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Abstract

Adaptive dynamics in two dimensional phenotype space is investigated by computer sim-
ulation. The model assumes Lotka-Voltera type competition and a stochastic mutation
process. The carrying capacity has a single maximum in the origin of the strategy space
and the competition coefficient decreases with strategy difference. Evolutionary branch-
ing, an asexual analogue of adaptive speciation, is observed with suitable parameters. The
branching at the singular point, which is a fixed point of the directional evolution, may
occur into two or three, but no more directions. Further branchings may occur after the
initial separation. The probability of three-branching is studied as a function of several
parameters. We conclude that the two-way branching is the predominant mode of adaptive
speciation.



About the Authors

Andréas Vukics
Department of Nonlinear and Quantum Optics,
Institute for Solid State Physics and Optics,
Hungarian Academy of Sciences,
P.O. Box 49 H-1525 Budapest, Hungary
and
Department of Biological Physics,
Eo6tvos University, Pazmany Péter sétany 1A,
H-1117 Budapest, Hungary

Janos Asbéth
Department of Nonlinear and Quantum Optics,
Institute for Solid State Physics and Optics,
Hungarian Academy of Sciences,
P.O. Box 49 H-1525 Budapest, Hungary
and
Department of Biological Physics,
Eo6tvos University, Pazmany Péter sétany 1A,
H-1117 Budapest, Hungary

Géza Meszéna
Department of Biological Physics,
Eo6tvos University, Pazmany Péter sétany 1A,
H-1117 Budapest, Hungary
and
Adaptive Dynamics Network,
International Institute for Applied
Systems Analysis,
A-2361 Laxenburg, Austria

Acknowledgement

We thank Ulf Dieckmann, Eva Kisdi, Stefan Geritz, Hans Metz and Peter Jagers for
discussions. This work was financed from the OTKA grant T033097 and from the NWO-
OTKA grant 048.011.039.



Speciation in Multidimensional Evolutionary
Space

Andras Vukics
Jdanos Asboth
Géza Meszéna

1 Introduction: Environmental feedback and adaptive spe-
ciation

Adaptive speciation [1, 2, 3,4, 5, 6, 7, 8,9, 10, 11, 12, 13] is the most parsimonious concept
on the origin of a new species. It is a literal implementation of Darwin’s idea of descent
via a series of small adaptive modifications [14]. The tricky thing to understand is how
evolution uphill on the adaptive landscape can lead to a diversity of species, as opposed
to being stopped at a (local) maximum of the fitness.

An inherent feature of the Darwinian process provides the answer. Evolution modifies
the environment and, in turn, the fitness function. Existence of this feedback is not an
extra assumption to introduce for explaining the process of speciation. Instead, it is a
mathematical precondition of the very existence of more than a single species. Without
the feedback, parameter fine-tuning would be necessary to avoid the best species to out-
compete the other ones. The general theory of the combined dynamics of the evolving
population and of the changing environment was presented earlier for one dimensional (1D)
evolutionary state space [15, 16, 17], see also [18, 19, 20, 21]. It was shown that evolution
toward increasing fitness can converge easily into a minimum, instead of a maximum,
of the fitness function [22, 23, 24, 25]. Then, the emerging disruptive selection splits
the population into two subpopulations and drives them to evolve away from each other
[16, 17]. The theory of “adaptive speciation” hypothesises that the very same disruptive
selection results in the adaptive emergence of sexual isolation between the two types.

In some biological situations, emergence of new species clusters into a brief period and
form a so called ”adaptive radiation” [26, 27]. This phenomenon is very characteristic
and in the middle of interest of speciation studies. Like speciation in general, adaptive
radiation is also a matter of intense debates. In the context of adaptive speciation, the
following question arises: Is it possible that a single event of evolutionary branching leads
to more than two species?

The answer is a definite no for 1D evolutionary state space. Only two branches can
appear in a single branching event in this case. However, this space is multidimensional in
any real case. So, we have to ask: Does the multidimensionality affects the phenomenon
of evolutionary branching in an essential way?

As we will see, a meaningful deterministic approximation is valid in a proper limit away
from some fixed points, referred to as ”singular”: Mutations should be small and rare for
this limit. Around the singular point, however, the evolutionary process remains inher-
ently stochastic. Since the interfacing between the stochastic and deterministic regimes is
difficult to handle analytically, the branching process should be studied numerically. An



analytic argument says that, at most, K + 1 branches can appear in a single branching
event at a singular point, where K is the number of dimensions of the evolutionary state
space. This would allow high number of species to appear in a single event of speciation
when the state-space dimensionality is high. However, the analytic argument does not
ensure the existence of more-than-two-way branchings, and tells nothing about the rela-
tive rates of different types of branchings. These issues has remained to be checked by
numerical experimentation, which is the main goal of the present paper. We are especially
interested in the behaviour in the limit when the deterministic approximation is valid.

After summarising the available analytical insights in Sec. 2, we introduce a specific
model in Sec. 3, and present results of numerical simulations for 2D state space in Sec. 4.
We argue for the model-independent validity of our findings and discuss their biological
consequences in Sec. 5.

2 Theoretical background

2.1 Environmental feedback

To describe the evolution-environment feedback loop properly, one should derive the fit-
ness function and the dynamics of evolution from the underlying population dynamics.
This section summarises some of the theoretical results of [15, 16, 17, 28, 29] about this
connection.

We collect all the environmental variables involved in the feedback loop into the en-
vironmental interaction variable I [30, 31]. (For instance, concentrations of different re-
sources are possible elements of I.) The population dynamics of a specific species with
size n(t) at time ¢ can be written into the form

C;—Ttb:r(a:,I)-n (1)
where the growth rate, or fitness r is the difference between the rate of giving birth and
the rate of death of an individual. The variable x, which will be referred to as ”strategy”,
represents the heritable properties of the species. At a fixed value of the I, the function
x +— r (x, I) represents the fitness landscape.

However, the assumption of constant I would lead to the absurd consequence of un-
limited exponential growth. In the real world, growing population deteriorates the envi-
ronment until the equilibrium environment Iy, characterised by r (x, Ig) = 0 is reached.
(Only fixed-point attractors of the population dynamics are considered in this paper.) For
the L number of coexisting strategies W, 2@ . 2@ the L number of equilibrium
conditions r(:c(i), I) = 0 should be satisfied. Generally, solvability of this set of equations
implies the inequality L < dim I. This bound is referred to as the ”principle of competitive
exclusion” in ecology [32, 33, 34, 35, 36]. Note, however, that dim I is often infinite.

2.2 Assumptions about modelling evolution

To study evolution via small steps, one should specify the set of possible species, the
strategy space, as a continuum. Accordingly, we suppose that the strategy  is an K
dimensional continuous variable. Value of x is kept fixed during the life-time of an in-
dividual and inherited faithfully, except when mutation occurs. Only a finite number of
different strategies are present at any given time. The list of the strategies changes with
mutations and extinctions.



We assume time-scale separation between population dynamics and evolution. Ac-
cordingly, whenever possible, we suppose that a new mutant arrives in the equilibrium
environment set by the strategies that are already present. As the mutant population is
initially small, its appearance does not change the environment I immediately. Conse-
quently, the initial growth rate of the mutant of strategy vy is rmut = 7(y, I), where I
is the equilibrium environment set by the resident. That is, there is no environmental
feedback operating on the mutant population, so its initial growth would be exponential
in the deterministic approximation. However, because of the smallness of the emerging
population, stochastic aspects are non-negligible.

Stochastic replication of independent individuals is analogous to the multiplication
of neutrons in a nuclear chain reaction and many other types of self-replication. Such
processes are described by the branching-process theory [37]. (Note that these ”branching
processes” have nothing to do with phenomenon of ”evolutionary branching”, which is a
main issue of the present paper. The first one is concerned with the branching of lines of
individual descent while the second one is concerned with the branching of evolutionary
lines.) According to this theory, the process is sub-critical for 7y, < 0, when the births
cannot compensate for the deaths. The clone of mutants dies out with probability 1 in this
case. In the supercritical situation, when births prevail over deaths (rpyy,; > 0), there is a
positive chance for the long-term survival of the clone. (This probability is proportional
to rmut for small ¢ by linearisation.)

We suppose that the mutant clone has already achieved deterministic growth when it
starts to modify the environment I. In other words, individuals remain independent and
the branching-process theory remains applicable during the stochastic phase. Moreover,
we suppose that each evolutionary step is small, so the mutant strategy is almost identical
to the strategy of its ancestor. This assumption leads to the picture of continuous and
deterministic dynamics of the evolutionary process.

2.3 Directional evolution

The mutant strategy, which does not die out, invades the resident populations. Mutant in-
vasion may result in ousting of its ancestor. This is especially the case when the mutational
step-size is small and the ”selection gradient”, or ”local fitness gradient”
D(z) = 28D 2)
Oy y-x

is different form zero [29]. Consecutive steps of such evolutionary replacements constitute
a continuous evolution of the strategy.

The random process of substitutions can be approximated by a deterministic dynamics
of evolution, provided that the mutations are rare and mutation steps are small. Dieck-
mann & Law [28] established that the evolutionary dynamics of a single strategy x is

de 1
7 = ghn CD(x). (3)

The matrix C is the variance-covariance matrix of the difference vector between the mu-
tant’s and its ancestor’s strategy. If the mutant strategy is distributed uniformly in the
€ neighbourhood of strategy @, the covariance matrix becomes C = %521. (1 is the unit
matrix.) This leads to the simplification

o — ynD() 4

where v = pe? /4 contains the constant factors.



2.4 Singular strategies

A strategy  is referred to as a singular one, if D(&) = 0, that is, if directional evolution
ceases at . This fixed point is stable under the dynamics (4) if and only if the Jacobian
matrix

D 2r(y, I; e, I I
7 _ 0D(x) _ 0 r(y,2 i) N or(z, Iz) . oIy (5)
o |p_p 0y y—2 Ol ox 5

=T

is negative definite [28, 38]. A singular strategy with this kind of stability is referred to as
a convergence stable one.

Note that a convergent stable singular strategy is not necessarily a local maximum of
the fitness function. Negative definitiveness of the first term of Eq. (5) would correspond to
a fitness maximum. The second term represents the change of the fitness gradient via the
evolution-induced environmental change. It may result in a negative definite Jacobian even
if the first term is not negative definite; that is, it is possible that the directional evolution
converges to a singular strategy, which is not a local maximum of the fitness function
[22, 23, 24, 25]. Local maxima of the fitness are referred to as (locally) Evolutionary
Stable Strategy, or ESS [39], because a mutant strategy that is similar to the resident, is
unable to invade such a resident. (See also [40] for the intricacies of the ESS concept in
relation to evolutionary game theory.)

2.5 Branching evolution

What happens if the evolutionary process converges to a singular point, which is convergent
stable but not evolutionary stable? (In other words, what if evolution converges to a
minimum of the fitness function?) It is not protected against mutations but cannot evolve
away either. For one dimensional trait space it was shown that “evolutionary branching”
is a necessary outcome of this situation [16, 17]. Coexistence of two strategies, located on
the opposite sides of the singular point, is always possible in the vicinity of this type of
singularity. As soon as the coexistence is established, the selection forces acting on the
two strategies on the opposite sides of the fitness minimum push them away from each
other. Apart from the singular point the canonical equation (3) governs the evolution of
each branch again. (The interaction between the branches have to be taken into account
via the feedback variable I.) New singular points may be reached and further branchings
may occur [17].

No complete analytic theory of evolutionary branching is known for more than one
dimensions. The main purpose of the paper is to investigate this situation.

2.6 Local coexistence

There is a bound on the branches appearing in a single branching event [15]. At most
K + 1 number of strategies can coexist in a K dimensional strategy space in the vicinity
of the singular strategy .

To see this, we expand the fitness function into Taylor series around . As the slope
of the fitness is zero at &, one should consider the expansion up to second order to see the
non-vanishing terms:

K

r(@,I) = o) + Y B (we — &) + > v (I) (wk — &) (w1 — &) + hot. (6)
k=1 k=1



The first two terms of (6) are zero for I = I;,. For the coexistence of strategies W, 2@ . @)
all near to &, the equilibrium conditions

mﬂ%rpqun+§:muj@?—¢g+
k=1

3 ) (o = &) (2 =) +hot.=0 (7)
k=1

should hold for each ¢ = 1,...L. In this context, I denotes the equilibrium environment
set by the equilibrium of strategies W 2@ . z@) In the last term of Eq. (7), we
replaced I by I4; because the error caused by the replacement is in the third order. As
the adjustable variable I enters the equation through the K + 1 number of parameters
a(I),Br(I),k = 1,..., K, the equilibrium conditions cannot be satisfied generically for
L > K+1, as it was stated. This bound is related to the principle of competitive exclusion,
as the number of locally achievable dimensions of I at I is K + 1 [15]. (One can change
the environmental state from I; by changing either the strategy, or the population size,
representing together K + 1 local directions.)

It is clear from the bound that at most K + 1 branches can appear from one single
branching event.

3 Model

In line with the general framework presented in the preceeding section, we introduce a
specific model for the simulational study. Evolution of a K = 2 dimensional ”strategy”
parameter, denoted generally by the vector variables x, y, etc., is investigated. The
strategy is inherited either faithfully or with a small probability of mutation.

The rate of reproduction b(x) of strategy x is specified as

b(x) =1—-z' Az, (8)

where the matrix A is

A_(u—grllgf>, 9)

with the asymmetry parameter 0 < f < 1. Accordingly, the central strategy = 0
maximises the reproduction rate. Strategies with T Az > 1 are not viable.

Death is caused by competition with other individuals. Any individual of strategy x
contributes to the death rate of an individual of strategy y by a(x, y). This ”competition
function” is specified as

o(oy) e (-0, (10)
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where o is the ”competition width”. The death rate of an individual of strategy x is
determined by the total competition the individual experiences:

I(x) = ZL:n(j) -a (:c(j),:c) . (11)

J=1



In this model, the function I(x) plays the role of the environmental interaction variable I.
That is, dim I = oo and there is no trivial bound on the number of coexisting strategies.

Suppose, that the strategies a:(i), i1 =1,2,..., L are present with population sizes n(®),
If all the n()s are large enough and there are no mutations, the population dynamics can
be described by the Lotka-Voltera competition equations

(4) A A A
dZt = [b (:c(z)) I (az(z))} (), (12)
The growth rate
r(y,I) = b(y) — I(y) (13)
is considered to be the ”fitness” of the strategy y in the background set by the strategies
2 and population sizes n9), 7=12,...,L.

The mutation process has to be implemented by hand. We suppose that strategy a(?)
mutates with rate pb(x®)n(). (It corresponds to probability y of mutation in any birth
event — u is often called mutation rate) The new strategy (™) js chosen randomly with
uniform distribution in the two-dimensional e neighbourhood of «(?). While the size of the
mutant clone is small compared to the “resident” densities n(i), 1=1,2,..., L, the death
rate of a mutant individual is dominated by the contributions from individuals of the
resident strategies. Then, the growth rate of the mutant can be calculated from Eq. (13).
However, while the mutant population is small, the deterministic population dynamics
does not apply. According to the branching process theory, long-term survival probability
of the mutant clone, descending from a single individual, is

0 ,if »r<0
P_{r/b ,if r>0 (14)

[37, p. 109][41, 42]. The new mutant is considered to be established, and included into
the list of the strategies present, with the probability (14) calculated for r = r (:c(mut)).
The newly established strategy begins its life from a low initial population size p(mut)
Strategies decreasing below a given population size neyxt are removed from the list of
strategies.
Accordingly, the simulation of the model consists of repeating 3 consecutive steps:

e integrating the ODE of the population dynamics for a period T;
e removal of the strategies with low population size;
e possible addition of new mutant(s).

This combination of deterministic population dynamics with a stochastic mutation
process was introduced by Metz et al. [15] and Geritz et al. [17] and, since then, applied
for several models [43, 44, 45, 46, 47, 48|.

The mutation rate was chosen to be g = 2-1077. The update time was 7 = 100
time unit, small enough to keep the expected number of mutations during 7 below 1.
The density of the arising mutant and the extinction threshold were equal and small
enough that the arising mutant does not disturb the resident: p(mut) — p o = 1075, The
resolution of the strategy space was rather fine: 4 - 1075 unit.



4 Results

4.1 The pattern of phase transitions to evolutionary branching

Note first that if the strategy x alone is present, then the only singular strategy is @ = 0.
The equilibrium density (as determined by the condition r = 0) for this strategy when
alone, is n = 1. Then, for f = 0, the fitness function in this equilibrium is

r(y, I)=1-y*—exp (—%) (15)

At y = 0 it has a local maximum for ¢ > o, and a local minimum for ¢ < o, where
o.=1/ V2 = 0.707. This threshold is independent of the number of dimensions.

Figs. 1-4 demonstrate the behaviour of the model with competition widths ¢ =
1.0, 0.7, 0.5, 0.2, respectively, in 2D for the rotationally symmetric (f = 0) case. In
the bottom left part of each figure the trajectory in the strategy space is shown, while in
the top left and bottom right part of the figures the time development of each component
of the strategies is shown. (We will use the same representations in the rest of the paper.)
The simulation was initiated with one species of strategy of ()(t = 0) = (0.1,0.1), the
mutational step-size was € = 0.005.

In all cases, evolution of a single species converges to = 0. For o > o, this strategy
is an ESS, so evolution ceases here. On the other hand, ¢ < o, results in evolutionary
branching. This change of the behaviour of the singular point at ¢ = o, is analogous
to a phase transition with the competition width o as control parameter. The rate of
the branches’ expansion can be regarded as the order parameter of the phase transition.
Random establishment of the branching direction represents a spontaneous breaking of
the rotational symmetry of the model.

The global behaviour is in good agreement with the theoretical predictions. After the
first branching the evolution of the emerging species are directional again until they arrive
to the vicinity of their respective singular points. These new singularities are determined
by the condition that the evolutionary attraction towards to the maximum of carrying
capacity should compensate for the repulsion between the species due to competition. The
new singularities may or may not be new branching points depending on the value of the
control parameter o. So, further decrease of the control parameter results in consecutive
branching transitions. For extremely small ¢ values a whole series of branchings occurs
(see Fig. 4). However, even in the case of small o, when the propensity for branching is very
high, we have never found any branching into more than three directions, in accordance
with the analytic prediction.

Nevertheless, a remarkable departure from the analytic theory is also observable for
small competition widths (o = 0.2,0.5). The first branching may occur before reaching
the singular strategy & = 0. This is because the analytic treatment supposes the validity
of the linear approximation for the fitness function on the scale of mutational step-size
€. This assumption breaks down at the singular point, where the linear term diminishes.
For very small o, the quadratic term arising from the competition function (10) is large
enough to dominate the fitness function earlier than the singular strategy is approached.

4.2 The branching pattern

The parameter value ¢ = 0.5 was chosen for more detailed investigations of the branching
pattern. In this case the first branching goes already rather easily but the number of
consecutive branchings is still limited. Consequently, the system evolves deterministically
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Figure 1: Evolution with competition width o = 1.0. The system starts from (0.1,0.1)
and evolves into the singular point (0,0). There is no branching because ¢ > o.. The
carrying capacity is symmetric: f = 0; the mutational step-size is ¢ = 0.005. In the
bottom-left part of the Figure the strategy-space trajectory is shown, while in the top-
left and bottom-right parts the development of the strategy components xzg and z; are
depicted, respectively. Time is counted by million time units.
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is already a branching, but it goes rather slowly: it occurs at about 20 million TU.
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for a sufficiently long time after each branching event. In this Section, we concentrate on
the first branching at = 0. Accordingly, the simulations are initiated by a single species
with this strategy.

Some examples are shown in Fig. 5 with branchings into two directions. For the sake
of illustration in Fig. 6 we show examples where the branching at the centre occurs into
three directions, but during further evolution one of the branches dies out. These are not
regarded as three-branchings when studying statistics. In Fig. 7 “real” three-branchings
can be seen. In these figures the mutational step-size is € = 0.0025. Some other examples
with mutational step-size € = 0.005 for two-branchings are presented in Fig. 8, for three-
branchings in Fig. 9. We conclude that both the two- and the three-branchings are really
existing phenomena.

The possibility of consecutive branchings strongly depends on the outcome of the first
branching, whether it happened into two or three directions. After a two-branching event
in the centre, both branches separate into two by a new branching event on a circle of
diameter 0.7. Then, the four branches evolve into another branching point where all the
four branches separate into two, again. The eight-branches system evolves until it reaches
a roughly symmetric configuration when all the eight branches are situated on a circle
of diameter 0.875. This is the final steady stage of the evolutionary process (Fig. 10).
In contrast, the three branches emerging from a three-branching event branch only once
more. These branching points are situated on a circle of diameter 0.85. The six branches
emerging here evolve onto approximately the same circle as in the two-branching case, and
ceases to evolve at the symmetric configuration (Fig. 11).

In the upper-right part of Figs. 10, 11 we have depicted the time evolution of the
number of coexisting phenotypes L and the density of the whole population n = ZJL:1 nl9).
As we see, the density of the whole population increases after every branching. The number
of the coexisting phenotypes L becomes rather stochastic, but tends to increase near the
branching points. It decreases again when the system leaves a branching point. The
reason for this behaviour is the flattening fitness function around the singularities. At
these regions, the (stochastic) process of mutations dominates over selection caused by
the slope of the fitness landscape.

Finally, Fig. 12 with € = 0.01 and f = 0.2 demonstrates the consequences of strong
breaking of rotational symmetry. In this case the final stationary state consists of branches
situated on an ellipse. The asymmetry makes the three-branchings rather improbable. For
example, with the parameter set of these examples, we have found only 11 three-branchings
on 3000.

4.3 Statistics of the branching types

In this section we measure the probability of three-branchings at several parameter combi-
nations, but always with ¢ = 0.5. We are most interested to see whether this probability
goes to zero, or remains finite, in the limit ¢ — 0.

At the end of each simulation, a clustering algorithm was used to determine whether
a two- or a three-branching had occurred. The two strategies nearest to each other were
fused in each step of the algorithm. Doing so, the minimal distance between the phenotypes
increased step by step slowly while both phenotypes to be fused were in the same branch.
However, it had a big jump when, finally, strategies from two different branches were
tried to be fused. The algorithm was terminated when the minimal distance reached the
value 0.2. Then, the still different phenotypes were counted and the number was regarded
indicative of the number of branches. As we were interested in the number of branches
reaching the deterministic stage of diverging evolution, the clustering had to be performed

12
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Figure 5: Examples for two-branchings with ¢ = 0.5 in the symmetric situation (f = 0),
with € = 0.0025, which is a rather small value. The system starts from the centre.
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Figure 6: Examples with the same parameters as in Fig. 5, for the extinction of one of
the three branches before long after the branching in the centre. Development like these
is not considered as a three-branching when investigating statistics.
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Figure 8: Examples for two-branchings with the same parameters as in Fig. 5, but with
larger mutational step-size € = 0.005.
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Figure 13: Probability of three-branchings as a function of €. The carrying capacity is
rotationally symmetric (f = 0). The single point marked by star indicates the situation
where the starting point was z(9)(t = 0) = (0.1, 0.1), instead of the singular one.

far enough from the branching points. Accordingly, clustering was carried out when the
separation of the branches had reached the distance 0.48. (Obviously, this distance should
be larger than the critical minimal distance 0.2 of the clustering algorithm.)

In Fig. 13 we have depicted the dependence of the probability of three-branchings as
a function of the mutational step-size € for the rotationally symmetric (f = 0) case. Each
point in the figure represents 2000-5000 simulations to achieve the precision indicated by
the error bars. (See Tab. 1 for the time needed to reach the separation 0.48.)

In Fig. 13 we see that the smaller the mutational step-size is, the smaller the probability
of three branchings we have. For a three-branching, it is necessary that the three mutants
take a rather symmetric position around the centre to be able to live together. When
the mutational step-size is large, the mutants are more "mobile” in the strategy space:
there is more possibility to correct the eventual defects of the starting position. Numerical
studies become especially difficult for very small values of € for two reasons. First, because
simulation of evolution becomes slow and, second, because very small probabilities are to
be measured in this case. Still, extrapolation for £ — 0 seems to indicate vanishing ratio
of three-branchings.

The three-branching probability as a function of the asymmetry parameter f is pre-
sented in Fig. 14 for two different mutational step-sizes, € = 0.01 and € = 0.005. Increasing
asymmetry makes the three-branchings less probable. This is easily understood if we con-
sider that increasing the asymmetry signifies out a specific direction for branching.

Both Fig. 13 and Fig. 14 contain one single data point marked by a star, representing a
simulation in which the starting point was z(®)(t = 0) = (0.1,0.1), instead of the singular
one. Starting the population out of the singular point makes the tree-branchings less
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Table 1: Time that the branches need to reach the separation 0.48 as a function of the
step-size ¢

€ million TU

0.0015 40
0.002 20
0.0025 15
0.003 9
0.0035 7
0.004 5.5
0.005 3.5
0.0075

0.01 1
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probable since it also corresponds to a breaking of the rotational symmetry.

5 Conclusions

In line with the theoretical expectations [28], our simulations demonstrated that a series
of small and rare random mutation steps results in a deterministic process of continuous
evolution, governed by the slope of the fitness function, whenever this slope is non-zero.
On the other hand, the behaviour remains of stochastic nature in the vicinity of singular
strategies, where the fitness gradient vanishes. Here, the selection is weak, so the number
of concurrent strategies remains high even at low mutation rate. The region of essential
randomness can be shrunk arbitrarily by choosing the mutational step-size € small enough.
However, the deterministic evolution will drive the system into the stochastic region in any
case, provided that the singular point in question is convergence stable. If evolutionary
branching occurs at a non-ESS singular point, both the number and the directions of
the emerging evolutionary branches are essentially random as they are determined by the
interface between the stochastic and the deterministic phase. We observed branchings into
two and three directions in 2D strategy space in line with the theoretical bound on the
number of emerging branches.

The results of our simulations point to vanishing three-branching probability in the
limit ¢ — 0. Care is needed to compare this finding with the deterministic limit away
from the singularity, which is also related to € — 0. Decreasing € makes evolution slower,
so it rescales time. This rescaling goes as e ! in deterministic phase, when the fitness
difference is dominated by the linear term, and as €2 in the vicinity of the singularity
under the dominance of the quadratic term. Consequently, time scales of the directional
evolution and of the branching separate in the limit € — 0. We loose branching on the fast
scale and directional evolution becomes instantaneous on the slow one. (See [21] for the
connection between this time-scaling issue and the concept of punctuated equilibrium [49].)
Our simulations corresponded to an intermediate ¢, for which the directional evolution was
already deterministic enough, but the time-scale separation was not extreme and the three-
way branching phenomenon was still present. It is a question for further consideration,
what possible choice of € corresponds the best to the biological reality. Considering sexual
populations, in which recombination maintains a high level of genetic variance even in
the limit of small and rare mutations, may even decouple these two consequences of small
evolutionary steps.

Breaking of rotational symmetry of the model also decreases the probability of three-
branchings. The relative scales of the two directions were fixed when the mutation covari-
ance matrix C' was chosen to be rotationally symmetric. Without the freedom of further
rescaling, in reality we have little reason to expect rotationally symmetric A matrix cor-
responding to f = 0. Breaking the rotational symmetry of the competition function (10)
would have a similar consequence. This result, again, points to the probable predominance
of the two-way branchings.

Furthermore, we have found that the initial condition (*)(t = 0) # 0 results in a
smaller probability of three-way branching as well, than the initial condition a:(o)(t =
0) = 0 does. Naively, one could assume that the deterministic convergence to the singular
point diminishes the effect of the initial condition on the outcome of branching. According
to our data, this is certainly not the case. Once again, the intimate relation between
the deterministic and the stochastic phase of the process provides the explanation. The
convergence ceases as soon as the system enters the stochastic region, so the stochastic
phase is initiated by a rotationally asymmetric distribution. These two types of initial
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conditions represent different biological scenarios, both of them are realistic. The initial
strategy :c(o)(t = 0) # 0 corresponds to a speciation process in an essentially constant
environment. One species evolves to the branching singularity and splits there. On the
other hand, the initial condition w(o)(t = 0) = 0 is relevant when speciation is initiated by
an environmental change. Suppose, that a parameter change bifurcates a former ESS point
into a branching one. If a species has evolved earlier into this singularity then it starts
the process of branching from an already established rotationally symmetric distribution
after the bifurcation.

All these results together suggest that the three-way branching is possible, still, the
dominant mode of speciation is probably the two-way branching. This is certainly in line
with the usual picture about the evolutionary process. However, no clear empirical way
is available to decide whether each new species emerging during adaptive radiation comes
from a separate event of branching. While the number of trait dimensions is high in any
real evolutionary process, our results support the possibility that only one combination of
them is relevant in any specific event.

The Lotka-Voltera competition model we analysed, is the most common model of
coexistence of different species, as well as of different genotypes within the same species [36,
50, 51, 52, 53, 54] and one of the simplest example for evolutionary branching. However,
as far as relatively small mutation steps are considered, our results are independent of the
specific model we studied. Thisis clear from the fact that, for small e, the process of mutant
invasion is determined by the first non-vanishing term of the Taylor expansion of the fitness
function. Directional evolution is determined by the slope, while the stochastic phase in
the vicinity of the singularity is governed by the second order terms. This is exactly
the idea behind the classification of the singular strategies according to their second-order
behaviour, which was suggested and implemented in [16] for 1D strategy space. Note, that
the mutation rate p was not low enough to strictly obey the conditions of the analytic
theory. The next mutant arrived well before the previous one has equilibrated. However,
according to the simulation results, this does not affect the behaviour too much. In line
with Eigen’s concept of quasi-species [55, 56, 57], the directional part of the evolutionary
process can be described as a moving cloud of mutants.

The only essential assumption we rely on is the concept of adaptive speciation driven
by an ever-changing fitness landscape. For a complete theory of speciation, one has to
consider a sexual population and implement a mechanism for emergence of reproductive
isolation between the species [3, 5, 7, 10, 12]. Evolutionary studies often employ a fixed
fitness function. This approach is very useful in studying evolutionary optimality problems,
as well as mutation-selection balance [58, 59, 60, 61]. However, no meaningful biological
diversity can emerge in such model, as a consequence of adaptation, because there is no
generic reason for the different peaks of the adaptive landscape to have of equal height.

In contrast with adaptive speciation, the classical ”allopatric” theory of speciation
[62, 63] supposes that separation between species emerge as a genetic ”by product” [64]
of evolution of the different sub-populations at different locations. There is no explicit
need for changing fitness landscape in this picture. Implicitly, however, the assumption of
feedback is needed to understand why the new and the old species can live together, with-
out out-competing each other, when they finally meet. New empirical evidence support
that spatial separation is not a prerequisite for speciation [65, 66]. On the other hand,
the idea of adaptive speciation might be applicable for speciation modes involving spatial
segregation [8, 9, 44], so it has a chance of becoming the general underlying concept of
speciation.
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