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Abstract

The measure dynamic approach to modelling single�species coevolution with a one�dimensional
trait space is developed and compared to more traditional methods of adaptive dynam�
ics and the Maximum Principle� It is shown that among monomorphisms i�e� measures
supported on a single trait value�� the CSS Continuously Stable Strategy� characterize
those that are Lyapunov stable and attract all initial measures supported in an interval
containing this trait value� In the cases where adaptive dynamics predicts evolutionary
branching� convergence to a dimorphism is established�
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Measure Dynamics on a One�Dimensional

Continuous Trait Space� Theoretical Foundations

for Adaptive Dynamics

Ross Cressman

Josef Hofbauer

� Introduction

Interest in adaptive dynamics as a means to examine stability of coevolutionary systems
has grown exponentially over the past decade see Abrams ����� and the references
therein�� Cornerstones for this theory are the stability conditions e�g� continuously sta�
ble strategy� convergence stability� developed for the mean strategy dynamic of a single
species with a one�dimensional continuous trait space� We brie�y summarize this approach
in Section ��� for the special case when individual �tness is given by two�variable quadratic
functions de�ned on the trait space through pairwise interactions� As coevolution also in�
volves a density dynamic on the total population size� we include a background �tness that
is strategy independent and decreasing with respect to density� to limit population growth�
This has the e�ect that stability of the coevolutionary system is completely determined
by the strategy dynamic� Here� adaptive dynamics predicts stability of a monomorphic
equilibrium i�e� one where all individuals in the population are using the same strategy�
if� for all other monomorphisms that are small perturbations of this equilibrium� trait
substitution through nearby mutations is only successful when this substitution moves the
population closer to the equilibrium�

There is a general recognition among practitioners of adaptive dynamics e�g� Abrams
and Matsuda� ����� that the assumptions underlying this approach e�g� maintenance of
monomorphisms through trait substitution and the suppression of population size e�ects�
are questionable� especially as the theory progresses to analyzing non equilibrium behavior�
One alternative approach is to consider stability for only those coevolutionary systems
where the distribution of strategies has �nite support i�e� there are only �nitely many
di�erent individual strategies used by the population during the course of evolution��
probably close to the monomorphic equilibrium� This approach� which in some sense
ignores the possibility of continual though rare mutation� is closely related to the Maximum
Principle promoted by Vincent and co�workers Cohen et al�� ����� Vincent et al�� ������

as summarized in Section ���� We give reasons in Section � why we do not regard this as
an adequate replacement�

It is always easier to criticize existing theories than to develop an alternative� The
alternative we prefer is dynamic stability in the space of measures� an extension of the
concepts developed for strategy distributions to models that include density dependence�
Dynamics on strategy distributions and not just the mean� with continuous strategy

�The literature here calls this the ESS maximum Principle� As the term ESS has several possibly
di�erent connotations� we prefer to either drop this quali�cation altogether or to replace it with the more
neutral game�theoretic term of strict NE �Nash equilibrium��

�



spaces have also been considered Bomze� ����� ����� Oechssler and Riedel� ����� �����
where quadratic interaction terms are quite commonly used� In contrast to adaptive
dynamics where monomorphic populations are invaded by rare mutants� this literature
considers the evolution of distributions close to the monomorphic equilibrium distribution�

For reasons discussed in Section 
� we consider this dynamic with the addition of
background �tness� to better model the coevolutionary process� In Section �� we generate
convergence and stability conditions for this measure dynamic in a general setting� These
results give exact conditions in Section � with our assumption of quadratic pairwise inter�
actions and background �tness which are then compared to those of adaptive dynamics
and the Maximum Principle� Section � extends these methods to other �tness functions
on a one�dimensional trait space� Extensions to multi�dimensional trait space and to gen�
eral �tness functions are discussed in the �nal section� emphasizing the added analytic
problems that arise in these circumstances�

� The Quadratic Pairwise Interaction Model

Suppose individuals in our single species use strategies that are parameterized by a single
real variable x belonging to a closed and bounded interval S � ��� ��� For �tness associated
with quadratic pairwise interactions� we take the payo� of an individual using strategy x
against one using strategy y as

�x� y� � ax� 	 bxy 	 cy� 	 dx	 ey 	 f

where x� y � ��� ���� Fitness of an individual using x is then the expected payo� this
individual obtains in a random pairwise interaction with another individual in the pop�
ulation�� To avoid some mathematical complications� we want �tness to be positive for
all strategy pairs when the population size N is zero i�e� no Allee e�ect� and also to be
negative when N is su�ciently large� The simplest way to accomplish this mathemati�
cally is to add an appropriate linear density term to the individual payo� function that is
independent of the strategy pair i�e� a �background� �tness term�� That is� we take

�x� y�N� � ax� 	 bxy 	 cy� 	 dx	 ey 	 fN� ��

where fN� is a linearly decreasing function of N so f�� is chosen to make �x� y� ��� �
for all x� y � ��� ��� In the remainder of this section� we brie�y describe the approaches of
adaptive dynamics Section ���� and the Maximum Principle Section ���� as they apply
to the stability analysis of momomorphic populations�

��� Adaptive Dynamics

The adaptive dynamics approach Hofbauer and Sigmund� ����� to stability of a monomor�
phism is based on a concept� introduced by Eshel and coworkers e�g� Eshel� ���
� Eshel
et al�� ����� for models without density dependence� that has come to be known as con�
vergence stable Christiansen� ����� Taylor� ������ A monomorphism x� is convergence
stable if every y su�ciently close but not equal� to x� has a neighborhood Uy� such
that the �tness of any x � Uy� when playing against y should be greater than that of y
against y if and only if x is closer to x� than y�

�Unless otherwise stated� our variables x� y� x� etc are all assumed to belong to a closed and bounded
interval ������

�Population size is assumed su	ciently large that �nite population e�ects� such as those arising from
the fact an individual does not interact with himself� can be ignored�

�



With density dependent adaptive dynamics Marrow et al�� ����� Dieckmann and Law�
������ these �tnesses are calculated when population size is at its equilibrium value for
the monomorphism x� We �rst �nd the equilibrium density Nx�� for x�� That is� we
solve �x�� x�� Nx��� � � for Nx�� to obtain

N x�� � f��
�
�ax�� 	 bx�� 	 cx�� 	 dx� 	 ex��

�
�

We assume x� � �� �� i�e� in the interior of the trait space S�� So x� is convergence
stable if and only if there exists an � � � such that for all � � jy� x�j � � there is a � � �
which is usually taken less than � and dependent on y� such that

�x� y�N y�� � �y� y�N y�� � � ��

if and only if � � jx� x�j � jy � x�j�

The intuition here is that mutations from y will only be successful if they are closer
to the monomorphism� thereby driving the population to x�� From ��� we consider the
di�erence

�x� y�Ny��� �y� y�Ny��

� ax� 	 bxy 	 cy� 	 dx	 ey 	 fNy���
�
ay� 	 by� 	 cy� 	 dy 	 ey 	 fNy��

�
� ax� � y�� 	 bx� y�y 	 d x� y�

� x� y��a x	 y� 	 by 	 d��

If �ax� 	 bx� 	 d � �� then �x� y�N y�� � �y� y�N y�� � � if x� � x � y and y is
su�ciently close to x� so that a x	 y�	by	d � �� That is� x� is not convergence stable�
By a similar argument with �ax�	 bx�	 d � �� we have that a necessary condition for x�

to be convergence stable is

�ax� 	 bx� 	 d � ��

That is� as a function of x� Nx� x�� Nx��� has a critical point when x � x��
Furthermore� if �a	 b � �� then d � � and so

�x� y�Ny��� �y� y�Ny�� � x� y� �ax	 y�� �ay� � a x� y�� �

Thus �a 	 b �� � if x� is convergence stable� This implies the dominating term in
�x� y�N y��� �y� y�N y�� is �a	 b� x� y� y � x�� and so x� is convergence stable if
and only if

�ax� 	 bx� 	 d � �

�a	 b � ��

These conditions for convergence stability can be rewritten in their more traditional
form e�g� Marrow et al�� ����� as

	

	x
�x� x�� Nx���jx�x�� �

	�

	x�
�x� y�Ny��jx�y�x�	

	�

	x	y
�x� y�Ny��jx�y�x�� ��

If there are non quadratic terms in �x� y�� then x� may be convergence stable even if the
last inequality is not strict in which case higher order terms need to be considered��






Adaptive dynamics is concerned with the evolution of the mean strategy of the pop�
ulation� If the ecological time scale i�e� the time scale for changes in population size� is
much faster than the evolutionary time scale on which the mean strategy evolves� adap�
tive dynamics eliminates the ecological e�ect by assuming the coevolutionary system tracks
equilibrium population size see also the discussion at the beginning of this section�� The
canonical equation for the mean strategy evolution near a monomorphic x� is then

dy

dt
� ky�

	

	x
�x� y�Ny��jx�y 
�

where ky� is a positive function that is related to the evolutionary time scale and to
equilibrium size� For our quadratic payo� model� we have dy

dt
� ky� �ay 	 by 	 d� �

ky��a	 b�y � x��� We see y is asymptotically stable for the canonical equation if and
only if y � x� where x� is convergence stable�

��� The Maximum Principle

To simplify notation somewhat� we can shift the monomorphism x� � �d
�a�b to � and so

x� � � � �� ��� by replacing x and y with x� d
�a�b and y � d

�a�b respectively� This has

the e�ect of eliminating the dx term in �� so we now have�

�x� y�N� � ax� 	 bxy 	 cy� 	 ey 	 fN��

Vincent and coworkers see Cohen et al�� ���� and the references therein� take a dif�
ferent approach to model dynamic stability in coevolutionary systems� Following Vincent
et al� ������ the strategy x� � � for them� a coalition of one� is evolutionarily stable for
the equilibrium size Nx�� if� for all choices of �nitely many mutant strategies fx�� ���� xrg�
the state Nx��� �� ���� �� is asymptotically stable for the population dynamics

�ni � niFin�� ���� nr� ��

where ni is the size of that part of the population where individuals use strategy xi here
x� is identi�ed with x�� and Fin�� ���� nr� is the expected �tness of strategy xi when the
population state is n�� ���� nr��

When applied to our model with quadratic payo� functions and random pairwise inter�
actions that occur once per unit time for each individual� these �tnesses behave additively
to yield

Fin�� ���� nr� �
mX
j��

nj
�xi� xj� N�

N

where N �
P

nj �
To check stability� the r�dimensional system is linearized at Nx��� �� ���� ��� This has

the form of an upper triangular r� r matrix with diagonal entries

Nx��
	F�

	n�
� F�� ���� Fr

where all these functions and partial derivatives are evaluated at Nx��� �� ���� ��� For

i � �� Fi � �xi� x
�� Nx��� � ax�i and �F�

�n�
� ��x��x��N�

�N
� f �Nx��� � �� Thus x� � � is

evolutionarily stable if a � � and unstable if a � ��

�This change of variables does shift e and f�N� by constants but these have no e�ect on the mathematical
anlysis�

�



Although the case a � � is quite important since it forms the basis of models where
�tness is linear in the individual�s choice of strategy i�e� when �x� y�N� is linear in x��
in our context we disregard this possibility as degenerate and so conclude that x� � � is
evolutionarily stable	 according to Vincent and coworkers if and only if

a � ��

The Maximum Principle is then equivalent to asserting that their ��tness generating
function�� �x� x�� Nx���� has a strict maximum at x � x� � � as a function of x�

This condition seems to have no immediate connection to that of convergence stability�
However� in the adaptive dynamics approach� it is often assumed Marrow et al�� �����
no mutant strategies x can invade x� i�e� none have higher �tness than x� when the
population is monomorphic at x��� This is equivalent assuming a �� �� to a � �� In fact�
the condition a � � was already assumed by Eshel ���
� when he combined convergence
stability with it to de�ne a continuously stable strategy CSS� x� to be one that satis�es
the two conditions� a � �� �a	 b � ��


On the other hand� it should be noted that adaptive dynamics is also quite inter�
ested in the convergence stable situation with a � � since they view this as an instance
of sympatric speciation or evolutionary branching Doebeli and Dieckmann� ������ Fur�
thermore� Vincent et al� ���
� see also Cohen et al�� ����� have developed a mean
strategy dynamic through their population dynamic model above that leads back to the
canonical equation� Nevertheless� it is clear that there are discrepancies between these
two approaches to modeling monomorphic stability in coevolutionary systems�

� Measure Dynamic

The coevolutionary dynamic we consider is a generalization of the population dynamic ��
to the space of distributions of the population over the continuous trait space S � ��� ���
Speci�cally� let 
 be a �nite measure de�ned on the ��algebra B of Borel subsets of S�
When the population is in state 
� the measure 
B� for any B � B is interpreted as the
number of individuals using strategies in B� Then 
S� is the total population size which
we assume to be positive� The �tness of an individual using strategy x � S this is also
denoted as the Dirac delta measure �x� is then its expected payo� plus the background
�tness�� namely�

�x� 
� �
�


S�

Z
S

�x� y� 
S��
dy� ��

For our quadratic payo� functions� we obtain

�x� 
� �
�


S�

Z
S

ax� 	 bxy 	 cy� 	 ey�
dy� 	 f
S�� ��

The measure dynamic becomes

�As mentioned in the Introduction� we prefer to designate this condition as stating x� is a strict NE�
�This again requires quadratic �tness functions or else higher order terms may need to be examined in

critical cases�

�



d


dt
B� �

Z
B

�x� 
�
dx� ��

The �rst question that arises is whether there are solutions to this dynamic� There are
if 
 has �nite support� at time � i�e� if 
 �

Pr
i�� ni�xi�� Then 
S� �

P
nj � N and

�xi� 
� �
�
N

P
nj�xi� xj� N�� The dynamics �� is then the same as �� in Section ����

But we are more interested in the case where 
 does not have �nite or discrete�
support� perhaps given through a continuous density function� To show there are solutions
to �� in the general case� de�ne the measure P as

P B� � 
B��
S��

This is a probability measure i�e� P S� � �� and we can rewrite individual �tness of
strategy x � S as

�x� P� 
S�� �

Z
S

ax� 	 bxy 	 cy� 	 ey�P dy� 	 f
S��

and population mean �tness as

�P� P� 
S�� �

Z
S

�x� P� 
S��P dx�	 f
S��� ��

A straightforward calculation using the quotient rule from calculus implies the measure
dynamic for the probability space is

dP

dt
B� �

Z
B

�x� P� 
S��� �P� P� 
S���P dx�� ��

Since �x� P� 
S����P� P� 
S�� does not depend on 
S�� we can ignore the background
�tness f
S�� in �� and take the �tness function to have the form �x� y� 
S�� � �x� y��

Dynamics of the form �� with �x� y� � S � S � R continuous have been shown e�g�
Bomze� ����� Oechssler and Riedel� ����� to have solutions Pt for all t � � for any given
initial condition where the derivative on the left�hand side is taken with respect to the
variational norm�

Furthermore� evolution of the total population size satis�es
d�
dt
S� � 

R
S

�x� Pt� 
S��Ptdx��
S�� This is a one�dimensional non�autonomous dy�

namic with continuous vector �eld and so has a unique solution for every initial condition�
Also� since �x� Pt� �� � � and �x� Pt� 
S�� � � for all Pt if 
S� is su�ciently large�
the solution is bounded� Moreover� if Pt evolves to P

�� then 
t converges to N
�P � where

N� is the unique positive population size for which
R
S

�x� P �� N��P �dx� � �� That is�

for convergence and stability of the measure dynamic ��� we can restrict attention to
analyzing these same properties for �� instead�

�The support supp � of a measure � is the closed set of those x for which every open neighbourhood of
x has positive measure�

�



� The Dynamic on the Space of Probability Measures

Our primary aim in the next section is the complete characterization of the convergence
and stability properties of the probability dynamic �� for all quadratic payo� functions
and S � ��� ��� However� many of our results that lead to this characterization in Section
� are true for more general classes of payo� functions and other trait spaces S� These
general results are collected in the present section� They rely on two Lyapunov functions�
the relative or cross� entropy and the mean payo� that are developed in Sections ��� and
��� respectively�

For the sake of concreteness� we assume S is a compact metric space and �x� y� is a
continuous payo� function on S�S� The measure dynamic is then the replicator equation

dP

dt
B� �

Z
B

�x� P �� �P� P ��P dx� ���

on the set of probability measures �S� on the Borel ��algebra� This again has a unique
solution Pt for all initial P� � �S��

An important issue is the topology to be used on �S�� We feel the weak topology
captures best the essence of convergence in coevolutionary systems� This topology will
mostly be applied to neighborhoods of monomorphic and dimorphic P �� For a probability
measure P � with �nite support fx�� � � � � xmg� we can take ��neighbourhoods in the weak
topology to be of the form

fQ � �S� � jQB�xi��� P �xi�j � � �i � �� � � � � mg

where B�x� is the open ball of radius � centered at x� In particular� two monomorphisms
�x� and �x� are within � of each other if and only if the Euclidean distance between these
points is less than �� In the following all topological notions are taken for this weak
topology� unless otherwise stated�

��� Local Superiority

When S � fx�� ���� xmg is �nite� the space of probability measures �S� is the set fq �
q�� ���� qm�j

Pm
j�� qj � �g of probability vectors where qi is the proportion of the population

using the ith strategy� The probability measure dynamic is then the standard replicator
game dynamic Hofbauer and Sigmund� ����� with m �m payo� matrix whose entries
are �xi� xj�� A standard way to prove the local asymptotic stability of a strategy p� is
by showing that it is a �matrix�ESS��� i�e�� that

�p�� q� � �q� q� ���

for all q close to p�� Here closeness is meant either on each ray connecting p� with another
strategy p� or simply in a Euclidean neighborhood� Whereas these various versions of
closeness are all equivalent in �nite games� there are many di�erent versions for games
with an in�nite trait space S see also the Remark in Section ����� The weaker the
topology or more general nearness concept� on �S�� the stronger the corresponding
version of �ESS�� Although it is our contention that the generalization of ��� to in�nite

�As mentioned earlier� the term ESS is overused in the literature and so may have several meanings
for some readers� On the other hand� for games with a �nite trait space� there is one universally accepted
meaning originating with Maynard Smith �
��� as an evolutionarily stable strategy of the m�m payo�
matrix A �hence a matrix�ESS��

�



trait spaces with respect to the weak topology deserves the ESS designation� we have used
the phrase �locally superior in the weak topology� instead for this concept in the following
de�nition to avoid confusion� Also� the notion of local superiority Weibull� ����� is now
well�established for the case of a �nite trait space S as an alternative phrase to denote a
matrix�ESS�

De
nition � P � � �S� is a locally superior strategy �in the weak topology� if� for all
Q �� P � su�ciently close to P ��

�P �� Q� � �Q�Q� ���

We say P � is globally superior if this inequality is true for all Q �� P ��

Our �rst main result given in the following theorem uses the concept of cross entropy���

as developed by Bomze ����� for probability measure dynamics� If P is absolutely con�
tinuous with respect to Q� and whose Radon�Nikodym derivative  � dP

dQ
is bounded i�e��

there is a C � � such that P A� � CQA� for all Borel sets A � S� then the cross entropy

LQ� �� KQ�P �

Z
S

log
dP

dQ
P dx� �

Z
S

 logQdx�

is de�ned� nonnegative and �nite� Lemma � in Bomze ����� shows that LQt� is de�ned
along the orbit of Q� and its time derivative satis�es

d

dt
LQt� � ��P�Qt� 	 �Qt� Qt� �
�

for all t � �� In particular� the cross entropy is decreasing if P is locally superior and Qt

is su�ciently close to P � a key fact in the proof of the following theorem�

Theorem � If P � is a locally superior strategy� which is Lyapunov stable� then for any
initial Q su�ciently close to P � with suppQ 	 suppP �� Qt � P � as t� 	
� Moreover�
if P � is globally superior and Lyapunov stable then for any initial Q � �S� with suppQ 	

supp P �� Qt � P � as t� 	
�

Proof� Let U� be a compact neighborhood of P � such that �P �� P � � �P� P � � �
holds for all P � U� n fP

�g� Since P � is Lyapunov stable there is a neighborhood U� of
P � such that for all Q � U� and t � � we have Qt � U��

Suppose now that P � is not an ��limit point of such a Q� Then there is an open
neighborhood U� of P � with Qt �� U� for all t � �� By compactness �P �� P �� �P� P � �
�c � � for some c � � and all P � U� nU�� By continuity� for all �P close enough to P � in
the weak topology� we have

� �P� P �� �P� P � � c � � �P � U� nU�� ���

Since suppP �� � suppQ�� there is such a �P which is absolutely continuous with respect

to Q and whose Radon�Nikodym derivative d �P
dQ

is bounded��� By �
� and ���� the cross

�In Oechssler and Riedel ����� locally superior with respect to the weak topology is called �evolu�
tionarily robust��

�	In the �nite case this cross entropy corresponds to the function L�q� �
P

i
p�i log

p�
i

qi
which like

Q
i
q
p�
i

i

is the well�known Lyapunov function near a matrix�ESS p��
��Such a �P exists since the weak� closure of the set of probability measures that are absolutely continuous

with respect to Q and have bounded Radon�Nikodym derivative is the set of all probability measures whose
support is contained in suppQ� For example� for s � suppQ� and Un the �

n
�neighborhood of s� the measures

with density �
Q
Un�

�Un converge to �s�

�



entropy LQ� �� K
Q� �P is de�ned and satis�es

d

dt
LQt� � �c � �

along the solution Qt for t � �� Hence LQt�� �
� a contradiction to LQ� � ��
This shows that P � is an ��limit point of Q� Since P � is Lyapunov stable� it is the

unique ��limit point of Q and hence Qt � P �� Finally� if P � is globally superior then
take U� � U� � �S�� This completes the proof�

This result generalizes Theorem 
 of Oechssler and Riedel ����� who proved it for
monomorphisms P � � �x� and initial Q with Qfx�g� � � in place of our weaker assump�
tion x� � suppQ� It is an open problem whether the additional assumption of Lyapunov
stability is really needed� When the trait space is �nite� Lyapunov stability follows from
local superiority�

It is essential suppQ 	 suppP � for the conclusions given in Theorem � to be valid�
This is due to the fact that the measure dynamic ��� shares the same property as �� in
that its support is invariant for all t � ���� However� local asymptotic stability of x� in
the dynamic �� does not imply the corresponding discrete measure converges weakly to
�x� since this would require �� to be globally asymptotically stable for all �nite choices
of strategies that are su�ciently close to x��

Remark� The following observations are useful to identify locally�globally superior
strategies� First� every locally superior strategy P � is a Nash equilibrium NE� i�e�
�P �� P �� � �Q�P �� for all Q � �S��� Indeed� given Q � �S�� for all � su�ciently
close to zero

� � �P �� P � 	 �Q� P ���� �P � 	 �Q� P ��� P � 	 �Q� P ���

� ��P � �Q�P � 	 �Q� P ���

Thus� for �� �� we get � � �P � �Q�P ���
Second� if the game is negative de�nite i�e� �P � Q�P � Q� � � for all Q �� P �

then there exists a globally superior strategy� To see this� let P � be any NE� Then� for all
Q �� P �

�P �� Q�� �Q�Q� � �P � �Q�P �� 	 �P � � Q�Q� P ��

� �P � �Q�Q� P �� � ��

Conversely� if P � is locally superior on each ray connecting P � with another strategy Q�
with full support then the game is negative de�nite���

��� Potential Games

Consider now a symmetric payo� function � � S � S� i�e� �x� y� � �y� x�� that is
assumed to be continuous� Note that� for quadratic �tness functions and S � ��� ��� the
dynamic �� is unchanged if we take the symmetric version �x� y� � ax� 	 bxy 	 ay�

as our payo� function� By common game�theoretic usage� games with symmetric payo�
matrices are known as �potential� games�

��In fact� Q	 and Qt are mutually absolutely continuous measures� as shown by Bomze �
��
��
��If P � is globally superior but does not have full support then the game is not necessarily negative

de�nite� as already games with two strategies show� A game is negative de�nite if and only if the mean
payo� function P �� ��P�P � is strictly concave on �� Our quadratic games are negative semi�de�nite if
and only if b � ��

�



By the symmetry of �� the expected payo� satis�es

d

dt
�P� P � � �

Z
S

Z
S

�x� y���x�P �� �P� P ��P dx�P dy�

� �

Z
S

�x� P �� �P� P ���P dx� � �� ���

By the continuity of �x� P � in x� there is equality if and only if �x� P � � �P� P � for
all x in the support of P if and only if P is a rest point of ������ Thus �P� P � is a
strict Lyapunov function on �S� in that it is strictly increasing under ��� unless at
equilibrium�

Since �S� is compact in the weak topology and �P� P � is a continuous function� P �

will be Lyapunov stable if it is an isolated local maximizer of �P� P � with respect to the
weak topology� For �nite games� a strategy P � is a local maximizer of �P� P � if and
only if it is locally superior� see e�g� Hofbauer and Sigmund ������ In general only the
following direction is true� as shown by the counterexample given in Remark of Section
����

Lemma � If P � is locally superior then it is an isolated local maximizer of the mean
�tness function �P� P ��

Proof� Since P � is a Nash equilibrium� �P �� P �� � �Q�P �� � �P �� Q� � �Q�Q�
for all Q su�ciently close to P ��

Combining the above with Theorem � we get

Theorem � If P � is a locally superior strategy �with respect to the weak topology� in a
potential game� then P � is Lyapunov stable and for any initial Q su�ciently close to P �

with suppQ 	 supp P �� Qt � P �� If P � is globally superior with suppQ 	 supp P �� then
Qt � P ��

This theorem was proved by Bomze ����� in the special case where �x� y� depends
only on x and by Oechssler and Riedel ����� when �x� y� is symmetric and P � is a
monomorphism�

� Dynamic Stability for Quadratic Payo� Functions

Let us apply the general theory above to our quadratic payo� function �x� y� � ax� 	
bxy 	 ay� where the interesting monomorphism is x� � � and we assume a �� �� For
this� the following formulas for �P�Q� etc� in terms of the mean EP � and the variance
V arP � of a probability measure P are useful� It is even convenient to consider higher
order moments� let Pk �

R
xkP dx� be the kth moment of P � Then P� � EP � and

P� � V arP � 	 P �
� � We get �x� P � � ax� 	 bxP� 	 aP��

�P�Q� � aP� 	 bP�Q� 	 aQ� �

� aV arP � 	EP �� 	 V arQ� 	 EQ��� 	 bEP �EQ��� ���

�P� P � � �aV arP � 	 �a	 b�EP ��� ���

�x� P �� �P� P � � ax� � P�� 	 bxP� � P �
� �� ���

�P �Q�P �Q� � bEP ��EQ���� ���

��This is the extension to continuous strategy spaces of one part of the Fundamental Theorem of Natural
Selection that states mean �tness increases unless at equilibrium�

��



Our classi�cation of the stability of �� in Sections ��� and ��� is based �rst on whether
a is negative or positive and then on subclasses depending on the value of b� This classi�
�cation scheme is similar to that given by Geritz et al� ����� and Diekmann ����� for
the adaptive dynamics approach�

One reason for using this classi�cation scheme is that the subspace of probability
measures that are symmetric about � is invariant for our quadratic payo� functions� and
on this subspace� the variance is increasing if a � � and decreasing if a � �� To see this�
we derive from ��� and

�Pk �

Z
xkd �P �

Z
xk ��x� P �� �P� P ��P dx�

the di�erential equations for the moments

�P� � aP� 	 b� a�P�P� � bP �
� ���

�P� � aP� � aP �
� 	 bP�P� � bP �

�P� ���

�P� � aP	 � aP�P� 	 bP�P� � bP �
�P� ���

� � �

Obviously� if the initial P is symmetric around �� then so is Pt� hence the odd moments
vanish and the variance satis�es �P� � aP�� P �

� �� Since P� � P �
� with equality for point

measures�� variance increases if a � � and decreases if a � �� In particular� this shows
instability of �� for a � ��

��� Case �� a � �

This is the case where x� � � is a strict NE� i�e� ��� ��� �x� �� for all x �� ��

����� Case �a� a	 b � ��

From ���� we see that �P� P � � � with equality if and only if P � P � � ��� Thus P �

is the unique global maximizer of the mean �tness function and there are no other local
maximizers�� Hence P � � �� is Lyapunov stable by section ���� Furthermore� from ����
if Q �� P �� then

���� Q�� �Q�Q� � �aV arQ�� a	 b�EQ�� � ��

Thus P � � �� is globally superior and by Theorem � it attracts all initial Q� that have
� � suppQ��

����� Case �b� �a	 b � � � a	 b�

We still have P � � �� as the unique global maximizer of mean �tness and so Lyapunov
stable but it is no longer locally superior� However� the following theorem that uses an
iterated domination argument between pure strategies shows P � still attracts all initial
Q� with full support�

Theorem � Suppose a � � and a 	 �b � � � a 	 b� If the support of Q� is an interval
that contains x� � �� then Qt converges to �� �in the weak topology��

��



Proof� Without loss of generality� assume suppQ 	 ��� ��� Let x� � � b�
�a � Then

� � x� � �� Take A � �x� 	 
�� �� and B � �x� 	 �� x� 	 ��� where x� 	 
� � � and � is
positive�

Then� another application of the quotient rule yields

d

dt

�
QB�

QA�

�
�

�

QA��

Z
S

�
�Z
A

Z
B

�x� z�� �y� z��Qdx�Qdy�

�
�Qdz�� �
�

For x � B� y � A� z � S� we have

�x� z�� �y� z� � ax� 	 bxz � ay� � byz � x� y��ax	 y� 	 bz� � ��a�� � �� ���

Thus� d
dt
Q�B�
Q�A�

� � �Q�B�
Q�A�

�a�� � �� Thus d
dt
Q�B�
Q�A�

� grows to in�nity with exponential order�

In particular� limQtA� is � as t approaches in�nity� Now choose � so that x� 	 
� �
x� 	 ���� i�e� � � � � x������ Then limQt�x� 	 ����� �� is �� Now suppose we have
shown limQt��� �� � � for some � � � � �� We will iterate the above argument to show
limQt�

x	��
� �� �� � �� Take A � ������a 	 
�� �� and B � ������a	 �������a 	 ���

where �����a	 
 � �� Then

d

dt

�
QB�

QA�

�
�

�

QA��

Z
�����

�

Z
A

Z
B

�x� z�� �y� z��Qdx�Qdy��Qdz�

	
�

QA��

Z
S������

�

Z
A

Z
B

�x� z�� �y� z��Qdx�Qdy��Qdz�

� �Q��� ���K	QS � ��� ����a���
QB�

QA�

� �a��
QB�

QA�

for t su�ciently large� Here K � maxx�y�S j�x� y�j� In particular� limQtA� � �� Thus�
by iteration� we can take � � �x� 	 �����n� for all n � Z and so limQt��� ��� � � for all
� � ��

A similar argument on the interval ��� �� with � � � completes the proof�

In game�theoretic terms� inequality ��� asserts that every x � B strictly dominates ev�
ery y � A� The proof is then essentially the iterated elimination of strictly dominated pure
strategies� This technique is well�known for games with �nite trait space e�g� Samuelson
and Zhang� ����� Hofbauer and Weibull� ����� but this seems to be the �rst instance
where it is used in games with a continuum of pure strategies�

The method of proof can extend the statement of the Theorem to measures that do
not have full support as long as the �gap� between points in the support of Q� is not
too great� This gap must decrease as we get closer to x�� In particular� if one wants to
approximate the measure dynamic with a discrete version similar to ��� then one needs
the grid to become �ner as we approach x�� Otherwise� say if the grid is uniform� the
most we can expect is that the support of Qt will approach an interval containing x� and
that this interval will approach x� as the number of points in the grid increases�

��



����� Case �c� �a	 b � ��

�P� P � � � for all P � �x with x � ��� ��� In this degenerate case the payo� function
�x� y� � ax � y�� is translation invariant� Every �s is a strict NE and maximizer of
�P� P ��

����� Case �d� �a	 b � ��

Here P � �� is a saddle point� and P � �� and P � �� are the only local maximizers of
�P� P �� These endpoints are also locally superior with respect to those Q whose support
is either ������ or ��� �� respectively� This gives us a bistable situation where some initial
Q� close to �� evolve to one monomorphism supported at one endpoint and some to the
other� In fact� by continuity of �Q�Q�� �� attracts those Q� with full support that have
Q���� ��� su�ciently small�

Remark� The four subcases of this section clarify the relevance of the CSS concept
and the importance of the topology chosen for �S��

First� Cases �a and �b combine to show that a CSS x� � � in the interior of ��� �� i�e�
a � � and �a	 b � �� is Lyapunov stable and every initial Q with full support converges
to �� in the weak topology� Moreover� it is already clear from ��� that �� is unstable if
�a	 b � �� These results give a strong measure theoretic justi�cation of the CSS concept
that lies at the heart of adaptive dynamics�

It must be pointed out� however� that there is a signi�cant di�erence between the
basins of attraction of �� that are CSS depending on the sign of a 	 b� If a 	 b � �� ��
is known as a good invader Kisdi and Mesz ena� ����� or a neighborhood invader strategy
NIS� McKelvey and Apaloo� ����� Apaloo� ������ This latter condition can be used to
prove convergence in Case �a with a single domination argument Cressman� ���
� that
avoids the entropy technique used in the proof of Theorem �� To illustrate this di�erence�
suppose Q� is a dimorphism with support f�� sg� with � � s � �� Then a	 b � � implies
Qt converges to �� in the weak topology�

On the other hand� if a 	 b � �� the dynamic ��� restricted to the support f�� sg is
bistable� with q � Qtf�g� and �� q � Qtfsg� we get

�q � q�� q��q��� ��� �s� ���	 �� q���� s�� �s� s���

� q�� q�s��bq � a	 b�� ���

Hence �q � � if � � q � a 	 b��b� Note that � � a 	 b��b � ��� which means that ��
has the larger basin of attraction on this line than �s�� Thus� q � � if q is su�ciently
small initially� This result also follows from ��� since �q��	 �� q��s� q��	 �� q��s� �
s�bq���a	b�q	�a	b� which is a quadratic function of q with minimum at q � a	b��b�
Since �Q�Q� is increasing� Qt � �s if � � Q�f�g� � a	b��b� Furthermore� by continuity
of �Q�Q� in the weak topology� for � su�ciently small� if suppQ� � ���� ��� �s� �� s	 ��
and Q��s � �� s 	 ��� � a 	 b��b� then Qt�s � �� s 	 ��� � � as t � 
 actually� Qt

converges weakly to �s�� by the argument in the proof of Theorem ���
The above analysis also shows that the convergence results of Theorem � need not be

true if we only assume P � is the unique global maximizer of the expected payo� �P� P ��
Cases �c and �d illustrate the importance of the chosen topology for convergence and

stability results� Spec�cly� �� is locally superior with respect to the variational norm�	 if

��This norm corresponds to the strong topology with respect to which local superiority is often called
�strongly uninvadable� �e�g� Bomze� 
��
��

�




and only if a � �� That is� even in these last two cases when mean �tness at �� is less
than that of any other monomorphism� �� is locally superior in the strong topology in
fact� every �s in Case �c is locally superior�� Thus� �� is Lyapunov stable in this strong
topology� and further Qt converges weakly to ��� if Q�f�g� is close to � as shown by
Oechssler and Riedel ������

��� Case �� a � �

From ���� any local maximizer of �P� P � must have as large a variance as possible given
EP �� �� E� Thus the support of P � is contained in f�� �g� In fact� P �

E � p���� 	 p����
where p�� �

E��
���

and p�� � ��E
���

� Thus� we need to maximize

fE� � VarP �

E� � �ap��E � ��� 	 p��E � ���� 	 �a	 b�E�

for E � ��� ��� This expression simpli�es to

fE� � ��aE � ��E � �� 	 �a	 b�E� � bE� 	 �a�	 ��E � �a���

If b � �� this is a downwards parabola that has a unique maximum at E� � �a
b
�	���

Depending on whether E� is outside or inside the interval S� the unique local maximizer
is given by P � � �� if a	 b��	a� � �� by P � � �� if a	 b��	a� � � and by the above
dimorphism if a	 b�� 	 a� � � and a	 b��	 a� � �� Since P � is a NE and the game
is negative semide�nite by ����

�P �� Q�� �Q�Q� � �P � �Q�P �� 	 �P � �Q�Q� P ��

� �P � �Q�Q� P �� � �bEP ���EQ��� � ��

Furthermore� if EP �� � EQ�� then �P �� Q� � �Q�Q� � aV arP �� � V arQ�� from
��� and ���� Thus� �P �� Q�� �Q�Q� � � unless P � and Q have the same mean and
variance� Since P � is the unique probability measure that has the largest variance for a
given mean� P � is globally superior� By Theorem �� P � is Lyapunov stable and attracts
every Q� whose support contains that of P ��

����� Case �a� �a	 b � ��

In this case we have the situation which is often referred to in the adaptive dynamics
literature as evolutionary branching Geritz et al� ������ It is straightforward to show
that P � is then a dimorphism� By the above reasoning for b � �� P � is Lyapunov stable
and attracts any initial Q�� whose support includes f�� �g since it is globally superior�

����� Case �b� �a	 b � � and b � ��

P � is still globally superior but could be either a dimorphism or one of the monomorphisms
�� or ���

����� Case �c� b � ��

In this �nal case� fE� is an upwards parabola which has �� and �� as the local maximizers
of �P� P �� This is again the bistable situation as in Case �d�

��



��� Normal Distributions with S � R

Following Oechssler and Riedel ������ we consider special solutions Qt of ��� with S � R

that are normal distributions with mean mt� and variance V t�� i�e��

dQt

dx
�

�p
��V t�

e
�


x�m
t���

�V 
t� ���

From d �P
dP

x� � �x� P �� �P� P � we obtain

�
d

dt

�
x�mt���

�V t�
	

�

�
log V t�

	
� ax� �mt��� 	 bmt�x�mt��� aV t�

which reduces to

�V � �aV � �m � �a	 b�mV ���

Hence ��� are solutions of ��� if and only if the mean and variance satisfy the di�erential
equations ����

This illustrates nicely the meaning of the two crucial parameters a and �a 	 b� the
equation for the mean resembles the canonical equation of adaptive dynamics� Note that�
for a � �� the variance goes to in�nity in �nite time� Such a blow up is possible only for
non!compact S�

� Non�Quadratic Payo� Functions

The method developed in Section � and the proof of Theorem � can be used to analyze
probability measure dynamics beyond the quadratic payo� functions considered in Section
�� For instance� the domination argument used in the proof of Theorem � remains valid if
we restrict the support of Q� to be an interval su�ciently close to x� so that the quadratic
terms in the Taylor expansion of �x� y� about x�� x�� are predominant� In particular� a
CSS that is not an NIS continues to attract all such initial Q�� Moreover� the one�time
domination argument of Cressman ���
� see Remark in Section ���� shows the same
result for arbitrary support su�ciently close to x� when x� is CSS and NIS� Thus� the
CSS condition will continue to guarantee local convergence in the absence of the symmetry
implied by only quadratic terms in the payo� function � what is lost is whether the CSS
remains Lyapunov stable� Conversely� if x� is not CSS then a reverse domination argument
shows instability of �x� �

In the other case of particular interest to adaptive dynamics i�e� the evolutionary
branching of Case �a�� a convergence stable x� with �xxx

�� x�� � � will be unstable in
the measure dynamic whether �x� y� is quadratic or not� What is not so clear is what
the measure dynamic will evolve to in this situation without the quadratic payo�s that
imply a globally stable dimorphism emerges that is supported on the endpoints of the
trait space S since mean �tness grows as variance increases� However� our results apply
to nonquadratic payo� functions of the form �x� y� � x� 	 bxy 	 y� with b � � and
 an arbitrary smooth function� Since such games are negative semide�nite� if there is a
unique maximizer P � of the mean �tness then P � is globally superior and hence attracts
all initial Q with full support� If xx�� � � then there is no monomorphic NE� and hence
P � is supported on at least two traits� As an example take b � �� and x� � �x� � x�

on the trait space S � R� If suppQ� contains both maxima of  i�e� f��� �g�� the theory

��



from Section � proves Qt converges to the Lyapunov stable dimorphism P � � �
��� 	

�
����

in the weak topology� This follows from the fact P � is globally superior since

�P �� Q�� �Q�Q� �

�

Z
S

Z
S

x�� �xy 	 y��P �dx�Qdy��

Z
S

Z
S

x�� �xy 	 y��Qdx�Qdy�

�
�

�
��	 ���� 	

Z
S

y�Qdy�� �

Z
S

y�Qdy��EQ��� � �

unless suppQ � f��� �g and EQ� � � i�e� unless Q � P ���

� Discussion

This paper is meant to introduce measure dynamics as a means to model coevolutionary
systems and to compare this theory to other� more established� approaches such as adaptive
dynamics� The comparison is most complete in the basic model of coevolution where
stability of a monomorphism in a single species with a one�dimensional continuous trait
space is analyzed� This necessarily entailed several simplifying assumptions that we would
like to address in this concluding section�

We have already discussed to some extent the issue of symmetric payo� functions
in Section �� There is no doubt symmetry is an important tool in our development of
the theory for a general setting in Section � see especially Lemma 
 and its proof that
shows a locally superior strategy is Lyapunov stable�� On the other hand� the quadratic
approximation to �tness functions about a monomorphism x� provide this symmetry and
can be used to describe local behavior of the dynamics of probability measures with support
near x��

Dependence on total population size i�e� density dependence� is included in our model
by assuming a background �tness that is strategy independent� This has the e�ect that
density dependence essentially disappears from the measure space dynamic of Section 

as well as the adaptive models summarized in Section ��� General density dependence
is more di�cult from a technical perspective� One attempt to avoid this problem is to
assume� as in the adaptive dynamics approach� that the population instantaneously tracks
its equilibrium density for a given probability measure� This assumption is usually jus�
ti�ed by appealing to a dichotomy between the time scales for the population dynamics
ecological time scale� versus strategy evolution evolutionary time scale�� That is� it
is assumed ecological changes are much faster than evolutionary ones� The dynamic is
then reduced to one on the �stationary density surface� SDS� where the �tness �x� P �
is assumed to be given by �x� P�NP �� where NP � is on the stationary density sur�
face� We feel such an assumption is unwarranted if adaptive dynamics is to be put on
�rm theoretical ground� However� there is some evidence the SDS continues to play an
important role when there is no separation of time scales� at least when there is a �nite
number of strategies as in Section ���� The SDS can then be used to separate the density
e�ect from the local asymptotic stability analysis of the mean strategy dynamic for both
monomorphisms and polymorphisms in single species Cressman� ����� or multiple species
Cressman and Garay� ���
� models of coevolution� Of particular relevance for us is the
result for monomorphisms� namely� a monomorphism is locally asymptotically stable in
the coevolutionary model of combined density and strategy evolution when there is a �nite
number of strategies if and only if the monomorphic density dynamic is asymptotically
stable at equilibrium strategy and the induced strategy dynamic on the stationary density
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surface is asymptotically stable no matter what the relative rates of ecology and evolution
are�� For our measure dynamic models� we conjecture a stationary density surface will
continue to predict local behavior near a monomorphism but not for general equilibria P �

distributed over the trait space see also our comments on higher dimensional trait space
below��

Mutation has not been explicitly added to our model since our perspective is that this
e�ect is already included by considering arbitrary initial population distributions over the
strategy space� In this sense� all potential mutations are already present in the system to
start with and� if this �mutation� is successful� it will grow in relative size compared to
other possible strategies� In particular� our formalism includes systems that are initially
concentrated near a monomorphic equilibrium with a small subpopulation concentrated
around a �mutant� strategy� On the other hand� our results also allow one to introduce
rare mutations in the more traditional sense by letting the system evolve arbitrarily close to
a stable equilibrium between mutation events� Theorems � and � then show the perturbed
system will stay close to a locally superior equilibrium distribution P � that is Lyapunov
stable and eventually return to it�

The adaptive dynamics approach has also been extended to multi�dimensional strategy
spaces e�g� Mesz ena et al�� ����� and�or multi�species models e�g� Marrow et al�� ������
For a single�species monomorphic equilibrium x� in a compact trait space in Rn such as
a ball or hypercube�� the measure dynamic approach applied here suggests the method of
assuming the CSS conditions hold along any ray as in Mesz ena et al�� ����� from x� is
particularly relevant� Indeed� it is straightforward to see that the CSS conditions along any
ray are necessary for stability of �� simply take initial measures supported on this ray��
On the other hand� under the additional condition corresponding to NIS� convergence to
x� can be shown in the weak topology when initial distributions have support su�ciently
close to x� this uses an argument similar to Cressman ���
��� A precise characterization
of stability is an open problem�

However� in other multi�dimensional or multi�species situations e�g� non�monomorphic
P � or especially if there is non�equilibrium behavior of the adaptive dynamics such as cyclic
behavior in a single�species model or in a two�species predator�prey system�� we are quite
skeptical that the conclusions from the measure dynamic approach will correspond to that
from adaptive dynamics where it is again assumed population sizes� tracks its equilibrium
value� There is in fact evidence from coevolutionary models based on �nite trait spaces
e�g� Abrams and Matsuda� ����� that questions the relevance of the adaptive dynamics
approach in these circumstances� Models that exhibit non�equilibrium behavior also call
into question the assumption that �tness functions are based on pairwise interactions� It
seems more reasonable that in such situations� �x� 
� should depend on the measure in a
more complicated way than simply averaging the payo�s between individual interactions�
In fact� such non�pairwise �tness functions were proposed from the outset of coevolutionary
models e�g� Roughgarden� ����� where Lotka�Volterra type models were proposed with
interaction coe�cients given by Gaussian distributions depending on the separation of
strategies from the mean�

We view this paper as a �rst� but crucial� step to give the adaptive dynamics approach
a solid theoretical foundation as a means to predict long term behavior in coevolutionary
systems� From this perspective� our results see especially the Remark in Section ��� that
the CSS plays a central role in understanding convergence and stability of the measure
dynamic at a monomorphism� shows the adaptive method is clearly a valid shortcut to
analyzing coevolutionary models when there are quadratic pairwise interactions� As dis�
cussed above� there are many obstacles to a general theory� but the end results should be
equally rewarding�
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