger w = 0.994 (cf. Figure 16,
vz = 0). For this important special traffic process a
forgetting factor of w = 0.986 or even a little smaller

could be considered as a suitable choice.

9, (5),9; (s)

| w&m w=0.994
4 - ] w=0.986
011 3 —— —’E
k

10 50 80

Figure 14. Estimates, 8y (s), of the changing parameters gy (s) for vz = 0.
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Figure 15. Estimates, :[\‘RM(k.vz). of the changing travel time, Tq p. for
vz=0;1;2and w = 0.986 {a} and w=0.984 {b} .

Traffic routes with intersections or on-ramps between

input and output, i.e. vz = 1 and vz = 2. For these,
the "step responses" of the travel time identification
algorithm are shown in Figure 15 (curves 2 and 3), while
Figure 16 illustrates the dependence of the travel-time
error, GTRM = A%RM
impulse response error,

/TRM (values o and A), and the mean

8g = 0§/3 = (1/6)\/(71/01 “m) ] G5(s) - g(s))2
s=m

(valuesoand A), of the forgetting factor w. One ob-
serves that for large noise/signal ratios (vz = 2),
small values of w may no longer be considered as prefer-
able. Nevertheless, a choice of a value of w within
0.986 < w < 0.994, will very likely result in acceptable
estimates for a wide variety of noise/signal ratios,

i.e. for very different traffic conditions.
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%T r15
()  sTru
/ (%)
F10
54 1
L5
27

0986  0.988 0990 0992 0.994

Figure 16. Relative estimation errors, 8 T pj and & g resulting from
80 iterations.

AITALYSIS OF A REAL TRAFFIC PROCESS

The aim of this part of the case study is to check if the
presumptions made in the simulation studies may be considered

as realistic.

The Process Studied

As a study subject, a 1000 m long part of the so-called
North-South-Connection in Dresden (cf. Figure 5) has been
chosen, and this has been coupled with a process computer lo-
cated in the Dresden Hochschule fir Verkehrswesen via traffic
detectors and telephone lines. Figure 7 shows one of the sets
Be(k) and xBa(k), obtained by

this experimental installation at sampling intervals of 10 s,

of measured traffic volumes, x

and used in the following identification experiments. True

values of the mean travel time, and the split coefficient,

TRM'
h{n), are needed for these experiments, in order to have a basis

for judging the accuracy of the estimates. These can be obtained
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very accurately by means of a manual off-line method--the so-
called licence plate method (cf. [44, 81]). This uses the fol-
lowing simple basic idea: The licence numbers of the cars
passing the input and output of the route are visually identified
by special measuring personnel, and immediately stored in a suit-
able form, e.g. on a magnetic tape by means of a telex typewriter.
Using stored information for input and output simultaneocusly, a
digital computer determines the travel time distribution, f(s),

the mean travel time, and the split coefficient, h(n), with

TRM'
high accuracy. Moreover, it can compute the number, gBa(k), of
cars going from input to output, as well as the number, sz(k),
of cars entering the route between input and output and leaving

via the output. Both volumes are shown in Figure 7, which il-
Bz(k)'
, of xBa(k), i.e.

lustrates that the mean wvalue, ;Bz(k), of the disturbance, x

is about twice as large as the mean value, gBa
the noise/signal ratio of equation (62) is about 2, which is of
the same order of magnitude as used in the simulation studies

described earlier.

Three intersections with signals are located between the
input and output detectors (cf. Figure 5) where, because of
certain specialities, the traffic stream in general has to stop
once at the middle intersection. One could argue that this stop
will cause problems concerning the applicability of the input-
output model (49). But the results obtained by the least squares
method and presented in Figure 17 and Table 4, illustrate that

those doubts are not justified in the traffic system analyzed.

The Results Obtained

One can see that the estimated impulse response values,
g (s), describe only very roughly the shape of the true values,
g(s) (cf. Table 4), while the frequency distribution, f(s),
determined by equation (64) fits the true values, f(s), much
better (cf. Figure 17). This is the reason why the estimate,
%RM' of the mean travel time can be determined with the extraor-

dinarily small error of 1.6%.



04
f(s)
‘ fis)

0.34

0.2

>

——«T

— 54—

1

.

Trm Trm

14

——3—

~S

Figure 17. Estimated, /f\(s). and “true”, f(s), values of the travel time frequency

distribution obtained from traffic volumes measured at the North-

South-Connection in Dresden (cf. Figure 5 and Figure 7).

Table 4. True values, g(s) and f(s), and estimates, §(s) and
f(s), obtained from Xpe a@nd xp . shown in Figure 7 for
the Dresden North-South-Connection.
s=6| s=7 | s=8|s=9(s=10] s=11}s =12s =13|s =14{s =15 TRM h(n)

-
Exact 'g(s) 0.01 0 0.01{0.0210.03 | 0.01(0.06(0.03 |0.07 0

b 121s0.24
valueslf(s) 0.04 0 0.0410.08(0.12 | 0.04(0.2510.12(0.29 0

%
Esti- |§(s) 0.11[-0.07 |-0.13(0.05{0.16 0.29(0.25{0.10 {0.43 |-0.28

F 119s(0.33
mates !f(s) 0.10| 0 o |0.05/0.15| o [0.23/0.09(0.39| o
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From the simulation studies, an error of the order of 5 to
10% can be expected (cf. Table 3, example 4), and will very
likely occur if one repeats the identification with different
sets of data. For the split coefficient h(n), an estimation
error of about 38% was obtained, which is of a similar order of
magnitude as in the simulation studies (cf. Table 4 with Table 3
for example 4). To reduce this error, an additional traffic
detector should be installed between the input and output of
the route as shown in Figure 5. Considering the complex struc-
ture of that route, such an investment is obviously reasonable.

Nevertheless, the conclusion that the methodology presented
here for the development of macroscopic traffic input-output
models and the identification of model parameters, is success-
fully applicable under real traffic conditions, and delivers
valuable information for different classes of traffic control
problems (cf. Part I, last section) is justified. Further studies
of real traffic processes, e.g. under nonstationary conditions,

are, of course, necessary and it is intended to carry these out.
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