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PREFACE

One of the tasks of the System and Decision Sciences Area in 1976 has
been the investigation of problems in “‘fair division™. In a general sense, the
problem is how to divide and distribute various goods (or bads) equitably
among competing agents in a system. A particularly important aspect of
this question is the institutions through which distributional decisions are
made. In particular, what are the consequences of different divisions of
decision-making powers? This paper addresses the problem of measuring
the relative effectiveness of agents in organizations where decisions are taken
by vote. The results have application to the estimation of inequalities in,
and the equity of, various distributions of decision-making authority.
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SUMMARY

One of the important aspects of the structure of decision-making
institutions is the implication this structure has for the interdependencies
among agents and their relative abilities to influence choices and outcomes,
i.e. their “‘effectiveness”. Various measures of interdependency and effec-
tiveness have been proposed, notably by Shapley and Shubik, Banzhaf, and
Coleman. In this paper a new approach is obtained by proposing a kind of
“currency” in which structural influence can be traded; this enables one to
apply economic concepts and show that in general a trading equilibrium
exists whose properties have a natural interpretation for measuring the
relative effectiveness of the various decision-making agents.
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The ‘“‘value” or “worth” of a man is, as of all other
things, his price, that is lo say, so much as would be
given for the use of his power.

Thomas Hobbes
Leviathan, Pt. I, Ch. 10
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Power, Prices, and Incomes

In Voting Systems

INTRODUCTION
The bribing of legislatures and other decision-making bodies
for the furtherance of special interests has a long history that
doubtless has not ceased to the present day. One of the most no-
torious alleged cases of bribery was reported by the Scotsman
George Lockhart in his Memoirs of the Affairs of Scotland [4].
Lockhart charged that the Treaty of Union, which created Great
Britain in 1707, was achieved by the Queen's Minister selectively
bribing members of the Scottish Parliament. The most astonishing
aspect of Lockhart's account is that he published, in 1714, a
list of the members bribed and the prices paid. The list contains
32 names, including the Duke of Queensberry, who allegedly got
£12325 0s 0d, the Earl of Marchmont £1104 15s 74, the Marquis
of Tweeddale £1000 0s 0d, and so on, the lowest man going for
£11 2s 0d. All of those allegedly bribed except one (the Duke
of Atholl) voted for the Union. Lockhart concludes bitterly, "It
is abundantly disgraceful to be ... a contributor to the misery and
ruin of one's native country; but for persons of quality and dis-
tinction to sell, and even at so mean a price, themselves and
their posterity is so scandalous and infamous, that such persons
must be contemptible in the sight of those that bought them ... ".
Whether Lockhart's numbers are accurate or not, they provoke

a general question: in the bribing of legislatures or other voting



bodies where different members have different degrees of influ-
ence, what prices will the various members command? The answer
would appear to depend on two factors: the minimum price a voter
is willing to accept under any circumstances, and his "worth" to
the one who is buying his influence {(i.e., his power).

In recent years, various numerical measures of power have
been proposed -- notably, those of Shapley-Shubik [8], Banzhaf [1]
and Coleman [3]. Each of these measures is ultimately based on
the idea that a voter is powerful insofar as he can change the
outcome by changing his vote. The view we shall take here is that
it is not enough that a voter be able to change the outcome: he
must have an incentive to do so. Thus, if we are able to identify
the equilibrium prices that a lobbyist, for example, would pay for
the members' votes, we would have a measure of their relative power
in the Hobbesian sense. In the next sections we shall develop a
concept of equilibrium prices and incomes for arbitrary voting
games, and compare the results with the Shapley-Shubik and Banzhaf

measures.

VOTING GAMES

A simple game, or in this context, a voting game G = (N,S),
is a finite set N of players, together with a collection S of sub-
sets of N called winning coalitions which satisfy

$FS,
(1)

S¢S and s¢T = TeS .
The interpretation of G is the following: if S is precisely
the set of players voting for a given measure, then the measure

will pass if and only if Se S. The pair (i,S) is eritical if



ieseS and s-{i} & S. wWhere ci(G) denotes the number of critical

pairs containing i, the Banzhaf power [1] of player i is defined

to be
c. (G)
i
P16 = T @y
keN
i.e., the relative number of times player i is critical. In par-

ticular, if a player is never critical then he has no power (such
a player is called a dummy). While this seems natural, there

seems to be no immediate reason for asserting in general that a
player's power is proportional to the number of times he is crit-
ical. First, in any given situation several players may be crit-
ical, hence no one of them has unilateral control over the outcome.
Second, there is no apparent incentive for a player in a winning
coalition to change his vote and make the measure fail (unless we
suppose that each voter's objective is merely the capricious de-
monstration of his influence, irrespective of his actual prefer-
ences), The Coleman measures of power [3] are similar to Banzhaf's
but they make a distinction between the power to pass a measure
and the power to block it, a valuable distinction that will be
discussed later on.

The Shapley-Shubik measure may be defined in the following
way. Let all the players line up in a row i1,i2,...,in (all or-
derings being equiprobable). Player ik is pZvotal if k 1is the
first index for which {i1,i2,...,ik}£13. Thus the pivotal player
is the one who putatively gets credit for having passed the measure.
The Shapley-Shubik power of player i, oi(G), is defined to be the

probability that i is pivotal.



The Shapley-Shubik value is a particular case of a more gen-
eral value defined by Shapley (7] for simple games. For a more
detailed discussion of the various measures and their applications,

see Brams [2] and Lucas [5].

EQUILIBRIUM PRICES

In this section we introduce a model of political power in
which the players receive the benefits of their power in terms of
money payments. To paraphrase Hobbes, the power of a voter will
be measured by the amount someone would pay for the use of it.

We therefore introduce into the political arena a lobbyist, who

is assumed to have a large quantity of funds at his disposal. We
shall further assume that in the given voting game G a bill (or
succession of bills) is introduced that the lobbyist wants passed.
The lobbyist desires simply to pass the bills at least cost. The
objective of each player is to maximize his "bribe" income. 1In
general we may expect that the more power a player has, the higher
the price he will command and the greater the income he will re-
ceive. The problem is to find the prices and incomes of the var-
ious players.

Let p; 2 0 be the price of player i, ieN. p(S) = .Z p; is
the cost of bribing the subset SCN. We shall assume th;isthe
lobbyist is a "price-taker", that is, the players announce their
prices p and then the lobbyist bribes some least-cost winning set
S. A payment schedule for the lobbyist is therefore a function f
which for any price vector p gives a set f(p) = Se¢ S satisfying

p(S) < p(8') for all s'e S.



Given f, an n-person game is defined on the set N of players
in which each player i quotes a price P; and gets a payoff p; if
ie f(g), and zero otherwise. However, in general, the only equi-
librium prices p for such a game result in bribes of zero. Spe-
cifically, suppose the underlying voting game (N,S) has no veto
player, that is, no player i who is in every winning set. Let p
be equilibrium for the given f, S* = f(E)' If i is in every min-
imum cost winning set, then ie S* and i can raise his price by ¢
and still be certain of being bribed, so that p would not be in
equilibrium. Therefore for every ie S*¥ there exists a minimum
cost winning set S5 such that j.isi. For any J ESi, if pj > 0
then j could lower his price by e and be certain of being bribed.
Hence Q(Si) = 0, so p(5*) = O (since it is a minimum), showing that
for every ke N k either is not bribed, or is bribed with a price
of zero.

Such a state of affairs is unrealistic, however, because in
general no player will accept arbitrarily small bribes -- if for
no other reason than that accepting bribes involves certain risks,
not to mention time spent negotiating, and so forth. Thus we shall
assume that there is a positive minimum price p;, or floor price,
(a datum of the problem) that player i will accept for a bribe.

The price vector p is said to be feasible if p > p°.

When is p in equilibrium? Various concepts of equilibrium
for n-person games have been proposed. A feasible p is in "equi-
librium" in the usual sense if no player i can change his price
and do better. More generally, if no set of players can change

their prices and each do better, i.e., if there is no set CCN,

C # ¢, and feasible p' such that p, = p} for all i¢C, and



ccf(p')y ,

p3"> Pj for all jecNf(p) ,

then p is said to be in "strong eguilibrium" [6]. Strong equi-
libria are very special, and few n-person games have them.

An even stronger concept of equilibrium results if we sup-
pose that players cooperate in naming their prices and agree to
compensate each other afterwards.

We say that p > g° is a colleetive equilibrium (for a given

f) if there exists no set CEN, C # ¢, and feasible prices p' # p

where pi =Dp; for all ig¢C, such that

(2) ccfip')
and
C's collective payoff can be distributed such that
(3) every player in C receives at least his minimum price

and is strictly better off than before.

Given (2), the latter means that there is some {di}iec satisfying
] d. = § p!, whered. > p¢ > 0 for all ieC and d, > p, for
iec * iec * Lot . .

all iE:Cer(E); equivalently,

5 o(p!-pY) > ¥ (p, - p.) when CNEf(p) # ¢.
iecc * Y decnt(p) bt )

Every collective equilibrium is, in particular, a strong

equilibrium.



Example 1. Consider the voting game on seven players 1,2,3,

4,5,6,7 defined by the following four minimal winning sets:
{1,2%y, {1,3,4}, {2,3,4,5}, (3,4,5,6,7}.

Let g° =1 (i.e., all players have equal floor prices) and let
f be such that f(p) = {1,2} whenever {1,2} is one of several
minimum cost sets.

Consider the vector p = (3,2,1,1,1,1,1). Evidently f(g) =
{1,2}, and no players can (feasibly) lower their prices and
improve their positions, no matter what the other players do.
Suppose on the other hand that C is a group of players each of
whom raises his price, and that each does better than before.

If the new price vector is p', then this implies CCf(p') = T.
Since only the players in C raise their prices, all others re-
maining the same, any minimum cost winning set S under p must
contain C, since otherwise it would cost less under p' than does
T. Therefore C is contained in every p-minimum cost set; but the
intersection of these is empty. Thus p is a strong equilibrium.
We may in fact conclude that p is a collective equilibrium (and

the unique one) with the help of a result which follows Lemma 1.

First we need the following definitions. We say that p > p?

is a canontical equilibrium for £ if it is a collective equilibrium
for £ and p; = p; for all i¢ f(g). In other words, a canonical
egquilibrium is a collective equilibrium in which every player who
is not bribed is at his flcor price. 1Indeed, at equilibrium there
can be no advantage for a nonbribed player to quote more than his
floor price, for by quoting his floor price he may at least be com-
petitive in the sense that he could be a member of some least cost

winning set. 1In fact, any collective equilibrium is just a canon-



ical equilibrium in which some players who are not bribed quote

unrealistically high prices (Lemma 2 below).

For any given floor prices p° > O define

S = (seS:p°(S) = min p°(s')}
- s'eS ~
N® = Ns
ses?

The members of S° are called critical sets, and the members

of N° the critical players.

Lemma 1. A price vector p is a canonical equilibrium (for

some f) if and only if

(4) B;g" and Pizpf for all i gN® ,

(5) for some s° ¢ S°, p(s’) < p(s) for all seS ,

(6) Z ., Pi is maximum over all p satisfying (4) and (5).
i1eN g

Notice that "for some" in (5) is equivalent to "for every”,

given (4).
Proof.

Let p be any feasible price vector such that for some

(7) p~minimum cost winning set T, p; = p; for all igT.

We claim (4) holds and T e S°.

Indeed, for any St S,

0 < p{8) - p(T)

1]

p’® + ¥ (p. -pd) - [p°(T) + 3 (p.—P‘-’)]
* iers  + 0t ~ jer 1 1

=p’(®) -p'M - ) (p;-p) .
ieT-S



But for any s%e 8°, p°(s®) - p°(T) - )
ieT-8
the above for any s%®¢e 8%, p®(s®) = p®(T) and p; = pi for all

]
D(pi--pi) < 0, hence by

ieT- 8%, Therefore (4) holds, and Te S°.

Now let p be a canonical equilibrium for some f. Then
(7) holds for T = f(p), hence p satisfies (4) and (5). Suppose

that there is some other p' satisfying (4) and (5), say S'e §°

minimizes p'(S), and that ] JPi” ) p;- Let
ieN ieN®

C={ieN: pi > p;} € N°, and define p{ = pj - for all ieC and

pg = pi = p; for i gC. PFor sufficiently small ¢ > O we have p"
feasible, p} = p; = p; for all i g N°, and
(8) z pY > z P: i

iene 1 jen® 1

moreover S' minimizes p"(S) over all Se S.

For any set S* ¢ S minimizing p" (S) we have

0 = pll (S*) - pll(Sl)

p'(s*) - |s*ncle - [p'(s') - |clel

[p'(8%) - p'(S")] + |[C-8*|e > 0 ;

~

hence C € $*, and p'(S*) = p'(S'). But p' differs from go only

on C, and CC S*NS'; hence

’

p°(s*) = p®(s") ,

[ite}

that is, S*e S°. 1In particular f(p") minimizes p"(S), so f(p") e S°,
hence N°C f(p"). But then by (8) N’ is a subset collectively
better off under p" than under p, contradicting the assumption
that P is a canonical equilibrium.

Conversely, let p satisfy (4) - (6); in particular S° mini-

mizes p(S) for every S%e 8%, Let f be any payment schedule such
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that f(p) = s* e 8. Suppose, by way of contradiction, that p is
not a canonical equilibrium for this £. Then there is a nonempty

subset C of voters and a feasible p' such that pi = P; for all

i¢cC, C@lf(g‘), and either
(i) ! pi-pl> 1 p.-p!
. 1 1
i€C ieCns’® *
or

(ii) cns* = ¢

Letting §' = £(p') we have, for any member $°¢ §°,

0<p'(s) -p'(s') =p(8") + ] ®!-p;) - [p(S') + 1 (pi_pi)]

ieCns’® ieC
= p(s®) - p(s") - ie(X:-s" (p - p;)
= p(s") - p(s") - mz:_so (p} -pj) <O
Thus,
(9) p(s®) = p(s') and p} = p; for all ieC-5S° and all s%e S°,

from which it follows that pi = p; for all i ¢ N’ and p' satisfies

(4). Hence p' and p differ only on the set CNN’. Therefore by
(9),
' ' = ' L. = 0 [ = ' 0
p'(s') = p(s") +anl\10 (p} - p;) g(sucgwo (p} -py) = p'(8"),

so p' satisfies (5) also. Finally, it is clear that CNs* = ¢

(case (ii) above) cannot hold, since then p' = p. Hence by the

above remarks and (i) we have

P! > I p.
iecrn® 1t jecnw® *t
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and

I el > 1 b,
ien® * ien® ?t
contradicting the choice of p. O

In the proof of the converse above we saw that if we choose

any payment schedule f such that f(p) ¢ S°, then p is a canonical

equilibrium for this f. By this and (7) we have the following.

Corollary 1. A canonical equilibrium p is a canonical equi-
librium for f if and only if f(p) € S°.

Referring to Example 1, we see that players 1 and 2 are
the only ones who could be above their floor prices in a canonical
equilibrium. Moreover, among all p of form (p1,p2,1,1,1,1,1) such
that P, + Py is the minimum cost of a winning set, Py + Py = 5 is
maximum; hence by the Corollary, (3,2,1,1,1,1,1) is a canonical

equilibrium for the f defined earlier, and in fact it is the only

one.

Lemma 2. If p is a collective equilibrium for f then ﬁ is a
canonical equilibrium for f, where p; = p; for i¢ f(p), p; = p; for
ie f(p).

Proof. Let P, ﬁ be as above, and let f(p) = S*. Suppose

that for some S¢S, §(S) < @(s*), and we will derive a contra-
diction.

Let § = {SES:[S(S) =min=oa} and for each Se § let Cq =
{ies-8*:p; > p;}. Then Cg # ¢. Let Cp, be a minimal element of

the family {Cs:Se S}, and define g by

q; = P; if itCT '

qi=pg_ if iecy
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Evidently, g(T) = é(T) = a, and since q kd é, a = g(T) =
min g(S). If T' is any winning set such that g(T') = &, then
seS ~ ”
q > p implies p(T') = a, i.e. T' e 8 and Cp € Cp. By choice of
= 1 s -
CT' CT' CT and so CT;'T . In particular, CT__f(g). But then

under q, every player ie:CT gets a payoff of p; > O whereas 1
got nothing under p. Since in going from p to q only the members
of CT changed prices, this contradicts the assumption that p is

a collective equilibrium.

Therefore
(10) S* minimizes @(s) over all Se S.
Then, as in the derivation of (7), we conclude that

(1) S*e S° and p. > p? implies ie Ns = N° .
1 1 SESD

In particular, ﬁ satisfies (#) and (5) of Lemma 1. Therefore, if
é is not a canonical equilibrium there must exist a feasible r,

differing from é only on N’ and such that

0 s s A
(12) every Se $° minimizes r(s) and ) r, > ) = 3 P

jo
ien® ieN b ien
By subtracting off a small € >0 from every Ty, ient = {ienN®:

r;? p;}, we see that r can actually be chosen so that it is feasible,

(12) holds, and every Se S minimizing r(S) contains N', that is
(13) Se S minimizes r(S) if and only if Se s?0

Now define g such that ;= 1y for i ¢ N°, da; = p; for i #N°.

For any S e S, g(S) 2 r(s) while q(8%) = r(S*); hence for S = f(q)

we have r(S) < g(g) < g(s*) = r(s*), implying that S minimizes
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E(S)' hence contains N°. But N° is better off under q than under
p, a contradiction. Hence é is a canonical equilibrium. O

Lemma 2 shows that any non-canonical collective equilibrium
is just an inessential variant of some canonical equilibrium, and
Lemma 1 tells us how to recognize the latter. The problem is then
to determine when a canonical equilibrium exists.

Clearly one situation in which it cannot exist is if the
voting game contains a veto player, for the price of any such
player can increase without bound, and there will be no finite
maximum in (6). It turns out that this is the only exception;
if there are no veto players then the game always has a collec-
tive equilibrium.

To see this, consider condition (5) of Lemma 1:

p(s%) < p(s) for all seS and S8°¢S

is equivalent to

P°(s®) + I (py-pj) £p°(S) + I (p;-py)

ies®-s * ie5-5°
which in view of (4) is the same as
(1) I (p;-pj) 2p"(s) - p°(8") for all SeS .
ieN®-s - -
If N° = ¢, Lemma 1 implies p’ is the unigue canonical equi-

librium. Otherwise, let A be the (0,1)-incidence matrix whose

columns are indexed by the players ie N°, and whose rows are in-
dexed by the distinct, nonempty sets N°-S, Se S. For each row
index T = N°-8 let by, = p°(§) - p°(8") (this is independent of
s®), and let E be the column vector of such bT's. Finally, let

m be p-p? restricted to the components ieN®. Then (14) is equi-

valent to



(15) a1

[N

b,

¢ 3
IIv
o]

A vector p satisfies (4) and (5) of Lemma 1 if and only if it

is obtained from such a T by letting pi==ﬂi+»p; for iE:No,pi==p;for

i g N°. Therefore, by Lemma 1, the set of all canonical equilibria

for a given p’ is obtained as the set of the p's corresponding

to the optimal solutions of the linear program

max
(16)
The dual
min
(17)
If 5 has

then y = 1 is

1
AeT < b, hil
of (16) is
by

yh21, y

no zero columns,

a feasible solution to (17).

v

v

if there are no veto players,

Since b > O, T =0 is

always a feasible solution to (16), and we obtain the following.

Theorem

1. For any voting game without veto players and

floor prices p' > O there exists a canonical equilibrium p,

and in general p is unique.

Example

{1,2, ... ,11} given by the minimal winning sets:

{1,
{1,
{1,

{2,

2. Consider the voting game on eleven players

2,3}
Z}UTZ
3}UTu

3}UT5

{3,4,5,6,7,8,9,10,11}

’

where for each k, T, ranges over all k-subsets of {4,5,6,7,8,9,10,11}.

Take EO

The linear pr

= 1; then {1,2,3} = N° is the unique critical set.

ogram (16) is
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max 7 + 7 + 7

1 2 3
subject to TyelyeTy 2 O and
L < b
ﬂz < 3
Ty L 1
n1 + ﬂ2 s 6
n1 + ﬂ3 < 4
n2 + ﬂ3 < 3

Here the first row is obtained from (14) by setting § = {2,3}L}T5
for some T;, and so forth. The unique optimal solution is w =
(34,24,4), so the unique canonical equilibrium is

p = (84,35,13,1,1,1,1,1,1,1,1).

POWER AND INCOME

The power of a player in a voting game is clearly related to
his price, but as we have seen, some players may charge high prices
and get nothing. The ultimate test is not what the player asks
but what he gets. Given any payment schedule f and prices p we

~

define the ¢ncome of player i to be
_.{pi if ie f(p)
) (o] if i¢ t(p)

For a non-canonical collective equilibrium the income to each
player is the same as for the corresponding canonical equilibrium,
and in any event the establishment of a non-canonical equilibrium
is improbable in the context of the problem. Hence we assume
that, given any payment schedule f, the players will arrive at

some canonical equilibrium prices p for f, and any such pair

(p,f) will be called an equilibrium patr.
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Let G = (N,S) be any voting game without veto players. For
computing the relative power of the players we assume that, a
priori, there is no difference in their minimum prices, that is
p% = p; = ... = pg = ¢ >0 for some constant a. (Later we will
consider other possibilities.) It is easy to see that p is a ca-
nonical equilibrium for E° if and only if op is a canonical equi-
librium for ag°(a> 0); hence the choice of o is immaterial.

We define the passing income [(or passing power) of player i,
wi' to be his expected income over all equilibrium pairs (p,f)
(with ED as above), normalized so that the total power is 1.

If (p,f) is an equilibrium pair then f(p)e 8%, and for any
payment schedule g which satisfies g(g)E,S°, (p,g) is also an

equilibrium pair. Therefore if (as is normally the case) p is

unique, then letting s® = |S"|, s{ = [{se S":ie S}| we have
p.s? n p.s. n
_Sici %3 0 0
an " —s?fr“/j§1 S VRS

If there is more than one canonical equilibrium, then the
set P of all of them forms a convex set, and the p of formula (17)

is taken to be the centroid of P.

Example 3 (The U.S. Federal Game). The members of the
United State House of Representatives and the Senate, together
with the Vice-President and the President, are players in the
voting game G described schematically by the minimal winning

sets of type:

{218R,50s,V,P}, {218R,51s,P} and {290R,67S},
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where R,S,V,P has the obvious interpretation. The unique equi-

librium passing prices for p® = 1 are found by inspection to be

Pr = 1, pg = 1, Py = 1, Pp = 88. This solution can also be
arrived at by the following heuristic reasoning. At their floor
prices, none of R, S, and V is critical -- that is, the lobbyist
can always bribe at no extra cost a set excluding any such player
--and hence they will never have an incentive to charge more. The
President, on the other hand, will charge just enough so that the
lobbyist is indifferent between bribing him and bribing some sub-
stitute set of players. The least number of players that can be
substituted for the President is 88; hence his price. This illus-
trates a general principle that will be established for weighted
voting games in the next section.

Associated with any voting game G = (N, S) is the complementary
game G = (N,S), defined by S¢S if and only if N-S¢S. In G a
winning coalition is one that is able to pass a measure whereas
in G a winning coalition is one that is able to block a measure.
In general, the canonical equilibrium prices for G and G will be
different.

For the U.S. Federal case the complementary game is described

by the minimal winning sets:
{146R,P}, {34s,p}, {515}, ({50s8,v}, ({218R}

The unique canonical equilibrium prices are seen to be
Pr = Pg = Py = 1, Pp = 17.

The blocking income (or blocking power), V;, of player i is
defined to be his passing income relative to the game G. The
distinction between blocking and passing incomes is a valuable

one. However, for comparison with the Banzhaf and Shapley-Shubik
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indices, it is useful to consider the players' expected income

with respect to passing and blocking together. Define the income
(or power) of player i, Wi, to be his total expected income (rela-
tive to p® = 1), normalized so that the total is 1:

pis;/s°-+ﬁi§;/§°
(18) ¥y, = -

.s9/s0 +p.s%/s?
j;) (pJ J/s pjsj/s )

where p, p are the centroid canonical eqguilibria for G and G re-
spectively and s’, §%, etc., have the obvious interpretation.
The passing and blocking incomes for the U.S. Federal Game

are given in Table 1, and the incomes are compared with the

Shapley-Shubik and Banzhaf values in Table 2.

Table 1. Incomes for the U.S. Federal Game.
Zaseing Plocking
R .00140 O.
s L0041 .00667
v L0014 1 0.
P .24654 .33333

Table 2. Power Measures for the U.S. Federal Game.

R .00123 .00149 . 00097
S .00207 .00310 .00o414
v .00124 .00310 .00265

P .25735 .03893 16314
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For a priori computations of power it was assumed that the
floor prices of all players were equal. This is in keeping with
the notion that a floor price represents the minimum payment com-
mensurate with the act of accepting a bribe at all, which a priorz
is not different for the different players. Another interpretation
is that the floor price represents some kind of minimum expectation;
it could then be argued that the more powerful players will natu-
rally have higher expectations, and therefore higher floor prices.
If we follow this idea to its conclusion, we might indeed assert
that the equilibrium prices, once established, become the new floor
prices. Does this lead to a kind of "second order" equilibrium?
The answer is easily seen to be no, since if p is a collective
equilibrium for initial floor prices E°, then in particular there
is no player contained in ns , since any such player could

p(S)=min
raise his price further. Therefore if p is taken to be the new
floor prices, then there are no critical players; hence the floor
prices themselves constitute the unique canonical eguilibrium.

Therefore no new equilibria are obtained.

WEIGHTED VOTING GAMES

A voting game G = (N,S), N = {1,2,...,n}, is representable as
a wetghted voting game if there are numbers qg; WyrWoreoo W, such
that Se€ S if and only if _Z w.2q. g is called the quota, the w;'s
are called the weZghts. Hes

Example 4. The County of Nassau in New York State has a County
Board of Supervisors consisting of six members, one for each munic-
ipality in the County. As of 1971 the members' votes were weighted
as shown in Table 3 with a majority of 63 of 115 required to pass

a Mmeasure.
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Table 3. Weights for the Nassau County Board of Supervisors (1971).

Municipality Weight
Hempstead No. 1 (H1) 31
Hempstead No. 2 (H2) 31
Oyster Bay (OB) 28
North Hempstead (NH) 21
Glen Cove (GC) 2
Long Beach (LB) 2
For egual floor prices, p? = 1, the critical sets are

{11, H2, OB}
{H1, H2, NH}
{11, H2, GC}
{11, H2, LB}
{H1, OB, NH}

{H2, OB, NH}

Since no player is critical, p° = 1 is the unique canonical

equilibrium. For the complementary game 53 votes are required to
block, and for go = 1 the critical sets are {H1, H2}, {H1, OB},
and {H2, OB} . Again, no player is critical. The resulting ex-
pected incomes (normalized) are compared in Table 4 with the

Banzhaf and Shapley-Shubik values.
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Table 4. Power Measures for the Nassau County Board of Supervisors,

Municipality Income Banzhaf Value Shapley-Shubik Value
H1 . 300 .278 .283
H2 . 300 .278 .283
OB .233 .204 .217
NH . 100 .130 117
GC .033 .056 .050
LB .033 .056 .050

In the U.8. Federal GCame we noticed that the price of the
President can be interpreted as a kind of marginal rate of sub-
stitution of other players for the President. 1In the above example

the prices also have this interpretation. More precisely, given

any voting game G = (N,S) without veto players, and p® = 1, define

Vi for each i €N, to be the cardinality of the smallest winning

set not containing i, and similarly define u; to be the cardinality
of the smallest winning set containing i. We call ry = vy - ui+1
the integral substitution rate for i. Notice that in Examples 3 and
4 the canonical equilibrium prices equal the integral substitution
rates or 1, whichever is larger. Although this result does not hold
for all voting games, it is "approximately" true for all weighted
voting games (in the sense of Theorem 2 below); moreover it often

holds in practice -- e.g. the U.S. Federal Game, which is not rerresen-

table as a weighted voting game.

Theorem 2. Let G be a weighted voting game with player set

{1,2,...,n} = N and representation (q;w1,w2,...,wn) where

n
v, > w2;...; L and Z- wi;q. Let go = 1

i=2
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(i) For every canonical equilibrium p either Py = 1 or
p; > and r, - 1 <p; 2r,.
(ii) There exists some canonical equilibrium 5 such that
Pq 2P,2...2P.
oo
Proof. By the hypotheses that wy > w,>...2>.w and ] w,>q,
i=2

G has no veto players. With p? = 1, let N? be the set of critical

players, p a canonical equilibrium price vector, and ﬂj= Py~ pg,

A

jE:N°. To prove (i) it suffices to show that rj— 2§:ﬂj=:rj_ 1 for
any jeN°. Let S° be any critical set (i.e. minimum cardinality

winning set). For each j e N?, let s? be a minimum cardinality set

in S§ not containing j. Then the (N°- s) )-row of the linear program

(16) states that

m. < b .= s3] - ' = r. -1 ,
ieN%‘—Sj T no-gd (871 - 18?1l = =

so 1 > O implies

(19) moo<r, -1 .

We note that (19} holds for any voting game G without veto

players. With G as hypothesized we now show that

r., -2 <n, for all jeN® .

J J
Let k be the least integer such that g < Z W Then
1<1<k
s® = {1,2,...,k} is a minimum cardinality winning set. For any
CCN®, C # ¢, such that N-Ce S, let r. be the least integer %
such that ¢ < ] w; + ) w,. Then r, = |s| - |s® -]
1<i<k k+1<i<k+2
igcC

where S is a minimum cardinality winning set such that SNC = ¢.

Evidently ry;y = r; for all ie [
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We claim that whenever r. is defined and |C| > 2,

C
> _ .
(20) ro = rC—{j} + r{j} 1 for every je C.
By definition,
(21) Z W + Z w., < g
k<i<k+To_ri) 12i<k *
J igc-{5}
and
(22) w., + ) w,>q ;
k<L_Jk+r i BT
igC

hence subtracting (21) from (22),

w. < z W, .

<j< 1
k+rc_{j}=1=k+rC

Letting £ = r + 1 it follows from the fact that the wi's

c” Te-{5)
are nonincreasing that

w. < Z wi .
3 k+12i%k+n

Hence
(23) I ow + I wiz2aq
12isk k+15i<k+8
i#3
and

. < - . +
T{33 S o T Te-{5p * 1 o
proving (20).
Now fix je N°C gf.
If y is a dual optimal solution to (17), then yA2>1 implies

that for any given je:N0 there exists an S* ¢ § such that
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jeC* = N° - s* and Yo# > 0; hence by complementary slackness

I

(24) } wm. =D

s¥| - |s°| .
Lt = pew = Istl - IS0

Oon the other hand, for any Se S such that SNC* = ¢ we have

(by the feasibility of m)

P < dsi-0s®]
. i=

1eC#*
hence S* is a minimum cardinality Se S such that SNC* = ¢,
whence

s4] - |s°-cx| = xo,
and
(25) Y om,o= ., - |C¥

iec* * c

If C* = {j}, then we have Ty o= r{j} -1 and we are done.

If {j}<;c*, then 1 feasible implies
I 7 < s| - |s°| for all Se S s.t. sN(C*-1{3}) = ¢ ,
ieC*={3}
in particular,

(26) Iomo<

i - |e*-{5}] .
ieC*-{j}

Tex-15)

From (20), (25) and (26) it follows that

3 2 T3y T 2 = ry - 2,

and since j was arbitrary in N°, statement (i) is proved.

Now suppose there is no monotone canonical equilibrium p in
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the sense of statement (ii) of the theorem. For any canonical
equilibrium p a pair (i,j) is bad if i < j and p; < Py- Let §
be a canonical equilibrium having the smallest number of bad pairs.

We may choose i and j such that i < j, D,

;< pj, and P 2 P. for

J
h < i-1, Ek ;Ei for k > j+1.

Let € = (55-—51)/2 and define
P} =p; +¢
¥ = p, - ¢
Py = Py
Py = Py for k # 1,3 .

We claim that p* has fewer bad pairs than E. Indeed, p* can

introduce no new bad pair (i,h) where i < h. On the other hand,

if h < i then by choice of (i,j) Eh > Ej = p; + 26, so p} = Eh >
Ei + € = pI and (h,i) is not a bad pair for g*- Similarly we show
that p* introduces no new bad pairs involving j. Since (i,j) is

not a bad pair for p*, p* has strictly fewer bad pairs than p-

Let m, = p, - 1 for keN’; then 7 is optimal for (16). Moreover,

since Fj >y 1, we must have j e N°. We claim that T* is feasible

for (16), where 7} = pi - 1 for ke NC.

Indeed, for fixed S°¢ S and any Se S such that N°-5S ¥ ¢,

I 7, < s| - |s°]

(27) L o K 2

keN®-s K = yeno-g

A

unless ieN°-S and j ¢N°-S; that is, unless jeS and i ¢S. 1In
this case, since w2 Wy it follows that s' = suyu{il - {j}e S.
Since 7T is feasible we have

ks
keN®-g k

é'sll -|S°| 4
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that 1is,
] T o= 1 7o+ mo-7o= L W o+2e<|s| - s =|s| - [s]
KeN®-s' K kent-s X J 1 jeno-g K -
and so
[ mx = L W o+e <|[s|-|s'|

kenoos ¥ keN®-s

showing that (27) holds in any case. Thus 7* is feasible, and
since 1+ m* = 1«7, n* is also optimal; hence by Lemma 1 p* is a

canonical equilibrium with fewer bad pairs than p, a contradiction.Oo

Example 5. Let G be the weighted voting game with represen-
tation w = (12,6,5,4,4,4,4,1,1), g = 23. With g° = 1 the unique
critical set consists of the first three players. The associated

linear program is

max ‘lT1 + n2+ TI'3

subject to n1,n2,n3 > 0 and

™ < 2
m, < 1
L <1
o+ om, < 4
my + L < 3
‘lT2 + 1r3 < 1
Then g1 = (2,0,1) is an optimal solution that is non-monotone

in the players' weights. Moreover it may be observed that there is
no alternate representation of the game by different weights in
which player 3 has a weight equal to or greater than that of player

2, because players {2,4,5,6,7,8} constitute a winning set, whereas
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{3,4,5,6,7,8} do not.

The voting game of Example 2 may actually be represented as
a weighted voting game with weights W o= (13,10,4,3,3,3,3,3,3,3,3)
and quota q = 27. As shown before, for p? = 1 the unique canonical

equilibrium prices are (43,3%,14,1,1,1,1,1,1,1,1), which satisfy

Nt

the conditions of Theorem 2 but are not integer.

INCORRUPTIBLES

So far it has been assumed that every player's vote can be
bought, and, moreover, that each player threatens to vote contrary
to the lobbvist's wishes unless he is bribed. The more general
viewpoint may be adopted that for any issue which the lobbyist
supports there will be a certain subset of players who support
the measure and therefore do not need to be bribed, whereas there
are other players who cannot be bought at any price (incorruptibles).
This situation can be handled by a simple modification of the fore-
going ideas. Given game G = (N,S) we assume that before bribing
begins, a certain set AS N of players announce their position in
favor, that another set BCN-A of players are irrevocably opposed,
and that the remainder, N - (AUB), are merely waiting to be bribed.
In effect, the players in A voluntarily accept a bribe price of 0O,
while those irrevocably opposed have a floor price of +=. If A wins,
or if N-B loses, then the lobbyist has nothing to do. Otherwise,

the lobbyist behaves as if the game were
G' = {§v- (auUB), ST ,

where S' = {S C(N- (AUB)):SUA¢€ S} and prices and incomes are

determined accordingly.
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