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Adaptive Dynamics of Speciation: Spatial Structure

Michael Doebeli
Ulf Dieckmann

1 Introduction

Extant patterns of species abundance are usually considered to be suggestive of allopatric specia-
tion, because even closely related species are often geographically segregated (e.g., Barraclough
and Vogler 2000; see Chapters 15, 16, and 17 in Dieckmann et al. 2004). Even though, in many
cases, the ecological abutment between related species does not correspond to any obvious geo-
graphic barriers to gene flow, such patterns of geographic segregation are taken as strong indicators
that speciation has occurred, either in allopatry or in parapatry. For the latter case it is assumed
implicitly that there exists some sort of environmental discontinuity on either side of which dif-
ferent types are favored by selection or have evolved by genetic drift (Turelli et al. 2001). Even
though gene flow across the environmental discontinuity can actually enhance speciation through
the process of reinforcement, in these parapatric scenarios the reasons for speciation are ultimately
the same as those in purely allopatric scenarios, that is, divergent evolution in different geographic
regions. This has led to a common understanding that allopatric patterns of abundance between
closely related species imply past events of allopatric speciation.

Rather than focusing on patterns of species abundance, recent developments in speciation the-
ory focused on the adaptive processes and mechanisms that lead to disruptive selection and sub-
sequent divergence of emerging new lineages in well-mixed, geographically unstructured popula-
tions. While this approach, described in Chapters 4 and 5 in Dieckmann et al. 2004, highlights the
importance of frequency-dependent ecological interactions for evolutionary diversification, non-
spatial models evidently cannot explain geographic patterns of species abundance. For this it is
necessary to account for spatial structure explicitly, including spatial heterogeneity in environmen-
tal conditions and spatially localized ecological interactions.

Most previous studies of the role of spatial structure for evolutionary diversification assumed
a discrete spatial population subdivision into local habitat patches within which interactions were
unstructured spatially (e.g., Chapter 3 in Dieckmann et al. 2004; Boxes 4.5 and 4.6 in Chapter 4
in Dieckmann et al. 2004; Day 2000). This chapter describes how the study of evolutionary
branching as a model for adaptive speciation can be extended to spatially structured populations
that occupy a continuous spatial area. The resultant models of spatial evolutionary branching
establish a firm link between ecological processes and geographic patterns of speciation. An
abbreviated version of this theory can be found in Doebeli and Dieckmann (2003).

Adhering to established terminology, the models described below are models of parapatric spe-
ciation, because interactions between individuals only occur over short spatial distances and the
populations are not panmictic. At the same time, however, these models differ crucially from tra-
ditional models of parapatric speciation in that the disruptive selective forces responsible for spe-
ciation are not imposed externally by the environment, but instead emerge dynamically from local
adaptation in conjunction with spatially localized ecological interactions. Specifically, in con-
trast to the environmental discontinuities assumed, for example, in traditional models for stepped
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genetic clines in hybrid zones (Barton and Hewitt 1989), we assume that environmental conditions
change gradually over space along a linear environmental gradient. If evolution were solely driven
by adaptation to this gradient and limited only by gene flow, the establishment of a corresponding
phenotypic gradient over space would be expected (Slatkin 1978; Kirkpatrick and Barton 1997;
Barton 1999). A crucial perspective that the results described below add to this simple picture
is that local adaptation along an environmental gradient has the potential to increase the strength
of frequency-dependent selection in the system: if local adaptation leads to a correlation between
phenotype and spatial location, and if interactions are spatially localized, then individuals tend
to interact relatively more often with other individuals of similar phenotypes. As we show later,
this mechanism actually greatly facilitates evolutionary branching in spatially structured popula-
tions. Interestingly, this facilitation is most pronounced for environmental gradients of intermedi-
ate slope. Moreover, when evolutionary branching occurs, the newly emerging lineages are often
spatially segregated, and show a pattern of species abutment. In this way, the models for parap-
atric speciation studied here link local processes that drive evolutionary diversification to global
patterns of species abundance. These results show that, contrary to the predictions of traditional
parapatric models, ecological contact is not necessarily a hindrance to speciation, but, instead, can
be a prerequisite for speciation.

Section 2 briefly reviews traditional approaches to parapatric speciation. We then present
individual-based models for evolutionary branching in spatially extended populations, first for
clonally reproducing individuals (Section 3) and second for sexual populations in which assor-
tative mating must evolve for speciation to occur through evolutionary branching (Section 4).
Finally, in Section 5 we point out a potential link between adaptive speciation in spatially struc-
tured populations and the origin of species–area relationships: for a given resource diversity along
an environmental gradient, conditions for adaptive speciation are less restrictive in larger spatial
areas.

2 Classic Models of Parapatric Speciation

Parapatric speciation occurs when an ancestral population splits into divergent descendant lin-
eages that occupy different geographic areas in the ancestral species range under the maintenance
of at last some gene flow across the spatial boundaries between the emerging species. As for the
theoretical plausibility of this scenario, it is agreed widely that “any mechanism that can produce
divergence among allopatric populations can also cause divergence in parapatry” (Turelli et al.
2001, p. 337). Parapatric speciation is thus generally envisaged as a process in which the diver-
gence of types occurs in different geographic regions of an ancestral species range, accompanied or
followed by the emergence of reproductive isolation between the diverging lineages. Divergence
may result from selection or drift, and reproductive isolation between diverging subpopulations
may be a pleiotropic by-product of local adaptation, as in allopatric speciation, or it may be an
adaptive consequence of reinforcement (see Turelli et al. 2001 for a review).

Situations in which divergence is caused by genetic drift are described in detail in Chapter 6
in Dieckmann et al. 2004. In such cases it is usually assumed that reproductive isolation occurs
automatically (through pleiotropic side-effects) as soon as the genetic distance between local pop-
ulations is large enough (Gavrilets 1999). By contrast, when divergence is caused by local adapta-
tion, reproductive isolation can arise either pleiotropically or through reinforcement (i.e., through
the evolution of mating barriers between locally adapted populations driven by selection against
hybrids). The latter mechanism (which generates a speciation process that is partially adaptive; see
Chapter 19 in Dieckmann et al. 2004) has received considerable attention in the theoretical litera-
ture [Liou and Price 1994; Noor 1995; Kirkpatrick and Servedio 1999; see also the comprehensive
review by Turelli et al. (2001)]. Even though details of genetic architecture, population structure,



– 3 –

hybrid inferiority, and mating systems differ between the various studies, the general conclusion
from these studies is that reinforcement is a theoretically plausible evolutionary scenario (Turelli
et al. 2001).

While the evolution of traits that influence prezygotic isolation in the presence of selection
against hybrids is naturally at center stage in studies of parapatric speciation through reinforce-
ment, the ecological reasons as to why hybrid inferiority exists in the first place have received
less attention. Typically, it is assumed tacitly that the ecological divergence, which leads to the
establishment of different local types and to hybrid inferiority in the contact zone, is caused by
externally given discontinuities in the environment (e.g., by the existence of local habitats with
different adaptive peaks within a species’ range, or by stepped environmental clines). Indeed,
reinforcement classically refers to evolutionary processes that unfold upon secondary contact be-
tween populations for which ecological divergence has occurred in allopatry. Even though the
same process can, in principle, occur during primary contact (i.e., under conditions of continual
gene flow), the underlying environmental discontinuities necessary for local adaptation and hybrid
inferiority must then be assumed a priori.

A notable exception to this conventional pattern are the models by Endler (1977) for parapatric
speciation along clines. In these models, the fitness of different genotypes can vary linearly, rather
than stepwise, along environmental gradients, and yet stepped genotypic clines can occur. These
steps are, however, contingent on the special genetic architecture considered: with one locus and
two alleles determining fitness, there simply exists a point along the environmental gradient at
which the relative fitness of the two alleles changes sign. It is therefore easy to show that Endler’s
stepped genotypic clines disappear when more loci or alleles are allowed to affect fitness.

In contrast to these traditional approaches to parapatric speciation, here we focus on the in-
trinsic ecological mechanisms that can generate divergence and stepped phenotypic clines along
continuous environmental gradients. To understand the underlying adaptive processes of diver-
gence, we first discuss clonal models, in which reproductive isolation is not an issue. We then
extend these models to sexual populations, in which reinforcement during primary contact can
lead to the evolution of assortative mating and hence allow for speciation.

3 Evolutionary Branching in Spatially Structured Populations

Whatever the mechanism of adaptive speciation, some form of disruptive selection must be in-
volved. Recent advances in the theory of adaptive dynamics (Metz et al. 1996; Geritz et al. 1998;
Doebeli and Dieckmann 2000) demonstrate that disruptive selection regimes caused by frequency-
dependent interactions emerge dynamically during the evolutionary process in generic models for
all basic types of ecological interactions, a finding that was foreshadowed in earlier work by Es-
hel (1983), Christiansen (1991), and Abrams et al. (1993a). Such disruptive selection can lead to
evolutionary branching, that is, to the splitting of evolving lineages into two phenotypic clusters
(Chapters 4 and 5 in Dieckmann et al. 2004). Here we extend the study of evolutionary branching
to spatially structured models for resource competition so as to investigate the effect of localized
interactions in geographically extended populations on adaptive speciation along environmental
gradients. We first focus on the simpler case of asexual populations to reveal ecological settings
that are speciation prone.

Our starting point is the generic Lotka–Volterra models for frequency-dependent competition
in spatially unstructured populations, which are introduced in Chapter 5 in Dieckmann et al. 2004,
and which we briefly recall here. In these models, individuals vary with respect to a quantitative
trait x , which could be a morphological, behavioral or physiological character. The deterministic
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dynamics of the density nx of a population that is monomorphic for trait value x is given by

dnx

dt
= rnx[1 − nx/K (x)] , (1a)

where r is the intrinsic growth rate of the species, which is assumed to be independent of the
phenotype x . The carrying capacity K (x) is the equilibrium density of populations that consist
of x individuals and reflects the abundance of resources available to such individuals. We assume
K (x) to be of normal form,

K (x) = K0 exp
(−1

2
(x − x0)

2/σ 2
K x

)
. (1b)

This implies that some intermediate phenotype x0 has maximal carrying capacity, and that the
decline of K (x) to either side of x0 is measured by the standard deviation σK x of the normal
distribution z. The equilibrium population density n̂x = K (x) of a population monomorphic for
x is asymptotically stable. Considering such a resident population at its carrying capacity, the fate
of a mutant phenotype x ′ is determined by its per capita growth rate when rare,

f (x ′, x) = dnx ′

nx ′ dt
= r[1 − a(x ′, x)K (x)/K (x ′)] . (1c)

Here K (x ′) is the carrying capacity of the mutant x ′, and a(x ′, x) measures the strength of com-
petition exerted by phenotype x on phenotype x ′. This function is assumed to have the form

a(x ′, x) = exp
(−1

2
(x ′ − x)2/σ 2

ax

)
, (1d)

which implies that competition is strongest between individuals of similar phenotypes, as would
occur, for example, when similarly sized individuals compete for similar types of food. Con-
sequently, the total competition that impinges on an individual depends on the phenotypic com-
position of the population it is part of. In particular, a rare mutant x ′ pitched against a resident
x at carrying capacity K (x) experiences competition from a discounted number of individuals
a(x ′, x)K (x) for an amount of resources that is proportional to K (x ′), a consideration that imme-
diately allows us to understand the mutant’s fitness f (x ′, x) in Equation (1c).

The adaptive dynamics of the trait x is determined by the selection gradient g(x) =
∂ f (x ′, x)/∂x ′ |x ′=x . According to the canonical equation of adaptive dynamics (Dieckmann and
Law 1996), the rate of mutation-limited evolutionary change dx/dt is proportional to g(x), with
the constant of proportionality determined by the mutational process that generates genetic vari-
ability. The same basic proportionality also arises in models of quantitative genetics that describe
evolution in genetically polymorphic populations (Lande 1979b). Using the functional forms of
K (x) and of a(x ′, x), Equations (1b) and (1d), it is easy to see that the trait value x0 that maximizes
the carrying capacity is the only trait value for which the selection gradient vanishes, g(x0) = 0
(i.e., the only evolutionary equilibrium in phenotype space). The phenotype x0 is also a global
evolutionary attractor. This is because dg/dx(x0) < 0, which implies that for resident trait values
x smaller than x0 selection acts to increase x , and for resident trait values larger than x0 selection
acts to decrease x . Thus, independent of the initial trait value considered, evolutionary trajectories
converge toward x0.

However, x0 need not be evolutionarily stable, which means a population monomorphic for
x0 may be susceptible to invasion by nearby mutants. Evolutionary stability is determined by
the second derivative of the fitness function f (x ′, x) with respect to x ′, evaluated at x0: if
∂2 f (x ′, x)/∂x ′2 ∣∣

x ′=x=x0 < 0, then x0 is a fitness maximum, and hence evolutionarily stable. In
this case x0 represents a final stop for the adaptive dynamics.

In contrast, if ∂2 f (x ′, x)/∂x ′2 ∣∣
x ′=x=x0 > 0, then x0 is a fitness minimum, and hence an evo-

lutionary branching point (Chapter 4 in Dieckmann et al. 2004). In this case, the population first
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Figure 1 Environmental gradient in carrying capacities. The dark shading corresponds to phenotypes that
maximize local carrying capacity; these gradually change with spatial location in the z1 direction, while the
z2 direction is ecologically neutral. At any given location, the carrying capacity decreases with phenotypic
distance from the capacity-maximizing phenotype (indicated by diminished darkness).

evolves to x0 and then splits into two phenotypic lineages that diverge from x0 as well as from
each other. For the model investigated here it is established easily that x0 is a branching point
if σax < σK x , that is, if around x0 the strength of competition decreases faster with phenotypic
distance than the carrying capacity (Chapter 5 in Dieckmann et al. 2004).

This analytical theory for the adaptive dynamics of resource competition in well-mixed popu-
lations serves as a reference point for the spatially structured models introduced below. It can be
derived from underlying individual-based stochastic models (Dieckmann and Law 1996). These
individual-based models are described in Chapter 5 in Dieckmann et al. 2004; we now extend
them to spatially structured populations by making the following assumptions. In addition to its
phenotype x , each individual is characterized by its spatial location (z1, z2) in a square of continu-
ous space with sides of length L . In this spatial arena, resources are distributed such that for each
spatial location (z1, z2) there is a phenotype x0 with maximal carrying capacity. We assume that
this optimal phenotype varies linearly with one spatial dimension, x0(z1) = αz1 + x0(0), where α

is the slope of the gradient, but is independent of the other spatial dimension z2 (Figure 1). Such a
resource gradient in one spatial dimension could, for example, represent an altitudinal temperature
or humidity gradient along a mountain side that induces a change in the optimal phenotype with
altitude. As in the nonspatial model described above, the carrying capacity K takes the normal
form,

K = K0 exp
(−1

2
[x − x0(z1)]2/σ 2

K x

)
, (2a)

and is thus a function of both phenotype x and spatial location z1 (Figure 1).
As in the well-mixed case, we further assume that competition may be frequency dependent

(i.e., the strength of competition between two individuals may depend on their phenotypic dis-
tance), so that competition is strongest between individuals with similar phenotypes. In addition,
we assume that the strength of competition decreases with spatial distance between individuals.
Thus, in our individual-based models the effective population size that determines the death rate
of a given individual through competition (Box 1) depends on both the absolute number of other
individuals in the neighborhood and on their phenotypes. Specifically, the relative strength a of
competition between two individuals with phenotypes x and x ′ and with spatial distance �z be-
tween them is given by a product of two normal functions,

a = 1

2πσ 2
az

exp
(−1

2
(x − x ′)2/σ 2

ax

)
exp

(−1

2
�z2/σ 2

az

)
. (2b)
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The parameters σax and σaz thus determine how fast the strength of competition between individu-
als decreases, respectively, with their phenotypic and spatial distance. We here envisage a situation
in which individuals in a given phenotypically monomorphic, but spatially distributed population
experience the same total amount of competition for different values of the spatial widths σaz of
the interaction kernel. Thus, if σaz is small, spatially very close individuals have a relatively large
impact, whereas if σaz is large, the same spatially close individuals have less of an impact and spa-
tially distant individuals become more important in such a way that the total competitive impact is
the same. This assumption assures that in the absence of an environmental gradient, equilibrium
population sizes of monomorphic populations are independent of σaz. This, in turn, corresponds to
the biologically reasonable assumption that the equilibrium population size supported by a given
spatial distribution of resources is independent of the value of σaz, which thus only measures the
relative impact of spatially near and far individuals, respectively. This is why the normalizing
constant 1/(2πσ 2

az) is incorporated into the competition kernel a given by Equation (2b).
Finally, to describe movement in the spatially structured model we assume that individuals

can move through the spatial arena over distances and at rates independent of their phenotypes
(Box 1). Given that ecological interactions between individuals are localized, populations can
become spatially structured if movement occurs rarely or only covers short distances, whereas
frequent movement over long distances results in well-mixed and hence spatially unstructured
populations. Based on these ecological determinants, the evolutionary dynamics of the quantitative
trait x can be investigated. We first do this in asexual populations by allowing for small mutations
during birth events (Box 1).

As is explained in Box 1, a total of 11 parameters are needed to describe the spatially structured
asexual populations. However, this complexity can be reduced considerably by considering the
relevant limiting cases, and by appropriately rescaling units for phenotype, spatial distance, and
time. In the salient limit of large spatial areas, and hence large L , of large local population sizes,
and hence large K0, and of small mutations, and hence small values of uasσ

2
as (Box 1), we are

left with seven relevant parameters. Then, by using σax as the unit of phenotype and σaz as the
unit for space in Equations (2a) and (2b), we are left with the two dimensionless parameters
α σaz/σK x and σax/σK x as determinants of these two equations, respectively. For the remaining
parameters m, β, and σm/σaz (with the latter arising from taking σaz as the unit of spatial distance),
note that by taking the birth rate β as the unit of time, we are left with a single rate parameter
m/β. In the limit of small movement distances, the compound parameter (m/β) (σm/σaz)

2 =
(̃σm/σaz)

2 describes spatial movement (where σ̃m = σm
√

m/β is the expected movement distance
during the average lifespan of an individual; see Box 1). This can be seen by considering the
deterministic approximation to the individual-based model that results from consideration of the
limit of infinite local population size (Box 2). Taking the limit of small movement distances in this
deterministic approximation results in a dynamical system in which movement is described solely
by the parameter (m/β) (σm/σaz)

2 [see the movement term in Equation (a) and its expansion
given by Equation (b) in Box 2]. In sum, the three essential parameters for our spatially structured
populations are the scaled slope of the environmental gradient α σaz/σK x , the scaled width of the
competition kernel σax/σK x , and the scaled movement distance σ̃m/σaz. In the following, we refer
to the latter simply as “mobility”.

To aid with the biological interpretation of these dimensionless parameters, we note the fol-
lowing. If the scaled slope of the environmental gradient α σaz/σK x equals 1, then movement of
a capacity maximizing phenotype by σaz in the z1 direction reduces its carrying capacity by 1/e.
If the scaled width of the competition kernel σax/σK x equals 1, then the phenotypic distance that
reduces the strength of competition by a given amount is the same as the phenotypic distance from
the capacity-maximizing phenotype that reduces the carrying capacity by the same amount. Fi-
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Box 1 Individual-based and spatially explicit speciation models

Here we briefly detail the setup of our individual-based stochastic models for spatially structured
populations.

� Events. At each computational step, individuals are assigned birth rates βi , death rates δi ,
and movement rates mi , i = 1, ..., N , where N is the current population size; these rates
are updated after each event. Based on the total rates βtot = ∑N

i=1 βi , δtot = ∑N
i=1 δi ,

mtot = ∑N
i=1 mi , and etot = βtot + δtot + mtot, the time that elapses until the next event is

drawn from an exponential probability distribution with mean 1/etot, while the type of that
event is chosen according to the probabilities βtot/etot, δtot/etot, and mtot/etot. The affected
individual i is chosen with probability βi/βtot, δi/δtot, or mi/mtot, and the chosen individual
either gives birth to one offspring, dies, or performs a spatial movement, depending on the
type of event that is occurring.

� Traits and genotypes. In the asexual models, ecological phenotypes 0 ≤ x ≤ 1 vary con-
tinuously. In the sexual models, phenotypes are determined by up to three sets of diallelic
diploid loci with additive effects and free recombination (Chapter 5). The first set of l1 loci
determines the ecological trait x . The second set of l2 loci determines a mating trait y that
varies between −1 and +1 and determines mating probabilities, which are based either on the
ecological trait or on a neutral marker trait (see Birth below). In the latter case, the marker
trait also varies between 0 and 1 and is encoded by the third set of l3 loci.

� Spatial gradient. Individuals have a spatial location (z1, z2), with 0 ≤ z1, z2 ≤ L. We denote
by φσ (v) = exp(− 1

2v2/σ 2) and φ̃σ (v) = φσ (v)/
√

2πσ , respectively, a normal function and
the corresponding normal probability density with mean 0 and variance σ 2. The carrying
capacity for the ecological phenotype x at spatial location (z1, z2) is then given by K =
K0 φσK x (x − x0(z1)), where x0(z1) = α(z1 − L/2) + L/2 is the phenotype that maximizes
K at location z1, and 0 ≤ α ≤ 1 is the slope of the environmental gradient (Figure 1); x0 thus
varies over space in the range

[
(1 − α)L/2, (1 + α)L/2

]
.

� Movement. Individuals move at a fixed rate mi = m and undergo displacements �z in the
z1 and z2 directions independently drawn from φ̃σm (�z), resulting in an average movement
distance σm . Boundaries are reflective in the z1 direction and periodic in the ecologically
neutral z2 direction. Note that at demographic equilibrium, the expected movement distance
during the average lifespan of an individual is σ̃m = σm

√
m/β, where β is the birth rate.

The reason for the appearance of β is that at statistical equilibrium the average lifespan of an
individual equals the inverse of the average per capita birth rate, and the model assumptions
are such that the life times of the individuals vary with the local circumstances, while the per
capita birth rate β is constant.

� Death. The effective population size experienced by an individual i with phenotype x at
location (z1, z2) is a weighted sum, Ñ = ∑

φσax (�x)
φσaz (�z)

2πσ 2
az

, where the sum extends over
all pairs (�x,�z) of phenotypic and spatial distances between the focal and other individuals.
The resultant logistic death rate of individual i is δi = Ñ/K .

continued
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Box 1 continued

� Birth. In asexual populations, individuals reproduce at a fixed rate βi = β. Offspring ex-
press the parental phenotype unless a mutation occurs with probability uas, in which case
their phenotype x ′ is chosen according to φ̃σas(x ′ − x). For sexual populations, an individ-
ual i slated for reproduction chooses a partner j proportional to phenotype-based mating
propensities pi j , depending on its mating character and the partner’s phenotypic distance in
either ecological or marker character as follows (see Figure 5.2 in Dieckmann et al. 2004).
If mating propensities depend on the ecological trait, then, for an individual with mating trait
y > 0, mating propensities fall off with a difference �x in the ecological trait of potential
mating partners according to φσ+(�x), where the width of the “mating kernel”, σ+, is given
by σ+ = ε/y2, where ε is a parameter that indicates how fast assortativeness increases with
increasing y. Thus, individuals with y > 0 mate assortatively, with the degree of assortative-
ness increasing as y approaches the value of 1. Individuals with mating trait y = 0 choose
partners randomly with respect to phenotype. For individuals with mating trait y < 0, mating
propensities increase with increasing phenotypic distance �x of potential mating partners ac-
cording to the function 1−φσ−(�x), where the degree of disassortativeness σ− is determined
by the mating trait y as σ− = y2. The mating propensities of an individual are normalized
across all potential partner phenotypes. If mating propensities depend on the marker trait,
the distance �x in the ecological trait is replaced by the distance in the marker trait in the
formulas above.
In our spatial models, the location-based component qi j of mating propensities decreases ac-
cording to φσp (�z)/(2πσ 2

p ) with the spatial distance �z between potential partners. This
induces a cost to the preference for locally rare phenotypes, βi = β Np/(c + Np), where
Np = ∑N

j=1, j �=i pi j qi j is the number of suitable mating partners locally available to individ-
ual i , and c determines the cost’s strength. Notice that assortativeness often evolves despite
this cost. For sexual populations, only females are modeled. In effect, our models there-
fore describe hermaphroditic organisms. However, the models also apply to populations with
separate sexes if males are assumed to have the same density and frequency distributions as
females. After recombination, the offspring genotype is subjected to allelic mutations ac-
cording to a reversal probability us per allele. Offspring undergo an initial movement event
from the location of their parent.

� Parameters and initial conditions. Unless otherwise stated: l = 10, L = 1, K0 = 500,
σK x = 0.3, α = 0.95, σax = 0.9, σaz = 0.19, β = 1, uas = 0.005, σas = 0.05, σp = 0.2,
c = 10, us = 0.001, m = 5, σm = 0.12 (i.e., σ̃m ≈ 0.27), and ε = 0.05. In the limit of large
L and K0 and small uasσ

2
as, the asexual model has no more than three essential dimensionless

parameters (see main text): σax/σK x , σ̃m/σaz , and α σaz/σK x .
For the simulations reported here, we used the following initial conditions. In the asexual

models, K0 individuals were distributed randomly over space and had the phenotype that was
optimal in the center of the environmental gradient. In the sexual models, K0 individuals
were distributed randomly over space, with genotypes assigned randomly assuming allele
frequencies of 1/2 at all loci.
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Figure 2 Evolutionary dynamics of adaptive divergence in asexual populations. (a) The distribution of
phenotypes as a function of time (using the same shading scheme as in Figure 1). (b) The frequency
distribution of phenotypes as a function of spatial location z1 at the end of the time series shown in (a). The
diagonal line indicates the environmental gradient (see Figure 1). Parameters as given in Box 1.

nally, if the mobility σ̃m/σaz equals 1, the expected movement distance during an average lifespan
equals σaz, the width of the spatial interaction kernel.

Critical aspects of spatial structure are determined by the steepness of the environmental gradi-
ent and the mobility. If the gradient is very shallow, the environment becomes essentially spatially
homogeneous. If mobility is large, the population becomes well-mixed and hence spatially un-
structured. In either of these cases the system behavior approaches that of the nonspatial model:
evolutionary branching occurs if σax < σK x , with the individuals belonging to the two different
phenotypic clusters scattered throughout the spatial arena.

The system’s behavior changes rather drastically if both the spatial resource gradient is steep
enough and the mobility is low enough. In this case, if evolutionary branching occurs, it is ac-
companied by spatial segregation of the diverging phenotypic clusters (Figure 2). Thus, when
frequency-dependent interactions occur under conditions of ecological contact and cause spa-
tial evolutionary branching, the environmental gradient serves to organize the new lineages that
emerge from this intrinsically sympatric process into geographic abutment (Figure 2). If the pro-
cess that generates the pattern were not taken into account, the resultant pattern of species abun-
dances would suggest allopatric or parapatric divergence merely driven by local adaptation. But
this conclusion would be mistaken: in the absence of frequency-dependent selection, a gradual
change in environmental conditions simply results in a gradual change in phenotypic compo-
sition (provided, of course, that a sufficiently fine-grained set of phenotypes can be coded for
genetically). Therefore, frequency-dependent selection is essential for the emergence of stepped
phenotypic clines along the linear environmental gradients in our models.

A second and perhaps more important effect of spatial structure is that, for significantly sloped
environmental gradients and low mobility, evolutionary branching occurs over a much wider range
of parameters than in the nonspatial models (i.e., for values of σax that are much larger than σK x).
The degree to which spatial structure facilitates branching and the abrupt onset of this facilitation
as a function of mobility (illustrated in Figure 3a) are surprising. If mobility exceeds a certain
threshold value, parameter requirements for branching in the spatial and nonspatial models are
almost exactly the same. However, as mobility decreases below this threshold, parameter require-
ments in the spatial model become suddenly and drastically less restrictive than in the nonspatial
model. In fact, if mobility is small enough, evolutionary branching occurs even for effectively in-
finite σax (i.e., even if there is no intrinsic frequency dependence in the competitive interactions).
This is illustrated in Figure 3b, for which the scaled phenotypic width of the competition function
is chosen to be very large. Nevertheless, evolutionary branching occurs once mobility falls below
a critical level. Interestingly, this critical level depends on the slope of the environmental gradient,
and is highest for environmental gradients of intermediate steepness.
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Box 2 Deterministic approximation to the individual-based models

Here we assume that population sizes are locally infinite, both with regard to spatial location and
to location in phenotype space. Since we assume a one-dimensional environmental gradient, with-
out differentiation in carrying capacities along the other spatial dimension, the spatially structured
population is described by a function n(x, z, t), which denotes the density of phenotype x at spa-
tial location z along the gradient and at time t . If, as in Box 1, φσ (x) = exp(− 1

2 x2/σ 2) and
φ̃σ (x) = φσ (x)/(

√
2πσ) denote, respectively, a normal function and the corresponding normal

density with mean 0 and variance σ 2, the temporal dynamics of the distribution n(x, z, t) can be
described by the partial differential equation

∂

∂ t
n(x, z, t) = (1 − uas)β

∫
φ̃σm (z′ − z)n(x, z′, t) dz′

+ uasβ

∫∫
φ̃σas(x ′ − x)φ̃σm (z′ − z)n(x ′, z′, t) dx ′ dz′

− n(x, z, t)
ñ

K (x, z)

− mn(x, z, t) + m
∫

φ̃σm (z′ − z)n(x, z′, t) dz′ .

(a)

Here K (x, z) is the carrying capacity of phenotype x at spatial location z (other parameters are as
in Box 1). The first term on the right-hand side is the contribution to change in n(x, z, t) from
birth events without mutation at location (x, z′), that is, from parents x at spatial location z′ whose
offspring move to z. The second term represents the contribution of births to the population density
at (x, z) that come from all locations (x ′, z′) through a mutation of size x − x ′ along the phenotypic
axis and a spatial movement of distance z − z′ along the spatial axis. The third term represents
the rate of death caused by competition from individuals at all locations (x ′, z′). Similar to Box 1,
the effective density experienced by individuals at location (x, z) is given by ñ = ∫∫

φσax (x ′ −
x)φ̃σaz (z

′ − z)n(x ′, z′, t) dx ′ dz′, so that the per capita death rate is ñ/K (x, z). The second-to-last
term on the right-hand side of Equation (a) describes movement away from spatial location z, and
the last term describes the effect of movement of phenotype x from all other spatial locations z′ to
spatial location z.

System (a) can be simulated numerically and, for suitable parameter combinations, equilibrium
distributions n̂(x, z) are obtained that reflect the formation of spatially segregated phenotypic clus-
ters, and thus represent spatial evolutionary branching. However, both the phenotypic and the spa-
tial segregation obtained in the deterministic system are often less sharp than those seen in the
individual-based models. In particular, close to the boundary in parameter space that delineates the
region in which branching occurs in the individual-based models (see Figure 3), it can happen that
branching only occurs in the individual-based model, but not in the deterministic system. This is
illustrated in panels (a) and (b) below, for which the same parameter values are used as in Figure 3a,
with σm = 0.184 and σax = 1. With these parameters, the deterministic system (left panel) does not
branch, in contrast to the individual-based model (right panel). This illustrates that the assumption
of locally infinite population sizes made to derive the deterministic approximation is problematic
not only for reasons of biological realism, but also because important features of the original model
can be lost.
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Box 2 continued

Equation (a) can be simplified further using various approximations. For example, because the dis-
tributions n(x, z, t) are continuous, all phenotypes are present at all locations (albeit possibly with
very small densities). Therefore, mutations are of lesser importance in the deterministic approxima-
tion, and we can simplify Equation (a) by setting uas = 0. Furthermore, for small movement kernels
σm , we can expand the last term on the right-hand side of Equation (a), which describes movement
to location z, to obtain the second-order approximation∫

φ̃σm (z′ − z)n(x, z′, t) dz′ ≈ n(x, z, t) + 1

2
σ 2

mnzz(x, z, t) , (a)

where nzz(x, z, t) denotes the second partial derivative of n(x, z, t) with respect to z. It turns out
that one cannot take advantage of a similar expansion for small σax and σaz , since this renders
Equation (a) dynamically unstable. This problem is avoided when σax and σaz are not assumed
merely to be small, but are assumed to vanish altogether (the phenotypic and spatial components of
the interaction kernel are then given by Dirac delta functions). Box 3 presents results for yet another
limiting case. Numerical analysis of such simplified systems is generally much more convenient
than using individual-based stochastic simulations and may thus enable a quicker exploration of
the underlying parameter space. In addition, such systems are also more likely to yield analytical
insights.

The mechanisms that generate these effects can be illustrated as follows. An environmen-
tal gradient initially induces gradual spatial differentiation caused by local adaptation along the
gradient. Thus, local adaptation implies a correlation between spatial location and phenotype.
When, as assumed here, significant competition occurs only between individuals that are spatially
sufficiently close, this correlation decreases the strength of competition between phenotypically
distant individuals, and hence increases the degree of frequency dependence in the system. Such
gradient-induced frequency dependence can lead to evolutionary branching, even if the phenotypic
width of the competition function is very large. The effect tends to be weaker if local adaptation
is very incomplete because of gene flow along shallow gradients, or if dissimilar phenotypes are
spatially close because of local adaptation along a very steep environmental gradient. Therefore,
facilitation of evolutionary branching through gradient-induced frequency dependence is highest
for intermediate environmental gradients, as illustrated in Figure 3b. In this figure, frequency de-
pendence results entirely from localized interactions between spatially differentiated individuals,
and no evolutionary branching at all is expected in the nonspatial model.

The individual-based asexual models are characterized by three essential parameters, so we can
use the information provided by Figures 3a and 3b to represent system behavior schematically in
a three-dimensional plot. This characterization of the branching behavior of the system is shown
in Figure 3c, which has as axes the three dimensionless parameters α σaz/σK x (scaled slope of the
environmental gradient), σax/σK x (scaled width of the competition kernel), and σ̃m/σaz (scaled
movement distance, that is, mobility). Figures 3a and 3b are indicated in Figure 3c as planar cross
sections of the three-dimensional solid that represents the parameter combinations that lead to spa-
tial evolutionary branching. Figure 3c was extrapolated from Figures 3a and 3b using additional
simulations to determine the height and the position of the central ridge. Figure 3 again makes
it clear that evolutionary branching is facilitated greatly in spatially structured populations. The
central ridge in Figure 3c illustrates that facilitation of evolutionary branching is generally greatest
for environmental gradients of intermediate slope. More precisely, evolutionary branching is most
likely for parameter combinations for which the scaled slope of the gradient α σaz/σK x is approxi-
mately equal to 1. This observation may serve as a starting point for empirical tests of our models,
for we thus expect evolutionary diversification to be most likely for organisms and environments
for which α = σK x/σaz. In as much as the quantities α (the steepness of an environmental gra-
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Figure 3 Requirements for evolutionary branching in asexual populations. The axes correspond to the
model’s three dimensionless parameters (see Box 1): scaled width of competition function σax/σK x , scaled
movement distance (mobility)

√
m/β σm/σax , and scaled slope of gradient α σax/σK x . (a) and (b) show

a subdivision of parameter space into polygons (Voronoi tessellation based on simulation data), shaded
according to the recorded time to evolutionary branching: black corresponds to branching within the first
500 generations, white corresponds to no branching after 5000 generations, and shades of gray correspond
to branching between generations 500 and 5000 (including multiple branching, which occurs for very low
movement distances). (a) Effect of direct frequency dependence. Variation of time until branching with
scaled width of competition function and mobility (scaled movement distance) for asexual populations (at
α σax/σK x = 0.425). In nonspatial models, only parameter combinations to the left of the dashed line are
expected to induce branching. (b) Effect of gradient-induced frequency dependence. Variation of time until
branching with scaled slope of gradient and mobility for asexual populations with σax � σK x . In nonspatial
models no branching is expected at all. (c) Complete characterization of asexual model. Evolutionary
branching occurs for parameters within the shaded block. The positions of the slices shown in panels (a)
and (b) are indicated.

dient), σK x (the phenotypic width of the carrying capacity function along the gradient), and σaz

(the width of the spatial interaction kernel) are measurable in natural populations, this observation
could serve as a basis for comparative studies of diversity in different taxa.

An obvious limitation of the analysis presented in Figure 3 is that this analysis is based on
numerical simulations. It would clearly be very useful to have an analytical theory for the evo-
lutionary dynamics of our spatially structured populations, for such a theory might, for example,
allow us to derive analytical criteria for spatial evolutionary branching as a function of parameter
values. In fact, by assuming locally infinite population sizes, for which “local” must be under-
stood both spatially and phenotypically, it is possible to derive a deterministic approximation of
the individual-based models (Box 2). Although the resultant partial differential equation is, again,
amenable to numerical investigation only, it would, in principle, allow for a more tractable inves-
tigation. However, results from the deterministic approximation differ considerably from those
obtained with the individual-based models. In particular, the sharp spatial segregation between
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Box 3 Evolutionary branching in a reaction–diffusion system

Ferenc Mizera and Géza Meszéna

Here we consider the deterministic model for evolution along a spatial gradient given by Mizera
and Meszéna (2003). The gradient is similar to those used in the individual-based models of Sec-
tion 3, but incorporates the additional realistic assumption that the maximal carrying capacity K0 is
a function with an intermediate maximum along the gradient. Thus, not only does the phenotype
that maximizes the carrying capacity change along the gradient, but the phenotypically maximal
carrying capacity itself has a maximum at the center of the spatial axis that defines the gradient. We
assume that this unimodality in the phenotypically maximal carrying capacity is given by

K0(z) = K1 exp
(−1

2
z2/σ 2

K z

)
, (a)

where σK z describes how fast the maximal carrying capacity K0(z) declines from the optimum K1
with spatial distance from the center of the gradient at z = 0.

In addition, we assume that the slope α of the environmental gradient equals 1, so that we can
identify phenotype with spatial location. Thus, the carrying capacity of phenotype x at spatial
location z is given by

K (x, z) = K0(z) exp
(−1

2
(x − z)2/σ 2

K x

)
. (b)

We also assume that there is no intrinsic frequency dependence in the competitive interactions (i.e.,
we consider the limit σax → ∞), and that interactions only occur between individuals inhabiting
the same spatial location z, but not between individuals from different spatial locations (i.e., we
consider the limit σaz → 0 for the width of the spatial interaction kernel). Finally, birth, death, and
movement are calculated as described in Box 1, except we assume that the offspring have the same
spatial position as their parent.

The adaptive dynamics of the trait x can be studied using invasion analysis (Chapter 4 in Dieck-
mann et al. 2004) based on a deterministic reaction–diffusion equation. If n(x ′, z, t) denotes the
density of a mutant phenotype x ′ at spatial location z and at time t , the dynamics of the distribution
n(x ′, z, t) is given by

∂n(x ′, z, t)

∂ t
= r

[
1 − n̂(x, z)/K (x ′, z)

]
n(x ′, z, t) + D

∂2

∂z2
n(x ′, z, t) , (c)

where n̂(x, z) is the equilibrium distribution of the resident phenotype x along the gradient, and r is
the birth rate. Spatial movement is described by the diffusion coefficient D = 1

2 mσ 2
m , where m is

the rate of spatial movement and σm is the average movement distance.
Using a numerical invasion analysis by determining the growth rate of mutants x ′ that appear in

monomorphic populations of residents x , it can be shown that x0 = 0 is always a convergence-stable
singular strategy. This is simply a consequence of the total resource availability being highest at the
center z = 0 of the spatial axis. In addition, it can be shown that the evolutionarily singular attractor
x0 = 0 is evolutionarily stable if the diffusion coefficient D and the environmental tolerance σK x

are large. However, when the diffusion coefficient and/or the environmental tolerance become small,
the singular strategy becomes evolutionarily unstable, and hence becomes an evolutionary branching
point. This is illustrated in panel (a) below, which shows the boundary between evolutionary stability
and instability of the singular attractor x0 = 0 in the two-dimensional parameter space given by the
environmental tolerance σK x and the diffusion coefficient D. (Other parameter values used for the
panel below are σK z = 0.2 and r = 1.0.)
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Box 3 continued

Individual-based simulations of this model confirm that if the singular point is an evolutionary
branching point, and if evolutionary dynamics are started from a monomorphic population away
from the singular point, the trait x first converges to the singular point, after which it splits into two
phenotypic clusters. An example of such evolutionary dynamics is shown in the panels below, in
which panel (a) shows the frequency distributions of phenotypes, indicated by shading along the
horizontal axis, as a function of time, which runs along the vertical axis. Panel (a) illustrates that
after an initial convergence to the singular point x0 = 0, repeated evolutionary branching can occur
in this system. Panels (b), (c), and (d) show the density distribution across space of the populations
that represent the most abundant phenotype in each of the three branches present at the end of the
time series shown in panel (a). (Parameter values for the panels are D = 6 10−5, σK x = 0.3,
σK z = 0.25, and r = 0.01.) Note that the emerging lineages exhibit spatial segregation along the
environmental gradient. This again illustrates how environmental gradients in resource availability
can generate parapatric patterns of species distributions because of intrinsically sympatric ecological
processes.
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lineages that emerge from evolutionary branching, as shown in Figure 2, are blurred in the de-
terministic approximations (Box 2). This, in turn, implies that the sharp bifurcation boundaries
for evolutionary branching shown in Figure 3 are washed out in the deterministic system, so that
the critical threshold in parameter values is less clear. Moreover, even when accounting for this
artifact, the deterministic system also predicts the boundary’s location inaccurately. These quanti-
tative differences may arise from taking the limit of infinite local population sizes in both spatial
and phenotypic dimensions (an assumption that appears to be even more difficult to justify bio-
logically than the often used limit of infinite global population size). As a result, the implications
of reproductive (and other) pair correlations, of local density fluctuations, and of demographic
stochasticity are ignored, all of which have been shown to affect ecological and evolutionary dy-
namics critically (Dieckmann et al. 2000).

It appears to be rather difficult to extract analytical results from such deterministic approxi-
mations, but they lend themselves to more tractable numerical analysis and, for example, enable
quicker searches of parameter space. A useful application of this approach is explained in Box 3,
which shows that under certain assumptions spatial evolutionary dynamics can be studied using
quite simple deterministic systems. In general, however, the individual-based implementation ap-
pears to be inevitable if artifacts caused by biologically unrealistic assumptions are to be avoided.
This is particularly true for the investigation of evolutionary dynamics in spatially structured sex-
ual populations with multilocus genetics, which are considered in Section 4.

4 Extension to Sexual Populations: Parapatric Speciation

To address the question of parapatric speciation, the individual-based spatially structured models
can be extended to describe sexual populations in which the quantitative trait x is determined
additively by a number of diploid loci (Box 1). Here the genetic assumptions are the same as
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Figure 4 Evolutionary dynamics of adaptive divergence in sexual populations. The left panels show the
distribution of phenotypes as a function of time (same shading scheme as in Figure 1) and the right panels
show the corresponding frequency distribution of phenotypes as a function of spatial location z1. The
diagonal lines indicate the environmental gradient (see Figure 1). (a) Evolutionary branching with spatial
segregation in a sexual population with the same parameter values as in Figure 2 and with assortative mating
based on ecological similarity. The evolution of the degree of assortativeness is shown as an inset in the
left panel (intermediate values of the mating trait correspond to random mating, low values to disassortative
mating, and high values to assortative mating). Parameters as given in Box 1. (b) Evolutionary branching
with spatial segregation in a sexual population with assortative mating based on a marker trait. The evolution
of assortativeness and the branching in the marker trait are shown as insets in the left panel (the two marker
branches are in linkage disequilibrium with the two branches of the ecological trait). Parameters as given
in Box 1, except for α = 0.9, σax = 0.5, and σm = 0.07. (c) Evolution of a phenotypic gradient in a sexual
population with random mating. Parameters as in (b), except that random mating with respect to phenotype
was enforced.

those in Dieckmann and Doebeli (1999) and are described in Box 1. The ecological processes
remain the same as before, but instead of reproducing clonally, individuals now depend on having
suitable partners available within a given spatial neighborhood. The mating system then influences
whether evolutionary branching, and hence parapatric speciation, is possible:

• If mating is random with respect to phenotypes, evolutionary branching no longer occurs,
regardless of the relative magnitude of the parameters σax and σK x . Just as in the nonspatial
model (Chapter 5 in Dieckmann et al. 2004), random mating brings about recombination
between extreme phenotypes, which prevents the evolution of a phenotypic dichotomy.

• It has been shown before that evolutionary branching in well-mixed sexual populations is
possible if the evolution of assortative mating is allowed for (Dieckmann and Doebeli 1999).
Here we consider the same two general scenarios for assortative mating as described in
Chapter 5 in Dieckmann et al. 2004. In the first scenario, assortative mating is based on a
similarity in the trait x that determines the ecological interactions; in the second scenario as-
sortative mating is based on an ecologically neutral marker trait (in the latter case, a linkage
disequilibrium between the marker trait and the ecological trait must evolve for evolution-
ary branching to occur). As shown in Chapter 5 in Dieckmann et al. 2004, evolutionary
branching in well-mixed sexual populations can occur because of evolution of both types of
assortative mating (with the parameter requirements being more restrictive when assortative
mating is based on a marker trait). These conclusions essentially carry over to the spatial
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Box 4 Evolution on linear gradients in randomly mating sexual populations

In this box we briefly review the models of Kirkpatrick and Barton (1997) and of Case and Taper
(2000) for the evolution of a quantitative trait along a linear environmental gradient. These models
show that in a single species with random mating the linear environmental gradient induces a corre-
sponding phenotypic gradient in the quantitative trait, and that interspecific competition can lead to
spatial segregation of the competing species along the environmental gradient.
The models are formulated as partial differential equations with diffusive movement of individuals
along one spatial dimension z. At spatial location z population growth is logistic, and the local
population growth rate decreases with increasing distance between the mean phenotype ū(z) and an
optimum phenotype x0(z), which varies linearly with z. Thus, populations are only viable at location
z if their mean ū(z) is sufficiently close to the optimum x0(z). Specifically, the local dynamics at
location z are of the form(

dn(z)

dt

)
local

= rn(z)[1 − n(z)/K ] − [ū(z) − x0(z)]2/(2σ 2
sel) , (a)

where n(z) is the population density at location z, and σsel measures the strength of stabilizing
selection toward x0. The first term on the right-hand side of Equation (a) describes logistic growth,
and the second term describes how growth rates decrease as the distance between the mean and
the optimal phenotype at location z increases. According to the model of Lande (1979b), the local
evolution of the mean phenotype is assumed to be given by(

dū(z)

dt

)
local

= Gσ−2
sel [x0(z) − ū(z)] , (b)

where G is the product of the heritability with the phenotypic variance of the trait and is assumed to
be constant over space and time. The role of σsel is akin to that of σK x in our individual-based mod-
els. Equations (a) and (b) are complemented by diffusive movement along the z axis, characterized
as in Box 2 by a diffusion coefficient D = 1

2 mσ 2
m , where m is the rate of spatial movement and σm is

the average movement distance. It is assumed that competition only occurs between individuals that
exist at the very same spatial location, and that intrinsic frequency dependence in local interactions
is absent. This leads to the following system of partial differential equations to describe population
growth and evolution along the environmental gradient,

∂n

∂ t
= D

∂2n

∂2z
+

(
dn

dt

)
local

, (c)

∂ ū

∂ t
= D

∂2ū

∂2z
+ 2D

∂ ln n

∂z

∂ ū

∂z
+

(
dū

dt

)
local

. (d)

The first term on the right-hand side of Equation (c) and the first two terms on the right-hand side of
Equation (d) represent the effects of dispersal and concomitant gene flow, while the remaining terms
represent the local dynamics described in Equations (a) and (b), respectively.
Kirkpatrick and Barton (1997) used this deterministic model to show that if dispersal is large enough,
then gene flow swamping the boundary areas of a species range from the center can prevent local
adaptation to the optimal phenotype near the boundaries, so that local equilibrium population den-
sities decline to zero toward the species’ boundaries. Therefore, gene flow can prevent range ex-
pansion. The resultant ecological and evolutionary equilibrium is shown schematically in panel (a)
below, which illustrates local adaptation along a linear environmental gradient in the form of a linear
phenotypic gradient in the mean trait value. As a result of gene flow from the center of the species
range, the phenotypic gradient exhibits increasing distances from the optimal phenotype toward the
edges of the spatial area. continued
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Box 4 continued
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Case and Taper (2000) extended this model to two competing species. One of their main results is
that character displacement in the contact zone between the species can lead to even larger degrees of
local maladaptation, which thus limits species’ ranges even further. This typically results in the two
species occupying different spatial areas, and hence leads to spatial segregation along the environ-
mental gradient. A schematic representation of this scenario is shown in panel (b) above, which is
the same as panel (a) except that now the spatial arena is occupied by two competing species. Panel
(b) illustrates that in this case species ranges are generally smaller because of character displace-
ment as a consequence of interspecific competition in regions of overlap between the two species.
Note that, again, the mean phenotype in both species always shows a continuous gradient. The
model of Case and Taper (2000) demonstrates that interspecific frequency dependence can induce
patterns of spatial segregation between two competing species, a finding in good agreement with the
dynamics of our speciation models, in which intraspecific competition is dynamically and gradually
transformed into interspecific competition.

model studied in this chapter; the resultant speciation processes are illustrated in Figures 4a
and 4b for both types of assortative mating.

Geographic differentiation in the presence of a spatial gradient has also been observed by Case
and Taper (2000) in a model for competition between two species (Box 4). That model did not,
however, address the question of initial diversification in a single population (instead, the existence
of two separate species was assumed a priori). Indeed, the type of model used by Case and Taper
(2000) serves to illustrate that if random mating prevents diversification of a single species that
evolves along a linear gradient, then the evolution of a linear phenotypic gradient that tracks the
environmental gradient is expected. Thus, when Kirkpatrick and Barton (1997) earlier on applied
the same formalism to a single species to study the problem of species ranges, they found that a
linear environmental gradient in the optimal phenotype leads to the evolution of a corresponding
phenotypic gradient (Box 4). The same observation can also be made for our model: in the ab-
sence of evolutionary branching, a phenotypic gradient evolves (Figure 4c). We can thus conclude
that the speciation process described here critically depends on evolutionary branching and on its
release through the evolution of assortative mating; both of these processes are triggered by disrup-
tive selection that emerges dynamically from frequency-dependent interactions under conditions
of ecological contact. These strictly local interactions can thus ultimately drive the evolutionary
diversification of ancestral populations into globally segregated species.

Once the degree of spatial structure caused by low mobility reaches a critical threshold, specia-
tion through spatial evolutionary branching in sexual populations again occurs over a much wider
range of parameters than in the corresponding nonspatial sexual populations. This is shown in Fig-
ure 5 for the case in which assortative mating is based on similarity in the ecological trait. Also,
regarding the effect of the gradient’s slope – derived in Section 3 from the numerical analysis of
the spatially extended asexual model (Figure 3b) – we find expectations corroborated. As in the
asexual case, speciation is especially facilitated for environmental gradients of intermediate slope
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Figure 5 Requirements for evolutionary branching in sexual populations in which assortative mating is
based on the ecological trait. The basic setup of this figure is the same as that for Figure 3. The model’s
three dimensionless parameters (see Box 1) are displayed on all axes. Panels (a) and (b) show a subdivision
of parameter space into polygons, shaded according to the recorded time to evolutionary branching: black
corresponds to branching within the first 500 generations, white corresponds to no branching after 5000
generations, and shades of gray correspond to branching between generations 500 and 5000. (a) Effect of
direct frequency dependence. Variation of time until branching with scaled width of competition function
and scaled movement distance (mobility) for asexual populations (at α σax/σK x = 0.425). In nonspa-
tial models only parameter combinations to the left of the dashed line are expected to induce branching.
(b) Effect of gradient-induced frequency dependence. Variation of time until branching with scaled slope of
gradient and mobility for asexual populations with σax � σK x . In nonspatial models no branching would
be expected at all. (c) Behavior of sexual model. Evolutionary branching occurs for parameters within the
shaded block. The positions of the slices in panels (a) and (b) are indicated.

(Figures 5b and 5c). As can be seen by comparing Figures 3 and 5, parameter ranges that allow
spatial evolutionary branching in sexual populations are slightly smaller than the corresponding
ranges for clonal populations.

Our assumptions that assortative mating originates from mate choice based on phenotypic sim-
ilarity between partners (either in an ecologically relevant trait or an ecologically neutral marker
trait) conform with premating isolation mechanisms investigated in previous analyses of rein-
forcement (e.g., Liou and Price 1994; Servedio 2000). Other isolation mechanisms, such as mate
choice based on absolute preference (Servedio 2000) or on male traits and female preferences
(Chapter 5 in Dieckmann et al. 2004), have yet to be considered in the context of evolutionary
branching in spatially structured sexual populations. Compared against these more mechanistic
models of assortative mating, the approach taken in this chapter must be interpreted as being more
phenomenological. This, incidentally, has the advantage of mimicking many different mechanistic
modes of assortativeness, which would otherwise need to be studied in different specific models.

We have thus arrived at a description of parapatric speciation as a dynamic consequence of two
intertwined processes. First, spatially localized and frequency-dependent interactions along the
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environmental gradient can be the driving force of evolutionary divergence. Second, a dynamics
akin to reinforcement causes the evolution of assortative mating. Both processes together allow an
ancestral sexual population to become organized into phenotypically distinct descendant species
that occupy different, spatially segregated regions along the environmental gradient, and thus re-
sult in a stepped phenotypic cline. These results provide an intrinsic ecological explanation for
parapatric divergence in geographically continuous populations by linking local processes to the
resultant global patterns of species abundance.

5 A Note on Species–Area Relationships

The results presented in Sections 3 and 4 show how spatial structure facilitates parapatric specia-
tion. It is therefore tempting to ask whether these findings also have implications for the general
problem of understanding species–area relationships. It is an empirically well-documented fact
that species diversity tends to increase with the size of the area over which diversity is sampled,
which leads to the characteristic species–area relationships often described by power laws (Rosen-
zweig 1995). This is one of the most ubiquitous patterns found in ecology, and many alternative
explanations have been conjectured to date. The suggested mechanisms are likely to complement,
rather than exclude, each other, so that observed species–area relationships presumably are the
product of the joint action of several disparate mechanisms.

A classic explanation by MacArthur and Wilson (1967) is based on their “equilibrium model of
island biogeography”, that is, on the assumption that equilibrium population sizes linearly increase
with island size, so that the extinction of species occurs more rarely on larger islands. This per-
spective is purely ecological and makes no reference to the effect of island area on the rate at which
species are being formed, rather than being destroyed. By contrast, it has also been suggested that
speciation occurs at higher rates in larger areas. For example, Losos and Schluter (2000) recently
argued that the greater species richness of Anolis lizards found on larger islands in the Antilles
results from higher speciation rates on larger islands, rather than from higher immigration rates
from the mainland, or from lower extinction rates. Higher speciation rates in larger areas are, in
turn, often attributed to an increased resource and habitat diversity supposedly harbored by larger
areas.

Utilizing the spatial speciation model for asexual populations introduced above, here we il-
lustrate that even when there is no difference in resource diversity, larger areas are expected to
promote speciation. We suggest that such a relation holds because, according to the speciation
mechanism discussed in this chapter, a given characteristic scale of individual mobility enables a
higher degree of evolutionary self-structuring along longer gradients, even when these gradients
span the same phenotypic range. To test this hypothesis we performed simulations as for Fig-
ure 3a, but in a spatial arena scaled down to half the area used for Figure 3a while retaining the
gradient’s phenotypic span. To achieve this we increased the slope of the environmental gradient
in the smaller spatial arena to

√
2 times the slope of the gradient used for Figure 3a. The resultant

parameter ranges for evolutionary branching are shown in Figure 6 and can be compared to the
results for the larger spatial area in two ways:

• Figure 6 can be compared directly to Figure 3a, that is, to results for a larger spatial area
that harbors the same resource diversity (i.e., the same range of phenotypes that locally
maximize resource utilization).

• Alternatively, the ranges shown in Figure 6 can be compared to those for a larger area with
the same slope of the environmental gradient. This implies, however, that the resource op-
tima in the larger area span a larger phenotypic range, so that resource diversity is increased
together with the area. In this case, Figure 6 should be compared to a corresponding figure
for the larger area that is obtained as a cross-section of Figure 3c, taken parallel to the x–z
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Figure 6 Requirements for evolutionary branching for asexual populations that occupy half the spatial
arena used for Figure 3a. As in Figure 3a, the panel shows a subdivision of parameter space into polygons,
shaded according to the recorded time to evolutionary branching. The panel shows variation of time until
branching with scaled width of competition function and with scaled movement distance (mobility). To
ensure the same overall resource diversity as in the larger area used for Figure 3a, the parameter value for
the scaled slope of the environmental gradient was set at α σax/σK x = √

2 0.425 in the smaller arena. Note
that evolutionary branching occurs for a smaller range of parameters than in Figure 3a.

plane at a y value (where y is the gradient slope) that is
√

2 times the y value that corre-
sponds to the cross-section representing Figure 3a. Note that a cross-section at

√
2 times the

gradient slope used for Figure 3a would predict larger ranges of parameter values that lead
to evolutionary branching than does Figure 3a.

Whatever the comparison, Figure 6 shows that for low mobility, evolutionary branching still
occurs much more readily in the smaller spatial area than in spatially unstructured populations.
However, comparison either with Figure 3a directly, or with the cross-section of Figure 3c at

√
2

times the gradient slope used for Figure 3a, shows that branching occurs for a substantially smaller
range of parameters than in a larger spatial area, irrespective of whether the larger area is assumed
to have the same resource diversity or the same gradient slope as the smaller area. This means
that there are mobilities that allow for greatly facilitated branching in the larger spatial area, but
that are too large to have the same effect in the smaller area. Therefore, in our model parapatric
speciation rates are higher in larger areas. Our interpretation of this result is that relatively more
localized ecological interactions are more conducive to local adaptive processes of diversification.
This should not be confused with mechanisms of isolation by distance, in which local processes
at spatially very distant locations lead to diversification. In contrast, in our models divergence
requires local ecological contact. Sympatric ecological interactions drive local adaptive diversi-
fication, and our results suggest that such processes of adaptive speciation are more likely with
more localized interactions.

With regard to the Anolis lizards on Caribbean islands, the mechanism described here may be
responsible for some aspects of the species–area relationships discussed by Losos and Schluter
(2000). Indeed, resource diversity does not appear to be significantly lower on smaller islands in
the Antilles (Roughgarden 1995). Yet the large islands of the Greater Antilles typically harbor
many species of Anolis lizards, while the smaller islands of the lesser Antilles contain at most
two species – although morphological variation within these species can be quite large (Malhotra
and Thorpe 1997c; Chapter 16 in Dieckmann et al. 2004). These observations conform with the
notion that on the larger islands new species can arise more easily out of existing genetic variation,
because evolutionary branching and the concomitant evolution of reproductive isolation is more
likely in larger spatial areas.
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Box 5 Fisherian runaway processes in spatially extended populations

Payne and Krakauer (1997) studied models for parapatric speciation that involve divergent Fisherian
runaway processes driven by sexual selection in different regions along a spatial gradient. In these
models, two alternative marker traits in males correspond to two alternative preference traits in
females. In nonspatial models for homogeneous populations, sexual selection is expected to lead to
fixation of either one of the two marker-preference pairs, with the actual outcome depending on the
initial conditions.

By contrast, a spatial gradient in viability selection that favors one male marker trait to the left
of a given spatial location x0 and the other male marker trait to the right of x0 can lead to spatial
pattern formation, with one marker-preference pair evolving to the left of x0 and the other evolving
to the right of x0; this generates a zone of intermediate frequencies with strong linkage disequilib-
rium between the two spatially segregated species (Lande 1982; Payne and Krakauer 1997). The
steeper the environmental gradient, the narrower is this zone, and hence the more likely is complete
reproductive isolation and thus speciation.

Payne and Krakauer (1997) also suggested that a spatial gradient in viability selection is not nec-
essary to produce divergent runaway processes in different spatial locations. Instead, they proposed
that alternative and spatially segregated marker-preference pairs could also evolve and persist in
separate domains for extended periods of time, if dispersal along the spatial axis depends on mating
success, such that males who experience less success exhibit higher movement rates. In this case,
the spatial location of the interface between the emerging species depends on the initial conditions.
Importantly, however, the patterns of spatial segregation between the two marker-preference pairs
reported by Payne and Krakauer (1997) turn out to be transient (de Cara and Dieckmann, unpub-
lished).

In both of these cases of parapatric diversification, sexual selection causes different runaway
processes in different spatial locations, through spatial variation either in viability selection or in
the initial conditions. The analysis of these models illustrates that in most models of parapatric
speciation ecological contact between the incipient species, which leads to genetic mixing, is a hin-
drance to the emergence of spatially segregated species. The results of Payne and Krakauer (1997)
show that a viability gradient can, nevertheless, stabilize divergent Fisherian runaway processes in
different spatial domains.

6 Concluding Comments

In this chapter we describe a theory of adaptive parapatric speciation that links ecological pro-
cesses driving local divergence to global patterns of species abundance. In many traditional mod-
els of parapatric speciation it is assumed that some form of geographic differentiation is induced
by discontinuities in the external environment, and that speciation is driven by divergent local
adaptation or genetic drift in spatially distant locations and is hindered by gene flow because of
ecological contact (Gavrilets 1999; Turelli et al. 2001; Chapter 6 in Dieckmann et al. 2004). This
applies as much to models of parapatric speciation driven by sexual selection (Box 5) as to those
driven by natural selection based on ecologically relevant traits. By contrast, the models described
in this chapter focus on the adaptive processes that can generate local divergence in spatially
extended, but genetically and environmentally continuous, populations. Ecological contact is a
critical prerequisite for the operation of this alternative mechanism of parapatric speciation.

Our results show that local ecological contact may, in fact, be the driving force for parapatric
speciation. In our models, gene flow is, of course, still a hindrance to local divergence, but the
mechanisms that generate local disruptive selection require ecological contact. Local disruptive-
ness, in turn, selects for assortative mating, which reduces and eventually eliminates gene flow
between the emerging species. The latter process is akin to reinforcement, but for the fact that
in our models selection for prezygotic isolation emerges dynamically from frequency-dependent
ecological interactions, as opposed to being the consequence of secondary contact. Evolution-
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ary branching in spatially structured sexual populations shows how adaptive speciation can result
in spatial segregation between the emerging species, and thus suggests an answer to Endler’s
(1977) old question of how sharp geographic differentiation can evolve in a single, spatially and
genetically continuous species despite the presence of gene flow and in the absence of abrupt
environmental changes.

The dynamic and continuous unfolding of local processes into a global pattern, as observed
in our models, indicates that the classic allopatry–sympatry controversy about speciation may
often be ill-posed: what, in the end, results in an allopatric pattern of species abundance can be
generated by an intrinsically sympatric evolutionary process. Inferring past processes from extant
patterns is always difficult, and to understand speciation it is particularly important to distinguish
between the two. This also applies to the study of hybrid zones, which are usually thought of
as originating from secondary contact between species that were formed in allopatry (Barton and
Hewitt 1989). Our results reinforce the question of whether many of these zones are, in fact,
primary and have arisen as stepped phenotypic and genetic clines out of genetically continuous
ancestral populations by the processes described in this chapter. That such processes can be an
important agent for generating adaptive splits into abutting sister species may thus provide new
perspectives on old problems (Doebeli and Dieckmann 2003; Tautz 2003) – perspectives that are
supported by a number of recent empirical studies, such as on intertidal snails (Wilding et al.
2001) and on Anolis lizards (Thorpe and Richard 2001; Ogden and Thorpe 2002; see Chapter 16
in Dieckmann et al. 2004).

We conclude that spatial structure can facilitate speciation because local adaptation along an
environmental gradient increases the degree of frequency dependence in spatially localized eco-
logical interactions, and hence the likelihood that these interactions generate disruptive selection
and evolutionary branching. With local adaptation and sufficiently low levels of mobility, short
interaction distances imply that individuals interact more often with other individuals of similar
phenotypes, which results in an increased negative frequency dependence of their fitness on simi-
lar phenotypes. This is a potentially important mechanism for generating divergence that seems to
have been overlooked in past work on parapatric speciation. Interestingly, this mechanism implies
that the degree of frequency dependence induced by spatial structure actually decreases for very
steep environmental gradients, because in this case very different locally adapted phenotypes oc-
cur in close spatial proximity, so that dissimilar phenotypes compete even if their interactions are
spatially localized. As a consequence, facilitation of evolutionary branching is most pronounced
for environmental gradients of intermediate slope, a result that is fundamentally different from
those expected in classic scenarios of parapatric speciation along linear gradients (e.g., Endler
1977; see also Box 4). Studying such spatial facilitation of adaptive divergence may even shed
new light on the problem of species–area relationships, because this mechanism operates more
effectively in larger spatial areas, and thus provides an intrinsic explanation for higher speciation
rates in larger areas. In sum, as anticipated in classic speciation theories, geographic structure
may, indeed, play an essential role in the generation of diversity, but its importance and the role of
spatially gradual environmental change may only be appreciated fully when adaptive processes of
divergence through spatially localized and frequency-dependent ecological interactions are taken
into account.
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