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PREFACE

This report is one of a series describing IIASA research into approaches
for comparing alternative models that could be applied to the establishment
of control policies to meet water quality standards. In addition to model
evaluation, this project has focused on problems of optimization and con-
flict resolution in large river basins.
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ABSTRACT

This paper presents some simple properties of the problem of
optimal allocation and design of a system of mechanical surface aerators.
These properties are proved to be valid for an extremely wide class of river
quality models and it is shown how they can be usefully employed to
simplify the problem and to improve the efficiency of some dynamic
programming algorithms. Finally a method is suggested for dealing with the
allocation problem in a river basin composed of a main stream and its
tributaries.






Optimal Allocation of Artificial In-Stream Aeration

INTRODUCTION

In the development of water quality management programs one
usually assumes that the biological oxygen demand (BOD) load com-
ing from recorded effluents constitutes the major fraction of the
total BOD load entering the river system. Thus it would seem to
be sufficient to select the right degree of purification of the
recorded effluents in order to achieve any desired level of water
quality in the river. Unfortunately, it has been remarked (Whipple
et al., 1970) that even in well administered areas the recorded
effluents represent hardly more than one half of the total load.
When this is the case, improvement of waste water treatment effi-
ciency may be insufficient. Moreover, it may happen that high
treatment levels are required to prevent the occurrence of too low
dissolved oxygen (DO) levels only during short periods of adverse
waste water assimilation characteristics, while less costly treat-
ment plants are sufficient to obtain the desired water quality for
the rest of the year. 1In either case, artificial in-stream aera-
tion turns out to be more effective than advanced waste water treat-
ment (Orteolano, 1972; Whipple and Yu, 1971). It would be a rela-
tively complex optimization problem to allocate the available bud-
get between these two alternatives. However, we discuss only the
simpler case of mechanical aerators. Nevertheless, the same kind
of algorithm can probably be used for solving the more complex
problem.

This paper presents some simple properties of the problem of
optimal allocation and design of a system of mechanical surface
aerators able to attain a given DO standard during periods of low
flow and high temperature. These vroperties are proved to be valid
for an extremely wide class of river quality models including all
currently used ones. It is shown how these properties can be use-
fully employed to simplify the allocation problem by breaking it



down into a set of simpler problems, and to improve the effi-
ciency of an already provosed solution algorithm based on dynamic
programming (Chang and Yeh, 1973; Fioramonti et al.,, 1973; Koivo
and Phillips, 1975). Finally a method is suggested for dealing
with the allocation problem for a whole basin composed of a main

stream and its tributaries.

The procedure presented in this paper has been successfully
applied by the authors to solve the allocation and design problem
of aeration devices in a specific portion of the Rhine river basin

in West Germany.

STATEMENT OF THE PROBLEM

The optimal control problem consists of determining the number
of units to be used N, their location Ki (i =1,...,N), and their
power Hi, which is a function of the DO increment u in such a
way that the DO standard is not violated at any point in a given
river stretch L (L = {: 0 < & < L}) and that the total aeration
cost is minimized. Once the steady state design conditions (flow
rate q({), temperature T, BOD load, etc.) have been fixed, a river
quality model can be selected to describe the system. Such a

model is generally of the form

420 < tzo),v) (1a)
9O - k(0 (cg - c(0)) + g(z(D) ,w(l) + u(d) (1b)

where ¢ 1s the mean cross-sectional DO concentration, cg is the

DO saturation value at temperature T, and z({) is a suitable nth
order vector describing the various stages in the degradation of
the organic pollutants. For example, at one extreme (the Streeter-
Phelps model) z({) is simply the BOD, while at the other (the com-

plex ecological model) z(¢) is the concentration of different types



of pollutant and the biomasses of various stages of the food
chain. The vectors v(£) and w({) take into account all the
sources and sinks of the components of z and of the dissolved
oxygen respectively, while

N

u(g) = uié(l - Zi)

i=1

is the artificial in-stream aeration. (§ is the impulse function
and uy is the difference between the DO concentration downstream
and upstream of the point Ki induced by the ith aerator.) Finally,
f, g, k, v and w are continuous functions. In Equations (la) and
(1b) it is assumed that the effects of in-stream aeration can be
described as a set of point sources of DO and that the presence of
the aerator does not influence either the natural aeration pro-

cess or the self-purification one.
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Figure 1. Block diagram of model.

The block diagram of the model is shown in Figure 1. Note
that there is no feedback from the second block to the first.
Thus the function z(£) is completely independent of the input u
and can be computed once and for all, so that the model employed
in solving the optimization problem is always one-dimensional
(Equation 1b), even if extremely sophisticated, multi-dimensional

ecological models are selected to describe the river.

The objective function to be minimized is the sum of the
costs of all the aerators. The cost Ci of any unit is in general

proportional to the power T of the unit and is higher for higher



values of the induced DO increment u; but it is also an increas-
ing function of the DO concentration c; present upstream of the
aerator turbulent area (ci = ci(ﬁi)), and it depends linearly

upon the flow rate q; = q(ﬂi). (In the following, for the sake

of simplicity of notation Zi will often be used instead of Zi;

the right meaning should always be clear from the context.) More-
over, the cost Ci = C(ui,ci,qi) of the ith unit reflects the
practical impossibility of attaining supersaturation so that Ci
goes to infinity when the induced increment uy approaches the

deficit (cs - ci).

Thus the problem of determining the best aeration system is

as follows:

Seleet N, {u.LN , and fﬂ.lN so that
=1 L=
N
J = z C(u;,c;,q;) = min (2a)
i=1
and
c(l) > ¢ ¥ £ €L (2b)

where c(f) is the solution of Equation (1b) with given initial

condition ¢(0) = ¢c._ > c.
tt (0) in2¢&

In some cases the problem may be more complex, since addi-
tional constraints (e.g. an upper limit on the number of units
to be used--see Fioramonti et al., 1973) or a stream standard
varying over space might be imposed, but the algorithm presented

in this paper can be modified to account for extra constraints.

The optimiza*ion problem described by Eguation (2) (from
now on called Problem 2) is not in standard form, since it is not
characterized by a finite number of constraints (see Eguation (2b)).
In order to transform the problem into a standard mathematical

programming model one can simply discretize constraint (2b) over



space, as proposed by many authors (Chang and Yeh, 1973; Koivo
and Phillips, 1975; Liebman and Lynn, 1966; Revelle et al., 1968).

Moreover it will be shown that the problem can be simplified
if the cost function C of an aerator does not exhibit economies
of scale. The aeration cost C is said to exhibit economies of
scale if the cost of one aerator, which improves the DO load from
c to c + u, is lower than the sum of the costs of two aerators in
series producing the same effect (i.e. two aerators of which the
first improves the DO level from ¢ to ¢ + u' and the second from

c +u' toc + u.

For example Susag et al. (1966) give for the cost of a me-

chanical aerator:

where p is a suitable constant. This function does not exhibit

economies of scale, since
C(u,c,q) = C(u',c,q) + C(u-u',c+u’,q)

SOME PROPERTIES OF THE OPTIMAL SOLUTION

Some properties of the optimal solution of Problem 2 will
now be given for the particular case in which the flow rate g(&)
is constant along the river. The problem will be simplified and,
in thé absence of economies of scale, broken down into a set of
subproblems.

For all the points { between two aerators, Equation (1b) is

a linear differential equation with u(£) = 0. If c(+) and c'(*)
are two solutions with initial value S and <o + Aco (Ac0 > 0),
one obtains

d ( 1 2 — ]

37fc (£) = c(8)) = - k(&)Y (c' (&) - c(O)) <O ,

which means that c'(£) - c(£) is a decreasing function of £. On



this basis it is possible to demonstrate the following property:

Property 4
The optimal solution must have all the aerator devices

located at points Zi where c; =¢-

In fact if one aerator is not in this position, it is possible
to lower its cost, without violating the standard, by shifting
it downstream as shown in Figure 2. (Recall that the cost func-
tion increases with uy and ci.) This property can easily be
understood by remembering that the natural re-aeration process
is more efficient for lower oxygen levels. Therefore the least
costly solution will be one where DO reaches its lower possible
value c.

!
i
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Figure 2. If an aerator is placed in a point where ¢ > ¢ (position £1). its
cost can be reduced by shifting it downstream to the first place
where ¢ = ¢ (position ). since us <ujpand ¢ < cl-

As a consequence, the optimal solution will be characterized
by the absence of aerators upstream of the point £1 where the
natural oxygen profile (i.e. the solution c1 of Equation (1b),
with u = 0 and c1(0) = cin) reaches the standard for the first

time.

Determine now, if it exists, the point 1 such that

17’

£, = min ¢ (3a)
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subject to
g(z(L),w(L)) = =k(&) (¢, = c) (3b)
L gz, w@) > =(cg - ) FT k(D) (30)
¢€ 1L, . (3d)

Note that 21 is the first point downstream of £1 where, for a
particular value of c(£1), the minimum of tge DO sag curve is
the tangent to the standard c. Then, let ¢ be the solution of

Equation (1b) for £ > 21, with u = 0 and initial condition c2(21)

= c. Determine, if it exists, the point £2, such that
£2 = min £

subject to

cz(l) =c L < [21,L]

(i.e. determine the first point downstream of 21 where c2(£) is

equal to the standard). Finally determine the point Zz, such that
22 = min £

subject to constraint (3b), (3c), and
AN [§2,L]

and continue in the same way until all the stretch L is worked
out and a finite number (p) of segments

(L9800, 085,851, .., [gp,zp]




Then the following

are obtained (see Figure 3 where p = 2).
property holds:
Property B
The optimal solution of Problem 2 is characterized by
the presence of aerators only in the p segments [ﬁk,zk]
k = 1,...,p (notice that the segments are open on the
right).
The proof of this property is very simple. Let c* be the optimal

oxygen profile. Obviously c*(zk_1) > ¢ and this implies

c(t) > M Ve €T, K= 1,.0.0D

k_ -
c(4) > ¢ VAKEZ(Zk_1,£k) k=1,...,p

so that we can conclude that

c*(L) > ¢ ¥LE(L _ L) k=1,...,p
0o T
[my/f]
cin
c'(-) (-
£ ‘ ! T
o ! 1 L . L 0

?
Llﬂ segment J

Figure 3. Determination of the segments [gk.fk] .



From property A it follows that no aerators will be present in

the interior points of the segment (zk-1'£k)' Moreover, no aera-

since the same effect is

tor will be placed at the point Zk_1,
obtained at a lower cost without violating the standard by shift-

ing the aerator to the point ék (see Figure 4 where u' > u").

Finally the following property is worthy of mention since

it allows a nice breakdown of the problem (see next section).
Property C
If there are no economies of scale Problem 2 can be

broken down into the following p independent subprob-
lems (k=1,...,p).

oo }
[mo/d]

In

Do
[mg/]

\\\\;

(2]

(b) =

Figure 4. Comparison of two different solutions: the oxvgen profile of

Figure b is obtained at a lower cost than the one of Figure da,
sinceu” < u'.
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Ny
Je = _Z C(ui,ci,q) = min (4a)
i=1
and
c(d) > ¢ ¥ L€ g, ] (4b)

7

where c (L) s the solution of Equation {1b) with the inittal con-

dition c(ﬁk) = c.

To prove this property, it is sufficient to show that, in
the absence of economies of scale, c*(ék) = ¢, since then the
result follows immediately from property B. Thus, consider the
optimal solution c* and, in particular, the first aerator placed
upstream of the point Zk—1' and suppose, absurdly, that its DO

increment (u' + u") is such that (see Figure 5a)

) > c . (5)

Since there are no economies of scale, the cost of the aerator
that improves the DO level from ¢ to ¢ + u' + u" is eqgual to the
cost of two aerators in series improving the DO level from ¢ to
¢ +u' and from ¢ + u' to ¢ + u' + u". (Note that u' is such
that c(zk_1) = c.) Since u" > u''' (see Figure 5a), the cost of
in-stream aeration can be reduced, without violating the stan-
dard, by shifting the second aerator to the point ﬁk and this

contradicts assumption (5).
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(a)

[La]

Figure 5. Comparison of two different solutions:

THE ALGORITHM

(b)

the oxygen profile of
Figure 3b is less costly than the one of Figure Sa. if there are no
economies of scale. since u’’ <u'".

In order to apply dynamic programming to each of the sub-

problems derived from Problem 2,

1973; Koivo and Phillips,

constraint (4b)

1975; oOrtolano,

it is necessary

1972)

(Chang and Yeh,

to discretize

and restrict the decision process to only that

finite number of positions where an aerator can be placed.

For

this purpose, it is worth noting that an aerator working down-

stream of another one is remarkably less efficient if the two

aerators are too close

(Price et al.,

1973) .

Hence,

the distance
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between two aerators must be greater than or equal to a critical
distance Zc, such that the interval [&k,zk] can be subdivided

into M = (¢, - £k)/£c subintervals. Each subinterval is delimited
by an initial and final point, all of which are ordered from O to
M and indexed by j. Then it is assumed that an aerator can be
placed at any one of these points, and the compliance of the DO
level with the standard is checked only at these points.

Thus the continuous model (1) can be replaced by a discrete
model. If cj is the DO concentration downstream of the jth in-
terval and Uj is the difference between the DO levels upstream
and downstream of the jth point (recall that the DO concentra-
tion is discontinuous at the points where there is an aerator),

then such a model gives the following difference equation:

. = . .+ UL) + 68, ,
€341 byley + Uy + 8y (6)

where ¢j and 6, are coefficients derived from the solution of
Equation (1b). For the sake of simplicity in notation Equation (6)

can be written in the form

Ci41 = w(j.cj+Uj) '

where U. = 0 means that no aerator is located at point j, while

the contrary is true when Uj > 0. Thus a cost given by

{0 if U, =0

. J

33 C(u,,c if U, > 0
L(J,er) 3

can be associated to each point j and HM = 0 since Um =0

c(f ) = ¢).

(c( p <

If U = [UO"‘UM-1] is the new decision vector, Problem 4

becomes:

Select U s0 that

H(u) = ] Hy(U5) = min (7a)
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and

cj+1 = w(Jch + U]) j = 0,...,M-1 (7b)
cj 35 J = 1"--IM (7C)
o7 € - (74)

Problem 7 is a multistage decision problem which can easily be
solved by dynamic programming. The computational effort neces-
sary to solve the problem can be greatly reduced if one takes
advantage of the fact that the aerators will be located at points
lj such that c(lj) =c. If Hh(ch) is the minimum aeration cost
downstream of the hth point when ¢, is the DO level at the end

of the hth interval, i.e.

h

[ME1 ]
H (c,) = min H.(U.)
h'~h {U }M-1 j=h J°]

] j=h

subject to

cj+1 = w(j,cj + Uj) j

h,...,M-1
and assume
Hh(ch) =
for Sy > ¢, then the possibility of allocating an aerator at the

hth point must be considered only if Cy = ¢ (see Property A).

Hence, the dynamic programming functional equation is
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Hh+1(w(h,ch)) if ch > c
= (8)
Hh(ch) = ‘ ‘
ﬂ;n [H(Uh) + Hy(Wih,cp + Uh)ﬂ if ¢y =c .
h
Equation (8) can be solved recursively for h = M-1,M-2,...,0 if

the boundary condition Hy(cy) = 0 for ¢y, > ¢ is taken into account.

M

Since
min [H(U)] = #,(c)

Problem 7 is solved when Ho(g) is computed by means of Equation

(8). Finally the number N of aerators to be actually installed,

[ roN
their locations JE.L N , and their induced DO increments Iui N

Ji=1
and consequently their powers Ty, are computed by backtracking,

P
Ji=1

as is usual with dynamic programming.

EXTENSION TO THE CASE OF A RIVER BASIN

The general case of a river basin, with the assumption of
piecewise constant flow rate, is now considered. Obviously, in
all the reaches where the flow rate is constant the anlysis de-
veloped in the previous section can be applied, so that all the
intervals [£k,zk] can be found. The new aspect in this case is
the existence of confluence points where two streams come together
and form a larger one. Since the aeration cost is proportional
to the flow rate, there may be an economic advantage in installing
an aerator in one of the two upstream branches (just before the
confluence point) even if the corresponding DO level there is
greater than the standard. These confluence points must also be
considered as possible points of artificial in-stream aeration.

As a consequence, the functional equation (8) must be suitably
modified at such points to account for the possibility of locat-

ing an aerator in correspondence with any DO level.

If the cost function C(u,c,q) is convex with respect to u,

the optimal solution is characterized by at most one aerator,
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located just upstream of the confluence point on the branch hav-
ing the lower oxygen content. 1In fact it can be proved that the
same effect as is produced by an aerator located on the more oxy-
genated branch, can be obtained at a lower cost by shifting it

downstream of the confluence point.

To clarify the decomposition procedure, consider the example
shown in Figure 6 where four reaches are determined by the points
where the flow rate has stepwise changes. Assume that in reaches
1 and 2 the DO standard is first violated at points £§1) and
£§2) respectively, and that the segments to be considered as poT-

sible points of artificial in-stream aeration end at points 2§1
and Zfz). Moreover assume that the aeration cost does not ex-
hibit economies of scale. Then, from Property C, the optimal
solution turns out to be characterized by c*(2§1)) = c*(2§2)) = C,
so that the optimal DO levels at points L1 and L2 upstream of the

confluence point can be evaluated a priori.

L,=location to be

taken into account
treatment
reach 3 efflyent reach 4

no aerator
here

Figure 6. The optimal allocation problem for a river basin.

Now assume that c*(L1) < c*(Lz). Then the property described

above allows us to state that only L, has to be considered as a

1
possible aeration point. The DO concentration at the upstream
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end of reach 3 is dependent upon the presence of an aeration de-

vice at point L Thus, in order to determine the possible points

70
for artificial aeration in reach 3, it is necessary to consider
3
@,
assume that no aerator is present at point L,- Finally, the

the case corresponding to the minimum value of £ i.e. to
position upstream of the treatment plant effluent must not be
taken into account if one is sure that the DO level in the river
is reduced by the deficit of the effluent.

Once the segments of the river that are to be considered
as possible points for artificial instream aeration have been
determined, it is possible to decide on the optimal aeration sys-
tem by solving five independent subproblems. (Point L1 must be
considered with segment [£§3),2:3)].) In view of this break-
down, and because of the absence of economies of scale, it is pos-
sible to apply the simple algorithm presented in the foregoing
section, while in the presence of economies of scale the problem
can be solved only by applying more complex techniques (for in-

stance nonserial dynamic programming (Bertelé& and Brioschi, 1971)).

CONCLUDING REMARKS

In this paper the problem of optimal in-stream aeration,
extensively dealt with in the literature (see, for other refer-
ences, Bertelé and Brioschi, 1971; Fioramonti et al., 1973), has
been formulated as an optimal control problem for a system de-
scribed by differential equations. The following two properties

of the optimal solution have been proved for a constant flow rate:

1. All the aerators must be located at points where
the dissolved oxygen level is egual to the standard.

2. It is not necessary to take the whole river into
account but only suitable segments of it, which

can be easily predetermined.

On this basis the original problem has been reduced to a simpler
set of subproblems under the assumption that economies of scale
can be neglected. Such problems are solved by a simple recursive
scheme derived through dynamic programming. The more general case
of a main stream and its tributaries has been considered and the

differences with the former case briefly pointed out.
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Notation

The following symbols are used in this paper:

Z 2 -

dissolved oxygen (DO) concentration [mg/{]

dissolved oxygen (DQ) concentration at point ¢ [mg/{]
DO stream standard [mg/{]

DO concentration just upstream of the point £i [mg/2]
DO concentration at the initial point of the river
stretch [mg/{]

DO saturation level [mg/{]

cost of the ith aerator [any monetary unit]
re-aeration coefficient [km-1]

ordinate along the river stretch [km]

minimum allowed distance between two aerators [km]

location of the ith aerator in the optimal solution

{km] (i=1,...,N)
possible location .for an aerator (j=0,...,M) [km]
points where c({) = ¢ [km]

points in which the DO minimum is a tangent to the
stream standard ¢ [km]

length of the river stretch [km]

{£:° 0 < 2 < L} the river stretch

number of subintervals of the interval [Zk,ﬁk]

optimal number of aeration units

optimal number of aeration units in the kth subproblem
power of an aeration device able to generate the DO
increment ui[w]

flow rate at point ¢ [m3/s]

flow rate at point £i[m3/s]

water temperature [OC]

artificially induced aeration [mg/Z]

DO increment induced by the ith aerator [mg/Z{]

DO increment in position Zj[mg/£]

vector function representing the sources and the sinks
of the components of z

sources and sinks of dissolved oxygen

nth order vector describing the degradation of organic

compounds
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