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Abstract

The proper analysis of polices under uncertainties has to deal with "hit-or-miss" type

situations by using appropriate risk functions, which can also be viewed as so-called ex-

tended expected utility functions. Formally this often requires the solution of dynamic

stochastic optimization problems with discontinuous indicator functions of such events as

ruin, underestimating costs and overestimating bene�ts. The available optimization tech-

niques, in particular formulas for derivatives of risk functions, may not be applicable due

to explicitly unknown probability distributions and essential discontinuities. The aim of

this paper is to develop a solution technique by smoothing the risk function over certain

parameters, rather than over decision variables as in the classical distribution (generalized

functions) theory. For smooth approximations we obtain gradients in the form of expec-

tations of stochastic vectors which can be viewed as a form of stochastic gradients for the

original risk function. We pay special attention to optimization of risk functions de�ned

on trajectories of discrete time stochastic processes with stopping times, which is critically

important for analyzing regional vulnerability against catastrophes.

Y. Ermoliev

V. Norkin
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Risk and Extended Expected Utility Functions:

Optimization Approaches

Yuri Ermoliev(ermoliev@iiasa.ac.at)*

Vladimir Norkin(norkin@d130.icyb.kiev.ua)**

1 Introduction

The proper analysis of polices under uncertainties has to deal with "hit-or-miss" type

situations by using appropriate risk functions (see, e.g., discussion in [13], [15]), which can

also be viewed as so-called extended expected utility functions. Formally this often requires

the solution of dynamic stochastic optimization problems with discontinuous indicator

functions of such events as ruin, underestimating costs and overestimating bene�ts. The

available optimization techniques, in particular formulas for derivatives of risk functions,

may not be applicable due to explicitly unknown probability distributions and essential

discontinuities. The aim of this paper is to develop a solution technique by smoothing

the risk function over certain parameters, rather than over decision variables as in the

classical distribution (generalized functions) theory. For smooth approximations we obtain

gradients in the form of expectations of stochastic vectors which can be viewed as a

form of stochastic gradients for the original risk function. We pay special attention to

optimization of risk functions de�ned on trajectories of discrete time stochastic processes

with stopping times, which is critically important for analyzing regional vulnerability

against catastrophes (see, e.g., [10]-[13]).

Any decision involving uncertainties leads to multiple outcomes with possible favorable

and unfavorable consequences. For example, investments in conventional or new technolo-

gies may lead to considerable pro�ts under favorable scenarios. But the cost of unfavorable

scenarios, e.g., due to global warming, may be environmental degradation and economic

stagnation. The notion of risk functions is used to represent tradeo�s and interdepen-

dencies between di�erent outcomes and decisions, which often leads to speci�c stochastic

optimization (STO) problems. We discuss this in some details in Section 2. In particu-

lar, Section 2 outlines connections between the so-called chance constrains, ruin (survival)

probabilities, Value-at-Risk (VaR), and Conditional-Value-at-Risk (CVaR), which are im-

portant for applications in quality (e.g., air) control, reliability theory, insurance, �nance,

catastrophic risk management, and sustainable developments (land use, energy). The

standard stochastic optimization models are formulated by using expectations

F (x) = Ef(x; !) =

Z
f(x; !)dP(!) (1)

of some goal functions f(x; !) for a given decision x and variables ! which are determined

by environment a�ecting the consequences of x. It is assumed that x belongs to a feasible
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set X � Rn and ! is an elementary event (scenario) of a probability space (
;F ;P).

Such a space gives a description of all possible uncertainties 
 and all observable events

(possible scenarios) A 2 F with associated probability measure P.

There are various shortcomings in representation (1). One of them is connected with

the analysis of low probability events, for example, A(x) = f! : f(x; !) � cg for large

c. The sources of risk are often characterized as the violation of certain constraints or

regulations, such as constraints on permissible loads, stresses, demands and supplies, etc.

Therefore we can think of all favorable and unfavorable events for a given x as a parti-

tioning of 
, 
 = [m
i=1Ai, where each element Ai is given as

Ai(x) = f! 2 
jgi(x; !) � 0g; i = 1; : : : ; m;

with some, in general vector valued function gi(x; !). Here we assume that number m is

�xed and does not depend on x and !. Function (1) can be rewritten as

F (x) =
mX
i=1

Eff(x; !)jAigP(Ai(x));

where Ef�j�g is the symbol of the conditional expectation.

If Ai(x) is a so-called "low probability { high consequence" (catastrophic) event, the

contribution of the corresponding term into an overall expectation function may be not

sensible. Therefore we need indicators which are more selective to unfavorable or favorable

low probability situations, such as, e.g., conditional expectations, i.e. the function

Eff(x; !)jAi(x)g =
E[f(x; !)IfAi(x)g]

EIfAi(x)g
;

where IfAg is the indicator function of A:

IfAg =

(
1 if ! 2 A;

0 otherwise:

From a formal point of view various important models can be described by using expec-

tations of the type

E[f(x; !)Ifg(x; !)� 0g] (2)

for some random function f and random vector function g. The optimization of function

(2) can be viewed as a basic subproblem to deal with a vast variety of applications. For

example, the case of f � 1 reduces to the probability function

EIfg(x; !)� 0g = Pfg(x; !)� 0g; (3)

which is often the object of optimization or a constraint function in the study of ruin,

safety and survival of systems.

Although formally an optimization problem involving functions of type (2) has the

form (1), there is a number peculiarities requiring new concepts. A main issue is the

implicit dependence of the integrand on the policy variable x. In particular, it restricts

the straightforward use of the sample mean approximations. Among other peculiarities

there is a possible discontinuity of function (2) and its singularity with respect to low

probability events (see, for example, discussion in [14], [15]).

Formulas for explicit di�erentiation of probability (and similar) functions and corre-

sponding optimization procedures are available in [31], [34], [30], [36], [23], [24], [20], [35],

and reviewed in [21]. According to these results gradients of probability functions are
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represented as surface and/or volume integrals. Both representations require an explicit

form of probability density function for the random variable ! (and even its derivatives in

case of volume integral) that is not always available, and even the probability space may

be unknown. Besides, the probability function (and other indicators, see [15]) can easily

be nonsmooth, and then the available explicit di�erentiation formulas are certainly not

applicable.

Example 1.1 (nonsmooth probability function). Assume that g(x; !) = x+ !, where

x 2 R and ! is uniformly distributed on the interval [0; 1]. Then probability function

Pf0 � g(x; !)� 1g =

(
0; jxj � 1;

1� jxj; jxj � 1;

is nonsmooth at x = 0;�1.

In this paper we develop another approach (close to, but di�erent from [17]) to opti-

mization of possibly nonsmooth risk functions of type (2), (3). Namely, we �rst uniformly

approximate these functions by smoothing them over certain parameters, rather than

over decision variables as in [17]. Then for approximations we obtain (by interchange of

di�erentiation and expectation operators) explicit formulas for gradients in the form of

expectations of stochastic gradients. We pay special attention to risk functions de�ned

on trajectories of discrete time stochastic processes which may depend on stopping times.

The basical "molli�ed", stochastic gradients for the original problem obtained are used

for designing an iterative stochastic optimization procedure.

Section 2 shows that many important performance functions of a stochastic system

with vector of outputs f(x; !) can be expressed in the form U(x) = Eu(f(x; !)), where

u(�) is some possibly discontinuous "utility" function. These functions can be called risk

functions or extended expected utility functions. In particular, some functions depending

on the stopping time, e.g., expected shortfall of risk processes, can be expressed in such

form. In Section 3 we study conditions of continuity and Lipschitz continuity of risk

function U(x). We analyse randomly perturbed system f(x; !) + �� and corresponding

utility U�(x) = Eu(f(x; !) + ��), where � is an independent of ! random variable, and �

is a small perturbation parameter. Functions U�(x) can be viewed as the result of kernel

smoothing of the function U(x; y) = EU(f(x; !) + y) over parameter y. It appears that

functions U�(x) are smooth (or generalized di�erentiable) in x and we establish in Section 4

formulas for their (sub)gradients in the form of expectation of stochastic gradients ��(x; !),

E��(x; !) 2 @U�(x). We also establish conditions of uniform (in x) convergence of U�(x)

to U(x) as � ! 0. Section 5 analyses necessary optimality conditions for minimization

of U(x) on a compact set X in terms of the so-called molli�er subdi�erential @mU(x).

The subdi�erential @mU(x) is constructed as a set of all cluster points of (sub)gradients

@U�� (x
�) when x� ! x, �� ! 0. It appears that under a certain regularity condition on

function U(x; y) the subdi�erential @mU(x) is included in Clarke's subdi�erential @U(x)

of U(x). Section 6 outlines the solution procedure for an arising limit extremal problem,

i.e. minimization of U(x) on X by using (sampled) stochastic quasigradients ��� (x; !) of

U�� (x) at iteration �, �� �! 0 for � �! 0. Section 6 concludes with some general remarks

on the so-called integrated risk management.

2 Examples

Let us discuss some important problems described by functions of type (2).



2.1 Chance constrained problem

The problem

f(x) �! min
x

(4)

subject to chance constraint

Pfg(x; !)� 0g � 1� �; (5)

can be approximated by the following simple recourse problem (with penalty parameter

N):

F (x) = f(x) +NEmaxf0; g(x; !)g �! min
x
; (6)

where Emaxf0; g(x; !)g = Eg(x; !)Ifg(x;!) � 0g. In particular, in papers [10], [11]

such replacement was used for insurance portfolio optimization under constraints on the

probability of insolvency. The random term maxf0; g(x; !)g can be interpreted as ex-post

borrowing for positive excess losses g(x; !) and N is the price for such borrowing. It

appears that problems (4)-(5) and (6) are closely connected (see discussion in [11], [18],

[37]). For instance, according to [10], [11] an optimal value of (4)-(5) can be approximated

by an optimal value of (6) with some large penalty parameter N(�).

2.2 Value at risk and conditional value at risk

An important special case of problem (4) { (6) for �nancial applications (see, for example,

[5]) is the minimization of the value at risk (or VaR, �-quantile, see, for example, [20]):

Q�(x) = minfyj Pfg(x; !)� yg = 1� �g �! min
x
: (7)

Instead of (7) we can again solve a penalty problem (6):

F (x; y) = y +NEmaxf0; g(x; !)� yg �! min
x;y

; (8)

which is a special case of stochastic minmax problems [9]. From the optimal conditions for

this problem follows that the optimal y (for a given x) is 1=N quantile of random variable

g(x; !) (see, e.g., [9], p. 416).

The Conditional Value at Risk (CVaR) is de�ned as

C�(x) =
1

�
Eg(x; !)Ifg(x;!)�Q�(x) � 0g: (9)

The minimization of C�(x) under natural assumptions [32] is equivalent to the following

convex optimization problem

y +
1

�
Emaxf0; g(x; !)� ygg �! min

y;x
; (10)

i.e., CVaR minimization (9) has the form of (8) with N = 1
�
.

Problem (8) has the following economic interpretation. Assume again that g(x; !) rep-

resents stochastic excess losses depending on decision variable x and stochastic parameter

!. These losses are covered by ex-ante borrowing y (for the price 1) and ex-post borrow-

ing maxf0; g(x; !)� yg (for price N). These provide more 
exibility compared with the

control only by decisions x as in (4), (5) (see also [12] for more general formulations).
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2.3 Risk process

Consider a classical discrete time risk process (see, for instance, [1], [2], [11]) describing

the evolution of reserves Rt(x) of an insurance company:

Rt+1(x) = R0 + �t(x)� Ct(x); t = 0; 1; : : : ; T; (11)

where R0 � 0 is the initial capital of the company, �t(x) are aggregate premiums and Ct(x)

are random aggregate outcomes up to time t, e.g., claims, taxes, dividends, etc., and x is a

decision vector. Functions �t(x), Ct(x) are assumed to be continuously di�erentiable (or

at least generalized di�erentiable [26], [16]) with respect to x. They are random but the

dependence on random factors is not indicated for the simplicity of notation. Components

of vector x may include parameters of portfolio of assets and insurance contracts (see [11]

for details).

The problem is to optimize the performance of a company over time horizon [0; T ]

which is described by a number of performance functions, for example:

random stopping time

�(x) = maxft 2 [0; T ] : Rs(x) � 0 8 s; 0 � s < tg; (12)

which is called default time when �(x) < T or R�(x)=T(x) < 0;

the probability of insolvency (ruin) on time interval [0; T ]:

 T (x) = Pf�(x) < T; RT (x) < 0 if �(x) = Tg (13)

= 1� PfRt(x) � 0; 0 � t � Tg

= E(1� IfRt(x) � 0; 0 � t � Tg);

partial expected pro�t (on survived trajectories)

FT (x) = ERT (x)IfRt(x) � 0; 0 � t � Tg; (14)

expected shortfall (negative depth of insolvency)

HT (x) = Eminf0; R�(x)(x)g (15)

= E

TX
t=0

Rt(x)IfR� � 0; 0 � � < t;Rt(x) < 0g;

stability criterion

ST (x) = PfRt(x) � (1� �)ERt(x); 0 � t � Tg (16)

= EIfRt(x) � (1� �)ERt(x); 0 � t � Tg; 0 < � � 1:

The stability criterion estimates the probability that the company does not operate much

worse than the average trajectory. The structure of this criterion is similar to (13). Let

us note that function �(x) may be discontinuous in x. This may cause discontinuities of

all functions (13) { (16).

Assumption P. For any �xed x 2 X, t 2 [0; T ] and c; � � 0

(i) PfRt(x) = cg = 0;

(ii) PfRt(x) 2 [c� �; c+ �]g � L� for some constant L > 0.

We show in section 3 that under assumption P(i) the above indicators are continuous,

and under assumption P(ii) they are Lipschitz continuous in x.
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2.4 Discontinuous utility functions

With the explicit introduction of uncertainties and risks the overall performance of a de-

cision x becomes a tradeo� between di�erent socioeconomic and environmental indicators

(costs, bene�ts, incomes, damages) and indicators of risks. The classical example is the

mean-variance e�cient strategies providing a tradeo� between expected returns and the

variance. Unfortunately, the concept of the mean-variance e�cient strategies may be mis-

leading and even wrong for nonnormal probability distributions (especially for catastrophic

risks) which require more sophisticated risk indicators and corresponding concepts of ro-

bust strategies. More precisely, in practice a given decision x results in di�erent outcomes

f(x; !) = (f1(x; !); : : : ; fm(x; !)) a�ected by some uncertain (random) variables !. For-

mally, the overall performance of x can be often summarized in the form of an expectation

function

U(x) = Eu(f1(x; !); : : : ; fm(x; !));

where u(�) is a \utility" function de�ned on f 2 Rm. The mean-variance e�cient solutions

maximizing Ef(x; !) � NE [f(x; !)�Ef(x; !)]2, N > 0, can also be obtained from the

maximization of the following type of function:

max
x;y

E
h
f(x; !)�N (f(x; !)� y)2

i
:

This representation convexi�es the problem for f(x; !) = � jf(x; !)j, where jf(�; !)j is a

convex (cost) function.

Traditionally the utility function is assumed to be continuous and di�erentiable. It is

easy to see that all risk functions discussed in this section can be represented in the same

form but with nonsmooth and even discontinuous utility functions. For example, if u(�) is

the indicator function for the event ff 2 Rmj f � cg, then

U(x) = Pff(x; !)� cg: (17)

If

u(f1; f2) = f1Iff2 � 0g =

(
0; f2 < 0;

f1; f2 � 0
;

then we obtain function (2)

U(x) =

Z
f2(x;!)�0

f1(x; !)P(d!): (18)

In the particular case f1(x; !) � f2(x; !) = f(x; !)

U(x) = Emaxf0; f(x; !)P(d!):

Functions U(x) with nonsmooth and discontinuous integrand u(�) can be used as a

uni�ed concept to analyze quite di�erent risk management problems. In short, we can

call such U(x) the risk functions and u(f) the sample risk function or (extended) utility

function. We can call U(x) also extended expected utility function. Note that although in-

dicators (13), (14), (15) are de�ned through stopping time �(x), they can also be expressed

in the form Eu(R0; R1(x); : : : ; RT(x)) with some discontinuous function u(�).
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3 Risk functions

Consider the following risk function given in the form of extended expected utility

U(x) = Eu(f(x; !)); (19)

where f : Rn � 
 �! Rm is a continuous in x and measurable in ! vector function,

u : Rm �! R1 is a Borel (extended utility) function, E (or E!) denotes mathematical

expectation over measure P (or P!) on 
. In general, as we discussed in Section 2,

function u(�) may be discontinuous on a set D � Rm.

Proposition 3.1 (Continuity of risk function). Assume that

(i) f(x; !) is a.s. continuous at point x,

(ii) Pff(x; !) 2 Dg = 0,

(iii) u(f(y; !)) �M(!) for all y from a vicinity of x with integrable function M(!).

Then function U(x) is continuous.

The proposition follows from Lebesgue's dominance convergence theorem.

Denote

D� = fy 2 Rmj dist(y;D) � �g; dist(y;D) = inf
z2D

ky � zk:

Proposition 3.2 (Lipschitz continuity). Assume that

(i) u(�) is uniformly Lipschitzian in any ball outside the discontinuity set D;

(ii) f(x; !) are a.s. Lipschitzian in x 2 X uniformly in !;

(iii) Pff(x; !) 2 D�g � C� for all x 2 X, y 2 Rm
, � > 0 and some constant C;

(iv) u(f(x; !) + y) �M for all x 2 X, y 2 Rm and some constant M .

Then function U(x; y) = Eu(f(x; !) + y) is Lipschitz continuous in (x; y) 2 X � Rm
,

and hence risk function U(x) = U(x; 0) is Lipschitzian in x 2 X.

Proof. Let Lu and Lf be Lipschitz constants for u and f , respectively. For given x1, x2, y1,

y2 de�ne x� = x1+�(x2�x1), y� = y1+�(y2�y1) with � 2 [0; 1], � = Lfkx2�x1k+ky2�y1k,


2� = f! 2 
j (f(x1; !) + y1) 2 D2�g, Obviously, kf(x�; !) + y� � f(x1; !) � y1k �

Lf�kx2�x1k+�ky2�y1k � �. Note that if (f(x1; !)+y1) 2 D2�, then (f(x2; !)+y2) 2 D3�,

and if (f(x1; !) + y1)2D2�, then (f(x�; !) + y�)2D� for any � 2 [0; 1]. We have

U(x2; y2)� U(x1; y1) =
�R


2�
+
R

n
2�

�
[u(f(x2; !) + y2)

�u(f(x1; !) + y1)]P(d!)

� MPf(f(x2; !) + y2) 2 D3�g

+MPf(f(x1; !) + y1) 2 D2�g

+
R

n
2�

Lukf(x2; !) + y2 � f(x1; !)� y1kP(d!)

� (5MC + Lu)(Lfkx2 � x1k+ ky2 � y1k): 2

If function u(�) is discontinuous then it can be approximated in di�erent ways by

continuous functions u�(�) for some parameter � in such a way that u�(y) �! u(y) as

� �! 0 for all y2D. Then function U(x) is approximated by functions

U�(x) = Eu�(f(x; !)): (20)

Proposition 3.3 (Convergence of approximations). Assume that

(i) lim�!0Pff(x; !) 2 D�g = 0, pointwise (uniformly) in x 2 X;

(ii) lim�!0 u�(z) = u(z), uniformly in z2D� for any � > 0;

(iii) u(f(x; !)) and u�(f(x; !)) are bounded by an integrable in square function M(!)

uniformly in x 2 X and � > 0.

Then lim�!0U�(x) = U(x) pointwise (uniformly) in x 2 X.
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Proof. De�ne 
1 = f! 2 
j f(x; !) 2 D�g and 
2 = 
 n 
1. Then

jU(x)� U�(x)j �

�Z

1

+

Z

2

�
ju(f(x; !))� u�(f(x; !))jP(d!)

� 2

Z

1

M(!)P(d!) +

Z

2

ju(f(x; !))� u�(f(x; !))jP(d!)

� 2

�Z


M2(!)P(d!)

�1=2
Pff(x; !) 2 D�g

+ sup
y2RmnD

�

ju(y)� u�(y)j: (21)

The �rst term on the right-hand side of (21) can be made arbitrarily small by choosing �

small enough due to (i), (iii). For a given � the second term on the right-hand side of (21)

can be made arbitrary small by choosing � small enough due to (ii).2

One way to construct approximations U�(x) is to consider stochastically disturbed

performance indicators

f�(x; !; �) = f(x; !) + ��;

where � is a small positive parameter, � 2 Rm is a random vector independent of ! with

density K(�). The corresponding disturbed risk function takes the form

U�(x) = E�E!u(f�(x; !; �))

= E!E�u(f(x; !) + ��)

= E!u�(f(x; !));

where u�(f) is the so-called smoothed (or molli�ed) utility function

u�(y) = E�u(y + ��) =
1

�m

Z
u(z)K

�
z � y

�

�
dz

used in kernel density estimation (see, for example, [7]), in probability function optimiza-

tion (see [22], [27]) and in nonsmooth optimization (see [25], [17] and references therein).

Proposition 3.4 (Convergence of molli�ed utilities at continuity points). Let u(x) be a

real-valued Borel measurable function on Rm
, K(x) be a bounded, integrable, real valued

density function on Rm and one of the following holds

(i) u(�) is bounded on Rm
;

(ii) K(�) has a compact support;

(iii) kykK(y) �! 0 as kyk �! 1, where k � k denotes the Euclidean norm on Rm.

Then u�(y) �! u(y) as � �! 0 at any continuity point of u(�).

The statement of the proposition under assumption (i) can be found in [3], and under

(ii), (iii) it is available in [6].

Proposition 3.5 (Uniform convergence outside discontinuity points ). Assume that

(i) u(�) is a Borel function with closed set D of discontinuity points;

(ii) density K(�) has a compact support.

Then u�(y) uniformly converges to u(y) outside arbitrary vicinity of D.

Proof. We have to show that u�
k
(yk) �! u(y) for any sequences �k �! 0 and yk �! y2D.

From here a uniform convergence of u�(�) to u(�) follows in any compact A such that

A \D = ;. Represent

u�
k
(yk) =

Z
S(K)

u(yk + �kz)K(z)dz;



9

where S(K) = fzj K(Z) > 0g denotes support of density K(�). Since D is closed and

y2D there exists � > 0 such that fzj kz � yk � �g \D = ;. In the V� = fzj kz � yk � �g

function u(�) is continuous and thus bounded. For any z 2 S(K) by (ii) limk(y
k+�kz) = y.

Thus by Lebesgue dominance convergence theorem

limk u�
k
(yk) =

R
S(K) limk u(y

k + �kz)K(z)dz

=
R
S(K) u(y)K(z)dz = u(y):2

Example 3.1 (Partial smoothing). If in (18) we disturb only function f2 then

U�(x) = E�E!f1(x; !)If2(x;!)+���0
= E!f1(x; !)E�If2(x;!)+���0
= E!f1(x; !)(1� F(�f2(x; !)=�));

where F is a cumulative distribution function of random variable �.

Proposition 3.6 (Uniform convergence under partial smoothing). Assume that con-

ditions of Proposition 3.5 are ful�lled and

(i) function Ejf1(x; !)j is bounded on X;

(ii) Pfjf2(x; !)j � �g �! 0 as � �! 0 uniformly in x 2 X.

Then U�(x) converges to U(x) uniformly in x 2 X.

Proof. For arbitrary numbers C, � estimate the di�erence

jU�(x)� U(x)j � Ejf1(x; !)j � j1� F(�f2(x; !)=�)� If2(x;!)�0j

=

 Z
f1(x;!)�C

+

Z
f1(x;!)<C

!
jf1(x; !)j �

�j1�F(�f2(x; !)=�)� If2(x;!)�0jP(d!)

�

Z
f1(x;!)�C

jf1(x; !)jP(d!)

+CEj1�F(�f2(x; !)=�)� If2(x;!)�0j

�

Z
f1(x;!)�C

jf1(x; !)jP(d!)+ CPfjf2(x; !)j � �g:

+C sup
jyj��

j1� F(�y=�)� Iy�0j (22)

The �rst term on the right-hand side of (22) is made arbitrarily small by taking C su�-

ciently large by (i). The second term for given C is made small by taking � su�ciently

small by (ii). Given C and � the third term can be made small by taking � small by

Proposition 3.5. 2

Example 3.2 (Smoothing probability function ). Consider probability function

U(x) = P!ff1(x; !) � 0; : : : ; fm(x; !) � 0g

and its approximation

U�(x) = P!;�ff1(x; !) + ��1 � 0; : : : ; fm(x; !) + ��m � 0g;

where � = (�1; : : : ; �m), � > 0 is a random vector variable with the cumulative distribution

function F and distribution P�, P!;� is the product of measures P! and P�. Then

U�(x) = E!F

�
�
1

�
f1(x; !); : : : ;�

1

�
fm(x; !)

�
:
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We can also approximate by using �i = �, i = 1; : : : ; m, where random variable � has the

cumulative distribution function F . Then

U�(x) = P!P�f� � �f1(x; !)=�; : : : ; � � �fm(x; !)=�g

= P!P�f� � �1
�
max1�i�m fi(x; !)g

= E!F
�
�1

�
max1�i�m fi(x; !)

�
:

If functions u� and f(x; !) in (20) are continuously (or generalized) di�erentiable,

then compound function u�(f(x; !)) is also continuously (generalized) di�erentiable with

(sub)di�erential @xu�(f(x; !)), which can be calculated by a chain rule (see [16], [26] for

the nondi�erentiable case).

If (sub)di�erential @xu�(f(x; !)) is majorized by an integrable (Lipschitz) constant,

��(x; !) is a measurable selection of @xu�(f(x; !)), then function F�(x) is also (generalized)

di�erentiable with (sub)di�erential

@U�(x) = E@xu�(f(x; !)) 3 E��(x; !): (23)

For optimization of F�(x) one can apply speci�c stochastic gradient methods (see Section

6) based on samples of ��(x; !) with � �! 0. For a given � it is also possible to use the

sample mean optimization methods.

4 Stochastic smoothing of risk processes

To optimize risk functions we can apply molli�ers [17]) over decision variables x. Similarly,

we can mollify risk process over some parameters, for example, initial state. In addition to

smoothing e�ects, which are usually weaker than in the �rst case, the signi�cant advantage

of the parametric smoothing is the possibility to obtain fast statistical estimators of the

risk functions and their derivatives [12].

Beside standard risk process (11) consider a process with random initial capital R0+��

[12]:

Qt(x; �) = R0 + �� +�t(x)� Ct(x) = Rt(x) + ��; 0 � t � T; (24)

where � is an independent of all claims Ct(x) one-dimensional random variable with a

continuously di�erentiable distribution function

F(y) = P�f� < yg;

� is a small (smoothing) parameter (�! 0).

We can think of (24) as risk process (11) with disturbed initial values R0 or R1(x).

Through dynamic equation (24) the disturbance �� is transferred to further values Rt(x),

t � 1, of the process. Similarly we can independently disturb all Rt(x), 0 � t � T ,

and interpret these disturbances as the presence of insigni�cant lines of business of the

insurance company.

In subsection 2.3 we introduced important performance functions of process (11): prob-

ability of insolvency  T (x), partial expected pro�t FT (x), expected shortfall H(x). Under

assumption P(i) they are continuous, and under P(ii) they are Lipschitz continuous. Here

we consider the same performance functions also for the disturbed process (24). Under

assumption P(ii) by the results of section 3 (Propositions 3.3, 3.5) these approximates con-

verge uniformly in x to the original undisturbed performance functions as the disturbance

goes to zero. The smoothing e�ects enable us to derive their subdi�erentials.



4.1 The probability of ruin

De�ne measure P as the product of P! and P�, P = P� � P!. Then the probability of

ruin till moment T of the disturbed risk process fQt(x; �) = Rt(x)+ ��; t = 0; 1; : : : ; Tg is

 T (x; �) = 1�PfQt(x; �) � 0; 0 � t � Tg

= 1�Pf� � �Rt(x)=�; 0 � t � Tg

= 1�Pf� � max0�t�T �Rt(x)=�g

= Pf� < �min0�t�T Rt(x)=�g

= E!Ff�min0�t�T Rt(x)=�g;

with a subdi�erential (see Clarke [4], Theorems 2.3.9, 2.3.12, 2.7.2)

@ T (x; �) = �E!F
0f�Rt�(x)=�g �rRt�(x)=�jt�2t�(x) ; (25)

where t�(x) = argmin0�t�TRt(x), and functions Rt(x) are assumed continuously di�er-

entiable in x.

4.2 Partial expected pro�t

Partial expected pro�t at time T (on survived disturbed trajectories) is given by the

formula:
FT (x; �) = E!E�QT (x; �)IfQt(x; �) � 0; 0 � t � Tg

= E!E�RT (x)IfQt(x; �) � 0; 0 � t � Tg

+E!E���IfQt(x; �) � 0; 0 � t � Tg

= E!RT (x)(1�F(�min0�t�T Rt(x)=�))

+�E!H(�min0�t�T Rt(x)=�);

with subdi�erential

@FT (x; �) = E!(1� F(�Rt�(x)=�))rRT(x)

+E!

�
F 0(�Rt�(x)=�)

��E!H
0(�Rt�(x)=�)

�
rRt�(x)=�jt�2t�(x) ; (26)

where IfAg is the indicator function for eventA,H(y) =
R
��y �dF(�), t

�(x) = argmin0�t�TRt(x).

4.3 Expected shortfall

Consider the expected shortfall

HT (x; �) = E!�minf0; Q~�(x)(x; �)g;

~�(x) = maxft 2 [0; T ] : Qs(x; �) � 0; 0 � s < t g:

Function

HT (x; �) = E!�

P
T

t=0minf0; Qt(x; �)I(min0��<tQ� � 0)g =

= E!�

P
T

t=0Qt(x; �)I(�min0��<tR�(x)=� � � � �Rt(x)=�)

= E!

P
T

t=0Rt(x)[F(�Rt(x)=�)�F(�min0��<tR�=�)]

+�E!

P
T

t=0 J (�min0��<tR�(x)=�;�Rt(x)=�);

where J (y; z) =
R
z

y
�dF(�),min0��<tf�gjt=0 = +1, is a generalized di�erentiable function

(see [26], [25]) as constructed from continuously di�erentiable functions by means of min,



max, composition and expectation operations, with subdifferential

@HT(x; �) = E!

TX
t=0

[F(�Rt(x)=�)� F(� min
0��<t

R�(x)=�)]rRt(x)

+E!

TX
t=0

Rt(x)[@F(�Rt(x)=�)� @F(� min
0��<t

R�(x)=�)]

+�E!

TX
t=0

@J (� min
0��<t

R�(x)=�;�Rt(x)=�)

= E!�rRt(x)jt=~�(x)

+E!

TX
t=0

Rt(x)[@F(�Rt(x)=�)� @F(� min
0��<t

R�(x)=�)]

+�E!

TX
t=0

@J (� min
0��<t

R�(x)=�;�Rt(x)=�): (27)

If functions fRt(x); 0 � t � Tg are continuously di�erentiable with respect to decision

variables x, then approximations  T (x; �), FT (x; �), HT (x; �) are generalized di�erentiable

and thus can be optimized by the method of Section 6, based on Monte Carlo simulations

only of trajectories of the process fRt(x); 0 � t � Tg.

5 Optimality conditions

In this section we give necessary conditions of local optimality (Proposition 5.4) and suf-

�cient conditions for stationarity (Corollary 5.2) of the risk functions given in the form of

extended expected utility function U(x). We derive them in terms of molli�er subdi�er-

ential @mU(x). We basically follow the approach from [17], the di�erence consists in the

following. In [17] the original (may be discontinuous) deterministic function was approx-

imated by a family of continuously di�erentiable functions through random disturbances

of decision variables. Here we deal with the implicitly known expected utility function

depending on some parameters with possibly discontinuous integrand. We are able to

approximate this function by smoothing over parameters only by a family of (maybe non-

smooth) Lipschitzian functions.

5.1 Molli�er subdi�erential

Consider a family of Lipschitzian functions U�(x) that approximate a continuous function

U(x) on X as � ! 0. Denote @U�(x) and NX(x) Clarke's subdi�erential of U�(x) and

normal cone to set X at point x 2 X , respectively (see [4], [33]).

De�nition 5.1. For the approximation family M = fU�(x); � > 0g (similar to [17])

de�ne molli�er subdi�erential

@mU(x) = Limsupx�!x;��&0@U�� (x
�); (28)

where the right-hand side consists of all cluster points of all such sequences g� 2 @U�� (x
�)

that x� ! x, �� & 0. Let us also de�ne molli�er derivative in direction l

U 0
m
(x; l) = lim sup

x�!x;��&0

Uo

��
(x� ; l);
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where

Uo

�
(x; l) = lim sup

~x!x;�&0

1

�
[U�(~x+ �l)� U�(~x)]

is Clarke's generalized derivative of U�(�) at point x in direction l.

Obviously, mapping @mU(x) is closed, molli�er derivative U
0
m
(x) is convex and posi-

tively homogeneous in l. De�ne a convex set

Gm(x)g = fgjhg; li � U 0
m
(x; l) 8l 2 Rng:

Proposition 5.1 (Characterization of the molli�er subdi�erential). Let family M =

fU�(x); � > 0g be uniformly locally Lipschitzian. Then

cof@mU(x)g = Gm(x);

where cof�g denotes a convex hull.

Proof. Fix an arbitrary point x and direction l. By de�nition there exist such sequences

�� ! 0, x� ! x that Uo
��
(x� ; l) �! U 0m(x; l). By de�nition of Clarke's subdi�erential

Uo

� (x
� ; l) = hg�; li for some g� 2 @U(x�). Without loss of generality we can assume that

g� ! g 2 @mU(x). Then

U 0m(x; l) = hg; li � sup
g2@mU(x)

hg; li;

and hence Gm(x) � co@mU(x).

Let us now prove the opposite relations. By de�nition for any g 2 @mU(x) there exist

such sequences �� ! 0, x� ! x and g� ! g that g� ! @U�nu(x
�). By de�nition of Clarke's

generalized gradients hg� ; li � Uo(x� ; l). Then

hg; li � lim sup
�

Uo(x� ; l) � U 0
m
(x; l);

and hence supg2@mU(x)hg; li � U 0m(x; l) and @mU(x) � Gm(x). 2

5.2 Regularity

Beside (19) de�ne function

U(x; y) = E!u(f(x; !) + y);

where parameter y 2 Rm. Obviously, U(x) = U(x; 0) and U�(x) = E�U(x; ��). Under

conditions of Proposition 3.2 function U(x; y) is Lipschitz continuous in (x; y).

De�nition 5.2 De�ne derivative of U(x; y) at point (x; y) in direction (lx; ly) 2 R
n �

Rm as

U 0(x; y; lx; ly) = lim
�!+0

1

�
[U(x+ �lx; y + �ly)� U(x; y)]

(if the limit exists), Clarke's generalized derivative [4] as

Uo(x; y; lx; ly) = lim sup
~x!x;~y!y;�&0

1

�
[U(~x+ �lx; ~y + �ly)� U(~x; ~y)];

and partial generalized derivative of U at (x; y) in the direction lx 2 R
n as

Uo

x(x; y; lx) = lim sup
~x!x;�&0

1

�
[U(~x+ �lx; y)� U(~x; y)]:



De�nition 5.3 Function U(x; y) is called Clarke regular if for any (lx; ly)

Uo(x; y; lx; ly) = U 0(x; y; lx; ly);

and regular in x if for any lx

Uo(x; y; lx; 0) = Uo

x
(x; y; lx):

Proposition 5.2 (Calculous for regular in x functions). (i) Regular by Clarke function

U(x; y) is regular in x.

(ii) U(x; y) is regular in x i� �U(x; y) is regular in x .

(iii) Convex and concave in (x; y) functions U(x; y) are regular in x.

Proof. (i) The statement follows from inequalities:

U 0(x; y; lx; 0) � Uo

x
(x; y; lx) � Uo(x; y; lx; 0):

(ii) Suppose �U(x; y) is regular in x and show that U(x; y) is regular in x. By Clarke [4],

prop.2.1.1(c), Uo(x; y; lx; ly) = (�U)o(x; y;�lx;�ly), and similarly we have Uo
x
(x; y; lx) =

(�U)ox(x; y;�lx). Let x
� ! x, �� ! +0 are such that

Uo

x(x; y; lx) = lim
�!+1

1

��
[U(x� + ��lx; y)� U(x

� ; y)]:

Then

Uo
x(x; y; lx) = lim�!+1

1
��
[�U((x� + ��lx)� ��lx; y)� (�U(x� + ��lx; y))]

� lim sup~x!x;~y!y;�&0
1
�
[�U(~x� �lx; ~y)� (�U(~x; ~y))]

= (�U)o(x; y;�lx; 0)

By regularity (�U)o(x; y;�lx; 0) = (�U)ox(x; y;�lx). Thus

Uo

x(x; y; lx) = (�U)o(x; y;�lx; 0) = Uo(x; y; lx; 0)

= (�U)ox(x; y;�lx) = Uo
x(x; y; lx):

(iii) Since convex functions are Clarke regular ([4], prop. 2.3.6(b)), then by (i) they are

regular in x, and by this and (ii) concave functions are also regular in x. 2

Example 5.1 (Regularity of integral functionals). If U(x; y) = E!u(f(x; !) + y)

and functions u(f(�; !) + �) are Lipschitzian and Clarke regular with integrable Lipschitz

constant, then U(x; y) is also Lipschitzian and Clarke regular in (x; y) (see [4], prop.2.7.2),

and by Proposition 5 .2 is regular in x .

Function U(x; y) = E!u(f(x; !) + y) can be Lipschitzian and regular in x even for

discontinuous utilities u(�).

Example 5.2 (A regular probability function). Let the mapping f(x; !) = �(x) +

!, where vector random variable ! 2 Rm has Lipschitzian c.d.f. F with constant LF ,

continuously di�erentiable mapping �(�) : Rn ! Rm is such that equation �(x) = y has a

solution for any y. Then function

U(x; y) = Pf�(x) + ! + y � 0g = F(��(x)� y)

is regular in x.

Indeed, let sequences �� ! 0, x� ! x, y� ! 0 be such that generalized derivative in

direction lx

Uo(x; 0; lx; 0) = lim
�!1

1

��
[U(x� + ��lx; y

�)� U(x� ; y�)]:
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From equations �(~x) = �(x�) + y� let us �nd solutions ~x� ! x. Then

Uo(x; 0; lx; 0) = lim�!1
1
��
[F(��(x� + ��lx)� y�)� F(��(x�)� y�)]

� lim sup
�!1

1
��
[F(��(~x� + ��lx))�F(��(~x

�))]

+ lim sup
�!1

1
��
[F(��(x� + ��lx)� y�)�F(��(~x� + ��lx))]

� Uo
x
(x; 0; lx)

+ lim sup�!1
1
��
[F(��(x�)� ���

0(x�)lx)� o(��klxk)� y
�)

�F(��(~x�)� ���
0(~x�)lx)� ~o(��klxk))]

� Uo

x
(x; 0; lx)

+ lim sup�!1 LF (�
0(x�)� �(~x�))lx

+ lim sup
�!1

1
��
LF [jo(��klxk)j+ j~o(��klxk)j]

= Uo

x
(x; 0; lx):2

Example 5.3 (Quasiconcavity and regularity of probability functions). Let function

f(x; !), x 2 Rn, ! 2 Rm, be quasi-convex in (x; !) and measure P! �-concave, � >

�1, (for instance, 0-concave, i.e. logarithmically concave). Then probability function

P!ff(x; !)+ y � 0g is �-concave in (x; y) and hence function U(x; y) = 1�P!ff(x; !)+

y � 0g is regular in (x; y) (see [27], [28] for details).

5.3 Optimality conditions

Proposition 5.3 (Molli�er subdi�erential as a subset of Clarke's subdifferential). Assume

that function U(x; y) is Lipschitzian and regular in x, molli�er subdi�erential @mU(x) of

function U(x) = U(x; 0) is de�ned through functions U�(x) = E�U(x; ��) by (28), where �

is m-dimensional random vector with bounded support. Then

@mU(x) � @U(x);

where @U(x) is Clarke's subdi�erential of Lipschitzian function U(x).

A similar relation for molli�er subdi�erential was established in [17] (see also [33], par.

9.67, for sharper result).

Corollary 5.1 (Convergence of subgradients). Under conditions of Proposition 5.3

@U�� (x
�) �! @U(x); 8 �� ! 0; x� ! x: (29)

Proof of Proposition 5.3. Fix any point x and direction l. By de�nition of Clarke's

generalized derivative there exist such sequences �� ! 0, ~x� ! x that

Uo

� (x; l) = lim
�!+1

1

�
[U�(~x

� + ��l)� U�(~x
� ]:

Taking into account that U�(x) = E�U(x; ��) we obtain

Uo

�
(x; l) = lim�!+1

1
��
[U�(~x

� + ��l)� U�(~x
�)]

� E� lim sup�!+1
1
��
[U�(~x

� + ��l; ��)� U�(~x
� ; ��)]

� E� lim sup~x!x;�!0
1
�
[U�(~x+ �l; ��)� U�(~x; ��)]

= E�U
o

x(x; ��; l):

By de�nition of molli�er derivative U 0m(x; l) there exist such sequences �� ! 0, x� ! x

that U 0m(x; l) = lim�!+1 Uo

��
(x� ; l). Thus we obtain

U 0m(x; l) = lim�!+1 Uo
��
(x� ; l)

� E� lim sup�!+1 Uo

x(x
� ; ���; l)

� E�U
o(x; 0; l; 0) = Uo(x; 0; l; 0):
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From here by regularity assumption we obtain

U 0
m
(x; l) � Uo(x; 0; l; 0) = Uo

x
(x; 0; l) = Uo(x; l)

and the desired inclusion. 2

Proposition 5.4 (Necessary optimality conditions). Assume that

(i) functions U�(x) are Lipschitzian on X with common Lipschitz constant for all

� > 0;

(ii) functions U�(x) uniformly converge to U(x) as �& 0. Then at any local minimum

x� of U(x) on a compact set X

0 2 @mU(x
�) +NX(x

�):

Proof. De�ne functions �(z) = U(z) + kz � x�k2 and ��� (z) = U�� (z) + kz � x�k2

for some sequence �� & 0. Let B(x�) be a ball around x� such that U(z) � U(x�)

for all z 2 B(x�) \ X . Obviously, x� is a unique global minimum of �(z) on the set

B(x�)\X . Let functions U�� (x) achieve their global minimums on X at points x� . By (ii)

x� �! x� and by necessary optimality conditions [4] 0 = g� + n� for some g� 2 @U�� (x
�),

n� 2 NX(x
�). By (i) sequence fg�g has cluster points and let g = limk g

�
k be one of them.

By construction g 2 @m(x
�). Since n�k = �g�k then by (i) sequence fn�kg is bounded

and thus has a cluster point n, which belongs to NX(x
�) by closedness of mapping NX(�).

Thus 0 = g + n 2 @mU(x
�) +NX(x

�). 2

Corollary 5.2 (Su�cient condition for stationarity). If under conditions of Proposi-

tion 5.3, 5.4 0 2 @mU(x
�) then x� is a stationary point of function U(x) = E!U(x; 0) in

the sense that 0 2 @U(x�) and thus there is no such direction l at x� that

U(x+ �l) � U(x)� ��

for all x close to x�, su�ciently small � and some � > 0.

6 Stochastic optimization procedure

Let us consider the risk function in the form of extended expected utility function U(x) =

E!u(f(x; !)), u(�) is some (possibly discontinuous) utility function. We are interested in

solving the problem

U(x) �! min
x2X

: (30)

For Lipschitzian function U(x) and convex compact set X we can de�ne the attractor as

the solution set satisfying necessary optimality conditions [4]

X� = fx� 2 X : 0 2 @U(x�) +NX(x
�)g;

where @U(x) is Clarke's subdi�erential of U(x) and NX(x) is a normal cone to X at

point x. Unfortunately our problem U(x) has, as a rule, a rather complex structure and

no explicit form for subdi�erntials @U(x) is available. In sections 3 { 4 we showed that

U(x) may be Lipschitz continuous and it can be approximated by (generalized [26], [25])

di�erentiable functions U�(x) uniformly in x 2 X in such a way that (see Corollary 5.1)

@U�� (x
�) �! @U(x); 8 �� ! 0; x� ! x: (31)

Let us assume that there exists such random vector function ��(x) that

E��(x) 2 @U�(x); sup
�2(0;�]; x2X

�2Ek��(x)k
2 < +1 (32)
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(see (23), (25) { (27) for particular examples). We are going to solve (30) through (possibly

nonsmooth nonconvex) approximations U�(x), thus we are in the framework of the so-called

limit extremal problems (see [8], [9] and references therein). Let f�ig, f�kg be sequences

of positive numbers such that

lim
i!1

�i = 0; lim
k!1

�k = 0;
1X
k=0

�k = +1: (33)

Consider the following stochastic quasigradient (SQG) procedure:

Step 0: select x0 2 X , set i = 0, k = 0, ki = 0, S = 0;

Step 1: calculate

xk+1 = �X(x
k � �k��i(x

k));

where �X(�) is the projection operator on the set X , and put k := k + 1, S := S + �k;

Step 2: if S < � then go to Step 1, else put i := i+1, ki := k, S := 0 and go to Step 1.

In this procedure we minimize function U�i(x) by stochastic quasigradient method on

iterations k 2 [ki; ki+1),
Pki+1�1

k=ki
�k � � > 0, and then change i.

De�ne �k = �i for k 2 [ki; ki+1), i = 0; 1; : : :, and assume

1X
k=0

�
�k

�k

�2
<1: (34)

Theorem 6.1 (Convergence of the stochastic quasigradient procedure).

Assume that Lipschitz continuous function U(x) is uniformly approximated by generalized

di�erentiable functions U�i(x) as �i ! 0 on a convex compact set X � Rn
in such a way

that conditions (31), (32) hold. Let sequence fxkg be constructed by SQG-procedure, where

sequences f�ig, f�kg satisfy (33), (34). Then a.s.

(i) cluster points of fxkg constitute a compact connected set and minimal in U cluster

points of fxkg belong to the attractor X�
;

(ii) if U(X�) does not contain intervals then all cluster points of fxkg belong to X�

and sequence fU(xk)g has a limit in U(X�).

The proof of the theorem is similar to the proof of the analogues result in [16] (for

U�i(x) � U(x)) which is based on the technique developed in [29] and further elaborated

in [8], [25].

Concluding remarks

Any decision involving uncertainties leads to multiple outcomes with possible positive and

negative consequences. Explicit introduction of risks as a function of decisions leads to

a risk function which can be used to impose additional constraints on the feasible set

of decisions. A more comprehensive (integrated) approach speci�es a set of new risk

reduction and risk spreading alternatives besides the set of the original decisions. The

set of the risk-related decisions may include insurance, securities, di�erent risk mitigation

and adaptation strategies. For example, together with investments in conventional CO2-

producing technologies it may include investments in CO2-consuming technologies. The

explicit introduction of risk signi�cantly a�ects the original pro�le of gains and losses,

e.g., risks may become pro�table for construction sectors of the economy and insurance

industry. This can be summarized in a form of expected welfare function (see [10, [11]),

in particular, a form of (extended) expected utility function as is discussed in section 2.

As a result, the risk management becomes a part of the welfare maximization problem
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and the need for additional costs on the risk reduction measures is easily justi�ed from

the perspective of the overall welfare analysis. In other words, the integrated approach

can show that the explicit introduction of uncertainties and risk reduction measures is

a welfare-generating strategy, although the risk management per se requires additional

costs. This is the main point of the approaches proposed in [10]-[12] for catastrophic risk

management. In connection with this the important methodological issue is risk-based

welfare analysis. Section 2 shows that in general we can not rely on the concavity of

the adjusted-to-risk welfare function and, hence, on the concept of the standard general

equilibrium. Important emerging issues seem to be negotiations, bargaining processes and

an appropriate concept of dynamic stochastic equilibrium. All these questions are beyond

the scope of this paper (see, e.g., [19] for a discussion of some closely related issues), but

the problems analyzed here will remain to be crucial for more general models.
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