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Spatial Dimensions of Population Viability

Mats Gyllenberg
Ilkka Hanski

Johan A.J. Metz

1 Introduction

In most parts of the world, habitat loss is the number one threat to endangered species. For in-
stance, in Finland the primary cause of threat is some form of habitat loss or alteration in 73%
of the red-listed species (Rassi et al. 2001). Typically, a reduced total area of habitat is accom-
panied by habitat fragmentation, such that the remaining habitat occurs in smaller fragments with
reduced connectivity. Many landscapes for many species have become highly fragmented (the
habitat fragments are small or relatively small and physically completely isolated), while other
landscapes have always been highly fragmented naturally. Species that live in such landscapes
necessarily have fragmented populations, which more or less closely approach the metapopula-
tion structure originally envisioned by Levins (1969). Levins’ metapopulation is a system of local
populations that inhabit individual habitat patches connected, to some extent, by migration. The
classic metapopulation concept assumes that local populations may go extinct, and so leave the

Collared pika
Ochotona collaris

respective habitat patch temporarily unoccupied, while the metapop-
ulation as a whole may persist in a balance between extinctions and
colonizations (Levins 1969; Hanski and Gilpin 1997; Hanski 1999).
In a broader sense, any assemblage of local populations connected
by migration can be called a metapopulation, regardless of the occur-
rence of local extinctions (Hanski and Gilpin 1997). What is impor-
tant is the spatially localized interactions of individuals, which may
significantly change the dynamics of the metapopulation as a whole
in comparison with a single panmictic population (Hanski 1999).

The metapopulation concept has received much attention from conservation biologists dur-
ing the past 15 years (Soulé 1987; Western and Pearl 1989; Falk and Holsinger 1991; McCul-
lough 1996; Young and Clarke 2000), ever since it replaced the dynamic theory of island bio-
geography as the main population ecological paradigm in conservation biology (Hanski and Sim-
berloff 1997). The number of well-studied examples of species with a distinctive metapopulation

Glanville fritillary butterfly
Melitaea cinxia

structure and frequent local extinctions is increasing rapidly; these
include butterflies, mammals (like the American pika), plants, and
plant–herbivore–parasitoid communities (reviews in Hanski 1999,
2001). For European butterflies, many of which have suffered
greatly from habitat loss and fragmentation (Pullin 1995), tens of
studies have demonstrated the critical role of metapopulation pro-
cesses in setting the condition for their regional persistence, or ex-
tinction (Thomas and Hanski 1997; Hanski 1999). One example is
the Glanville fritillary butterfly in the Åland Islands in southwest
Finland, which lives in a landscape that is highly fragmented, and probably has been so through-
out the period the species has inhabited this area (Hanski 1999). Figure 1 illustrates the pattern
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Figure 1 Metapopulation of the Glanville fritillary in the Åland Islands (Finland). The map shows occupied
(filled circles) and empty (open circles) suitable habitat patches in autumn 2000.

of habitat patch occupancy in one year, and shows that only some 20% of the suitable habitat is
occupied at any one time. Nonetheless, there is much population turnover, extinctions, and colo-
nizations in this metapopulation, and which particular patches are occupied and which are empty
changes continuously in time (Hanski 1999). Research on the Glanville fritillary demonstrates
conclusively one of the key messages from the metapopulation theory, namely that the currently
empty habitat is as important for long-term persistence as the currently occupied habitat.

2 Deterministic versus Stochastic Metapopulation Models

As in other branches of ecology, mathematical modeling has proved an indispensable tool for
understanding the dynamics of metapopulations. The choice of the model depends very much on
the real-world situation to be modeled. The number, sizes, and locations of the patches and the
sizes of the local populations all influence the choice of model.

Metapopulations with few patches

If both the number of patches and the number of individuals in each patch are small, then the
metapopulation must be modeled using stochastic processes (Gyllenberg and Silvestrov 1994,
1999, 2000; Etienne and Heesterbeek 2001; Gyllenberg, in press). In this case the metapopulation
becomes extinct on an ecological time scale with the probability of 1. Therefore, if evolution is
to be studied at least one of these numbers must be large. Furthermore, in the limiting case, in
which one of these numbers is infinite, the long-term viability and persistence of metapopulations
can be dealt with in simple qualitative terms. If all the patches have a large carrying capacity,
then a deterministic model describes the local dynamics. If the number of patches is small and
there are no local extinctions, then the dynamics at the metapopulation level is described by either
a system of finitely many ordinary differential equations (in the continuous-time case) or by a
set of finitely many coupled maps (in the case of discrete time). In the continuous-time case the
analysis of persistence and viability thus reduces to well-known results from the theory of ordinary
differential equations (see, e.g., Hofbauer and Sigmund 1988). The discrete time case still presents
some technical difficulties (Gyllenberg et al. 1993) and even some surprising phenomena; for
instance, it is possible that the replacement of a good-quality patch by a poor-quality patch may
salvage the metapopulation from extinction (Gyllenberg et al. 1996).
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Metapopulations with many patches

Another possibility is to assume an infinite number of equally coupled patches. This also allows
catastrophes to be incorporated in a relatively simple manner. The price to be paid is that it is
no longer possible to model explicitly the spatial configuration of the patches. The deterministic
metapopulation models treated in this chapter are therefore based on the assumptions that the local
populations are internally homogeneously mixed and that the patches are equally coupled. These
assumptions may seem unrealistic, but for many purposes, including the calculations in this chap-
ter, a rule of thumb is that these simplifying assumptions can be used with impunity if, in a spatial
configuration, each patch is reached easily from more than 20 neighbors. In Section 5 we delve
a little deeper into the connection between stochastic reality and our deterministic idealizations
of it, and in Section 6 we discuss a stochastic metapopulation model in which the simplifying
assumptions mentioned above are not made.

A question of utmost importance is, of course, under what conditions will a metapopulation
persist. For instance, what is the minimum amount of habitat that will guarantee metapopula-
tion persistence? How does habitat deterioration affect metapopulation persistence? What is the
minimum viable metapopulation size? In stochastic models of metapopulations with a finite num-
ber of patches with finite local populations, these questions are replaced by questions about the
distribution of the extinction time and, in particular, the expected time to extinction.

3 Threshold Phenomena and Basic Reproduction Ratios

It is well-known that persistence of metapopulations is linked to threshold phenomena. We illus-
trate this with the following slightly modified Levins model, which was first used by Lande (1987)
to investigate the effect of the amount of habitat upon metapopulation persistence,

dp

dt
= cp(h − p) − µp , (1)

where p is the fraction of occupied patches, c is the colonization parameter, µ is the extinction
rate per local population, and h is the fraction of suitable patches. This model is based on the
assumption that the colonization rate is proportional to the fraction of occupied patches (from
where the potential colonizers come) and the fraction h − p of empty but suitable patches (the
patches that can potentially be colonized). A simple calculation shows that the trivial solution that
corresponds to metapopulation extinction, that is p = 0, is the only steady state and is stable if
ch < µ. If ch > µ, the extinction equilibrium is unstable and there exists a unique nontrivial
steady state. Thus, the dimensionless parameter R0, defined by

R0 = c

µ
h , (2)

sets a threshold on metapopulation persistence: the metapopulation persists if and only if R0 > 1.

Basic reproduction ratios and persistence

The quantity R0 has a clear-cut and important biological interpretation. It is the expected number
of new local populations produced by one local population placed in an otherwise virgin envi-
ronment, that is in an environment with all other patches empty. The parameter R0 is a direct
analog of the R0 used in epidemic models (Diekmann et al. 1990; Diekmann and Heesterbeek
1999); indeed, Equation (1) is nothing but the celebrated “susceptible–infected–susceptible” (SIS)
model, in which the empty patches are the susceptible individuals and the occupied patches are
the infected individuals.

When R0 > 1, the nontrivial steady state is immediately obtained in the usual way by putting
dp/dt = 0 in Equation (1) and solving for p. However, to set the stage for the coming sections
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Figure 2 Bifurcation diagram of Levins’ model [Equations (1) and (3)], in which the stable and unstable
equilibria of I = p are plotted (continous and dashed lines, respectively) against the colonization parameter
c, while the other parameters µ and h are kept constant.

we proceed in a slightly more cumbersome, but at the same time more instructive, way. To this
end we rewrite the Levins model, Equation (1), as

dp

dt
= [c(h − I ) − µ]p , (3)

where we have simply replaced one p in Equation (1) with the symbol I . The point of this
seemingly meaningless trick is that, assuming I is given, Equation (3) takes the form of a linear
differential equation. For the nontrivial steady state I = p is a constant different from 0. However,
according to Equation (3), this is the case when c(h − I ) − µ = 0, or, equivalently, when the
quantity defined by

RI = c

µ
(h − I ) (4)

is equal to 1. Then the equilibrium fraction of occupied patches obtained is p = h − (µ/c).
The introduction of an auxiliary variable (usually called the environmental interaction variable,

denoted by I ) that cuts the feedback loop and makes the model linear, assuming that the variable is
a known function of time, is the leitmotif of modeling structured (meta)populations (Metz and de
Roos 1992; Gyllenberg et al. 1997; Diekmann et al. 2001). An extra advantage is that the steady
state condition is formulated in terms of the quantity RI , which has a biological interpretation
similar to that of R0. It is the expected number of new local populations produced by one local
population during its entire life, given that the fraction of occupied patches is I . The steady state
criterion RI = 1 thus formalizes the intuitively obvious requirement that a local population on
average exactly replaces itself. Note the consistency in the notation: RI goes to R0 as I goes
to zero.

The results presented above can be summarized and illustrated conveniently by a bifurcation
diagram (Figure 2). In Figure 2 c is (quite arbitrarily) chosen as the bifurcation parameter. If the
expected lifetime 1/µ of a local population or the fraction h of habitable patches were chosen as
the bifurcation parameter, qualitatively similar diagrams would be obtained.

Persistence and viability

We have introduced the general notion of metapopulation persistence. This, by definition, means
that the metapopulation extinction equilibrium is unstable. We have shown that a metapopulation
governed by the Levins model is persistent if and only if R0 > 1. Also, whenever the Levins
metapopulation is not persistent, the metapopulation inevitably becomes extinct. Therefore, in
the case of the Levins model, persistence coincides with another important notion, namely that
of viability, which we define in general by the existence of a nontrivial attractor. By “nontrivial”
we simply mean “other than the extinction equilibrium”; the “attractor” can be a steady state, a
periodic orbit, or even a chaotic attractor, but in this chapter we restrict ourselves to steady states.
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Figure 3 Bifurcation diagram of a hypothetical metapopulation model (solid curve, stable equilibria;
dashed curve, unstable equilibria). The metapopulation is persistent for all c values larger than c1, and
viable for all c values larger than c0.

We emphasize that the coincidence of persistence and viability is a peculiarity of the Levins
model and need not be true for more complicated metapopulation models. To see this, suppose
that a model has a bifurcation diagram as that depicted in Figure 3; an interval of parameter (e.g.,
c) values occurs in which the metapopulation is viable, but not persistent. In Section 5 we give an
explicit example of a metapopulation model in which this situation occurs.

The Levins model, Equation (1), is simplified in the extreme. In particular, the dynamics is
modeled directly at the level of the metapopulation, ignoring local dynamics altogether. This is
manifested in the interpretation of the basic ingredients or parameters: µ is the extinction rate
per local population and c is the colonization rate per local population and empty patch. Thus,
the persistence criterion R0 > 1, with R0 given by Equation (2), yields a necessary and sufficient
condition for persistence in terms of these parameters (and the parameter h) at the metapopulation
level. There is no obvious relation between c, µ, and the behavior of individuals. However, one of
the main goals of evolutionary conservation biology is to understand how population persistence
and viability are influenced by individual traits that may be adaptive. To investigate this question
we have to turn to more complicated models that explicitly prescribe local dynamics in terms of
parameters that describe individual behavior. Such models are called structured metapopulation
models and have been treated by, among others, Gyllenberg and Hanski (1992, 1997), Hanski
and Gyllenberg (1993), Gyllenberg et al. (1997, 2002), Gyllenberg and Metz (2001), Metz and
Gyllenberg (2001), and Parvinen (2001a, 2001b). In Section 4 the persistence and viability of
metapopulations is investigated within the context of structured models. The key technique is to
define the basic reproduction ratios R0 and RI for these models.

4 Modeling Structured Metapopulations

Simple, unstructured metapopulation models face severe limitations. The aim to make predictions
that relate to real data raises the need to include an explicit description of migration in terms of
the numbers of individuals moving, rather than a description restricted to the colonization rate
of empty habitat, as in the Levins model and other patch-occupancy models. It is now widely
recognized that both emigration and immigration often have important consequences for the dy-
namics of especially small local populations (Stacey et al. 1997; Thomas and Hanski 1997; Hanski
1998, 1999), and hence also for the dynamics of metapopulations that consist of such small pop-
ulations. The rescue effect (Brown and Kodric-Brown 1977) – the reduced risk of extinction in
a local population because of immigration – is the best-known example of such effects (Hanski
1985), which can be accounted for in a mechanistic manner within the framework of structured
models (Gyllenberg and Hanski 1992).

When modeling and analyzing the temporal dynamics of structured populations, the starting
point is to describe mechanisms at the individual level, then lift the model to the population
level, and finally study phenomena at the population level. As pointed out already by Metz and
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Diekmann (1986) (see also Diekmann et al. 1988, 1989), and later by Gyllenberg and Hanski
(1992) (see also Gyllenberg et al. 1997), the theory of structured populations can be applied to
metapopulations in a rather straightforward manner if an analogy is made between local popula-
tions and individuals and between metapopulation and population. We have seen an instance of
this already in our brief discussion of the classic Levins model. However, in some cases a more
general analog of an individual is needed, examples of which are given later. The entity of a
metapopulation that corresponds to an individual in ordinary populations is called the basic entity.

As a practical aside, note that below we concentrate on the limiting case of infinite, which in
practice means large, local populations. These may become extinct as a consequence of a local
catastrophe. The deterministic nature of the model means that a patch which becomes empty as a
result of a local disaster is immediately recolonized. Therefore, according to the model there are
no empty patches (except in the case of metapopulation extinction). Yet in reality empty patches
do exist. When fitting the model to data this dichotomy can be overcome of by introducing a
detection threshold, by which a patch of local population size less than this threshold is empty.

Defining the environmental interaction variable

A basic entity develops (i.e., its state changes with time) as a consequence of, for instance, patch-
quality dynamics, that is the local population growth through births, deaths, and migration. It
gives rise to new local entities (e.g., local populations produce dispersers, which colonize empty
patches), and some vanish (e.g., when a local population becomes extinct or a disperser dies). To
model mechanisms at the local level, two ingredients are needed, one to describe the production
of new local entities and one to describe the development and survival of local entities. These
ingredients depend on the environmental interaction variable I , which must be chosen such that
for a given I the model becomes linear. The value of I , in turn, depends on the metapopulation
state and therefore the full model at the level of the metapopulation becomes nonlinear. We refer
to articles by Gyllenberg et al. (1997), Diekmann et al. (2001), Gyllenberg and Metz (2001),
and Gyllenberg and Jagers (in press) for accounts of how the modeling task can be carried out
in general.

One of the salient features of structured metapopulation models is that they make it possible to
model and hence analyze how migration affects local dynamics. Emigration is as easy to model
as death is; from the point of view of a local population, it does not make any difference whether
an individual is lost through death or emigration. Immigration is more complicated, unless it is
assumed that the immigration rate I is known, in which case the modeling task is easy, since I is
just an additional contribution to the growth rate of the local population. The immigration rate I
depends, of course, on the overall density of dispersers, which in turn depends on the emigration
rate and mortality during dispersal. The nonlinear feedback thus takes place through migration,
and the immigration rate I qualifies as an environmental interaction variable. Assuming I to be
known, a linear problem is obtained, but the true value of I is found by closing the feedback loop.

Defining the basic entity

The goal of this chapter is to understand the determinants of metapopulation persistence and vi-
ability. We had seen already, in connection with the Levins model, that this issue can be investi-
gated using the basic reproduction ratios R0 and RI . We therefore generalize these quantities to
structured metapopulation models. The Levins model, however, is so simple that it is not immedi-
ately clear how this should be done. There is a general abstract framework for defining the basic
reproduction ratios (Gyllenberg et al. 1997; Diekmann et al. 1998; Gyllenberg and Metz 2001;
Metz and Gyllenberg 2001), but here we are content with a more intuitive approach that takes
advantage of biological interpretation. Let us first examine how the basic reproduction ratio is in-
terpreted for “ordinary” structured populations, that is, for populations without the metastructure.
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For such models the basic reproduction ratio is the expected number of offspring born to a typical
individual during its entire life. Here, part of the problem is to define what the word “typical”
means.

For a given individual with a known state at birth, the expected lifetime production of offspring
can be calculated from the basic model ingredients, and finding R0 and RI then amounts to av-
eraging (in the right way!). To translate the ideas of ordinary populations into metapopulations,
we must first define the basic entity. The local population may, at first sight, seem the obvious
choice. However, in terms of an evolutionary approach to metapopulation viability, it is important
to understand the invasion and fixation of rare mutants that have life-history traits that are different
from those of a wild type formerly established in the metapopulation. One therefore has to investi-
gate the competition between different types that inhabit the same local population, and therefore
the local population itself does not contain sufficient information to qualify as a basic entity.

We restrict our attention to models with two types of local entities: dispersers and resident
clans. A resident clan consists of an individual that arrives at a patch (the “ancestor”) and all its
descendants (children, grandchildren, great grandchildren, etc.), as long as they stay in the patch.
When a resident emigrates we say that the clan gives birth to a disperser. It is convenient to think
of the arrival of a disperser to a patch as the simultaneous death of the disperser and the birth of a
new resident clan. [Note that “resident”, as used in this chapter, means simply an individual who
lives in a patch, as opposed to a migrant, and should not be confused with the notion of a resident
phenotype as opposed to that of a mutant phenotype in the context of adaptive dynamics theory
(see Chapters 11, 14, 16, and 17 in Ferrière et al. 2004).]

Note that in the metapopulation context one cannot base the persistence criterion on an
individual-based reproduction ratio. An individual may be very prolific locally, but if the dis-
persal rate is not large enough almost all of its descendants may be lost at a local disaster. It is
therefore necessary to take the resident clan as defined above, and not the individual, as the basic
unit of the metapopulation.

Defining basic reproduction ratios

To calculate the basic reproduction ratio of a structured metapopulation we first have to find an ex-
pression for the expected (cumulative) number and local-state distribution of “offspring” produced
by a “newborn” basic entity. At this stage we assume that such an expression is well-defined, given
the model. Later we discuss how this expression can be obtained from more detailed models of
individual behavior.

We make three important assumptions about individual behavior:

• All dispersers behave in the same way, that is, dispersers are unstructured;
• Dispersers choose their new patch at random;
• The behavior of residents may depend on the state X of their local population.

More complicated models could be treated in the same spirit and formally, using the same abstract
method (Gyllenberg et al. 1997; Diekmann et al. 2001). The following ingredients can now specify
the model:

• EI (X), the expected number of dispersers produced by a clan that was initiated by a dis-
perser immigrating into a local population of state X , given that the immigration rate is I ;

• φ, the probability that a disperser survives migration and starts a new clan.

With these model specifications, the expected number of new clans produced by a clan initiated
by a disperser that arrives at a local population of state X is φEI (X). We assume dispersers
choose their new patch at random and therefore the state-at-birth of new clans equals the steady
population size distribution pI that corresponds to the immigration rate I . A “typical” clan is
therefore one sampled from the steady population size distribution pI and we obtain Equation (5a)
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for the reproduction ratio of basic entities,

RI = φ

∫
EI (X)pI (X) d X , (5a)

where the integral is taken over all possible local population states X .
The steady population size distribution pI depends on the local dynamics, which are not yet

specified. It can be shown (Gyllenberg et al., unpublished) that at equilibrium the basic reproduc-
tion ratio becomes

RI = φ
EI

I�I
, (5b)

where EI is the expected number of offspring produced by a local population during its entire
life and �I is the expected lifetime of a local population, given the immigration rate I . This
formula has a very intuitive interpretation. Note that the denominator on the right-hand side is
the expected number of arrivals at a patch. The whole right-hand side is therefore the expected
number of arriving (anywhere in the metapopulation) offspring of a local population divided by
the mean number of arrivals at a patch. At equilibrium, this quantity should equal 1, hence RI .
It can also be shown that the equilibrium value of RI given by Equation (5b) tends to R0 as the
immigration rate I tends to zero (Gyllenberg et al. 2002).

5 Metapopulation Structured by Local Population Density

In this section we illustrate our theory by a simple example which has the population density,
denoted as N , as the local state. Our model is specified by the following ingredients:

• h, the fraction of habitable patches;
• r(N), the density-dependent per capita growth rate from local births and deaths;
• m(N), the density-dependent per capita emigration rate;
• φ, the probability that a disperser survives migration and establishes a new clan;
• µ(N), the density-dependent local catastrophe rate.

This enables persistence and viability to be expressed using the expected number EI of dispersers
produced by a local population during its entire life, the expected lifetime �I of a population, and
Equation (5b) to obtain RI at equilibrium, taking the limit as I tends to zero to obtain R0. This
was carried out by Gyllenberg et al. (2002). However, to calculate R0 there is a shortcut, which
we shall follow.

Metapopulation persistence

Consider a newly founded resident clan in an otherwise virgin environment. This means that all
other patches are empty and that the local population of the clan is size zero; as a consequence, so
long as the metapopulation remains small we can neglect the effects of density dependence. Thus,
the local per capita growth rate, per capita emigration rate, and catastrophe rate are constant and
equal to r(0), m(0), and µ(0), respectively. Necessary and sufficient conditions of persistence are
derived in Box 1. Results can be summarized as follows:

• If local growth at zero density is slow enough, namely if r(0) is less than the sum m(0) +
µ(0), then the persistence criterion is

R0 = hφ
m(0)

m(0) − [r(0) − µ(0)] > 1 . (6)
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Box 1 Deriving a criterion for structured metapopulation persistence

Here we use the model assumptions and notations of Section 5 to present a derivation of the per-
sistence criterion based on R0. We consider a newly founded resident clan in an otherwise virgin
environment. The probability that this clan is still extant t time units later is exp[−µ(0)t], and if it is
extant its size is exp(−[r(0)− m(0)]t). Each of the individuals in the clan has a probability m(0) dt
of migrating in the infinitesimal time interval [t, t + dt]. Summing over all times, we obtain the
expected number of migrants produced by a clan, denoted by E0(0),

E0(0) =
∫ ∞

0
m(0) exp([r(0)−m(0)−µ(0)]t) dt = m(0)

µ(0)+m(0)−r(0)
. (a)

Note that the symbol E0(0) is consistent with the notations used so far: the subscript 0 indicates zero
immigration and the argument 0 means that the clan starts from an empty patch, all in accordance
with the notion of a virgin environment.

The equality in Equation (a) is, of course, valid if and only if r(0) < m(0) + µ(0), otherwise
the integral is infinite [unless m(0) = 0, in which case E0 assumes the value 0]. We accept the
possibility that E0 will take on infinite values and adopt the usual arithmetic on [0, ∞], including
the convention 0 × ∞ = 0.

From the interpretation of the quantities involved it is clear that R0 = φE0(0)h, but we emphasize
that this can be rigorously deduced from Equation (5a) since the steady population size distribution
pI that corresponds to the population-free case is the point mass of size h concentrated at the origin.

Persistence, then, is found to be determined by the relative values r(0) and m(0) + µ(0):

� If r(0) < m(0) + µ(0), the persistence criterion given by Equation (6) is obtained.
� If r(0) > m(0) + µ(0) and m(0) > 0, then R0 = ∞ if h > 0, and R0 = 0 if h = 0. Thus, in

this case R0 > 1 if and only if h > 0.

This persistence criterion is very similar to the corresponding criterion for the Levins model.
There is an important difference, though. Whereas the latter was formulated in terms of the
parameters c and µ, which measure attributes at the local population level, Equation (6)
contains the per capita growth and emigration rates r(0) and m(0), which are properties of
individuals.

• If local growth at zero density is fast enough, namely if r(0) is larger than m(0)+µ(0), and
if the emigration rate at low density m(0) is not null, then the persistence criterion R0 > 1
is equivalent to h > 0. This entails that fast local growth can compensate for arbitrary loss
of habitat and keep the metapopulation alive – any positive amount of suitable habitat is
enough to ensure persistence. Notice that in Levins’ model, which neglects local dynamics,
nothing of this sort is feasible.

Focusing on the specific effect of the emigration rate on metapopulation persistence, two further
cases may be distinguished when local growth is slow [r(0) < m(0) + µ(0)]:

• If local growth is too slow the metapopulation is not persistent regardless of the emigration
rate, namely, if r(0) ≤ µ(0);

• For intermediate rates of local growth, i.e., µ(0) ≤ r(0) < m(0)+µ(0), the metapopulation
persistence requires that emigration be less than an upper threshold, denoted by m1 [obtained
by rearranging terms in Equation (6)]. This threshold m1 increases with the difference
between the rates of local growth and catastrophe at low density, the probability of survival
and establishment for dispersers, and the amount of suitable habitat.
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Box 2 Deriving a criterion for structured metapopulation viability

Here we provide the analysis of metapopulation viability in the context of the structured model
introduced in Section 5. To this end, we have to calculate RI at equilibrium by using Equation (5a).
First, observe that our specification of individual behavior implies that local population growth is
governed by the differential equation

dN

dt
=r(N) N −e(N) N + I . (a)

Now, consider a local population at the time of a local disaster and simultaneous recolonization. The
probability that it is still extant when it has density N is equal to exp

(
− ∫ N

0
µ(x)

r(x)x−m(x)x+I dx
)

, and
given that it is extant with density N the expected number of dispersers produced in the infinitesimal
density interval [N, N +dN] is m(N)N

r(N)N−m(N)N+I dN . The factor 1/r(N)N −m(N)N + I that occurs
in these formulas simply reflects a conversion from quantities per unit of time to quantities per unit
of population density. Adding up over all sizes gives

EI =
∫

m(N)N

r(N)N −m(N)N + I
exp

(
−

∫ N

0

µ(x)

r(x)x −m(x)x + I
dx

)
dN . (b)

Similarly, one obtains

�I =
∫

1

r(N)N −m(N)N + I
exp

(
−

∫ N

0

µ(x)

r(x)x −m(x)x + I
dx

)
dN . (c)

The expression for RI at equilibrium follows readily from Equation (5a).

Metapopulation viability

At the metapopulation steady state the condition RI = 1 holds (see Box 2), and Figure 4 shows
plots of the equilibrium fraction of occupied patches determined by this condition as a function
of the emigration rate (from Gyllenberg et al. 2002). It may be a surprise that, even for r(0) ≤
µ(0), in which case the metapopulation is not persistent, there might very well exist a range of
emigration rates m(0) over which the metapopulation is viable. This is possible even in the case of
density-independent migration (i.e., with constant m), and can be seen in Figures 4b and 4c: in the
range m1 < m < m2 there exists a stable nontrivial equilibrium and hence the metapopulation is
viable for migration rates in this range. In Figures 4a and 4b the condition µ(0) < r(0) is satisfied,
and we know from the previous subsection that there is a range 0 < m < m1 above which the
metapopulation is persistent. If the catastrophe rate is constant (Figure 4a), then persistence and
viability coincide. If, on the other hand, the catastrophe rate is a decreasing function of local
population density (Figures 4b and 4c), there is a range m1 < m < m2 of emigration rates for
which the metapopulation is viable but not persistent.

These results illustrate the possibility of alternative locally stable equilibria in metapopulation
dynamics (see also Hanski 1985; Hanski and Gyllenberg 1993; Gyllenberg et al. 1997). The size
of the metapopulation may move from the domain of one stable equilibrium to the domain of the
alternative equilibrium following a large environmental perturbation, and at the bifurcation point
the metapopulation is predicted to show a deterministic “jump” from the nontrivial equilibrium to
metapopulation extinction. The lesson here is that it should not be assumed that slight changes in
parameter values will necessarily be reflected in only slight changes in metapopulation size, and it
is possible that large long-lasting changes in metapopulation size will occur in response to small
environmental perturbations. The feedback between migration and local dynamics, on the one
hand, and the dynamics of the entire metapopulation, on the other, may generate discontinuous
changes in the abundance and distribution of species.



– 11 –

0.8

Eq
ui

lib
riu

m
im

m
ig

ra
tio

n 
ra

te
, I

m1m1 m2 m1 m2
Migration rate, m

(b)(a)

0.1

0.0

0.3

0.4 0.8 1.2 1.4

0.2

0.00.4 0.8 1.2

0.050

0.075

0.025

0.0
0.000

(c)

0.1

0.0
0.2 0.4 0.60.0

0.2

Figure 4 Bifurcation diagrams for the structured metapopulation model described in Section 5. The stable
and unstable equilibria values of I are plotted against the per capita migration rate m, which is density
independent and acts as bifurcation parameter. (a) Constant rate of catastrophe: µ = 0.4. (b) The catastro-
phe rate µ(N) decreases with increasing local population density N , and µ(0) = 0.4. (c) The catastrophe
rate µ(N) is as in (b), but with µ(0) = 1.2. In all cases the local population growth is logistic, with
r(N) = 1 − N , φ = 0.55, and h = 1.

Toward more realistic models

The structured metapopulation models analyzed in this section omit a description of the spatial
population structure in that they assume the habitat patches are identical (though see Gyllenberg
and Hanski 1997) and equally connected. This is not a great restriction for systems that consist
of large networks of well-connected habitat patches without a strongly aggregated spatial distri-
bution; yet to relate the modeling results to empirical studies it is often useful to account explic-
itly for the spatial structure in metapopulations. The spatially structured metapopulation models
developed by Hanski (1994, 1999) have recently been analyzed mathematically by Hanski and
Ovaskainen (2000) and Ovaskainen and Hanski (2001, 2002, unpublished). This line of modeling
retains the present or absent description of dynamics in local populations, as in the original Levins
model, but allows for finite patch networks with differences in the areas, qualities, and degree
of connectivity of the patches. An advantage of these models is that they can be given rigorous
parameters for real metapopulations (ter Braak et al. 1998; Moilanen 1999, 2000), and therefore
establish a firmer link between theory and empirical studies (Hanski 1999).

However, once again, because individuals are not modeled explicitly, the spatially structured
models cannot be extended easily to evolutionary studies without resorting to individual-based
simulations. [For an example see Heino and Hanski (2001), who combined individual-based
simulations with a spatially structured patch occupancy model to constrain the model-predicted
long-term dynamics and used a statistical model of individual movement behavior to model mi-
gration of individuals among multiple populations.] One challenge for further research is to de-
velop metapopulation models that include both the spatial structure and the local population size
structure.

6 Persistence of Finite Metapopulations: Stochastic Models

So far we have considered metapopulations that consist of infinitely many patches, which, more-
over, in the structured case contain infinitely many individuals. The reason for doing so is that the
results for such models can be stated in simple intuitive terms, that we have good tools for study-
ing them, and that we may expect the results to hold to a good approximation when we replace
“infinite” with “sufficiently large”. Of course, real populations are not infinite. In this section,
dedicated to predict relationships between individual traits and metapopulation viability on the
basis of stochastic models, we first treat a particular example of a finite metapopulation model and
clearly illustrate the concepts involved in a nontrivial manner. We follow this up with a heuristic
overview of how the mathematically idealized infinite cases connect to the more realistic finite
cases.
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Predictions from a spatially explicit stochastic model

To exemplify the main concepts that occur in population models of a more finite kind, we concen-
trate on a stochastic metapopulation model with a finite number of patches. The spatial arrange-
ments of patches is modeled explicitly. The basic ideas and results are most easily described when
time is taken as a discrete variable, and therefore from here onward we switch to discrete-time
models. Our model is based on Gyllenberg (in press), but also see Etienne and Heesterbeek (2001).
Analogous, but technically more difficult, results for a continuous-time stochastic metapopulation
model were derived by Gyllenberg and Silvestrov [1999, 2000; see also Frank and Wissel (1994,
1998, 2002) for practically useful heuristics]. We choose this model structure, which is rather dif-
ferent from those considered previously, because it allows us to show some overarching ideas and
to elucidate some of the interpretational problems that occur when comparing models of different
origin.

We consider a collection of n patches that can be either occupied or empty at the discrete time
instants t = 0, 1, 2, .... Metapopulation extinction corresponds to all patches being empty. The
local dynamics are modeled by preassigning an interaction matrix Q = [qj i ] in which:

• qii (i = 1, 2, ..., n) is the probability that, in the absence of migration, the population
inhabiting patch i will become extinct in one time-step;

• qj i(i = 1, 2, ..., n, j = 1, 2, ..., n, and j �= i) is the probability that patch i will not be
colonized in one time-step by a migrant originating from patch j .

Typically, qj i depends on at least the distance between the patches i and j and the area of patch j .
This model incorporates the notion of a rescue effect, that is, the decreasing extinction rate with
increasing fraction of occupied patches. The overall extinction probability of the local population
that inhabits patch i may be considerably less than the “internal” extinction probability qii if there
are many large occupied patches in the vicinity (many small qj i ).

The analysis of this model (see Box 3) requires three conditions:

• No local population is able to colonize another patch in one time-step with probability 1;
• Even in the absence of migration (rescue effect), no local population has extinction proba-

bility 1 and no local population is protected from extinction;
• Every local population is able to colonize any other patch either directly or through a chain

of patches (stepping-stone dispersal).

These conditions together imply that we are, indeed, dealing with a true metapopulation and not,
for instance, with a mainland–island model, in which only migration from the mainland to the
islands is allowed, or with a collection of several disconnected metapopulations.

Since there is a finite number of patches, sooner or later all extant populations will simultane-
ously become extinct and the whole metapopulation will be wiped out. Mathematically speaking,
the metapopulation will become extinct with probability 1. In such cases of certain extinction,
there is no stationary distribution except the trivial one that corresponds to metapopulation extinc-
tion. However, we can define the so-called quasi-stationary distribution (Darroch and Seneta 1965;
see also Chapter 2 in Ferrière et al. 2004), which is the stationary distribution on the condition that
the metapopulation has not become extinct.

If we consider a metapopulation that has been extant for a considerable time, we may use the
quasi-stationary distribution as the starting point from which to consider the time to its future
extinction; we refer to the corresponding time to extinction as the quasi-stationary extinction time.
This solves the problem that, in general, the time to future extinction is highly dependent on the
state in which the metapopulation is at present. In particular, we have to distinguish situations such
as a reintroduction from situations in which the metapopulation has been present for a long time.
Subject to some natural monotonicity conditions, if a metapopulation has known more favorable
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Box 3 A spatially explicit stochastic model

We consider a collection of n patches that can be either occupied or empty at the discrete time in-
stants t = 0, 1, 2, ..., and make use of the notations introduced in Section 6 to analyze the metapop-
ulation dynamics. The state of patch i at time t is given by the random indicator variable ηi (t), which
takes on the value 1 if patch i is occupied and 0 if patch i is empty at time t . The state of the metapop-
ulation is described by the vector random process in discrete time η(t) = (η1(t), η2(t), ..., ηn(t)),
with t = 0, 1, 2.... The state space of the process η(t) is � = {ξ = (x1, ..., xn) : xi ∈ {0, 1}}. It
has 2n states. The state O = (0, ..., 0) corresponds to metapopulation extinction.

We assume that the local extinction processes and the colonization attempts from different local
populations are all independent. As a consequence of this independence the conditional probabilities
qi (ξ) for patch i to be empty at time t + 1, given that at time t the metapopulation was in state
ξ = (x1, ..., xn), are given by the product

qi (ξ) =
n∏

j=1

q
xj
j i , i = 1, 2, ..., n , (a)

where we use the convention 00 = 1.
Having described the local patch dynamics, we can deduce the law that governs the time evolution

of the process η(t) and gives the state of the metapopulation. This process is a homogeneous Markov
chain with state space � and transition probabilities

n∏
i=1

qi(ξ)1−yi [1 − qi (ξ)]yi , ξ, ζ ∈ � . (b)

The process η(t) is determined completely by the interaction matrix Q, which is assumed to satisfy
the following conditions (stated verbally in the text of Section 6):

� qj i > 0, j �= i ;
� 0 < qii < 1, i ∈ {1, ..., n};
� For each pair ( j, i) of patches, j, i ∈ {1, ..., n}, there exists an integer l and a chain of

indices j = i0, i1, ..., il = i such that
∏l

k=1(1 − qik−1 ik ) > 0.

The process can be described in terms of its quasi-stationary distribution, which is given by the left
eigenvector (normalized to a probability distribution) that corresponds to the dominant eigenvalue of
the transition matrix Q restricted to the transient class �\O. The dominant eigenvalue measures the
probability that a metapopulation sampled from the quasi-stationary distribution will not become
extinct in one time step.

conditions in the past, the time to extinction under a constant continuation of the current regime
will be larger (but usually not much) than the quasi-stationary one. Conversely, if a metapopulation
has just been started from a few individuals, the time to extinction will be less than the quasi-
stationary extinction time. (For the mathematically inclined reader, here “below” and “above”
should be interpreted as inequalities on the corresponding survival functions.)

Conditional on nonextinction, the state distribution will approach the quasi-stationary distribu-
tion. It therefore makes sense to view the dynamics of the metapopulation as a two-state Markov
process, the states being metapopulation extinction and the quasi-stationary distribution. If q de-
notes the probability that a metapopulation sampled from the quasi-stationary distribution will
become extinct in one time step, the expected extinction time is equal to 1/q. This is an exact
expression for the expected time to extinction, provided that the metapopulation is initially at the
quasi-stationary distribution. However, the exact calculation of q (which is obtained as the eigen-
value of a 2n − 1 by 2n − 1 matrix) becomes computationally prohibitive as the number of patches
n grows. For the continuous-time case, a good approximation can be found in Frank and Wissel
(2002). We refer to Etienne and Heesterbeek (2001) for examples of how this result can be applied
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to reach practical conclusions about, for instance, how changing the connectivity of patches, that
is changing the qj i values, affects the viability of the metapopulation.

New introductions

As a second consideration, we look at new introductions. In this case the probability of becoming
extinct in the next time step is, in general, larger than q, and only decreases to q in the long run.
The general rule-of-thumb is that in systems with more or less global coupling, q increases to 1
with increasing system size (see below for a further elaboration), while the time needed for the
stepwise extinction probability to converge to q increases much more slowly than 1/q, the mean
extinction time after reaching quasistationarity. This means that for larger system sizes we may
consider the probability distribution of the time to extinction as consisting of a discrete mass at
zero followed by an exponential tail. In those cases that have global coupling, it is in general
possible to calculate the initial mass from a branching process approximation. For example, if
each patch may contain at most one individual, then under the assumptions of the Levins model
(see Section 3) the initial mass equals approximately [µ/(ch)]� if µ < ch, and 1 (so that there is
no tail left) if µ > ch, where � is the number of individuals that start the metapopulation. More
generally, for the deterministic models considered in Sections 3 to 5, the initial mass can be written
as θ�, where θ equals 1 when R0 ≤ 1, and θ < 1 when R0 > 1. However, these results have the
caveat that it is assumed implicitly that females may always reproduce. Many real populations of
conservation interest contain two sexes. This means that, even though there are many individuals,
if they all happen to be of one sex a population may have no future. Whether such considerations
really matter greatly depends on the detailed reproductive biology of the species (see Chapters 2
and 3 in Ferrière et al. 2004 for a discussion of this issue in the context of nonspatial models).
Further research into this area should be both a mathematical and a biological priority.

Between stochastic and deterministic models

The main difference between population models with finite total numbers of individuals and those
in which these number are thought of as infinite is that in the former the population, in the long
run, becomes extinct whatever the value of the parameters. However, the time for this to happen
is generally very long when the number of “close-to-independent” entities involved is large. This
latter number is referred generally to as the system size. In metapopulation models, as considered
here, there are actually two system sizes, the number of patches n and the patch size ω (the latter
is expressed in units roughly equal to the amount of space needed to support a single individual).
We have to consider their interplay to determine what sort of limit is obtained and to establish
the scaling relations between the extinction time and system sizes, when either or both of them
become large.

By the argument of the above subsection, when system sizes become large, the mean extinc-
tion time of a population starting from a nonvanishing population differs from the mean quasi-
stationary extinction time only by a relatively small amount. It is these quasistationary mean
extinction times that we discuss below. For brevity, we refer to them simply as extinction times.

To establish a feel for the problem, we first consider how the transition to the deterministic
model is made for a single local population, without considering immigration from other patches
and catastrophes. Let N be the number of individuals in the patch and the rates at which these
individuals die, give birth, or emigrate as, respectively, b(N/ω), d(N/ω), and m(N/ω), where the
unit of the patch size ω and functions b, d, and m be such that b(1)− d(1)− m(1) = 0, that is, the
equilibrium density of a deterministic population model based on those functions equals 1. With
this scaling we can identify the local system size with ω. We obtain a deterministic limit model for
the temporal development of the local population density N/ω by letting ω become large. (The
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limit holds good over any finite time interval, but not over the full time axis, except for those cases
in which the deterministic model predicts certain extinction, since for all finite ω the population
becomes extinct if we wait long enough.) In addition, according to accepted wisdom, “in viable
systems the extinction time of an established local population is roughly exponential in the system
size”. More precisely, the extinction time, Tp, scales exponentially with ω, written as Tp ≈ eθω,
to be interpreted as 1

ω
ln Tp → θ for ω → ∞, in which θ is the so-called scaling constant. This

result has been shown to hold good in the simplest possible models (MacArthur 1972; see also the
figures in Goodman 1987b), is shored up by arguments from statistical physics [see, e.g., Gardiner
(1983); also, Schuss (1980), Grasman and HilleRisLambers (1997), Freidlin and Wentzell (1998),
and Grasman and Van Herwaarden (1999), who specifically consider metapopulation problems],
and is backed up by simulations for some other models. With catastrophes, for large ω the local
population size develops deterministically until the first catastrophe, while the extinction time, Tp,
is set by the catastrophe rate.

Next, assume that we have n similar patches equally coupled through migration, and that we let
the local system size ω become large. We can then make more than one biologically meaningful
assumption about the immigration rate.

One such assumption is that the migration parameters are constants, so that at larger patch
sizes the number of immigrants grows directly in proportion to ω. Translated into observable
quantities, this assumption implies that at least some patches should contain reasonable numbers
of individuals and that the average interarrival time of immigrants is small relative to the mean
lifetime of individuals. If the local population growth rates decrease with density, and there are no
catastrophes, we have a fully deterministic model in which all patches in the long run contain an
equal population density; this is positive if the quantity R0, calculated according to the analysis
in the previous section, is larger than 1. If there are catastrophes, the metapopulation may die out
even in the limit for large ω, but it may continue forever. The former definitely happens when
R0 ≤ 1, or the parameter domain that leads to extinction is always larger, with its size shrinking
with increasing n, than that given by the deterministic criterion R0 ≤ 1 (unpublished results by
ourselves).

Another possibility is to change the migration parameters such that the mean interarrival time
of immigrants is of the same order of magnitude as the mean lifetime of a local population, Tp.
This limit regime applies when the probability of surviving migration and reaching some other
patch is of the order of ω−1, or when emigration is relatively rare on a patch basis, or a combina-
tion of both these factors. At the same time, we assume that the catastrophes occur at a rate that is
slow compared to the speed at which quasistationarity would be reached by immigrationless local
populations. Moreover, we consider the metapopulation on the time scale set by Tp. (Despite the
somewhat artificial look of the mathematical procedure, the required parameter regime may well
be rather common in nature because parameters for community assemblage and selection setting
are in a commensurable range.) In this case, patches are either empty or in a quasi-stationary state
almost all of the time, and we have a finite Levins-type model, provided the local populations cut
off from immigration have persistent deterministic limits (compare Verboom et al. 1991; Drech-
sler and Wissel 1997). If we now let n become large, while keeping the migration rate into the
patches bounded, we recover the deterministic Levins model from Section 3, with µ = 1/Tp. The
time to metapopulation extinction, Tm, scales linearly with Tp and exponentially with n. In this
case we even have available a full asymptotic formula [by applying Stirling’s approximation to
Equation (6) in Frank and Wissel 2002], applicable for R0 = cTp = c/µ > 1,

Tm ≈ Tp

√
2πn−1/2e

[
(cTp)

−1−1+ln cTp
]
(n−1) . (7)

For R0 < 1, the average extinction time of a metapopulation starting from any positive fraction of
occupied patches increases logarithmically with n.
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By taking the Levins-type models as a gauging point, we can now write for persistent metapop-
ulation models

Tm = Tpψ(ω, n)n−1/2eγ n , (8)

with the function ψ thus defined as measuring the rescue effect. Of course, both γ and ψ depend
on all the other system parameters, as well as on how the migration and catastrophe rates are
supposed to scale with ω and n. However, we conjecture that for any relevant scaling, ω will
be nondecreasing, at least at larger system sizes, because the reliability of the migration stream
increases as system size increases.

To show the potential force of the rescue effect, we can compare a Levins model without catas-
trophes (so that Tp ≈ eθω) with a model in which migration increases so fast with ω or n that,
effectively, all patches can be considered together as one single population. Combining the rela-
tionships found above then gives ψ(ω, n) ≈ eκωn/ (eγ neγ n) ≈ eκωn for ω and n both large, that
is, the rescue effect overwhelms all other contributions to the scaling of Tp. However, the example
in which we keep n constant and let ω become large at a constant per capita migration rate makes
clear that the limit behavior of the rescue effect can be more complicated than in the example given
in this paragraph.

In the above discussion, we implicitly referred to the case where, in the deterministic limit
model, the metapopulation is persistent. The case in which the metapopulations are viable, but not
persistent, is less clear. However, we also expect an exponential scaling with n (by a rough appeal
to the arguments found in Schuss 1980; Gardiner 1983; Freidlin and Wentzell 1998; Grasman and
Van Herwaarden 1999). This with the proviso that we expect the scaling constant γ to be roughly
proportional to the distance of the equilibrium population state of the deterministic model from
the closest point in the state space of that model from where, in the deterministic model, the state
would move inexorably toward extinction (where nearness is measured in terms of the “ease of a
state transition”).

7 Concluding Comments

In this chapter the stress is on modeling migration and local dynamics at the individual level rather
than at that of local populations. One reason for carefully analyzing the limit relationships between
different types of metapopulation models is that this allows us to interpret each of these models
from an individual-level perspective. Only in this way can we give a concrete meaning to the
model parameters. Achieving such a concreteness is the first step on the arduous path that leads
from model results to conservation interventions.

In the chapter we strive to stay within the realm of what is manageable with present-day mathe-
matical methods, while going one step further in the interpretation process than our predecessors.
We are well aware that the models we discuss are considerably less concrete than individual- or
GIS-based simulation models that purportedly mimic the behavior of specific species. However,
even those of our colleagues who believe that we can render a fair fraction of such detailed models
right agree that we cannot model all the species we ultimately have to deal with. So we are in dire
need of good rules of thumb. It is here that we may hope that the simpler models of this chapter
and their future extensions will prove useful.

The second advantage of basing our models on individual-level considerations is the possibil-
ity that evolutionary questions, such as the evolution of migration rate, could be addressed (for
reviews see Clobert et al. 2001; Ferrière et al. 2000; Gyllenberg and Metz 2001; Metz and Gyllen-
berg 2001; Parvinen 2001b; see also Chapter 14 in Ferrière et al. 2004). This is simply not possible
with patch-occupancy models [see Hanski (1999) for a review], except, perhaps, in the restricted
sense of selection that occurs at the level of local populations (group selection). Further merging
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of ecological and evolutionary dynamics in the context of structured metapopulation models is an
exciting prospect for modeling, and one of considerable importance if we are to gain at least a
little grip on the potential long-term consequences of human-induced environmental change.
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