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R
andom searches are routinely
used in many algorithms, for
instance, when looking for the
shortest path connecting 100

cities or for ordering genomes in a
most-parsimonious descendency tree. In
this issue of PNAS, Matsen and Nowak
(1) use a random search for another
type of problem, that of finding coher-
ence rather than optimality. The task
thus consists of reaching unanimity. The
proposed solution is outrageously sim-
ple: Keep switching until you agree with
two others, then stop. Under a wide set
of conditions, this slapdash recipe
works.

Searching a Majority
Imagine a platoon of paratroopers land-
ing at night in a vast forest. They are
scattered across the forest, and their
first task is to unite. The plane that car-
ried their means of communications is
unaccountably lost. They have to grope
for each other in the dark. Shouting is
out of question, because the enemy
might hear. How should they proceed?
Look for their leader? The leader was
on the plane that got lost. All soldiers
are equal, and no distinction of rank
will help them converge on one particu-
lar person.

The soldiers have to search not for
one designated place or for one salient
point, for instance, the tallest tree in the
forest, but they have to search for each
other. Moreover, their search ought not
to take too long, lest the enemy coun-
terattacks. In war, you have to be, as the
confederate general Nathan Bedford
Forrest used to say, ‘‘the firstest with
the mostest.’’

In the absence of any information, the
soldiers have to engage in a random
search. Such problems are usually de-
scribed by means of a graph (2–4). The
possible sites correspond to the vertices
of the graph. Neighboring vertices are
connected by edges. Soldiers move along
the edges. It is so dark that they cannot
mark the sites they have already visited
or recognize edges they have used be-
fore. They are known, in a strange tech-
nical expression, as memoryless learners.

Barring exceptional cases, if the sol-
diers keep searching, they will sooner or
later all come together by sheer luck.
They should certainly not disperse
again. Indeed, it is clear that the sol-
diers should stop searching as soon as
they find themselves in a majority group

and wait for the stragglers to come up.
How large is the majority? Fifty percent
of the total? Maybe the soldiers do not
know the total. They should certainly
stop searching when their group is large
enough, because if they keep moving
through the night they will scatter anew.
When is the group large enough?

Matsen and Nowak (1) propose that
the soldiers be given a simple order:
Stop moving when you have found two
buddies. Of course, this rule can fail. It
could be that several groups of three or
more soldiers form in the forest. In this
case, union will not be achieved. But
this happens only rarely. In most cases,
the first group that happens to unite
will remain the only group with more
than two persons. The stragglers are

more likely to reach it than to form an-
other threesome. Thus there will be just
one condensation kernel that grows and
eventually absorbs the whole platoon.

The recipe only works if the initial
distribution is very sparse. If the wood
were densely populated by paratroopers,
they would soon have formed several
groups of three and frozen. Thus the
number of vertices should be much
larger than the number of agents
swarming over them. Also, the graph
should be connected and fairly regular,
meaning that the number of edges lead-
ing out from a vertex should not vary
too much. If the forest, for instance,
consisted of two separate patches, the
soldiers could never unite, and if the
two patches were only connected
through one narrow alley, the rule
would often fail; the soldiers would be
more likely to form two distinct groups
than to work their way in a random
walk through the bottleneck. Matsen
and Nowak (1) show that, under these
conditions, the expected time to unite is
essentially that for forming the initial

cluster and is proportional to the square
of the number of sites. The time for the
stragglers to join the cluster is much
smaller. For graphs that are very nar-
row, those that look like long ropes or
rope ladders, for instance, the rule must
be amended: Stop the search whenever
you have met with three buddies rather
than two.

Learning Coherence
The task of reaching coherence occurs
frequently in biological contexts. Usu-
ally, signaling pathways are in place to
allow for local coordination between
cells or individuals (5). Birds use visual
cues to move in a flock; social insects or
amoeba lay tracks of scent, etc. The
converse task, that of avoiding coher-
ence, may also be of interest. According
to the Red Queen hypothesis, the main
reason for sex is to keep immune re-
sponses from becoming homogenous in
a population, lest the pathogens adapt
to a common target (6).

Coordination is relatively easy once a
communication system is in place. But
establishing the communication system
in the first place is itself a coordination
task that is considerably more difficult.

Matsen and Nowak (1) were led to
their coherence learning model when
trying to describe language acquisition.
As with the paratroopers, the main task
for the learners is to unite; there is little
point in having a private language.

Coordinating communication systems
before even having the means to com-
municate is a daunting task. The search
for coherence takes place not in physical
space but in an abstract space of possi-
ble grammars. Most people learn their
language from their parents or from
teachers, but there have been occasions
when people from different origins were
thrown together and had to reach un-
derstanding on their own (7). It turns
out that adults in that case never man-
age anything better than some crude
pidgin, a protolanguage lacking any
grammar and allowing just the stringing
together of two nouns. But their chil-
dren develop pidgin into a creole, a full-
blown language with a grammar of its
own. How can they achieve linguistic
coherence in the absence of a teacher?

See companion article on page 18053.

*E-mail: karl.sigmund@univie.ac.at.

© 2004 by The National Academy of Sciences of the USA

The time to unite
is essentially that for

forming the initial cluster
and is proportional to

the square of the
number of sites.
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The rule suggested by Matsen and
Nowak (1) is an attempt to explain such
coherence.

Language-learning from peers, i.e.,
without role models, has become a styl-
ized fact. Children from immigrants
learn the new language not from their
parents but from the other children in
the neighborhood. Hard and fast evi-
dence for the emergence of a new
language in a peer group is scarce. Ac-
cording to unreliable reports, three
rulers (Pharaoh Psamtik, Emperor
Frederick II, and King James IV) have
attempted the experiment of raising iso-
lated groups of children by deaf and
mute foster parents in ill-guided at-
tempts to find out the true language of
man (8). Strangely, a mirror image of
such an experiment provides, today, the
most convincing evidence for the emer-
gence of a new grammar within a peer
group. In this unintended experiment,
not the foster parents but the children
were deaf and mute. In 1979, Nicara-
guan authorities planned to send such
children to deaf schools to teach them
to lip read. The attempt had little suc-
cess, but the children developed, on
their own, a new, grammatically sophis-
ticated sign language that was eventually
picked up by their teachers (9, 10, 11).
Other examples for coherence learning
in peer groups include the emergence of

scientific jargon in a new discipline or
the adoption of new expressions among
school children.

Groping Through Cyberspace
The issue addressed by Matsen and
Nowak (1) is not limited to traditional
linguistics. The search for coherence is
an essential aspect in the emergence of
multiagent systems and distributed artifi-
cial intelligence. Massively parallel com-
puting is turning into a key technology
(12, 13). This development is fostered by
the growth of the Internet as an open
environment for software and by the
spread of machine-independent pro-
gramming languages, such as Java. Mil-
lions of computers are connected with
each other, often in haphazard ways,
and are required to behave coherently
in the absence of any global control. In
multiagent systems, they engage in grid
computing, distributed problem solving,
information gathering, or collaboration
in e-offices or e-science. The demands
of these tasks lead to formidable coordi-
nation problems related to task control,
initializing, or load sharing. These prob-
lems have to be solved by autonomous
and often heterogeneous modules with
limited viewpoints and by using decen-
tralized data (14–16). The modules in
multiagent systems must communicate
in a peer-to-peer fashion and learn from

each other the formats, languages, and
protocols to use. Furthermore, they
have to achieve software standardization
on their own, without instructions from
a higher level and through an undi-
rected search in the space of all possible
solutions.

What Matsen and Nowak (1) propose
is a particularly simple type of reinforce-
ment learning. As soon as the agents
are satisfied, they terminate their ran-
dom search. Economists know this
behavior as ‘‘satisficing’’ (a term intro-
duced by Nobel prize-winning economist
Herbert Simon) (17, 18). Among agents
having only a localized knowledge of the
environment, searching for improvement
can lead to costly detours and requires
considerable cognitive effort. In critical
situations, fire-fighters, emergency sur-
geons, or paratroopers do not engage in
the luxury of weighing several alterna-
tives: Each proceeds with the first feasi-
ble option that comes to his or her
mind. For boundedly rational subjects,
optimizing is often too costly, so satisfic-
ing remains the right way to proceed.
The important thing, then, is to choose
the right aspiration level, i.e., when to
say that enough is enough. What is so
surprising in the random search for co-
herence is how modest that aspiration
level can be.
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