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Abstract

The assumption that trade-offs exist is fundamental in evolutionary theory. Levins

(Am. Nat. 96 (1962), 361-373) introduced a widely adopted graphical method for an-

alyzing evolution towards an optimal combination of two quantitative traits, which

are traded off. His approach explicitly excluded the possibility of density-dependent

and frequency-dependent selection. Here we extend Levins method towards models,

which include these selection regimes and where therefore fitness landscapes change

with population state. We employ the same kind of curves Levins used: trade-off

curves and fitness contours. However, fitness contours are not fixed but a function

of the resident traits and we only consider those that divide the trait space into

potentially successful mutants and mutants which are not able to invade (‘invasion

boundaries’). The developed approach allows to make a priori predictions about

evolutionary endpoints and about their bifurcations. This is illustrated by applying
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the approach to several examples from the recent literature.

Key words: adaptive dynamics, fitness landscape, frequency-dependent selection,

invasion fitness, life-history evolution, trade-off

1 Introduction

The notion of trade-offs is central to evolutionary theory. Without constraints,

organisms would evolve to become masters of all traits. As they do not, organ-

isms must have a limited set of possible phenotypes (Maynard Smith, 1978). At

the boundary of this set organisms face a trade-off: they can only improve one

trait at the expense of the others. There exists a long literature that tells how,

given such boundary constraints and given that evolution maximizes some op-

timization criterion, we can calculate the phenotypes that we should expect to

evolve (e.g. Maynard Smith, 1978; Stephens and Krebs, 1986; Lessells, 1991;

Roff, 1992; Stearns, 1992; Alexander, 1996; McNamara et al., 2001).

Related to optimality models is the notion of fitness landscape or adaptive

landscape, originally introduced in the context of population genetics (Wright,

1931; Lande, 1976). In phenotypic evolution a fitness landscape is the visualiza-

tion of the function which assigns to every point in trait space the correspond-

ing value of the optimization criterion. If the trait space is two-dimensional,

this can indeed be seen as a topographical map. On the assumption that the

genetic variation is relatively small, traits in such a landscape move uphill in

the course of evolution. Evolution stops when the trait of a population has

∗ Corresponding Author.
Email address: rueffler@rulsfb.leidenuniv.nl (C. Rueffler).
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either reached a hilltop or a maximum at the boundary of the, constrained,

trait space (for an example where such a landscape is calculated see Benkman

(1993)).

Levins (1962; 1968) introduced an influential graphical method for finding the

optimal strategy if reproduction takes place in two different environments (Fig.

1). The two dimensions of his trait space are the average number of offspring

a given phenotype produces in each type of environment. Levins called the

set of feasible combinations ‘fitness set’. Two ingredients are important in

his approach. The first one is the trade-off curve which describes the relation

between the reproductive abilities in the two environments. It constitutes a

boundary of the trait space. The second one are the contours of the fitness

landscape which consist of all points in trait space that yield equal fitness.

When these two types of curves are plotted on top of each other the optimal

phenotype can be read from this plot. It is the strategy in the fitness set that

lies on the highest contour.

This approach appears particularly successful in life-history theory, where it

has been applied to the evolution of reproductive effort and the evolution

of iteroparity versus semelparity (e.g Pianka and Parker, 1975; Bell, 1980;

Takada, 1995) and has found its way into textbooks (Yodzis, 1989, p. 324;

Roff, 1992, p.71; 2002, p.197). If fitness contours are linear the general result

is as follows: for concave trade-offs an intermediate strategy will be optimal

(Fig. 1a), while for convex trade-offs one of the two boundary strategies will

be optimal (Fig. 1b).

In life history theory it is traditionally assumed that neither density-dependence

nor frequency-dependence influences the process of selection, leading to the

3



intrinsic rate of increase r as the natural optimization criterion (Stearns, 1992;

Roff, 1992; Charlesworth, 1994). Studies including density-dependence mostly

used either the expected lifetime reproductive success R0 or population size at

equilibrium N̂ as the optimization criteria (e.g. Michod, 1979; Charnov, 1993;

Charlesworth, 1994). A large part of life history theory has been developed in

this way (Roff, 1992, 2002; Stearns, 1992) and has also been corroborated in

many aspects by empirical findings (Stearns, 2000).

However, there are two reasons why the optimization approach is not generally

applicable. First, there are density-dependent scenarios where no optimization

criterion mentioned so far works properly and where other functions must be

maximized (Mylius and Diekmann, 1995; Metz et al., 1996b). If the proper

criterion is not known, optimization tends to fail. Second, optimization is gen-

erally impossible in the presence of frequency-dependence (Fisher, 1930). The

study of frequency-dependent evolution made its first big step in behavioral

ecology with the introduction of game theory and the ESS-concept (Hamilton,

1967; Maynard Smith and Price, 1973; Maynard Smith, 1982; for a review see

Vincent and Brown, 1988). There is now also a growing body of literature

emphasizing the potential importance of frequency-dependent selection out-

side the realm of individual behavior (Kawecki, 1993; Day and Taylor, 1996;

Svensson and Sheldon, 1998). Frequency-dependent selection can have as a

consequence that evolution leads towards fitness minima (Christiansen, 1991;

Abrams et al., 1993) or that fitness maxima are not approached (Hofbauer

and Sigmund, 1990; Nowak, 1990). These aspects emerge in a natural way if

evolutionary trait substitution sequences are derived from population dynam-

ics. This is done in the theory of adaptive dynamics (Metz et al., 1992, 1996a;

Dieckmann and Law, 1996; Geritz et al., 1997, 1998), which may be defined
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as the study of mutation limited trait substitution processes through repeated

invasions of mutants in fitness landscapes that keep changing as a result of

those very substitutions. The correctness of any optimization criterion has to

be proven with respect to the population ecology where it is applied.

The aim of this paper is to extend Levins’ graphical approach for the clas-

sification of optimal strategies in a systematic way to models which explic-

itly account for any type of population regulation and therefore any type of

density-dependence and frequency-dependence. This classification allows for

a priori predictions of the evolutionary end points based on the same types

of curves Levins used: trade-off curves and fitness contours. However, fitness

contours now do not represent strategies with the same value of an a priori

chosen optimization criterion but strategies sharing the same invasion fitness

for a given resident population. Invasion fitness is the growth rate of an ini-

tially rare mutant in a resident population which is at its ecological equilibrium

(Fisher, 1930; Reed and Stenseth, 1984; Metz et al., 1992). In the presence

of frequency-dependence the fitness landscape is not fixed but depends on

the resident types. We not only determine whether a pure or an intermediate

strategy is the optimal one but also classify the dynamics of the evolutionary

process, i.e., whether such a strategy is approached. Special attention will be

given to the scenario of evolutionary branching where an originally monomor-

phic population turns dimorphic because of disruptive selection generated by

frequency-dependent interactions.

In the study of evolution invasion and Levins’ fitness set approach have been

brought together in earlier work. However, this has never been developed sys-

tematically and in a fully dynamical sense. Lawlor and Maynard Smith (1976)

employed the combination in a study on coevolution of competing species.
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Charnov used fitness sets extensively when he developed his theory of sex

allocation (Charnov et al., 1976; Charnov, 1982). Sex allocation theory is

maybe the field where the signature of frequency-dependence was recognized

first (Fisher, 1930). The fitness landscape that a mutant type with a certain

sex ratio experiences, necessarily depends on the sex ratio of the resident type.

Gatto (1993) and Ferrière and Gatto (1995) linked the two concepts when they

investigated which type of population dynamics one can expect to evolve in

a simple Ricker model. Another specific example of the approach we develop

systematically in this paper can be found in the appendix of de Mazancourt

et al. (2001).

The outline of the paper is as follows. In Section 2 we review the concept of

invasion fitness and in Section 3 we show how the application of this fitness

concept makes fitness landscapes change. After that we develop a complete

classification of the possible dynamical behavior of evolution as a function

of the curvature of the trade-offs and the curvature of the changing fitness

contours. Monomorphic populations are treated in Section 4. In Section 5 we

extend the results to polymorphic populations. In Section 6 we demonstrate

how the developed approach can be applied. We discuss which evolutionary

predictions can be derived a priori for qualitatively different curvature com-

binations of trade-offs and fitness contours and how changes in curvature can

alter evolutionary outcomes. We apply these ideas to several models from the

recent literature.
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2 Invasion Fitness

The evolutionary success of a mutant depends on whether or not this initially

rare type can spread in a given resident population. Evolutionary success is

measured in terms of invasion fitness s(θm, Eθr), i.e., the long term average

growth per capita and per time unit of an initially rare mutant with trait

vector θm in an environment Eθr shaped by the resident type θr (Metz et al.,

1992). If the resident population consists of more than one type we call it a

coalition Θr = (θ1, . . . , θn) (Brown and Vincent, 1987a,b). Invasion fitness of

a mutant in a resident coalition is then given by s(θm, EΘr). The condition of

the environment EΘr is thereby considered as a function of a population dy-

namical attractor of the resident types, here assumed to be unique. Note that

we do not restrict ourselves to point attractors. It is this attractor that shapes

the environment a mutant experiences. For this to hold, we have to make two

assumptions (Metz et al., 1992, 1996a). First, there are no long lasting-trends

in those environmental components that are not influenced by the resident

population. Second, the resident population dynamics has reached its attrac-

tor before a new mutant type arrives, i.e., the ecological and evolutionary

timescales are separated. Under these conditions we can, with a slight abuse

of notation, write s directly as a function of the trait values of the mutant

and of the resident population: s(θm,Θr). For all types θi ∈ Θr of a coalition

necessarily

s(θi,Θr) = 0. (1)

If s(θm,Θr) > 0 invasion of the mutant is possible and if s(θm,Θr) < 0 the

mutant will disappear. If s(θm,Θr) = 0, the mutant is initially neutral with

respect to the resident population. Note that our formulation holds for contin-
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uous time measures of fitness. In a discrete time framework, fitness is measured

per time step and 0 has to be replaced with 1.

Whenever invasion occurs we assume that the mutant replaces its progenitor.

Sufficient conditions for this to hold are that phenotypic effects of mutations

are small and that the evolutionary dynamics are not close to a point where

the gradient of invasion fitness (see Eq. (3) below) equals zero (Geritz et al.,

2002).

3 Changing Fitness Landscapes

The next step is to link invasion fitness with fitness landscapes à la Levins. To

this end we first briefly review some notions corresponding to changing fitness

landscapes.

When we employ invasion fitness there is no fixed fitness value attached to

a type any longer, but every mutant type has an invasion fitness conditional

on the resident population. Therefore we do not get a single fitness landscape

but as many as there are possible resident populations. For every resident

population, the landscape is divided into two parts: (1) a region of types

which have invasion fitness larger than zero and are therefore able to invade

and (2) a region of types which have invasion fitness smaller than zero and are

not able to invade. If the trait space is two-dimensional, one can visualize it

as a landscape with a region above sea level and a region below sea level. The

shoreline in this landscape is made up of all those mutant strategies which are

selectively neutral: they would neither grow nor decline in numbers under the

conditions set by the resident population. We will refer to this contour line as
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the ‘invasion boundary’. It is given implicitly by

s((t1, . . . , tn),Θr) = 0 (2)

where the t’s are the separate traits making up the n-dimensional trait vector

θm. If n = 2 Eq. (2) defines a curve and if n = 3 Eq. (2) defines a two-

dimensional manifold, etc. Since for all resident types θr ∈ Θr in a coalition

Eq. (2) applies, these types all lie on the invasion boundary generated by that

coalition.

A successful mutant either replaces one or more types already present in the

population, or the number of types coexisting will increase by one. After the

coalition has settled on a new population dynamical attractor, Eq. (1) holds

for the new set of residents. Each such event corresponds to a step in trait

space away from the seashore in an upward direction. However, each time

the seashore changes such that all types of the new coalition reside again on

the shoreline (Marrow et al., 1992). If one assumes that mutational steps are

small, then a sequence of successful invasions gradually changes the fitness

landscape.

Hilltops, bottoms of troughs and saddles are points of special interest in a

fitness landscape. Resident strategies that sit on one of these special points

of the landscape generated by themselves are called ‘evolutionarily singular

strategies’ θ∗r (Metz et al., 1996a; Geritz et al., 1998). These are points where

directional selection ceases to act. Mathematically this condition corresponds

to a zero fitness gradient,

∂s(θm,Θ
∗
r)

∂θm

∣∣∣∣∣
θm=θ∗j

= 0 for all θ∗j ∈ Θ∗
r, (3)

which has the same dimension as the trait vector. If this condition holds
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for all members of a resident community, then this community is called an

‘evolutionarily singular coalition’ (Metz et al., 1996a; Geritz et al., 1998).

Singular strategies in one-dimensional trait spaces can be classified accord-

ing to two properties: convergence stability and noninvadability (Metz et al.,

1996a; Geritz et al., 1997, 1998). The first property means that a singular

strategy is approached in the course of evolution from within a certain neigh-

borhood (Eshel and Motro, 1981; Eshel, 1983; Christiansen, 1991). A singular

strategy not convergence stable is repelling. A strategy is (locally) noninvad-

able if no (nearby) mutant can increase in frequency when the singular strategy

is the resident type. This property corresponds to the ESS condition of game

theory (Maynard Smith, 1982). Since these two properties are mutually inde-

pendent (Eshel, 1983; Taylor, 1989; Nowak, 1990; Christiansen, 1991; Abrams

et al., 1993) four different types of evolutionarily singular strategies exist:

Continuously stable strategies (CSSs) (Eshel and Motro, 1981; Eshel,

1983; Christiansen, 1991) are both convergence stable and noninvadable.

They are end points of the evolutionary dynamics.

Branching Points (Metz et al., 1996a; Geritz et al., 1997, 1998) are conver-

gence stable and invadable. Directional selection drives a population towards

such a point. Once it is reached selection becomes disruptive. Any surround-

ing strategy can invade and coexist with the resident type in a protected

polymorphism. The number of resident strategies therefore usually increases

by one.

Garden of Eden Points (Hofbauer and Sigmund, 1990; Nowak, 1990) are

strategies which are noninvadable but are never approached in the course

of evolution. If a Garden of Eden point happens to be the resident strategy,

selection is stabilizing. However, any perturbation will lead to directional
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selection away from it.

Repellors are not convergence stable and can be invaded by any surrounding

strategy.

In one-dimensional trait spaces a singular point generically corresponds to

either a hilltop or to a bottom of a trough. When trait spaces have more

dimensions, also saddle points become possible which follow the above clas-

sification only in certain directions. Furthermore, not only selection but also

the mutational process influences the direction of evolutionary change and the

notion of convergence stability becomes more complex (Motro, 1994; Matessi

and Di Pasquale, 1996; Leimar, 2001).

Under certain conditions an optimization approach yields the same results as

the more general approach of an invasion analysis. The conditions for the ex-

istence of a function which gets maximized in the process of evolution were

worked out by Mylius and Diekmann (1995) and Metz et al. (1996b). If an

optimization criterion exists, two properties hold: (1) The population stays

monomorphic. For any set of types, the type with the highest value of the

optimization criterion will displace all the others, making a polymorphism

impossible. (2) Invasion boundaries coincide with the contour curves of the

optimization criterion. An invasion boundary corresponding to a certain resi-

dent strategy consists of all strategies which are selectively neutral. These are

exactly those strategies which have the same value of the optimization crite-

rion as the given resident strategy. Only in this case the fitness landscape can

be visualized as a fixed landmass surrounded by a rising sea, with the resident

type always positioned on the shoreline of the sea.
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4 The Fitness Landscape Plot

On our way to link Levins’ fitness set to the ideas of the previous section,

we will develop our graphical approach in detail for two positive traits φ and

ψ and monomorphic populations. From now on we will assume that invasion

fitness is an increasing function of both these mutant traits. The feasibility set

is limited by the two axes and a trade-off curve. According to the traditional

mathematical notation a concave trade-off curve is characterized by a negative

second derivative (Fig. 1a). We call such a trade-off weak. It gives rise to a

convex feasibility set. A convex or strong trade-off is characterized by a positive

second derivative and gives rise to a concave feasibility set (Fig. 1b).

Since fitness is increasing in both traits, the trait vector of a population will

in general stay close to the trade-off curve. If an invasion boundary intersects

with the trade-off curve then there also exist strategies inside the feasibility

set which are able to invade. However, when mutational steps are small, steps

in the direction of the trade-off curve will dominate and the traits will stay

close to the boundary. We will idealize this with the simplifying assumption

that, after approaching it, evolution further proceeds along the trade-off curve.

Thus an increase in one trait is only possible at the expense of an immediate

decrease in the other one.

The trade-off curve is a one-dimensional manifold with boundary, which we

can parameterize with a single variable θ ∈ [0, 1]. Every value of θ represents

a point (φ, ψ) in trait space lying on the trade-off curve. We parameterize the

trade-off curve corresponding to the direction of reading, from the top left to

the bottom right. The point θ = 0 then corresponds to the minimum of φ
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and to the maximum of ψ while θ = 1 corresponds to the maximum of φ and

the minimum of ψ (Fig. 2). With this convention, strategies corresponding

to smaller θ-values than a given strategy lie above and to the left of it. Bi-

ologically, θ might have the interpretation of effort invested in one biological

function and thereby not invested in the other function. For later usage we

introduce another convention already here. An invasion boundary is said to

intersect with the trade-off curve from the inside of the feasibility set if the

invasion boundary for low values of φ lies inside the feasibility set and inter-

sects with the trade-off curve as φ increases. An invasion boundary is said to

intersect from the outside if the opposite holds true.

If an optimization criterion exists, the dynamics of the evolutionary process

can be viewed as hill climbing on a fixed landscape. This scenario corresponds

to the theory developed by Levins (1962, 1968) and we describe it here first.

Evolution proceeds along the trade-off curve until a strategy corresponding to

a (local) fitness maximum is reached. This evolutionary end point is a CSS.

No strategy on a higher contour can be reached. If contours are linear and

the trade-off curve concave, the CSS is either an intermediate strategy (Fig.

1a) or one of the boundary strategies. The first holds true when there is a

point on the trade-off curve where a contour line is a tangent to the trade-

off curve. If the trade-off curve is convex, either both boundary strategies or

only one of them are CSSs (Levins, 1962) (Fig. 1b). Again, the first applies

when there exists a θ where the contour is a tangent of the trade-off curve.

This point corresponds to a Repellor. In general, one of the two boundary

strategies will have a higher fitness value than the other. However, depending

on the starting condition and the occurring mutations, that strategy may

not be attainable. When the trade-off curve has concave and convex parts,
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combinations of intermediate and boundary CSSs can occur (Schaffer, 1974).

If contour lines are not linear other results are also possible (Levins, 1962).

The more general case is that the fitness landscape depends on the resident

strategy. The invasion boundary corresponding to a specific resident strategy

determines which mutants are able to invade and which ones are not. Once the

trade-off curve is reached, the direction of further trait substitutions depends

on the way the invasion boundaries intersect with the trade-off curve (see Fig.

2 & 3). If they intersect from the outside of the feasibility set, mutants with a

larger θ (i.e., with a trait combination on the trade-off curve below the resident

strategy) are able to invade. If it intersects from the inside of the feasibility

set, mutants with a smaller θ are able to invade. This process continues un-

til the invasion boundary becomes tangent to the trade-off curve or until the

border of the trait space is attained. In the first case an evolutionarily singu-

lar strategy is reached. The classification from Section 3 can now be made in

terms of the behavior of the invasion boundaries. Whether a singular strategy

is noninvadable or not, depends on whether the corresponding fitness contour

is locally outside or inside the feasibility set near the point of tangency. In the

first case the resident strategy is a fitness maximum and therefore noninvad-

able, in the second case the strategy is a minimum and invadable. Whether

a singular strategy is convergence stable or not, depends on the behavior of

the invasion boundaries attached to the surrounding strategies on the trade-

off curve. An evolutionarily singular strategy is convergence stable if invasion

boundaries for nearby resident strategies intersect with the trade-off curve in

such a way that strategies closer to the evolutionarily singular strategy can

invade (Fig. 2a, b & 3a, b, c, d). This is the case if invasion boundaries cor-

responding to strategies with a smaller θ than the singular strategy intersect
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with the trade-off curve from the outside. The opposite has to hold for strate-

gies with a larger θ than the singular strategy. The reverse pattern means that

a strategy is repelling (Fig. 2c, d & 3e, f, g, h).

Since the above-mentioned properties are mutually independent we can en-

counter all four different combinations. First we consider the simplest case

where invasion boundaries are linear, a condition commonly encountered in

models from the literature. Later on we treat the more general case where no

restrictions are put on the curvature of the invasion boundaries. If the trade-

off curve is concave, any tangent invasion boundary lies outside the feasibility

set, of course with the exception of the point of tangency. Hence, any singu-

lar strategy has to be either a CSS (Fig. 2a) or a Garden of Eden (Fig. 2c).

Vice versa, if the trade-off curve is convex, any tangent invasion boundary

lies inside the feasibility set. A singular strategy therefore has to be either a

Branching Point (Fig. 2b) or a Repellor (Fig. 2d).

For curved invasion boundaries any type of singular strategy can occur on

concave trade-offs as well as on convex trade-offs. If the curvature of either

the trade-off curve or of the invasion boundary changes over trait space, our

classification holds only locally.

CSS The invasion boundary is tangent to the trade-off curve from the outside

of the feasibility set. Invasion boundaries attached to points above the sin-

gular strategy intersect from the outside with the trade-off curve and from

the inside below the singular strategy. If the trade-off curve is concave, in-

vasion boundaries have to be less concave (Fig. 3a). If the trade-off curve is

convex, invasion boundaries have to be more convex (Fig. 3b).

Branching point The invasion boundary is tangent to the trade-off curve
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from the inside of the feasibility set. Invasion boundaries attached to points

above the singular strategy intersect from the outside with the trade-off

curve and vice versa below the singular strategy. If the trade-off curve is

concave, invasion boundaries have to be more concave (Fig. 3c). If the trade-

off curve is convex, invasion boundaries have to be less convex (Fig. 3d).

Garden of Eden Points The invasion boundary is tangent to the trade-off

curve from the outside of the feasibility set. Invasion boundaries attached to

points above the strategy intersect from the inside with the trade-off curve

and from the outside below the strategy. If the trade-off curve is concave,

invasion boundaries have to be less concave (Fig. 3e). If the trade-off curve

is convex, invasion boundaries have to be more convex (Fig. 3f).

Repellor The invasion boundary is tangent to the trade-off curve from the

inside of the feasibility set. Invasion boundaries attached to points above

the singular strategy intersect from the inside with the trade-off curve and

from the outside below the singular strategy. If the trade-off curve is concave,

invasion boundaries have to be more concave (Fig. 3g). If the trade-off curve

is convex, invasion boundaries have to be less convex (Fig. 3h).

The different properties of strategies that lie on the trade-off curve can also

be expressed in terms of the derivatives of the invasion boundaries and the

trade-off curve at the points where they intersect. For a strategy being a

singular point the first derivative of the two curves have to be equal. Whether

or not such a strategy is invadable depends on the relative curvature, i.e., the

difference in curvature between the two curves. This can be determined by

means of the second derivatives, which is worked out in detail in the appendix.

We now have a full classification of evolutionary singular points with respect to

the curvature of the trade-off curve and the shape of the invasion boundaries

16



of the fitness landscape. On the assumption that standing genetic variation

is negligible, such a graphical classification is usually done in terms of so-

called pairwise invasibility plots (PIPs) (Metz et al., 1996a; Dieckmann, 1997;

Geritz et al., 1997, 1998). Introduced by Christiansen (1980), Motro (1982),

Matsuda (1985) and van Tienderen and de Jong (1986), they now are used

widely to visualize evolutionary dynamics (e.g. Claessen and Dieckmann, 2002;

Day et al., 2002; Egas et al., in press). Their strength is that they allow

for an easy graphical analysis of evolutionary dynamics in one-dimensional

trait spaces and for monomorphic populations. However, the predictions of

evolutionary dynamics which are possible with the fitness landscape plot (see

Section 6) cannot be extracted from PIPs. While a PIP is simply a contour plot

of invasion fitness, the fitness landscape plot allows us to derive evolutionary

dynamics from more mechanistic arguments. Since it is based on the shape

of the trade-off curve and the invasion boundaries, we can assess how the

evolutionary dynamics changes when their curvatures are altered. The PIP

shows invasion fitness only for resident and mutant strategies lying on the

trade-off curve, i.e., for the strategies which we parameterized by θ. In Fig. 4

we illustrate the relation between a fitness landscape plot and a PIP.

5 Polymorphic Evolution of a One-Dimensional Trait

Once a population has reached a Branching Point, selection becomes disruptive

and a formerly monomorphic population turns dimorphic (Metz et al., 1996a;

Geritz et al., 1998). From then on, we have to follow the evolution of two

resident types θ1 and θ2. Because of Eq. (1), both resident types must lie on

the same invasion boundary. Further evolutionary dynamics can be read from
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a fitness landscape plot in the same way as was done from Fig. 2 and Fig. 3.

The population has reached an evolutionarily singular coalition (θ∗1, θ
∗
2) when

∂s(θm, (θ
∗
1, θ

∗
2))

∂θm

∣∣∣∣
θm=θ∗j

= 0 for j ∈ {1, 2}. (4)

At an evolutionarily singular coalition, the invasion boundary has to be tan-

gent to the trade-off curve at both resident strategies. Further branching can

occur if the invasion boundary is tangent to the trade-off curve from the in-

side of the feasibility set for one of the two resident types at least. Eq. (4)

immediately generalizes to evolutionarily singular coalitions with an arbitrary

number of resident types.

Under certain conditions the course of the polymorphic evolution can be de-

rived from geometrical arguments, for instance when the invasion boundaries

for populations consisting of two resident types are linear. Such an invasion

boundary always intersects with the trade-off curve in the two points corre-

sponding to the two resident types. If the trade-off curve is convex, the traits

in the singular coalition are either driven apart until the boundary of the

trait space is reached (Fig. 5) or until one of the two types goes extinct. In

the first case the end point of the evolutionary process corresponds to a pop-

ulation consisting of the two pure strategies θ∗1 = 0 and θ∗2 = 1. No further

branching is possible. The second case is sketched in Fig. 6, on the assumption

that the population decline is continuous. At the point where the evolution-

ary trajectory changes from dimorphic to monomorphic by the extinction of

one type, the invasion boundary intersects with the trade-off curve in such a

way, that selection favors further specialization of the remaining type (Fig. 6)

until it has reached the boundary of the trait space. Let us further assume

that the dimorphism emerged at a Branching Point, which by definition at-
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tracts monomorphic populations from both directions. Under this condition,

we can conclude that the gradual extinction of one type is only possible when

a Repellor exists between the remaining type and the Branching Point. This

Repellor separates the two basins of attraction of the monomorphic evolution,

which lead to either the Branching Point or the boundary of the trait space.

A second conclusion arising from this argument is, that evolutionary cycles

of branching and extinction as observed by Mathias and Kisdi (1999), Kisdi

et al. (2000) and Doebeli and Dieckmann (2000) are not possible.

These arguments hold also for nonlinear invasion boundaries, whenever the

invasion boundary of the dimorphic population intersects with the trade-off

curve from the inside at the upper left resident strategy and from the outside

at the lower right resident strategy. A change of such a constellation is only

possible via a phase with three points of intersection between the trade-off

curve and the invasion boundary. It is only under this condition that the

presented results may depend on the rate of evolution in the two types.

It is easy to understand that an evolutionarily singular coalition where two res-

ident types are intermediate strategies requires more complicated curvatures

than we discussed so far.

6 Curvature Combinations

Our approach elucidates the interplay between population dynamics (inva-

sion fitness) and properties of the organism (trade-off curve) in a graphical

way. In certain cases the qualitative outcome of an evolutionary model can be

predicted immediately. This is sometimes possible even for polymorphic pop-
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ulations where up to now numerical calculations needed to be employed. In

other cases it enables us to predict changes in the outcome of an evolutionary

model when parameters which influence the curvature of either the trade-off

or the invasion boundaries are altered. That means, it allows us to make state-

ments which are similar to those derived from a bifurcation analysis. In this

section we classify models with respect to the curvature of the trade-off and

the invasion boundaries into four groups and discuss which results one can

derive a priori.

Linear Trade-Off & Linear Invasion Boundaries

This is the simplest case. A trade-off curve is linear when one trait is a linear

function of the other. An example for this are seeds that can either germinate

or stay in the seed bank. The probabilities for these two alternatives have to

add up to one. Invasion boundaries are linear when invasion fitness is a linear

function of the two traits that are traded off. Sometimes this is easier to detect

when a sign-equivalent proxy for invasion fitness is used. In this scenario, an

invasion boundary either intersects with the trade-off curve or coincides with

it. The first situation corresponds to directional selection while the latter sit-

uation corresponds to a singular strategy where all mutants on the trade-off

curve are selectively neutral. This singular strategy is a mixed strategy and its

value determines the probability of each individual to exhibit either of the pure

strategies. It can be repelling or attracting. If such a strategy exists, the cor-

responding PIP shows a vertical zero contour line next to the diagonal where

the mutant and resident have equal trait values (Geritz et al., 1998; Meszéna

et al., 2001). In this case the fitness landscape changes depending on the resi-

dent strategy and therefore frequency-dependent selection has to be involved.

However, evolutionary branching and genetically polymorphic populations are
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not possible. If no frequency-dependence is present, the evolutionary problem

can be solved by maximizing an optimization criterion (Metz et al., 1996b)

and either of the two pure strategies will be optimal. The model in Heino et al.

(1997) serves as an example for these statements. These authors investigate

the evolutionary dynamics of maturation in a semelparous organism. Each

organism matures with a certain probability and then dies, or it delays mat-

uration to the next season where it reproduces and then dies. It is assumed

that the population is in population dynamical equilibrium so that we can use

life-time offspring production R0 as a stand-in for invasion fitness. R0 equals

the sum of the reproductive output at ages one and two, weighted with their

respective probabilities. As these probabilities sum up to one, Heino et al.’s

model falls into the case where the feasibility set is given by a linear trade-off.

When only one resource is involved in the feedback environment there is no

frequency-dependence and generically either of the two pure strategies is a

CSS, resulting in an annual semelparous organism or a biennial semelparous

organism. When two resources are involved a resident strategy can exist for

which the slopes of the trade-off and the invasion boundary are equal. This

is an evolutionarily singular strategy which is convergence stable, and once it

is reached all mutants are selectively neutral. In this situation a certain frac-

tion of the population reproduces after one year while the remaining fraction

reproduces after two years.

Nonlinear Trade-Off & Linear Invasion Boundaries

Many classical life-history models (e.g Pianka and Parker, 1975; Bell, 1980;

Takada, 1995) belong to the category where the trade-off can be either convex

or concave and the invasion boundaries are linear. Only CSSs or Gardens

of Eden are possible in combination with concave trade-offs (Fig. 2a, c) while
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Branching Points and Repellors are possible in combination with convex trade-

offs (Fig. 2b, d). Whenever the trade-off switches from concave to convex

an uninvadable strategy loses this property and becomes either a Branching

Point or a Repellor. If frequency-dependence can be excluded we are back at

the classical result (Fig. 1). A recent model with a nonlinear trade-off and

linear invasion boundaries is presented in Day et al. (2002). These authors

developed a model for a simple food chain in order to study the evolutionary

implications of different complexities in the interactions between the three

different trophic levels. The evolving trait determines the trade-off between

growth and reproduction in the consumer. In their model invasion boundaries

are linear. This can be seen when calculations are done in terms of the lifetime

number of offspring, which in their model is a sign-equivalent proxy for invasion

fitness. For convex trade-off curves they either find a Repellor (Fig. 1b and

2d) or a Branching Point (Fig. 2b), depending on whether the interactions

in the food chain allow for frequency-dependent selection or not. For concave

trade-off curves they always find CSSs (Fig. 1a and Fig. 2a). Our type of

analysis (Fig. 5) makes clear that after branching the dimorphic evolution

always proceeds until a coalition of the two extreme types is reached where

one type invests all energy into reproduction and the other type invests all

energy into growth. Day et al. (2002) already surmised this result on the basis

of numerical calculations. Our approach not only provides a proof, but also

makes it easy to spot the result from the fact that the trade-off is convex and

that invasion boundaries stay linear for dimorphic populations.

Linear Trade-Off & Nonlinear Invasion Boundaries

Nonlinear invasion boundaries can occur if invasion fitness is a nonlinear func-

tion of the two traits that are traded off. In some cases invasion boundaries
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may become linear after rescaling the traits. An example where such a rescal-

ing is not possible, can be found in Ebenman et al. (1996). These authors

investigated a model for the evolution of different sensitivities to density de-

pendence using nonlinear Ricker type functions. Nonlinear invasion boundaries

also occur in models incorporating environmental fluctuations (Mathias and

Kisdi, 2002) or nonequilibrium population dynamics (Gatto, 1993). Ferrière

and Gatto (1995) present a theorem which states necessary conditions for

invasion boundaries to be convex in models dealing with either fluctuating

environments or nonequilibrium dynamics. This is the case when all positive

entries of the population matrices are log-concave functions of the evolving

traits. If the conditions of the theorem are fulfilled and the trade-off is either

linear or concave, Branching Points and Repellors cannot occur.

When nonlinear invasion boundaries occur together with a linear trade-off,

again only two of the four types of singular points are possible for each shape

of the invasion boundaries. An uninvadable strategy loses the ESS-property

whenever the invasion boundary attached to it switches from convex to con-

cave. Therefore a CSS and a Garden of Eden turn into either a Branching

Point or Repellor (see Fig. 3, however with linear trade-off). Mathias and

Kisdi (2002) analyzed a model with a linear trade-off and nonlinear invasion

boundaries. It is a two-patch model with environmental stochasticity for the

germination rate of plant seeds, where no analytical expression for the in-

vasion boundaries can be derived. The trade-off determines whether a seed

germinates or stays in the seed bank. Since each seed follows either of these

two strategies, the feasibility set is given by the straight line where the sum of

the two probabilities equals one. The authors perform a numerical bifurcation

analysis for the dispersal parameter between the two patches. If dispersal is
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low, evolutionary branching occurs. When dispersal increases, the Branching

Point turns into a CSS. From this we can conclude that at the bifurcation

point invasion boundaries change from concave to convex (see Fig. 3c and d

vs 3a and b).

Nonlinear Trade-Off & Nonlinear Invasion Boundaries

The most general case is where both the trade-off curve and the invasion

boundaries are nonlinear (see Fig. 3). A general prediction in this case is that

invadable singular strategies occur more easily in combination with strong

trade-offs since it is then more likely that an invasion boundary is tangent

to the trade-off curve from the inside of the feasibility set. Hence, we pre-

dict that uninvadable singular points become invadable when the trade-off is

strengthened. This prediction is confirmed in a study by Egas et al. (in press).

They study the evolution of specialization in a two-patch model, a situation

which corresponds to the models Levins used to present his original ideas.

The evolving trait is a parameter determining the efficiencies in the two dif-

ferent habitats which are traded off. Due to environmental stochasticity in

their model, it is not possible to derive an analytical expression for the in-

vasion boundaries. They find branching as well on strong and weak trade-off

curves. We can conclude that in the latter case invasion boundaries are more

strongly concave than the trade-off (Fig. 3c). Whenever they find a CSS, it

turns into a Branching Point when the strength of the trade-off is increased

sufficiently as predicted by our framework. Furthermore they report of regions

in their parameter space where evolutionary branching leads to an interior

pair of generalists indicating complexly curved invasion boundaries.

When the shape of the invasion boundaries is known to be either convex or
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concave stronger statements can be made. As an example serves a paper by

Gatto (1993) who investigated a Ricker map with a concave trade-off between

adult survival and fecundity. In that model invasion boundaries are either lin-

ear (when the resident strategy corresponds to a stable equilibrium) or convex

(when the resident strategy corresponds to a cyclic or chaotic attractor). He

shows that whether a CSS strategy corresponds to either a stable equilibrium

or to a cyclic or chaotic attractor depends crucially on the precise extent of

the feasibility set. In the model it is obvious that a CSS corresponding to a

stable equilibrium is unique. Gatto cannot exclude the possibility that mul-

tiple CSSs are possible when they correspond to cyclic or chaotic attractors.

However, when two or more attracting singular strategies exist they have to

be separated by either a Repellor or a Garden of Eden. Since these repelling

strategies cannot occur under the given constraint that the trade-off is concave

and the invasion boundaries are convex, multiple CSSs are not possible.

7 Discussion

In this paper we extended the graphical approach of Levins (1962, 1968) for

the classification of optimal strategies to models which include any type of

density-dependence and thereby give rise to frequency-dependent selection. In

the framework Levins considered, stable fitness maxima (CSSs) and unsta-

ble fitness minima (Repellors) are the only possible types of singular strate-

gies. However, when selection is frequency-dependent unstable fitness maxima

(Branching Points) and stable fitness minima (Gardens of Eden) are also pos-

sible. We present necessary and sufficient conditions in terms of simple geo-

metrical properties for the occurrence of all different evolutionarily singular
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strategies. Furthermore we extended the approach to polymorphic populations

which consist of more than one type.

The strength of the presented approach lies in the possibility to make qual-

itative predictions about long term evolutionary dynamics using simple geo-

metrical techniques. This allows furthermore to predict how the properties of

evolutionary end points change with changes in parameters.

The conditions are derived from the same two types of curves Levins used.

(1) Trade-off curves have the same meaning as in Levins’ original approach.

They delimit the set of possible phenotypes within trait space. Their shape

is given by genetic, ontogenetic, physiological and morphological constraints

of the organism under study. Unfortunately there is no study known to us

which has revealed the details of this curvature for any life history trade-

off in a specific organism. However, these curvatures are central in life history

theory (Roff, 1992; Stearns, 1992) which indicates a major gap between theory

and empirical knowledge. For morphological traits there are promising data

describing the shape of trade-off curves (Benkman, 1993; Schluter, 1993). (2)

Our approach relies only on one special contour line of the fitness landscape:

the invasion boundary. In trait space this contour separates those phenotypes

which are able to invade a given resident population from those that are not.

Invasion boundaries are fundamentally different from the contours Levins used

since they are conditional on a resident population. This reflects the fact that

under frequency-dependent selection the fitness landscape is changing with

population state. Although it should in principle be possible to determine the

curvature of an invasion boundaries empirically, we are not aware of any such

study. In the theoretical sense their curvature is the result of a specific model

formulation, i.e., it is determined by the way the trade-off enters the fitness
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function which in turn depends on how exactly each component of fitness

contributes to population growth.

Although we considered the shape of the trade-off curve and the invasion

boundaries as given properties, they can in principle change over evolution-

ary time. When we allow for flexibility in of these curves, the dimension of

the evolutionary trait space is increased. When fitness is an increasing func-

tion of both traits, directional selection will act such, that trade-offs become

weaker, i.e., more concave, since then both traits increase simultaneously in

value. As a consequence, strong trade-offs can only persist under evolutionary

constraints. Since the curvature of invasion boundaries is not a direct model

assumption but rather implicitly defined, no parameter exists which deter-

mines their curvature directly. However, these curvatures can change due to

selection on other parameters which are part of the implicit function defining

the invasion boundary. A specific example is provided by Gatto (1993). In his

model, invasion boundaries are linear when the resident type corresponds to

a equilibrium attractor and convex when the resident type corresponds to a

oscillating and chaotic attractor. Under certain conditions the former type can

get invaded by the latter type. After fixation of such a mutant, the curvature

of the invasion boundary has changed from linear to convex.

For the evolutionary dynamics it is decisive whether the way population

growth is regulated causes frequency-dependent selection. With frequency-

dependent selection, optimization tends to fail. For frequency-dependent se-

lection to occur at least two different resources which influence different age

classes or stage classes have to be involved (Heino et al., 1998). Here the word

resource has to be understood in the widest possible sense, i.e., including all
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factors involved in population regulation like for instance predators. In or-

der to find conditions conducive to frequency-dependent selection in natural

populations, empirical studies should try to pinpoint two things: (1) what

are the densities involved in density-dependent population regulation and (2)

which stage or age dependent parameters are affected. Frequency-dependent

selection can also arise from nonequilibrium population dynamics. If the pop-

ulation dynamical attractor is cyclic, quasi-cyclic, or chaotic, optimization is

often not possible, and, moreover, the number of coexisting species can exceed

the number of limiting resources (e.g. Koch, 1974; Gatto, 1993; Huisman and

Weissing, 1999). In this case the invasion success of a rare mutant depends

on the resident type and the fluctuations it creates. Stochastic environmental

fluctuations can lead to effective frequency-dependent selection in a similar

way (e.g. Levins, 1979; Kisdi and Meszéna, 1993; McNamara, 1995).

We derived a priori predictions of the evolutionary dynamics based on the

shape of the trade-off and the invasion boundaries in the previous section. The

evolutionary dynamics are especially interesting when they allow for Branch-

ing Points where populations undergo disruptive selection and become di-

morphic. At Branching Points, biological diversity is generated (Doebeli and

Dieckmann, 2000). When evolving traits are related to the usage of different

resources, branching leads to the evolution of specialists that each rely on a

different resource. The occurrence of Branching Points is facilitated by strong

trade-offs. If the benefit from each resource is negatively frequency-dependent,

evolution will first lead towards a generalist strategy. Once the generalist has

become established, selections turns disruptive and it pays off to specialize on

a single resource. The likelihood of branching decreases if trade-offs are weak.
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In variable environments invasion fitness is given by the dominant Lyapunov

exponent (e.g. Metz et al., 1992). In the simplest case of structureless popu-

lations this reduces to the geometric mean of the annual growth rates. Since

the geometric mean is very sensitive to occasionally low values, evolution fa-

vors strategies with a low variance in the annual growth rate. A bet-hedging

generalist that relies on more than one resource will in general suffer less from

fluctuations than a specialist, which relies on a single resource (Philippi and

Seger, 1989; Wilson and Yoshimura, 1994 and references therein). Thus, we

expect that fluctuations make evolutionary branching less likely. This is in

accordance with a result of Ferrière and Gatto (1995), which states that en-

vironmental fluctuations usually generate convex invasion boundaries. In this

manner, environmental fluctuations will hamper the scope for branching.

The described patterns change if fitness is not an increasing function in the

two traits but decreasing in one or both traits. In that case the trade-off curve

does not get approached from the bottom left corner of the feasibility set but

from other directions. The results hold when the definition for strong and

weak trade-offs is adjusted. For instance, if fitness is a decreasing function of

two traits (e.g. mortality and sensitivity to competition) the trade-off curve

is approached from the top right corner of the trait space. A strong trade-off

now corresponds to a concave trade-off curve. In many cases, however, it will

be possible to reparameterize traits in such a way that fitness is again an

increasing function of both traits.

If the trait space has more than two dimensions, several trade-offs can be

involved. Therefore the boundary of the trait space becomes a higher dimen-

sional manifold and we have to parameterize it in more than one parameter.
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One can still consider a two-dimensional subspace to which the presented re-

sults can be applied. Generally however, the evolutionary dynamics in higher

dimensional trait spaces become less easy to classify (Motro, 1994; Matessi

and Di Pasquale, 1996; Metz et al., 1996a; Leimar, 2001) and it remains open

how the presented results can be extended using more elaborate differential

geometry. However, the intuitive idea that the relative curvature of the trade-

off manifold and the invasion manifold decide on the direction of selection,

should be correct.
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A Mathematical Description

We can produce the classification of Section 4 by characterizing the evolu-

tionary dynamics in terms of the first and second derivative of the trade-off

curve and the invasion boundaries. This is done for the case where the resident
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population is monomorphic. We can write the invasion fitness as

s(θm, θr) = s
(

[φ(θm), ψ(θm)] , [φ(θr), ψ(θr)]
)
, (A1)

where φ(θ) and ψ(θ) denote the coordinates in trait space of either the mutant

or the resident. In the polymorphic case we have to replace θr by θi and the

conditions have to hold for each θi ∈ Θr in order to achieve the same result

for singular coalitions.

The derivative of the trade-off curve at strategy θr is given by

µ(θr) :=
∂ψ

∂θ

∂θ

∂φ
(θr). (A2)

The invasion boundary corresponding to θr consists of all strategies (φ, ψ)

which are selectively neutral and is given by the implicit function theorem

applied to Eq. (2). Its slope at θr is

ν(θr) :=

[
− ∂s((φ, ψ), θr)

∂φ
/
∂s((φ, ψ), θr)

∂ψ

]
φ=φ(θr),ψ=ψ(θr)

. (A3)

A resident strategy θr is an evolutionary singular strategy θ∗ if the corre-

sponding invasion boundary is tangent to the trade-off curve at this point,

i.e.

µ(θr) = ν(θr). (A4)

An evolutionarily singular strategy θ∗ is noninvadable if the invasion boundary

is tangent with the trade-off curve from the outside of the feasibility set. This is

determined by the curvature of the trade-off curve and the invasion boundary.

The curvature of a function at a point θ is given by the second derivative in

the tangential direction. However, at a singular point the trade-off curve and

the invasion boundary have the same tangent and we can simply compare the
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second derivatives. A straight line then has zero curvature while a concave

curve has negative curvature and a convex curve positive curvature. Thus,

θ∗ is noninvadable if the curvature of the trade-off curve is smaller than the

curvature of the invasion boundary:

∂(µ− ν)

∂φ
(θ∗) < 0. (A5)

An evolutionarily singular strategy θ∗ is convergence stable if locally the cor-

responding invasion boundaries intersect with the trade-off curve from the

outside for θr < θ∗ and from the inside for θr > θ∗ (see Fig. 2 & 3). This

implies that the difference between the derivative of the trade-off curve and

the derivative of the invasion boundary (i.e. µ− ν) is positive for θr < θ∗ and

negative for θr > θ∗. This is equivalent to (µ− ν)(θ∗) = 0 and

∂(µ− ν)

∂θr
(θ∗) < 0. (A6)

The characterization of the evolutionary dynamics by these properties is given

in Table 1.

If invasion boundaries are linear the classification from Table 1 becomes sim-

pler. Since the curvature of a straight line is zero the difference in curvature

between the trade-off curve and the invasion boundaries is solely determined

by the trade-off curve. The condition for noninvadability from Eq. (A5) be-

comes

∂µ

∂φ
(θ∗) < 0. (A7)

The curvature of the trade-off curve has to be negative and therefore concave

and a singular strategy is then either a CSS or a Garden of Eden. If the trade-

off curve is convex its curvature is positive and a singular strategy can only

be a Repellor or a Branching Point.
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Table 1
Classification of the evolutionarily singular strategies θ∗ with respect to (1) the
relative curvature of the trade-off curve and the invasion boundary and (2) the
difference in slope the between trade-off curve and the invasion boundary.

Noninvadable Invadable

∂(µ−ν)
∂φ (θ∗) < 0 ∂(µ−ν)

∂φ (θ∗) > 0

Convergence stable

∂(µ−ν)
∂θr

(θ∗) < 0
Continuously Stable Strategy Branching Point

Repelling

∂(µ−ν)
∂θr

(θ∗) > 0
Garden of Eden Repellor
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Figure 1. Fixed fitness contour lines in a two-dimensional trait space plotted on

top of a concave (a) and a convex (b) trade-off curve. Under the assumption that

fitness is increasing in both traits, the open circles correspond to strategies that

maximize fitness. For the concave trade-off (a) this happens at the point where the

fitness contour line is tangent to the trade-off curve. For the convex trade-off (b)

this happens at either of the two boundary strategies.

Figure 2. Invasion boundaries in a two-dimensional trait space for strategies lying

one the trade-off curve (traits named φ and ψ, see text). When invasion boundaries

are linear, CSSs and Garden of Eden points are only possible in combination with

concave trade-offs (a, c), while Repellors and Branching Points can only occur on

convex trade-offs (b, d). Resident strategies are indicated by an open circle and the

arrows indicate the direction of further trait substitutions.

Figure 3. Invasion boundaries in a two-dimensional trait space for strategies lying

one the trade-off curve (traits named φ and ψ, see text). If invasion boundaries are

not bound to be linear, each of the four evolutionarily singular points can occur in

combination with both convex and concave trade-off curves.

Figure 4. Branching point in the trait θ: (a) Represented as a pairwise invasibility

plot (PIP), resident trait value at the x-axis and mutant trait value at the y-axis.

(b-d) Fitness landscape representation for three different resident strategies θr (1-3)

which lie on the trade-off curve. Resident strategies are indicated by an open circle.

Mutants which are selectively neutral and therefore lie on the invasion boundary

are indicated by a filled circle. Arrows indicate the direction of the evolutionary

dynamics along the trade-off curve. The plus sign indicates mutant strategies that

are able to invade.

Figure 5. Dimorphic evolution on a convex trade-off curve with a linear invasion

boundary. The resident types θ1 and θ2 are indicated by open circles. Arrows indicate

the direction of selection corresponding to the resident strategies.
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Figure 6. Scenario of dimorphic evolution where one resident type (θ2) goes ex-

tinct in the course of evolution (indicated by a circle with a dotted boundary) and

the other type (θ1) remains. The process is sketched when the evolutionary tra-

jectory changes from dimorphic to monomorphic. At this moment selection favors

further specialization of the remaining type (indicated by arrow). This scenario is

only possible with a Repellor (Rep) between the Branching Point (BP), where the

polymorphism emerged, and the remaining type. See text for further details.
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