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Abstract

This paper reviews recent attempts in demography and eco­
nomics to design comprehensive dynamic demo-economic policy models.
The policy models are formally stated as optimal control problems.
Two groups of models are distinguished: Planning-oriented models,
which originated in demography and which are designed to aid poli­
cymakers to solve practical problems; and theoretically-oriented
models, which have been developed as part of the economic growth
theory and which are intended to gain theoretical insights into
demo-economic systems.

Acknowledgements

We are grateful to Brian Arthur for several invaluable sug­
gestions and comments on an earlier draft. We also acknowledge
with many thanks the effort Marina Hornasek devoted to this paper
by typing a number of subsequent drafts.

iii



Table of Contents

THEORETICALLY-ORIENTED POLICY MODELS

CONCLUSION ....................•...................

Bibliography

Economic Growth with Population Endogenous •.....•

Optimum Demo-Economic Growth ....................••

Demo-Economic Models: A Classification .......•..

The Formal Dynamic Policy Problem .

1

2a

5

7

9

13

23

29

38

51

iii

iii

.......... ~ .
A Matrix Model of Population Control .

Elaboration of the Matrix Model of Population Control

Abstract .

Acknowl edgement s .

It~TRODUCTION ••••••••••••••••••••• 0 ••••••••••••• , ••

PLANNING-ORIENTED POLICY MODELS

1.

1.1

1.2

2.

2. 1

2.2

3.

3. 1

3.2

. 4.

v



NORMATIVE ~ODELLING

IN DEMO-ECONOMICS

by

Frans Willekens

Andrei Rogers

1. Introduction

Social concern with population processes arises when the demo­

graphic acts of individuals affect the welfare of others and com­

bine in ways that produce a sharp divergence between the sum of

individual (private) preferences and the social well-being. In

such instances, population processes properly become the subject

of public debate and the object of public policy.

Population policy has a special feature that makes it a diffi­

cult research topic. Although a central element of any demographic

policy is the size and the distribution of population, neither the

goals nor the means of such a policy are purely demographic in na­

ture. A population trend is viewed as being good or bad in the

light of its presumed social and economic consequences. That is,

a population policy is an instrument to achieve non-demographic

goals. Davis (1971, p.7) described a population policy as a

policy that tries to eliminate the demographic causes of the pro­

blems to be solved.

The importance of social and economic considerations in the

formulation of population policies was stressed by the World Popu­

lation Conference in Bucharest in 1974. The Conference strongly

endorsed the view that demoaraphic matters considered in isolation

from economic and social factors, have little significance (Tabah,

1975, p.380). This is particularly true in the case of migration.
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It is impossible to determine the goals and means of population

distribution policies without considering general economic and

social policies. Typically, human settlement programs are part of

a regional economic policy, or of a land use policy, or of a phy­

sical planning program (for an illustrative review of population

distribution policies in several developed countries, see Willekens,

1976a~p.31-55).

The interdependence between economics and demography is also

reflected in policy modelling efforts. Models of demo-economic

growth and policy are receiving considerable attention in economics

and in demography.

In most of modern economic growth theory, population is en­

tered as an exogenous variable affecting economic growth through

the labor supply, but itself being unaffected by changes in eco­

nomic conditions. A few economists have endogenized population in

their models by relating it to per capita income or a similar eco­

nomic index. Although the treatment of population as an endogenous

variable in economic growth models is of recent date, the notion

itself has a long history. Classical economists such as Adam Smith,

Thomas Malthus, J.S. Mill, and Ricardo all viewed population as

being intimately dependent on the state of the economy.

Demographers, too, have only recently attempted to extend purely

demographic models of population growth to include economic factors.

And, again, the notion is not new. More than fifty years ago, Lotka

(1925) already was stressing the importance of an interdisciplin­

ary approach to the study of population. He did not consider popu­

lation in isolation, but viewed it as part of a larger ecosystem.

The demographic growth model he proposed, one which has become the

basis of modern mathematical demography, was derived as part of a

larger ecological study.
This paper reviews several recent policy models in which demo-

graphic and economic variables are endogenous. The models investi­

gated are those with explicit policy objectives. To place the

models in perspective, however, we first propose a classification

of existing demo-economic models. Then, we introduce the basic

mathematical apparatus common to all models treated in the remain­

der of the paper.
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1. 1 Demo-e conomic nodels: .A c lass if ication

Because the number of demo-economic models is large and grow­

ing rapidly, a classification may be useful. Realizing that any

classification is to some degree arbittary, and that classifying

items is done more for pragmatic than for scientific reasons, we

adopt the following three-way classification scheme (for another

classification, see McNicoll, 1975):

a. Models of demo-economic growth

b. Demo-economic simulation models

c. Models of demo-economic policy

a. Models of demo-economic growth:

The main purpose of these r.lodels is to describe or to exp12in demo­

graphic and/or economic growth by considering both demographic and

economic variables in an interdependent way. Their fundamental

feature is the simultaneous endogenous treatment of demographic

and economic growth. We shall consider three types of such models:

1. Demometric growth models

ii. Neoclassical growth models

iii. Dualistic growth models

The first category contains empirically-oriented models that

frequently are developed as part of an inductive investigation of

demo-economic growth. They are closely related to econometric

growth models. Greenwood's (1975) simultaneous equations model

of urban growth and migration is an example of this class of models.

The second and third categories contain theoretically-oriented

models developed as aids in the deductive analysis of demo-economic

growth. Their purpose is not to predict real situations, but rather

to gain theoretical insights into real processes.

Neoclassical growth models have received most attention in

economic growth theory (see e.g. Burmeister and Dobell, 1970). The

term "rieoclassical" is used to describe supply-oriented models.

The contrast is with Keynesian models, in which production and the

use of resources are determined by aggregate demand rather than

supply (McNicoll, 1975, p.649).

Models of the dual economy are best known in the economic de­

velop~ent literature. Although not generally thought of as demo­

economic growth models, they are included in this classification
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because of their use of migration as an adjustment mechanism

assuring labor market equilibrium. Models of the dual economy

have been developed by Lewis (1954), Ranis and Fei (1961) and

Jorgenson (1961) and extended by Kelley, Williamson and Cheetham

(1972) and Todaro (1969), among others.

b. Demo-economic simulation models

The distinction between simulation models and descriptive

and explanatory growth models is fuzzy. Any demo-economic simu­

lation model contains a growth model as its central and vital

element. The quality of a simulation model varies directly with

the quality of its growth model. The fundamental difference

arises as a consequence of the aims of the two kinds of models.

While the first group of models are intended to describe or to

explain, simulation models are meant to demonstrate and compare

impacts of alternative policies or of alternative trajectories

of exogenous variables. Simulation models, therefore, are im­

pact evaluation tools. In this sense, policy simulation models

may be descriptive or explanatory models that are adapted to

investigate the sensitivity of the system to be studied to

changes in predefined instrument and exogenous variables.

Demo-economic simulation models usually are designed to

explore the economic implications of alternative population

trajectories and trajectories of demographic parameters, and

very rarely do they try to describe the evolution of a complete

demo-economic system under changing conditions. One of the

earliest examples of models of this type is the Coale-Hoover

(1958) model for India. It focused on the impact of fertility

reduction and the consequent changes in the size and age dis­

tribution of the population on economic development, in casu em­

ployment (labor), investments (capital) and per capita income.

This model has produced a number of progeny (Demeny, 1965;

Enke et al., 1968).

Only a few attempts have been made to simulate in a truly

integrated manner, the interdependencies in a demo-economic

system. The first models of this sort are macro-economic models

with population as an endogenous variable. Their principal pur­

pose is not to represent the full complexity of the real situa­

tion, but rather to identify important insights about the
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demo-economic process. This class of macro-simulation models

of demo-economic systems is illustrated by the Yap (1975) model

for Brazil, designed to simulate the interaction between rural­

urban migration and economic development, and by Kelley and

Williamson's (1975) model of Meiji, Japan.

Finally, large-scale data-based models have been de­

veloped to simulate the evolution of demo-economic systems.

The I'Bachue" model of the International Labour Office, for

example, considers a multisectoral economy and a disaggregated

demographic system in a study of alternative employment genera­

tion strategies. Economic development depends on demographic

change, and fertility, mortality and migration patterns are

determined by the economy. For a critical review of some of

the models, see Arthur and McNicoll (1976).

c. Models of demo-economic policy:

Demo-economic policy models strive to prescribe comprehen­

sive demographic and economic policies. Policy objectives and

policy instruments are stated explicitly. Objectives may be

expressed in terms of a set of targets to be reached, in terms

of an overall welfare index to be maximized, or as a combina­

tion of both. The policy models are dynamic in the sense that

both instruments and objectives belong to different time periods.

Formally, the dynamic policy problem is that of choosing time

paths for certain variables called instrument or control vari­

ables from a given set of feasible time paths, so as to maximize

a given objective or to achieve given targets (compare this for­

mal statement with that of Intrilligator, 1971, p. 292). When

presented in this form, the dynamic policy problem becomes an

optimal control or dynamic optimization problem. Therefore, a

convenient analytical framework for the study of quantative dy­

namic demo-economic policy is the theory of optimal control. In

other words, the population policy problem may formally be stated

as a problem of optimal control (see Arthur and McNicoll, 1972,

p. 2; Willekens, 1976b, p.86). For the analogy in economic policy,

see for example Chow (1973, 1975) and Pindyck (1973).

Within the formal framework of optimal control, two groups

of demo-economic policy models may be distinguished:

~. Planning-oriented policy models.

ii. Theoretically-oriented policy models.
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The models in the latter category are set up to gain theoretical

insights into the characteristics of an optimaf demo-economic

system. The aggregation level of these policy models is usually

high and the underlying growth model is generally of the neo­

classical type. The first category contains models designed

to aid policy-makers to solve practical problems. They are

usually more disaggregated and imbed an empirically-oriented

or demometric growth model. While most (i)-models have been

developed by authors more directly interested in the planning

of the growth and the distribution of the population, most

(ii)-models originated in the economic growth theory.

In the remaining sections of the paper, we investigate some

features of demo-economic policy models of the optimal control

type. The first part is devoted to planning-oriented models.

The second part reviews the theoretically-oriented models.

First, however, we need to introduce some of the optimal con­

trol vocabulary.

1.2 The formal dynamic policy problem

The basic ingredients of an optimal control problem are

(i) a state equation describing the dynamics or "laws of motion"

of the system, (ii) a set of constraints on the state and con­

trol variables, (iii) a set of boundary conditions and (iv) a

performance index or objective function (see for example Bryson

and Ho, 1969) •

(i) State equation

Let the vector {~(t)} denote the state of the system at

time t. The state vector may refer to the population distribu­

tion by age or region, or to economic stock variables such as

capital. The control vector {u(t)} contains the instruments

or policy variables which may be controlled by the policy maker.

The dynamics of the system are described by a set of differential

or difference equations, the so-called state equations:

or

{x(t)} = f[{x(t)}, {u(t)}, t]

{x(t + 1)} = h[{~(t)}, {u(t)}, t].

(1 )

(2)
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In this paper, the state equations usually describe population

growth and capital accumulation. In other words, the state vari­

ables are population and capital.

(ii) Constraints

The dynamics of the state and control variables may be con­

strained for economic, political or other reasons. Let the

set of admissible state and control variables be defined by the

vector-valued function {g(.)}:

{g({x(t)}, {u(t)}, t)} :;. {oJ.- -
(iii) Boundary conditions

The initial state is given:

(3 )

(4 )

Sometimes the values of the state variables must satisfy cer­

tain conditions at the planning horizon T. These are described

by the vector valued function

{rn({x(T)})} = {oJ

(iv) Performance index

The general formulation of the performance index to be

optimized is

T
J::: J U({x(t)}, {u(t)}, t) dt

o -

for the continuous model, and

(5) .

(6 )

T-1
J = K({x(T)}) + L L({x(t)}, {u(t)}, t)

i=O
(7)

for the discrete model.

The dynamic policy or optimal control problem is then formu­

lated as the determination of the control s~quence {u*(t)} for

t = 0, ... T - 1, and the corresponding trajectory of the state
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vector {x*(t)} for t = O, ... T, such that the systems dynamics

(1) or (2), the constraint (3), and the boundary conditions (4)

and (5) are satisfied and such that the performance index (6)

or (7) is optimized. The sequence {u*(t)} is the optimal con­

trol and {x* (t)} is the optimal trajectory. In other words,

the optimal control problem is to steer a dynamic system so as

to optimize a performance index, subject to constraints. This

formulation is a very general one and encompasses most dynamic

population policy problems.

2. Planning-Oriented Policy Models

The models discussed in this section all have a common

feature: they may be considered as logical extensions of demo­

graphic growth models to the policy domain. To demonstrate this,

we will gradually build up policy models of greater degrees of

complexity, starting with growth models that have been studied

in mathematical demography.

Malthus can probably be credited with formulating the first

model of population growth: "Population, when unchecked, in­

creases at a geometrical ratio" (Malthus, 1798, p.13). De­

noting the population size by N and the rate of population

growth by n, Malthus' model may be represented by a first-order

differential equation

dN(t) - nN(t),
dt -

with the solution

(8)

N (t) (9)

The discrete form of Malthus' model is the difference equa-

tion

N (t + 1) = (n + 1) N (t) = gN (t)

with the solution

(1 0)

( 11 )
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More recently, the aggregate model in (10) has been dis­

aggregated to treat population growth by age (Leslie, 1945;

Keyfitz, 1968), by region (Rogers, 1968) and by age and region

(Rogers, 1975). The disaggregated model takes the form of a

set of linear, first-order, homogenous difference equations,

that has the simple expression:

{K(t + 1)} = G{K(t)}, ( 1 2 )

where the elements of the vector {K(t)} denote the number of

people at time t by age group and/or by region, and G is the

associated population growth matrix.

The solution of (12) for an unchanging G is, of course

t{K(t)} = G {K(O)}. ( 1 3 )

In terms of the standard optimal control problem presented

in the previous section, the growth model (12) constitutes the

homogenous part of the state equation (1). The population dis­

tribution vector {K(t)} is the state vector and the growth

matrix G is the transition matrix. The model describes the

dynamics of an age- and/or region-specific population system

that is undisturbed by exogenous forces (such as external mi­

gration) and that is free of any policy interventions.

The demographic growth model may be converted into a com­

plete policy model in a number of steps. It is the purpose

of this section to build up such a policy model and to provide

a framework for comparing existing and potential planning-orien­

ted population policy models.

The first step is to transform the growth model (12) into

a complete state equation (1) by adding a sequence of ~ectors,

describing control actions in time (and space). The simplest model

(Rogers, 1966, 1968, 1971) is a purely demographic model, i.e.

both the state and the control vector are in terms of demo­

graphic variables, such as fertility and migration. This model

and its variants will be reviewed in the first part of this

section. The second part extends this Dolicy model to

include economic control and state variables, and considers
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constraints and objective functions explicitly.

2.1 A matrix model of population control

Recall that the growth of a demographic system may be repre­

sented by the matrix equation (12). To investigate the effects

of a birth or migration control policy on an interregional popu­

lation system, one may introduce a constant intervention (con­

tol) vector {~} which is added to the population in each time

period as follows:

{K(t + 1)} = G{K(t)} + {m}. ( 14 )

The vector {m} may have both positive and negative compo­

nents. A positive mi indicates the number of people that must

be added to a region's population during each unit interval of

time; a negative mi denotes the population that has to be per­

iodically withdrawn from region i. In analyses of alternative

birth control policies, a negative m. may be interpreted as the
1

number of births that must be prevented from occurring during

each unit interval of time.

Beginning with an initial population at some point in time,

say, t = 0, we may trace through the effects of a particular

policy control measure over time by repeatedly applying (14):

{K(1)} = ~{~(O)} + {~}

{K(2)} = G{K(1)} + {m}

Gt{K(O)}
T-1

T-1-i{K(t)} = + [ L G ] {m} (1 5 )
i=O

and

- Gt{K(O)}
T-1 t-1-i{K(t)} = [ L G ] {ill} • ( 16 )
i=O -
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Premultiplying both sides of (16) by 9, and subtracting the re­

sult from (16), gives, for a particular class of G matrices,

(I

Therefore,

G) [{K(t)} ( 1 7 )

t ­
(I - G ) {m} (18)

Note that (18) is the solution to equation (14).

Equation (18) may easily be transformed into a policy model

under certain conditions. First, the goals of a population dis­

tribution policy must be expressed in terms of population tar­

gets at a planning horizon. Second, the matrix (~ - 9t
) is non­

singular. The latter is the necessary and sufficient condition

for controllability of the system described by (14) (Willekens,

1976b, Chapter 2). Assuming now a vector of target populations

at the planning horizon T, {K(T)},the intervention vector which

will assure that the targets are reached is easily computed:

In applying the population control model (14) to empirical

data, it is important to ensure that the interpretation of the

intervention vector makes sense. For example, in a "pure" in­

ternal migration policy, the total population of the system

remains constant. An inmigrant with respect to one region is

an outmigrant with respect to another. The sum of inmigrants

must equal the outmigrants, i.e.

{1}'{m} = o. (20)

As a consequence, the policy-maker cannot specify a target popu­

lation for all regions.

The procedure to compute the control vector in the case

of a pure migration model is described by Rogers (1971, p.106)

as follows: the migration rates are taken out of the growth
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.matrix and the migration flows are introduced via the control

vector. The new growth matrix is §, say. After computing_

{~} by (19) with the growth matrix § and a target vector {~(T)}

some elements of {m} are adjusted such that the constraint (20)

holds, and a revised target vector is calculated. The constraints

placed on the control variables makes the system (14) uncon­

trollable, i.e. any target population cannot be reached. The

problem, therefore, is to find a vector {m} which, given the

equation (14) and the constraint equation (20), brings the popu­

lation distribution ~t the horizon T as close to the target popu­

lation {K(T)} as possible. This policy problem may be expressed

as the following optimal control problem:

min, {K (T) } {K(T)} (21 )

s.t. {K(t + 1)} = §{~(t)} + {~}

{ 1} '{m} = O.

An interesting extension of the above policy mOdel follows

from the relaxation of the assumption of fixed policy vector.

If the degree or level of a population policy may decline over

time, then the vector {~} is added only at the beginning and

w{m} is added during the next time period (0<w<1), and i.e.

{m(t + 1)} = w{m(t)} _ wt +1{m}, (22)

with w being a scalar. The control at a certain time period t

is a constant fraction of the control in the previous time

period. In other words, the value of the control vector is

decreasing exponentially in time. The impact of an initial

policy {m} on the population growth path is therefore

{K(1)} = G{K(O)} + {m}

{K (2)} = ~{K ( 1 )} + w{m} = C2
2

{K (O)} + G{m} + w{m}

{K(t)}
T-1

+ [ L
i=O

T-1-i i
w G ] {m} (23)
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and

{K(t)} (24)

Premultiplying both sirles hv (wI - G) yields

(w I - G) [{ K (t) }

whence

{K(t)} = Gt{K(O)} + (w 1- G)-1 (wt I - Gt){rn}. (25)- - - - - - -
Assuming a target vector {K(T)}, the initial control vector

that assures the achievements of the targets under this policy

regime is

The policy model (14) may be extended a step further (Willekens,

1976b,PP. 69-71). Instead of assuming a constant relative decline

in the value of the control vector, suppose that the control vector

at each time period is a linear combination of the control vector

at the previous time period, i.e.

and

{m(t)} = W{m(t-1)}, ( 27)

(28 )

where W is assumed to be nonsingular. Introducing (28) into (14)

and solving yields

{K(t)}
[

T. -1.
+ I

i=O
(29)
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The control vector at the initial time period yielding a target

population distribution {~(T)} at horizon T may be computed easily.

Note that equations (18) and (25) are particular cases of

(29). In the case of a constant control vector, the matrix W is

an identity matrix. In the case of an exponentially declining

control vector, on the other hand, W is a scalar matrix, i.e.

W = wI.

The policy models discussed in this section have an inter­

esting common feature. Since the matrices G and Ware assumed to

be time-invariant, the matrix sum in (29) only depends on the plan­

ning horizon T. Let

T~1 T-1-i i
L G W = A(T),

i=O -

then equation (29) may be written fo~ t = T as

(30)

where {K (T) }

{K (0 ) }

{iTd

is the population distribution at time T,

is the initial population distribution, and

is the control vector in the initial time period.

Hence, although a population policy is implemented in each time

period, the population trajectory is completely determined, once

the control vector in the base year is fixed. The dynamic, multi­

period population policy problem reduces therefore to a single­

period problem. Policy models, where the control at t is a fixed

linear combination of the control vector in the initial period,

have been called initial period .c0!1trol P10dels (WilleYens., 1976, p. 69) .

In the next section, we will drop the constraint on the control

vector and introduce the possibility of intervening in population re-­

distribution by applying economic policy instruments.

2.2 Elaboration of the matrix model of population control

matrix model and its variants to aThe expansion of the above

complete. dynamic policy problem

Chapter 3);

would involve (Willekens,1976,
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1. Introducing economic control variables and the specifica­

tion of the impact of these variables on the population

distribution.

ii. Dropping the stringent constraints on the control vector,

i.e., the extension of the initial period control problem

to a truly dynamic control problem.

iii. Allowing for other constraints on both the state and the

control variables, and for formulations of the policy ob­

jectives other than in terms of targets.

a. Introduction of non-demographic control variables

It was stressed in the introduction that a fundamental feature

of population policy is that it does not occur in a vacuum. The

ultimate goals of demographic intervention are non-demographic in

nature, and the instruments are socio-economic in character. Policy

models therefore must reflect this connection. The first link be­

tween population policy and socio-economic policy lies in the in­

struments. Policy-makers usually do not directly alter the volume

of migration in order to mold a population distribution into a de­

sired pattern. Rather, the intervention is indirect, through eco­

nomic variables such as regional income, employment, housing,

accessibility, government expenditures, and so on. Therefore, {u}

is a vector of socio-economic control variables, and the impacts

of the instruments on the population distribution in the next time

period is given by vector function

{rn} = {h({u})}. (31)

For the sake of simplicity, we will assume a linear relation­

ship,

{rn} = B{u} , say, (32 )

where B is a time-invariant coefficient matrix of dimension N x K,

with N being the dimension of {ffi}and hence the dimension of the

state vector (e.g. number of regions), and where K is the dimension

of {u} or the number of instruments. An element b .. denotes the im­
1)

pact of the j-th control variable on the i-th element of {m}.
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The ratio -b .. /b' k is the amount by which the j-th instrument may
1J 1

be cut down without changing the level of the i-th element of

fro}, if the value of the k-th instrument is increased with one

unit. It is, therefore, the marginal rate of substitution between

the two instruments (Fromm and Taubman, 1968, p. 109). Introducing

(32) into (14) gives

{K(t + 1) = G{K(t)} + B{U}. (33)

Equation (33)relatesthe population distribution in a certain time

period to the population distribution in the previous time period

and to socio-economic policies. Since {~} may contain lagged

policy variables, the direct effects of earlier policies may be

included. If {u} has no lagged instruments, ~ coincides with

what is known in economics as the matrix of impact multipliers or

the matrix multiplier. The matrix multiplier plays a pivotal

role in the study of the controllability of dynamic systems

(Willekens, 1976b,Chap~er 2, Aoki, 1976).

At this point, two remarks are in order:

i. If the population policy is a purely demographic policy,

then (33) reduces to the basic matrix model of population

control or its variants. In the basic model {ro} = {u}

and the matrix multiplier is a diagonal matrix. In the

intervention model with exponentially declining policies,

B reduces to a scalar matrix. However, this matrix is no

longer time-invariant.

ii. The policy problem represented by (33) is still an ini­

tial period control problem. It is closely related to

the static policy model developed by Tinbergen (1963),

in which {~(t + 1)}= {¥} is the vector of target variables

and {.:< (t)} = {z} is the vector of uncontrollable exogenous

variables:

(34)

The Tinbergen policy model is therefore a special case of (33)

in which there is only one time period. A solution to (34) exists

if the rank of B is equal to the number of targets. The solution
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is unlque if B is nonsingular, or, in the words of Tinbergen,

if the number of instruments is equal to the number of targets.

Then,

{ti} = B- 1 [{y} - G{z}]. (35)

b. The multi-period control problem

The policy models considered thus far are not really dynamic.

Although there is a control vector for each time period, the

trajectory of the controls is fixed such that the only freedom

the policy-maker has i's in choosinq the instruments of the initial

time period. Once the initial controls are chosen, future values

of the controls, and hence of the state variables, followautomatic­

ally. In this section, the assumption of dependency of controls

is dropped. The state equation (33) becomes

{K(t + 1)} = G{K(t)} + B{u(t~}

the solution to this truly dynamic policy model is

t-1
{K (t)} = Gt {K (0 )} + I G (t-1- i) R{u ei) }.

i=O -

(36)

(37 )

From the model (36) and its solution (37), two multi-period

policy problems may be derived:

i. Horizon-oriented policy. The horizon-oriented policy

problem may be formulated as follows: given the initial

condition {~(O)} and the assumption of time-invariance

of the coefficient matrices, which seauence of control

vectors {u(i)} ensures that a target vector at a pre­

defined horizon T will be reached?

ii. Trajectory-oriented policy. In a trajectory-oriented

policy, the question is whether there exists a seauence

of control vectors {~(i)} such that, for a given initial

condition and for time-invariant coefficient matrices,

any sequence of tnrget vectors {K(t)} can be realized.
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In mathematical systems theory, the first policy problem is known

as state controllability, (Wolovich, 1974). The second problem

will be denoted as complete state controllability.

Both policy problems will now be treated in formal terms.

i. Horizon-oriented policy:

Equation (37) may be written for t = T as

{u (T - 1)}

{K(T)}

{u(1)}

(38)
{u(O)}

= D{u} say . (39)

The system (38) is state controllable if the N x KT matrix D is

of rank N, where N is the dimension of the target vector {~(T)}

(Wolovich, 1974, p. 65). If ~ is nonsingular, there is a unique

control sequence, which is given by

(40)

In the dynamic pollcy model (36) and (39), it is the combined

magnitude of the number of instruments and the planning horizon

that determines the state controllability. Any target vector

may be reached by only one instrument (K = 1), provided that the

planning horizon is not less than N and certain other conditions

hold (Preston, 1974, p.70; Willekens, 1976b,P. 55). Also, any

set of targets may be reached in only one time period, if the

policy-maker can manipulate at least N instruments 1 .

ii. Trajectory-oriented policy:

The policy problem discussed in the previous section dealt

with the existence of a sequence of control vectors, necessary for

1This is exactly the controllability condition derived b~
Tinbergen (1963) for a static policy model. For t=l, D coincldes
with B.
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the achievement of the desired target vector at a predefined plan­

ning horizon. In practice, policy-makers would be interested not

only in achieving desired target values, but also in keeping them

on some desired trajectory once achieved, or achieving the targets

along a desired path. It is not uncommon in politics that short­

term objectives conflict with long-term goals. Long-term goals

may become unattainable because of short-term policies. Conse­

quently, not only is the state at the planning horizon of inter­

est, but also the trajectory. It is, therefore, relevant to con­

sider the policy problem in which targets are formulated at each

time period.

~'Jriting (38) for each time period gives

{K(T)} - ~T{K(O)} B GB G
2

B •••••• Grr - 1 B {u(T - 1 ) }

{K(T - 1 ) } - GT- 1 {K(O)} 0 B GB
T-2

{~ (T 2) }•••••• G B -

=
( 41 )

{~(1)} G{K(O)}

"
{d} = F{u}, say.

o 0 o. . . • . . . . .. B {u(O)}

(42)

The system (41) is controllable if the NT x KT matrix F is

of rank NT (for T<N). If F is nonsingular, then there exists a

unique control sequence:

~ . (43)

Note that horizon-oriented policy problems form a special case of

the trajectory-oriented policy problem. If in (41), {K(t)} is not

predefined for t = 1 ... T - 1, then it reduces to (38), i.e. the

horizon-oriented policy problem. Therefore, complete state con­

trollability implies st~te controllability.
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The computation of the unique policy sequence is straight­

forward once the existence of such a policy is demonstrated. But

what if F (or D or ~) is singular? In this case, there may be an

infinite number of control sequences which give the desired values

of the state vectors. Or there may be no control sequence at all

that reaches the targets. Two cases may be considered:

CASE 1 NT < KT

If F is rectangular and of rank NT, the number of controls

exercised, KT, exceeds the number of targets specified, NT. Con­

sequently, there are an infinite number of solutions to (42) and,

therefore, an infinite number of control sequences that lead to

the predefined targets. All the solutions to (42) may be expressed

using the notion of a generalized inverse. If F(1) is a general­

ized inverse of F, satisfying

and if {c} is an arbitrary vector of dimension KT, then the gen­

eral solution to (42) is (Rogers, 1971, p.258)

(44 )

Out of the infinite number of feasible control sequences, the

policy-maker must choose a single one. In order to get a unique

solution to (42), the policy-maker may force the number of instru­

ments exercised, KT, to be equal to the number of targets specified

NT, by deleting some instrument variables at certain time periods.

Instead of deleting instruments, he may constrain the values that

the instrument variables can take on. A wide variety of possible

constraints exists, but we consider only two categories:

i. Introduction of linear dependency among several instruments.

By making some instruments linearly dependent, the freedom of

policy action is reduced in a way such that only one control se­

quence is available to achieve the targets. An illustration of

this type of constraint has been given in the previous section.
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ii. Introduction of acceptable values of the instruments.

In many cases, the policy-maker has a good idea of what levels

of control variables are acceptable politically and economically.

Minimizing some measure of deviation between the realized and the

most acceptable values assures a unique sequence of instrument

vectors. For example, the solution of the following tracking prob-

lem may yield a unique control sequence:

T-1
min W = I [{u(t)} {u(t)}]' R [{u (t)} {u(t)}] (45)

t=O

s. t. {K(t + 1 ) } = G {K(t)} + B {u(t) }.

In equation (45), the objective is to minimize the sum of the

squared deviations between {u(t)} and an acceptable or desired

control vector at time t, {u(t)}. It is a simple linear quadra­

tic control problem.

The use of a quadratic objective function with linear con­

straints is common in economic policy analysis*. It is based on

two assumptions. The first is that the policy-maker's preferences

are quadratic. The second assumption is that each of the targets

depends linearly on all of the instruments, the coefficients of

these linear relations being fixed and known.

CASE 2 NT > KT

If the number of targets specified exceeds the number of in­

struments exercised, the system (42) is inconsistant, and not all

of the target values can be reached. This poses an additional

declsion problem for the policy-maker. Does he give up some targets

in order to reach others, or does he want to approximate all of the

targets as closely as possible? In the latter case, we again have

*Theil's quadratic programming model for statis and dynamic
policy analysis (Theil, 1964, pp.34-35 and Chapter 4; Friedman,
1975, pp.158-160) is frequently used, as is the linear-quadratic
control model (sengupta, 1970; Pindyck, 1973a, 1973b;
Vishwakarma, 1974; Garbade, 1975;. Chow, 1972, 1975 Chapter 9).
The linear quadratic control model is particularly successful in
applied problems of quantitative economic stabilization policy.
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a tracking problem, but now in the state variables instead of in

the controls. A policy model analogous to (45) may be formulated

as follows:

T
min W = l. [{K(t)}

t=1
{i«t)}], 0 [{K(t)} (46)

s.t. {K(t + 1)} = G {K(t)} + B {u(t)}.

A combination of tracking problems (45) and (46) leads to

the dual tracking problem. Desirable values'are given for the

trajectories of both the state and the control variables. Some

extensions of the dual tracking problem are given by Willekens

( 197 6b , pp. 98- 101 ) .

c. The generalized dynamic policy problem.

In the policy problems considered thus far, it was assumed

that the policy-maker's preference system could be expressed com­

pletely in terms of target values for the state variables, and

that the achievement of these targets was constrained only by the

"law of motion" or state equation describing the dynamic behavior

of the system. The advantage of this formulation of the policy

problem is that its solution can be investigated analytically.

It has been shown that the existence of a control vector or of

a sequence of control vectors ensuring the achievements of the

targets is determined by the rank of the matrix multipliers ~' D

or F. In other words, the ranks of the matrix mUltipliers de­

termine the" controllability of the dynamic demo-economic system.

Once the existence of a feasible policy has been demonstrated, the

computation of the control vector or sequence of control vectors,

is straightforward. The design of an optimal policy is particu­

larly simple if the matrix mUltiplier is nonsingular. In this

case, only one feasible combination of controls exists: the opti­

mal combination.

In the previous sections, no direct constraints were imposed

on the state variables. The control variables were constrained in

a very simple way; namely, through the introduction of linear de­

pendency. In this section, we expand the possible constraints,

thus reducing the set of feasible control vectors. In addition,



- 22 -

more realistic policy objectives are discussed.

In practical policy-making, the values that the state and

control vectors can take on are restricted by political, economic

and social considerations. For example, it is politically unac­

ceptable for the values of policy instruments to fluctuate heavily

from one period to another. To remedy possible problems of in­

strument instability, Holbrook (1972, p.57) proposes to include

the instruments in the policy-maker's preference function. Each

element of the control vector also may be required to lie within

a lower and upper boundary:

u. (t) < u. (t) < u. (t).
1 - 1 1

(47)

Population policy is not cost free. Imposing controls im­

plies the incurrence of costs. It is, therefore, natural to

assume a budget constraint that limits the action space of the

policy-maker. We distinguish between a budget constraint for

each period:

{c(t)}' {u(t)} < C(t)

and a global budget constraint:

T-1
L {c(t)}' {u(t)} < c·

t=O

(48)

(49)

The cost vector {c(t)}' contains the unit costs of each in­

strument.

Constraints (47) to (49) are related to the control vector.

Frequently, the state vector itself, i.e. the population distribu­

tion, is constrained in addition to the control vector. For example,

the policy-maker may want to put upper and lower limits on the ~opu­

lation in each region in order to avoid the social costs of exces­

sive density or of depopulation. Other constraints on the state

vector may be formulated. The general formula expressing constraints

on state and/or control vectors is given by equation (3). Usually,

however, such constraints take the form of a set of linear inequali­

ties. Together with the boundary conditions and the state eauations
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these delineate the feasible set of controls, out of which an

optimal control vector or control s~quence may be chosen accord­

ing to an objective function.

In the previous section, quadratic objective functions have

been considered. Other illustrations of formal population policy

problems with quadratic objectives and linear constraints are given

by Evtushenko and MacKinnon (1976) and by Mehra (1975). If con­

straints and objectives are both linear, the policy model takes

the format of a dynamic linear programming problem (Propoi and

Willekens, 1977).

The most general formulation of a dynamic policy nroblem is

presented by equations (1) to (7) of the first section of this

paper. Neither constraints nor objectives need to take simple

linear or quadratic forms. In general, however, simplifications

are adopted to facilitate the computational task of finding the

optimum. Solution algorithms for dynamic mathematical programming

or optimal control problems are beyond the scope of this paper.

Descriptions and numerical illustrations may be found in text­

books, such as those of Bryson and Ho (1969) and McReynolds (1970)

and Noton (1972).

3. ~heoretically-OrientedPolicY Models

Theoretically-oriented policy models have been developed to

gain insights into the characteristics of an optimal demo-economic

system. Most originated in economics, particularly in the field

of economic growth theory. Their main concern is the study of

the existence, uniqueness, stability, and efficiency properties

of equilibrium growth paths (McNicoll, 1975, p.651).

The basic format of these models is that of an optimal con­

trol problem, as described in equations (1) to (7). As in the

previous section, we will begin our exposition with the simple

economic growth model that underlies most theoretically-oriented

policy models, the neoclassical growth model, and then gradually

build up policy models of greater complexity.

In contrast to demographic growth, there is no unique In­

dicator that measures economic growth. Gross product or output,

value added, consumption and other such variables all have been

used. Consider, for example the activity of production. The output
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of a production process is described by the production function.

Usually, only two production factors are considered, capital and

labor. The production function, therefore may be expressed as

Q(t) = F[K(t), L(t)]. (50 )

where K(t) denotes the capital stock at time t, and L(t) is the

corresponding stock of labor.

In a well-defined production function, gro~th of total out­

put is uniquely determined by the growth of the factors of pro­

duction. Solow (1956) suggested simple hypotheses about the de­

velopment of factor endowments that close the system and enable

a study of the grow·th path generated by the model economy. Meade

(1961) and Swan (1956) independently developed si~ilar models

leading to the same conclusions. Their model is known as the

neoclassical or SolOW-Swan growth model.

Assume a neoclassical production function, and a growth path

of capital labor obeying the following assumptions:

a. The labor force L(t) grows at a constant relative rate n,

which is equal to the growth rate of the population and is

given exogenously:

dL(t) = L(t)dt n , 1,(0) = 1,0 > o. (51 )

The labor supply function is the solution of the differential

equation in (51):

nt
L(t) = LOe . (52)

b. A constant fraction s of the total output flow Q(t) is saved

and all the savings are invested in the capital stock K(t).

Assuming moreover that capital does not depreciate, the growth

of the capital stock is given by the investment function:

dK(t)
dt = sQ (t) , K(O) = KO > 0 . (53)
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In the production function in (50), L(t) stands for the

total employment, or labor demand. In (52), L(t) stands for

labor supply. By equating the two, we are assuming thnt full

employment is prepetually maintained. In addition, the exponen­

tial growth of labor at a predetermined rate n implies that labor

is completely inelastic. The labor supply curve is a vertical

line which shifts to the right over time as the quantity of labor

increases. \qages have no impact on labor supply or on labor de­

mand. The real wage rate, or equivalently the marginal producti­

vity of labor, adjusts each time period so that all available

labor is employed.

If there is unemployment, the wage rate should fall. Labor

becomes cheaper and induces a substitution of labor for capital.

This lowers the capital-labor ratio until full employment is re­

stored.

Inserting (50) and (51) in (53) gives

dK (t) nt
dt = sF[K(t),LOe ] (54)

This is the basic equation that determines the time path of cani­

tal accumulation that must be followed for full employment to be

maintained. For each time t, the supply of labor and capital is

inelastic. Labor is given by (52) and the capital stock is a

result of previous accumulation. All labor and capital that exist

at t will be fully employed. This is brought about by an adjust­

ment of the marginal productivities. For each t, the output may

be computed by the production function. How much of the output

will be saved and reinvested is given by (54). This investment

adds to the capital stock of the next period.

In the Solow-Swan model of economic growth, the possibility

of factor substitution assures that full employment is maintained.

The burden of adjustment falls on the marginal productivities of

capital and labor, or equivalently, on the marginal capital-out­

put ratio. To study the relationship between the time path of

capital accumulation and population growth, we express the capital

stock at time t as

K (t) = kL (t) (55)
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where k is the capital-labor ratio, defined as k = K(t)/L(t).

Differentiating both sides of (55) gives

dK(t)
dt

= dk L(t) + k dL(t)
dt dt (56)

Substitution of (52) in (56) gives:

dK (t)
=dt

(57)

Equating (57) to (54) yields:

ntsF [K (t) ,LOe ]. (58)

The production function is neoclassical and obeys the assump­

tion of constant returns to scale. If capital and labor are multi­

plied by some constant, the output is multiplied by the same con­

stant.

Therefore, we may divide both sides of (58) by Loe
nt :*

dkdt + kn = sF[k,1] .

The time path of the capital-labor ratio is given by the differ­

ential equation:

dk
dt = sF(k,1) - nk. (59)

The function F(k,1) is the per capita production function.

It is the total product curve that arises as varying amounts.
k of capital are employed with one unit of labor. In other words,

it gives the output per worker as a function of capital per worker.

It only depends on the capital-labor ratio or capital-output ratio

because of constant returns to scale. Equation (59) shows that the

growth rate of the capital-labor ratio 1 dk is equal to the growth

t f . t 1 th f' Ii< dt l' (k 1) /kra e 0 capl a , or e rate 0 caplta accumu atlon sF, ,

*rf there is no constant returns to scale, we Must consider
(50) and (52) directly without this simplification.



- 27 -

minus the growth rate of labor, n. Note that k/F{k,1)

capital-output ratio, C say. Hence, we may write

1 dk
k dt = siC - n .

is the

(60)

The quantity sic is the warranted rate of growth (Harrod,

1970, p. 47). In Harrod's version of the Harrod-Domar model, it

is the rate of growth of output for which the actual level of

production coincides with the expected demand. The producer

produc_e:~_---.?either. more_nor ~ess than the right amount.

If dk = 0 ' the capital-labor ratio is constant, and the capl-
dt

tal stock ITlUSt be expanding at the same rate as the labor force,

namely n, to maintain full employment. But this is exactly the

formulation of the Harrod-Domar consistency condition. It is the

condition that an economic system must satisfy in order for steady­

state growth to be possible under a fixed capital-output ratio,

a constant savings rate, and full employment. In Harrod's formula­

tion, the condition is that the warranted rate of growth equals

the natural growth rate n (the growth rate of the population):

s
C = n. (61 )

This equilibrium situation is labeled by Robinson (1970,

p. 133) the "golden age", to indicate a steady, smooth growth

with full employment. In Solow's extension of the Harrod-Domar

model, the capital output ratio is not fixed, but changes auto­

matically in response to changes in factor supplies (measured by

changes in s or n).

It can be shown that for any positive sand n, satisfying

o < n < p' (0)
S

there exists a unique positive capital-labor ratio k* such that
dk*dt - 0 (Burmeister and Dobell, 1970, p. 25), i.e. such that

equilibrium or steady state is feasible. How the capital-labor

(62)
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ratio changes as the system converges to its equilibrium position

is portrayed in Figure 1. It is the phase diagram for the differ­

ential equation in (59).
dkFor any point on the dt curve, there is full employment and

hence short-run equilibrium. The position of the economy is de­

scribed by k, and its growth by ~~. In the long-run equilibrium,

~~ = 0, the capital-labor ratio is constant, and capital grows

at the same rate as labor.

• dk
k = dt

k >0jL------...:.:.....;---=------......-4Il--..:.:....-.:...::...--<_k

Figure 1. Phase diagram for Solow's fundamental differential
dk ~

equation (dt = sF(k,1) - nk).

Source: Burmeister and Dobell, 1970, p. 26.

Equations (59) and (60) describe the growrh rate of the eco­

nomy in terms of the growth rates of factor supplies. It pre­

sents the "law of motion" of the economic system.

In these models, and in various extensions, labor grows at

a constant rate. To convert the neoclassical growth model (59)

into a complete demo-economic policy model, we may consider a num­

ber of additions. The first is to drop the assumption of exogenously

defined labor increase by endogenizing the growth rate of labor;

dk
*Throughout the text, k and dt are equivalent.
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the second is the introduction of policy-objectives and other con­

straints.

3.1 Economic growth with population endogenous.

Classical economists such as Adam Smith, viewed the size of

population as being positively related to the wage level. High

wages would affect birth and death rates. They would encourage

early marriage, and hence higher birth rates. In addition, children

would become more valuable as future workers and as a form of re­

tirement insurance. This would induce parents to take greater care

of their children, and would thereby diminish the infant death rate.

Ricardo considered a third factor of production, land, whose

total supply is fixed. Constant returns to scale is assumed for

the three factors: land, capital, and labor. Therefore, a pro­

duction function, containing only capital and labor, exhibits de­

creasing returns. As did Smith, Ricardo linked population growth

to the wage level. He assumed that there was a subsistence wage.

If the actual wage received fell below the subsistence wage, women

would adopt a net reproduction rate of less than unity. The con­

clusion of Ricardo's analysis was that population and the economy

would approach a stationary state (n = 0), with wages at a sub­

sistence level.*

Although Smith and Ricardo both devoted some attention to the

economics of population growth, and indicated that population is

eroogenous to economic growth, Malthus was the first to succeed in

systemizing a general theory of population. According to Malthus,

birth rates are biologically determined, but death rates are af­

fected by economic conditions.

The formal treatment of an endogenous population in economic

growth models is of a more recent date. This section reviews some

attempts to endogenize the demographic component. In addition, it

investigates the impact of an endogenously changinq labor force parti­

cipation rate and of the explicit consideration of consumption.

*A production function with decreasing returns to scale is,
somewhat surprisingly, not a sufficient condition to ensure that
a stationary population will be approached (Niehaus, 1963; Enke,

1963; pitchford, 1974, p. 56-70).



- 30 -

a. The neoclassical model with population endogenous.

To illustrate how population growth may affect economic growth,

consider the fundamental equation of the Solow-Swan model with the

population growth rate a function of the wage rate w(k), or per

capita income or consumption (Solow, 1970, p.189):

dk
dt = sF (k, 1) - kn [w (k) ] . (63 )

Assume that, when the capital-labor ratio k is low, and hence the

wage rate w(k) is low, the population is unable to maintain itself,

and the growth rate of labor is negative. As wages rise, the popu­

lation growth rate increases until the wage rate reaches such a

level that the wealthy population decides to cut down its growth

rate. Such a case might be represented by a growth rate equation

for n[w(k)] or n(k), or by a phase diagram such as Figure 2.

sF(k,l)

kn (k)

04E-------/----:-------2...--_k

dk
dt=SF(k,l) -kn(k)

k'~k"
.. k

Figure 2.. Phase diagram for Solow-Swan model with population growth

endogenous (equation ~~ = sF(k,1) - kn(k».

Source: Burmeister and Dobell, 1970, p.37.
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As Figure 2 shows, there is the possibility of multiple equi­

libria and hence also of unstable ones. Below the equilibrium

point k** small perturbations of k force the capital-labor r-atio

to an equilibrium value k*. When the capital-labor ratio increases

beyond the unstable equilibrium point k**, the economy is on a

path with a perpetually rising capital-labor ratio, and hence per

capita income.

Instead of focusing on the wage rate, one may make popula­

tion growth depend on per capita income or consumption. In his

original article, Solow (1970, p.188) treats these equivalent

cases. In general, the population growth equation becomes

dL
dt = L(t) n(~) (64)

where ~ denotes wages, per capita income, or per capita consumption.

In the Sato and Davis (1971, p.881) model, ~ denotes per capita

income y or F(k,1). The economic dynamics is therefore given bv

~~ - sF(k,1) - k n[F(k,1)]. (65)

The function n(.) is monotonic (n l > 0). The logistic growth

curve in Figure 3 reflects the fact that the death rate decreases

with income and that the birth rate increases up to a certain level

of y and declines thereafter.

The assumption that population growth depends on per capita

income and that the labor force participation rate is constant has

also been made by Lane (1975, p.58) and pitchford (1974, p.167).

In recent years there has been a revived interest in population as

an endogenous variable in economic growth models, particularly within

the perspective of policy formulation. The rationale for making popu­

lation an endogenous variable of dynamic economic growth models, has

been given by Dasgupta. His approach is to treat capital accumula­

tion and population growth as inter-dependent: "The economic wel-

fare of a community is affected by policies that determine 1) the

rate of capital accumulation; and 2) the rate of growth of popula­

tion. At any moment' of time the optimum size of population will

depend on the size of the existing capital stock and the optimum
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n(y)

y

(66)

Figure 3. Relation between population growth and per capita
income.

rate of savings will depend on the existing number of people. In

this sense a population policy cannot be formulated without a con­

current savings policy. The two must be considered together".

(Dasgupta, 1969, p.295).

b. Population growth and labor force participation.

An assumption which is frequently made by authors attempting

to endogenize population growth in economic models is that labor

force and population are interchangeable variables. The rationale

for this is given by pitchford (1974, p.55): "If the proportional

rate of growth of population is constant and has been for a long

time, it is not unreasonable to assume that a fixed ratio between

the work force and population has been established". In terms of

mathematical demography, it means that the population is assumed

to be stable. In the stable population, the age composition is

constant, and hence the population in the active age groups is

a fixed proportion of the total population.

L(t) = pN(t)

where L(t) is the labor force,

N(t) is the population at time t, and

p is the labor force participation rate.
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If population grows at a constant rate n, and p is constant,

the labor grows at the same rate n.

In reality, the labor force participation rate is not con­

stant, but depends on the age composition of the population and on

economic conditions. We may-therefore ask the question how eco­

nomic growth would be affected if the labor force participation

rate varied with changes in the economic situation.

Consider the neoclassical growth model in (59):

dk
dt = sF(k,1) - nk . (59)

Assume that the labor force participation rate depends on the pre­

vailing wage w(k), which depends on the factor shares. The labor

force at time t then is

p[w(k)] N(t) p[w(k)] NOe
nt

L (t) = =

Therefore,

dL (t) ~. dw dk nt nt
= dk at NOe + pNOne,

dt dw

or

dL (t) 1 dp • dw dk 1 + n- = dk dt
. - ,

at L(t) dw P
( 6'8)

dk dK 1
dt = dt L

dL 1. k
dt L

(69)
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Substituting (59) and (68) in (69) gives

dk sF (k, 1) - (~ dw dk 1
+ n) kat = dk at -p

= sF (k, 1) - ((~ . ~)(~ . k)(dk. t) + n] kw dt

sF(k,1) - dk - nk '( 7 0)= zp zw dt

where zp represents the elasticity of the participation rate with

res~ect to wages, and

zw represents the elasticity of wages with respect to the

capital-labor ratio.

The growth path of the capital-labor ratio reduces to

dk = sF(k,1) - nk
dt 1 + zp zw

(71 )

dkBalanced growth equilibrium, i.e., where dt = 0, occurs as in the

Solow-Swan model. Convergence to the equilibrium point, however,

takes more time. Since ~ may be expected to be positive, and

since ~~ is positive, zp and zw are positive, making the denomina­

tor of (71) greater than one,slowing the speed of convergence. This

reflects the fact that rising wages associated with a rising capi­

tal-labor ratio, induce the entry of a larger proportion of the popu­

lation into the labor force.

c. The neoclassical model with consumption.

In the Solow-Swan model, the savings rate s was held constant.

Different values of s would lead to different allocations of capi­

tal in the golden age growth path, and therefore to different eaui­

librium capital-labor ratios, different wage rates, different per­

sonal income streams, and different consumption rates. A logical

extension of the neoclassical model, therefore, is to introduce

consumption explicitly. One may begin by expressing total savings

as
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S = sF(K,L) = F(K,L) - cN (72)

where c is consumption per capita, and N is the total population.

Assuming a labor force participation rate of unity, i.e. L = N,

and constant returns to scale, (72) may be written as

S/L = sF (k , 1) = F (k, 1) - c. (73)

Substituting (73) in the Solow-Swan growth model in (59) gives*

dk
dt = F(k,1) - c - nk . (74)

There is a different golden-age growth path for every k.

For a given consumption rate c, the steady-state capital-output

ratio is

c = F(k,1) = £
k k

- n, (75)

where c/k is consumption as a fraction of total income. On the

other hand, for a given capital-output ratio, or equivalently,

capital-labor ratio, th~ steady-state consumption rate is

c = F(k,1) - nk . (76 )

Equation (76) provides a direct link between growth theory

and growth policy. Although the rate of population growth, n, is

held constant, one can derive rules for capital accumulation which

may be compared with those obtained with different rates of popula­

tion growth. In addition, (76) or (74) show up as constraints in

a number of demo-economic optimization models.

Optimization and policy considerations come in when both per

capita consumption and the capital-labo~ ratio are allowed to vary.

The relevant policy question is: what steady-state capital-labor

ratio is able to sustain a maximum per capita consumption? The

first order condition for maximizing per capita consumption is

*Recall that this implies full employment and that all savings
are invested.
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or

F' (k,1) = n, (77)

where of(k,1) = F' (k,1) is the marginal product of capital. Thisok _.
means that the interest rate equals the rate of labor force growth.

The capital output-ratio maximizing c will be denoted k*.

Equation (77) is the "golden rule of capital accumulation".

It has been discovered independently by Swan (1964) and Phelps

(1961; see also 1970, p.198), and was already implicit in Ramsey's

(1928) work. Among all the possible golden age paths of natural

growth, that golden age is best which practices the golden rule:

the investment made by each generation is such that the next gen­

eration has the highest possible per capita consumption. Under the

golden rule, the relative share of output going to capital is the

optimal savings ratio

_ k*F' (k*, 1) _ k*n
s - F(k*,1) - F(k*,1) (78)

(See also Burmeister and Dobell, 1970, pp.49-53). Therefore, the

savings rate which maximizes per capita consumption in the long

run is equal to the share of profit in national income.

The golden rule consumption per head is given by

c* = F(k*,1) - n k*. (79 )

How does an increase of the population growth rate n affect c*

(Phelps, 1966, pp. 178)? If k*>O, an increase of n leads to an

increase in F' (k*,1), by (77). But F' (k*,1) is decreasing in k,

so k* will decrease, which implies a decline in per capita output

F(k*,1). The net effect upon c* of increasing n may be found by

differentiating (79) with respect to n. This yields:

~~* = F' (k*,1)' ~~* - (k* + n~~*)

[ '( dk*= F k*,1) - n] --- - k*
dn '
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which, after applying (77) gives:

dc* - _ k* .
dn - (80)

(81 )

Therefore, the golden rule Der caoita consumption declines as

the population growth rate rises, and the lower the population

growth rate, the better.

In Phelps's model population growth is given exogenously.

Davis (1969) has extended the model to allow the population growth

rate to vary with per capita income, i.e. n = n[F(k,1)]. When

population grows endogenously, the glolden rule savings rate is no

longer equal to (78) but is modified to

- k*F' (k*,1) [1 - k* n' [F(k*,1)]]s - F (k* , 1 )

The ratio k* F' (k*,1) is the relative share of output going to

capital. wheth~~*ta~ modified golden rule savings rate is greater

or less than the relative share of capital is determined by the

sign of n' (.). Correspondingly, the growth rate of the economy

under endogenous labor supply is greater than or less than the

marginal productivity of capital depending upon whether n' (.) is

negative or positive*. A positive n' (.) implies a monotonic func­

tion describing a positive relationship between the population

growth rate and per capita income.

d. Age-specificity in demo-economic growth.

Population growth and capital accumulation are represented by

simple aggregate models. In the models of economic growth dis­

cussed so far, capital and labor are assumed to be homogenous.

A few growth models have focused on a disaggregation of popu­

lation by age. Samuelson (1958, 1975) and Arthur and McNicol1 (1977a

and 1977b) have shown how the introduction of age groups affects

the optimum rate of population qrowth. In the aggregated version

of the growth model, given by (74), a small population growth rate

is preferrable, since an increase in population growth calls for

a greater investment to maintain the capital-labor ratio, or capi­

tal per head. Capital widening diverts resources from consumption

and capital deepening, i.e., increases in capital per head. Samuelson

*It is assumed that [1 - k*n' (. )] > O.
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(1958) has shown that the introduction of aging with the possibility

of transfers between age groups may alter the conclusion. We will

return to age-specific demo-economic policy models in the next sec­

tion.

3.2 Optimum demo-economic growth

Heretofore, we have investigated several models of demo-eco­

nomic growth and their steady-state properties. Policy objectives

were introduced to select a unique steady-state or golden age growth

path. The focus was not on the objectives themselves, but on the

characterization of a unique steady-state.

The transformation of these models into truly dynamic demo­

economic policy models requires:

i. The introduction of an explicit population control vari­

able.

ii. The introduction of explicit intertemporal policy objectives.

This involves problems of definition of the welfare criter­

ion and of the social rate of discount.

iii. An allowance for other constraints on both the state and

control variables. This will not be studied here.

iv. A more realistic description of the population system by

introducing age-specificity.

These requirements will be dealt with separately below.

a. The population control variable.

In the models considered thus far, population was treated exo­

genously or endogenously, but was not considered as a direct policy

variable. The problem was to determine the optimal capital-labor

ratio or the savings rate for a given po?ulation .growth rate. Re­

call, for example, the Golden Rule of capital accumulation. Associ­

ated with each ?opulation growth rate n is a Golden Rule state.

The Golden Rule consumption per head is given by (79) and de-

pends on n, i.e. c* = c(n). For each n, the implied optimal sav-

ings rate is easily derived, since c = (1 - s) F(k,1). This sav-

ings rate is optimal in the sense that it maximizes per capita

consumption under the given regime of population growth.

Phelps (1966, pp.179-182) went a step further. He addressed

the policy problem of finding the growth rate n which yields a

Golden Rule state that is socially preferred. This step completely

integrates economic (savings) policy and population policy. Which

Golden Rule state is preferred depends of course on the objectives.

According to Phelps, society not only wants to consume as much as
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possible, but also wants to grow. Social welfare is, therefore,

a function of both the consumption per head and the population

growth rate. Hence, the function to be maximized is u(n,c*).

Assuming a constant mortality rate, the welfare function may be

written in terms of the birth rate b. Writing c* = h(b), the policy

problem becomes

max u [b ,h (b)] .,
b

(82)

The problem now is to find the optimal combination of fertility

and consumption in a situation of balanced growth (i.e. when out­

put, capital, and consumption all grow at the same rate as labor).

It is a simple, but complete demo-economic policy problem. The

optimality condition is

eu
0 + h' (b* )05 = = u b u ,

c

or

ec* -h'(b*) ub/uc (83)0lJ = = .

Equation (83) states that for the social welfare function in

(~) to be at a maximum, the birth rate must be such that the mar­

ginal cost of the birth rate (per capita births), in terMS of

Golden Rule consumption per head, is equal to the marginal rate of

substitution between the birth rate and the Golden Rule consump­

tion per head. The birth rate b* which yields the Golden Rule

state in which (82) is maximum is the Golden Rule of Procreation.

Phelps's Golden Rule of Procreation gives the optiMum popula­

tion growth rate under the assumption that population policy is

costless. Changing the population growth rate, however, requires re-

sources that could have been directed to productive investments.

The portion of the income allocated to population control is de­

noted by McNicoll (1975, p.671) as demographic investment*. The

*McNicoll's definition of demographic investment differs from
that of Sauvy (1976, p.64), who considers it to be that part of
total investment which is required to maintain the standard of
living or the capital-labor ratio. The latter perspective is identi­
cal to capital wldening.
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function describing the relationship between demographic invest­

ment_per capita at time t, j(t) say, and the population growth

rate n is n[j(t)]. In other words, j (t) denotes the per capita

expenditures required to reach a population growth rate n. If

j (t) = 0, n is equal to the natural rate of population growth. To­

tal savings are now divided among investment in the capital stock

and demographic investment. The basic technological relation (59)

is then

dk
dt = sF(k,1) - k n[j(t)] - j(t). (84)

In the simple case, j (t) is a constant fraction of per capita in­

come, i.e. j(t) = g F(k,1), hence the demographic response func­

tion is n[F(k,1)] and per capita consumption is

c= (1-s-g)F(k,1). (85)

To find the steady-state or equilibrium level of demographic

investment we recall Phelps's Golden Rule of Procreation. The popu­

lation growth rate or the birth rate that maximizes the social wel­

fare derived from both per capita consumption and growth rate is

such that

*eSc
8b

(86)

The demographic investment associated with a birth rate b* is j*.

Hence

and

h I [b (j *)] u c = - u b .

(87)

(88)

The optimal demographic investment is such that the loss in utility

from reducing the population by one unit is exactly equal to the

utility derived from the higher per capita consumption. Therefore,
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at the optimum, a given increment of investment has the same im­

pact whether allocated to production (and consumption) or to popu­

lation control.

Another approach to finding the optimum level of demographic

investment has been taken by Sato and Davis (1971, p. 890). The

authors assume that population grows endogenously, but can be in­

fluenced by direct policy intervention. The demographic response

function is therefore n[f(k,1~g], where q is the fraction of per

capita income allocated to population control. This is an exten­

sion of the problem, discussed in:the previous se~tion, of deter­

mining an optimum savings rate when population grows endogenously.

Maximization of per capita consumption (85) yields the "modified"

Golden Rule of capital accumulation:

s* = k*F' (k*, 1 ) (1 - q - k* n' )F(k*,1)

and

on F (k , 1 ) 1
og = =k C

where n' = on[F(k,1),g]
a F (k , 1 )

(89)

(99)

The introduction of direct population control reduces the opti­

mum savings rate even further than before (compare (89) with (78).

Population policy should be implemented until the marginal impact

of public expenditures is equal to the average productivity of

capital (output-capital ratio1/c). This implies that at the optimum,

per capita income or output is equal to the product of the capital­

labor ratio and the marginal impact of population control expendi­

tures. Consequently, since in the steady state n = sic, the equi­

librium growth rate of population must be

n* = - s on
og . (100 )
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Since sic is Harrod's warranted rate of growth, the quantity
on-s og may be called the modified warranted rate of growth for en-

dogenous population growth and direct policy intervention.

The population policy variable or decision rule considered

by Phelps is the growth rate, (or birth rate if mortality is con­

stant). Other authors have addressed the question of the optimum

size or density of the population. For example, Dasgupta (1969)

treats the problem first formulated by Wicksell; namely, what size

(density) of population under given circumstances is the most ad-

vantageous? Posing the question of optimum population size implies

the assumption that a zero growth rate is best since only if n = 0

can an optimum population be maintained (other conditions being

equal). The second decision rule is more suitable for "classical"

economic regimes in which the reality of finite resources or of

some fixed production factors as land eventually leads to dimin~

ishing returns. The first decision rule on the other hand fits the

"neoclassical" regime, with no resource constraints but with con­

stant returns to the production factors*.

b. policy objectives.

What is the optimum population size orthe optimum growth rate

of the population? According to Phelps, an optimum growth rate is

one which maximizes (82). In the demo-economic policy literature,

the policy objective usually involves a measure of per capita con­

sumption. Two types of welfare indices are used frequently: i) so­

cial welfare is a direct function of per capita utility; ii) social

welfare is a weighted function of per capita utility, the weight

being the population size. We consider both indices in a static

and a dynamic framework.

( 1 ) static analvsis----i. Per capita utility

The total consumption stream available to the population is

equal to the amount of the total production F[K(t), L(t)] less the

amount of investment *(t). The first criterion relntcs to per

capita consu.mption. It is equal to ~ [K (t) ,L (t)] - K(t)] II, (t). For ex­

ample, in a static analysis, the welfare criterion is u(c). The

optimum population size is obtained when per capita consumption is

at a maximum, i.e.

*These definitions of classical and neoclassical economic re­
gimes follow Arthur and McNicoll (1977, p.114).
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or

8c = 8[F(K,L) - i] / L
8L 8L

c = 8F(K,L) / 8L.

= 1 [8F(K,L) _ c] = 0
L 8L (101)

Therefore, the optimum population size is reached when the contri­

bution to production of a marginal person is equal to his consump­

tion (which is the average consumption).

ii. Total utility.

This criterion supposes that social welfare is equal to

the average individual utility weighted by population size. The

use of such an approach has been strongly endorsed by Meade (1955)."

Meade performed a static analysis. The objective function U(C) is

simply the product u(c) . L, where L denotes the population size.

This is known as the Bentham-criterion (McNicoll, 1975, p.666)*.

The optimum population size is given by the condition

8[u(c)L] = 0 =
8L

DC
u(c) + L u'(c) 8L'

where 8c/8L is given by (101}. Hence optimality requires that

uCc) = u' (c) [c _ 8F(K,L)]
8L '

which means that the utility of a marginal individual entering the

population (and consuming at the average level) must equal the dis­

utility he causes to the other members of the population.

(2) Dynamic analysis.

i. Discounted per capita utility:

T

f -pt. e u[c(t)] dt
o

where p is the rate of discount,

c(t) is the per capita consumption at time t, i. e.

c(t) = [1 - s(t)] F(k,1),
u(.) is a utility function, and T is the planning horizon.

*According to Meade (1955, p.8S) ,there exists a consumption
level.CO at ~hich life is just enjoyable, i.e. U(Co) = O. The
quant1ty Co 1S referred to as the "welfare subsistence level".
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ii. Discounted total utility:

! e- pt u[c(t)] L(t) dt,
a

where L(t) is the population at time t.

(105)

Both of the above criteria are frequently used in dynamic poli­

cy models. Dasgupta (1969, p.297) compares alternative policies

by assessing their impact on total welfare (105~ He argues that it

is a better measure to compare the ultimate value of having one more

person in the world with the ultimate value of present people having

a bit more to consume. Both population size and utility fromt:ercapita

consumption enter the objective function directly. Sato and Davis

(1971) compare the theoretical implications of both welfare indices

on the optimum policy, under the assumption that population grows

endogenously, i.e. that the economic dynamics are those given by

(65). Maximization of (104) subject to (65) yields an optimum steady

state savings rate equal to

s* = k*[F' (k*,1) (1 - k*n') - p]

F(k*,1)
(106 )

The optimum per capita consumption is of course c* = F(k*,1) - k*n.

Note that for p = 0, (10G reduc~s to the Modified Golden Rule of

capital accumulation (81).

Maximization of MaS) subject to (65)~ on the other hand,

yields quite different results. The steady state is given by

the following relationship:

(p - n)= F I (k*, 1 ) [p - F(k*,1) (1 - k*n')], (107 )

where u is the utility function. Note that when population grows

exogenously, n' = a and (107) reduces to

F' (k*, 1) = p,
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i.e. the marginal product of capital must be

of discount or time preference*. The steady

ratio is determined entirely by the discount

the utility function has no effect at all**.

grows endogenously, the utility function does

The choice of the rate of discount has been an element of

debate in the growth literature. Ramsey (1928) found discountina
the future at a positive rate, " .. a practice which is ethically

indefensible." Other economists, such as Harrod, have also

taken a similar standpoint. Whether a positive rate of time

preference is unethical and what the discount rate should be are

questions beyond the scope of this paper. The fact is that most

economists today introduce some discounting in optimal policy models.

Some authors investigate and compare the theoretical features of

both cases p > 0 and p = 0 (see e.g. Dasgupta, 1969; Sato and

Davis, 1971).

c. Age composition and demo-economic policy

The optimal decision rules of demo-economic policy, studied

in the previous sections, are based on the assumption of homogen­

ous capital and labor. The validity of the optimal policies de­

pends on the value of this underlying assumption.

Recently, some effort has been devoted to the analysis of

more disaggreated policy models, in particular, age-specific models.

The following discussion is based on work carried out by Samuelson

and Arthur and McNicoll.

Samuelson considers only two age groups***. The young age

group consists of the working population, while the old age group

contains only retired people. In this simple model, the working

population supports the retired population through "consumption" loans.

*This is the Ramsey Rule. The rate of time preference also
may be written as

1 dp(t)
-PTET dt

with p(t) = e-ptu' [c(t)], i.e., the rate of time preference is
the rate of decline in the discounted marginal utility .

•*The utility function is, of course, of central importance
for the optimum trajectory to equilibrium.

***At the micro-level, the introduction of aging is identical
to the consideration of an explicit life cycle (e.g. childhood,
work, childbearing, retirement).
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Repayment can be expected when this working population retires.

Therefore, each generation is supported by the following genera­

tion. The support or consumption transfers received by the re­

tired population increases if the proportion of the young popula­

tion expands, which is. the case ~f the population growth rate

rises. In Samuelson's two-age model with intergenerational trans­

fer, therefore, the greater the population growth rate, the better,

This conclusion is the opposite of the optimum defined in Solow's

neoclassical model and its extensions (see for example equation

( 80) ) .

A combination of the Solow-model in (59) with the Samuelson

model of overlapping generations yields an intermediate result.

Recall equation (72). There total output is equal to consumption

and investment (savings):

(108 )

Consumption at time t is the sum of the consumption of the young

and the old populations. In the absence of mortality, and for

time intervals equal to age intervals, the number of old people

at time t is equal to the number of young people at time t - 1.

Let Lt - 1 denote the young population at time t -1, and c~ and c~
the per capita consumption of the young and old populations re­

spectively, then (108) becomes

F (k
t

, 1)

Dividing by Lt yields

= c 1 , + 1 2 K t +1 - K t
t 1+n c t + K

t
.k t ,

(109 )

where n is the growth rate of labor. In the steady-state, capital

and labor grow at the same rate, hence

F (k , 1 ) 112= c + 1+n c + nk. ( 11 n)
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1
Compare (110) with (76). Note that each combination of n, c

and c 2 defines a golden state. Each golden state is characteriszed

by a constant capital-labor ratio.

Following Phelps, Samuelson asks which golden state yields maxi­

mum utility from consumption. The utility function must of course
., t ., [1 2] Th . 1"reflect llfe-tlme consump lon, l.e. u = u c ,c. ere lS a un que

relation between c 1 and c 2 , given by (110):

1 = F(k,1) _ 1 2 - nk.c l+gn c

The utility function, therefore, is

( 111)

1 2u[c ,c ] ) 1 c2 2]= u [F (k, 1 - 1+n - nk , c -, ( 112)

and maximization with respect to k, c 1 and c 2 yields the following

optimality conditions:

ou
ok = 0 = F' (k*,1) - n ( 113 )

1 2ou[*c ,*c ]
=

oc 1

1 2
(1 + n) ou[*c ,*c ]

oc2 ( 114 )

Condition (113) is Phelps's Golden Rule of capital accumulation.

Equation (114)states that for utility to be a maximum, the discoun­

ted marginal utility of consumption must be the same for all ages.

This relation is the "biological interest rate" relation of Samuelson.

The two conditions together constitute the Golden Rule.

There is a Golden Rule state associated with every population

growth rate n. One, therefore, may be interested in selecting a

rate n which is socially desirable. This problem has been addressed

by Phelps and has led him to the derivation of the Golden Rule of

procreation. Phelps included both per capita consumption and the

population growth rate in the welfare function. Samuelson, however;

(1975, p.534) ke~t to the function (112~ Maximization of (112)with

respect to n yields:
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or

*0=- k

and

1 + n** {~~]
1/2

(115)

The growth rate n**that maximizes lifetime welfare is denoted

by Samuelson as the Goldenest Golden Rule state. Moreover, at a

growth rate n*~ private life~time savings will be just sufficient

to support the Goldenest Golden Rule state. Since k and c 2 are

themselves functions of n in (113)and (114} (115)is an implicit

function of n~. To find the true maximum, second-order conditions

must be supplemented. Note that rapid or slow growth no longer

is "better", but that the value of n** is determined by the utility

function and the production function. (Compare this result with

Phelps's Golden Rule of Procreation).

Arthur and McNicol1 (1977b) have generalized the two-age

lifecycle model to one with a continuous-age lifecycle. This gen­

eralization allows for an inclusion of child-dependency costs. The

intergenerational transfer is not only from working population to

old, but also from working population to children. Therefore, the

net intergenerational transfer effect of growth is no longer nec­

essarily positive. The inclusion of tranfers to younger people,

therefore, tends to result in lower optimal growth.

The authors consider continuous intervals for both time and

age. Equation (108)becomes

(116)

The population is assumed to be stable, i.e. with constant age­

specific rates of fertility and mortality, constant age distribution,
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and growing at a constant rate n (see example, Keyfitz, 1968;

Rogers, 1975). At stability, the population at exact age x at

time 't is

9,(x,t) -nx
= e p(c) 9,(O,t),

where 9,(O,t) is the number of births at time t, and

p(x) is the probability of survival from birth to age x.

Let c(x,t) denote age-specific per capita consuMption at time

t. Equation (116) may be expressed as follows:

w dKt= f 9,(x,t) c(x,t)dx + dt'
o

(118)

where w is the last age group.

Dividing by the amount of labor Lt , where

w
L = [ f

t 0
-mxe p(x) A(X) dx]9,(O,t)

and -A(X) is the age-specific labor force participation rate, we

have that

F (k 1 ) -c (t) + 1
t' = Kt

(120 )

where c(t) is the average consumption per worker at time t, i.e. 1

w
'f -nx

e p(x) c(x,t) dxoc(t) =
w

f
o

-nxe p(x) A(X) dx

In steady-state, capital and labor grow at the same rate n, and

c(x,t) = c(x), hence

F (k , 1) - c = nk.
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Each combination of c and n defines a golden state. Note that

(121) is the familiar Solow condition, sF(k,1) = nk (see also

Arthur and McNicoll, 1977a, p. 116).

Which golden state yields a maximum life-time utility from

consumption? If u[c(x)] is the utility from consumption at age

x, then a baby just born has a probability p(x) of enjoying this

consumption. Maximization of

W

U (c (x)] = J p (x) u [c (x) ] dx
o

subject to (120)yields the following optimality conditions

( 122)

ou [c* (x)]

oc(O)

nx= e
ou [c* (x) ]

~c(x)
(123)

i.e. the discounted marginal utility of consumption must be the

same for all ages. In other words, for the lifetime welfare to

be a maximum, the disutili ty of one unit of consumption less at

age 0 (loan) must be offset by the utility of the consumption of

this unit at age x, multiplied by the interest (repayment). This

relation is the "biological interest rate" condition, similar to

(114} •

As in the case of two ages, we search now for the growth

rate n which yields the most golden Golden Rule state. Maximi­

zing (122)with respect to n gives

oU[c*(x)]
=

on

WJ (x) [ou (c* (x) ]
o p oc(x)

oc(x) d
on x

= oU [c* (x) ]
oc (0)

WJ -nx () 6c(x) d ]e p x s x.o un

Transforming this expression qives

oU[c*(x)] _ oU[c*(x)]
- on - '06(0) [et:(Ac - AL ) - k];
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here c* is the optimal average consumption per worker and Ac and

AL are, respectively, the mean age of consuming and of the labor

force. Therefore, the lifetime welfare effect of changing the

population growth rate is equal to an intergenerational transfer

effect (the difference in Ac and AL*) and a capital widening effect.

The latter effect is always negative, while the intergenerational

transfer effect can be either positive or negative.

4. Conclusion

The purpose of this paper has been to review the existing links

between formal representations of population and economic policies.

This bringing together of the work of demographers and economists

aims to contribute to better policy-making.

The common feature of the models reviewed is the underlying

mathematical paradigm. Any dynamic policy problem may formally

be stated as an optimal control problem, and the theory of optimal

control provides the apparatus necessary to solve for the optimal

values of the policy variables.
Two groups of demo-economic policy models have been examined

in increasing order of complexity: plannin0-oriented models and

theoretically-oriented models. Planninq oriented models may be

viewed as logical extensions of mathematical demoqraohic arowth

models to the policy domain. The demographic growth model itself

is embedded in the policy model~ as the homogenous part of the

state equation. The discussion focused on two major issues in dy­

namic policy modelling: existence and design. Systems theory pro­

vides the necessary mathematical tools.

The second group of policy models is theoretically-oriented.

These models originated in the theory of economic growth and have

a much higher level of abstraction than the planning-oriented

models. Studies of their underlying theoretical concepts, of the

structure of their policy problem, and of the existence and stabi­

lity of their optimal policies have received much attention.

This paper presents the current state-of-the-art in linking

demo-economic growth and policy in formal models. Fundamental dif­

ferences between both approaches do not permit a complete sythesis

at this time. Complete synthesis may never be achieved and may

even not be desirable since the two approaches serve a different purpose.

*The average age of consuming is three to four years below the
average working age (Arthur and McNicoll, 1977b).
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