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Demographers can no more be held responsible for inaccuracy in forecasting popu­
lation 20 years ahead than geologists, meteorologists, or economists when they fail 
to announce earthquakes, cold winters, or depressions 20 years ahead. What we can 
be held responsible for is warning one another and our public what the error of our 
estimates is likely to be.-Nathan Keyfitz ( 1981) 

In the pursuit of our daily life, be it at the individual level or as a society, we are constantly guided 
by expectations about the future. Typically, these expectations are based on the assumption that the 
future is going to be more or less the same as what we currently experience or that there are clearly 
predictable regularities such as day and night and the change of seasons. 

In some instances, however, we know with near certainty that things will change fundamentally. In 
the field of demography, it is virtually certain that European societies will get older and the proportion 
of the population above age 60 will increase significantly and the proportion below age 20 will shrink. 
This change that we expect over the coming decades is already embedded in the current age structure 
of the population. Only extremely unlikely events such as a new disease killing large proportions 
of the elderly population while leaving the younger unaffected could change this aging trend in the 
near to mid-term future. This nearly certain population aging will bring fundamental changes to the 
functioning of our societies and will have significant impacts on individual life course planning, 
family networks, pension systems and macro-economic development alike. In terms of pensions in 
a pay-as-you go system younger people today cannot count on the same contributions/benefits ratio 
as they observe with people retiring today. 

Even in case of this highly predictable trend towards population aging the exact extent of aging 
is rather uncertain, especially in the longer run. Will the share of the population over age 60 in 
Western Europe increase from currently 20 percent to 29 percent or 43 percent by 2050 (the 80 
percent prediction interval according to Lutz et al., 2001). This is a very significant difference and 
the answer will largely depend on the still uncertain degree of future increases in life expectancy but 
also on the even more uncertain future trends in fertility and migration. 

There is uncertainty in all three components of demographic change (fertility, mortality and mi­
gration). How should a forecaster deal with this uncertainty in a statistically consistent manner that 
is both informative to the users and feasible for the producing agencies? This is the topic of this 
set of eleven papers that are published in two blocks in this and the next issue of the International 
Statistical Review. 

Over the past years a rapidly increasing body of literature has dealt with the issue of uncertainty in 
population forecasting. The International Journal of Forecasting published a special issue in 1992 
(Ahlburg & Land); Population and Development Review published a special supplement in 1999 
(Lutz et al.); and most recently the National Research Council (2000) has dealt extensively with 
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uncertainty in its volume Beyond Six Billion. This is because population forecasts are important for 
a large community of users, forming the basis of social, economic, and environmental planning and 
policy making. The medium variant projections, typically considered to be the most likely forecasts, 
that have been produced by national and international agencies have played a useful role and have 
generally achieved impressive accuracy. Yet, it is increasingly recognized that the way these projec­
tions deal with the issue of uncertainty is unsatisfactory. 

The current practice of providing "high" and "low" variants to communicate uncertainty around 
the medium projection suffer from several drawbacks. The most important are: (a) In many cases, 
variants only address fertility uncertainty, ignoring mortality and migration uncertainty; (b) The 
variants approach is unspecific about the probability range covered by the "high" and "low" variants; 
( c) The variants are probabilistically inconsistent when aggregating over countries or regions because 
the chances of extreme outcomes in many countries or regions at once are portrayed as being the 
same as an extreme outcome in a single country or region; and ( d) The variants typically do not allow 
for temporal fluctuations such as baby booms and busts that can produce bulges in age structure. 

Considerable scientific progress has been made in the field of probabilistic population forecasting, 
including the analysis of past projection errors, the use of expert knowledge and substantive argu­
ments, and the development of stochastic models of fluctuating demographic rates. Several national 
statistical agencies, such as Norway, the Netherlands, Finland and Austria, have already published 
fully probabilistic forecasts and more, such as the United States, are planning to do so. 

This set of eleven papers covers many of key issues currently discussed in this field. Without 
discussing the individual papers in this introduction we will only briefly mention some of the key 
questions the papers address. We end each item with citations to the relevant papers in this collection. 

I. Past projections errors: The fact that population projections have been carried out for a long 
time can be used to compare the past projections to actual trends (ex post error analysis). This 
can give an important piece of information as to what can go wrong in population projections. 
For the future this information can serve as a yard stick of what one would assume to be the 
minimum error if one wants to be on the safe side, while it is of course problematic to assume 
that the future errors will be exactly a replication of the past errors. A more difficult challenge 
is to address the deeper reasons of why forecasters in the past have made certain erroneous 
assumptions and how we can learn from this for our new forecasts. (Keilman & Pham). 

2. Trends in the components: Demographic forecasts typically treat uncertainty in each compo­
nent of population change-fertility, mortality, and migration-separately. An active area of 
research has been to develop models for projecting each of these components. In mortality, the 
dominant approach in forecasting has been to rely on formal models extrapolating historical 
trends. In fertility and migration, where the patterns of determination have been more complex, 
the role of judgment has been greater. The challenge remains two-fold: on the one hand to 
incorporate substantive knowledge into formal models, and at the other extreme to formalize 
the use of substantive knowledge. This also holds for projections that go beyond age and sex 
through considering, for instance, household size. (Leiwen & O'Neill; Lundstrom & Qvist; Li 
et al.; and Alders & De Beer). 

3. The role of experts in defining uncertainty: Experts play a key role in all population 
forecasting but their tasks depend on the chosen approach. In some instances the role of the 
expert is limited to choosing the model, including some of its key parameters and the reference 
data from which the estimates should be drawn. In other instances experts do also make 
assumptions about the likely future level of the demographic components (such as the average 
future fertility level) or limit the range of future values (minimum or maximum fertility) while 
using time series data to define the fluctuations within this range. In still other cases the experts 
also define the variance. Experts can also go further and include into their considerations some 
of the structural drivers of future fertility trends such as changes in the educational composition 
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of the population. (Lutz & Scherbov). 
4. Definition of the temporal process: Traditional population projections have assumed smooth, 

monotonic paths for future trends in all three components but most importantly in fertility. This 
is also mostly the case for high and low fertility variants which assume (piecewise) linear trends 
to different target fertility levels. Fully stochastic projections on the other hand incorporate 
annual fluctuations in all three components which seem to better reflect the pattern seen in the 
real world. An interesting research question is to what degree piece-wise linear scenarios­
following the tradition of most statistical agencies--can be seen as a stylized approximation 
to the results of fully stochastic models with annual fluctuations. There are currently two 
schools of thought: on the one hand, the two methods cannot produce perfectly identical 
results and when the variances of the underlying processes differ can produce vastly different 
results. On the other hand, it does appear that for some purposes the scenario approach can 
produce results that are close to the fully stochastic approach. Further work on this issue will 
be important as statistical agencies try to improve their description of uncertainty in forecasts 
and will influence whether they take a fully stochastic approach or transition incrementally 
from scenarios. (Tuljapurkar et al.; Goldstein). 

5. Conditional probabilistic forecasts: While probabilistic population projections give a com­
prehensive description of the uncertainty range they do not provide users with information 
about the consequences of specific alternative fertility, mortality or migration trends. Espe­
cially, in the case of policy analysis, decision makers often want to know what will be the 
consequences of altering a demographic component by some degree. For this reason, some 
producers of probabilistic forecasts have also separately produced if-then scenario projec­
tions. The concept of conditional probabilistic projections makes this separation unnecessary 
because it allows the analyst to look at the range of uncertainty in the results conditioning on 
some specific subset of the full range of stochastic trends. (Sanderson et al.; O'Neill). 

6. Implementation by Statistical Agencies: Official agencies must not only produce forecasts 
that are scientifically defensible but must also assure that their descriptions of uncertainty can 
be understood by the broad and heterogeneous set of users. As probabilistic forecasts become 
more common, agencies can begin to learn from each other's experience, but for now each 
producer is left to innovate on their own. The failures and successes of these endeavors if 
communicated appropriately, are likely to provide useful lessons for other countries around 
the world. (Long & Hollmann). 

Not all demographers and statistical agencies are enthusiastically embracing probabilistic popula­
tion projections for a number of substantive and institutional concerns. On the substantive side one 
concern raised is that the statement of precise uncertainty ranges (e.g. 95 percent intervals) conveys 
to the users a misleading sense of precision, as if one would have more detailed information than one 
actually has. In this context it is important to clearly tell the users that the stated uncertainty ranges 
should not be seen as precise objective probabilities but rather as indicative ranges depending on the 
specific model and parameter assumptions made according to the best judgement of the producers. 
A related substantive concern expressed (Lesthaeghe, 2002) is that probabilistic population forecasts 
tend to be "too mechanistic" and disregard most substantive scientific knowledge about the determi­
nants of future mortality, fertility, and migration. This reservation does not concern all approaches 
to probabilistic projections equally. It applies more to models that are exclusively based on the 
extrapolation of past time series and the application of errors observed with passed projections to 
estimate future errors than it does to approaches based on substantive argumentation of experts about 
future trends and the relevant sources of uncertainty. Since this set of papers includes contributions 
choosing these different approaches the reader can make his/her own judgement about the relevance 
of this criticism for the approaches concerned. 

There are also two reservations of a more institutional nature. Some people claim that probabilistic 
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forecasts are too difficult and too complex to be understood and they point to the fact that most users 
of forecasts do not even consider the usual high and low variants and would be less likely to use full 
distributions. In response one can say that clearly for a large group of users there is for good and 
understandable reasons only interest in one forecast that is considered the most likely one. For the 
smaller group of users that in their applications do have to worry about the possibility of deviations 
from this most likely path, however, one can also make the point that they often do not use the 
high and low variants because they do not really understand what these variants stand for. And 
because of the above described problems and inconsistencies of the high and low variants there is no 
way to understand what they stand for. Instead, it seems to us that people interested in uncertainty 
should either use completely probability-free scenarios for sensitivity testing or fully probabilistic 
projections for a more comprehensive view of the uncertainty involved. 

A final institutional concern is that probabilistic population projections are too difficult to be 
implemented by statistical agencies that do have a lack of skilled manpower in this field. This is a 
genuine concern for many countries and international agencies alike. The solution to this problem 
can come from two sides: on the one hand demographers can try to develop simpler approaches to 
probabilistic forecasting that as much as possible build on established expertise and procedures in 
statistical agencies and on the other hand those agencies can involve in continued training in order 
to be able to apply these increasingly powerful and useful new ways of dealing with uncertainty in 
population forecasting. 

The papers published in these two issues of the International Statistical Review have originally 
been presented at a seminar held in Vienna in December 2002 (sponsored by the Vienna Institute of 
Demography and the International Institute for Applied Systems Analysis, IIASA), and have been 
extensively refereed. The participants in this meeting also worked on a consensus statement from 
which some of the above mentioned points are taken and which concludes with the sentence: "We be­
lieve that the quantification of uncertainty will enhance the usefulness of population projections and 
make the work of forecasting agencies an even more valuable product for planners, policy-makers, 
scientists, and the public around the world." 
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Summary 

We use ARCH time series models to derive model based prediction intervals for the Total Fertility Rate 
(TFR) in Norway, Sweden, Finland, and Denmark up to 2050. For the short term (5-10 yrs), expected 
TFR-errors are compared with empirical forecast errors observed in historical population forecasts 
prepared by the statistical agencies in these countries since 1969. Medium-term and long-term (up to 
50 years) errors are compared with error patterns based on so-called naive forecasts, i.e. forecasts that 
assume that recently observed TFR-levels also apply for the future. 

Key words: Time series; ARCH model; Stochastic population forecast; Total Fertility Rate; Empirical forecast 
errors; Naive forecast; Nordic countries. 

1 Introduction 

Long-term population forecasts, covering a period of fifty years or more, are useful in a number of 
fields, two of which are analyses of the impact of population trends on contributions and expenditures 
for old-age pensions, and studies of demographically induced resource use and climate change. Such 
long-term forecasts are necessarily uncertain: for a given country, one may imagine many possible 
demographic futures, but some of these population developments are more probable than others. This 
calls for stochastic population forecasts, i.e. forecasts in terms of prediction intervals. Such prediction 
intervals quantify uncertainty-they express the expected probability that the future population (or 
age group, or number of births) falls within a certain range. 

A number of recent stochastic population forecasts have used some form of time series analysis 
for one or more key indicators, in order to assess the expected accuracy of predicted values for these 
indicators. The most commonly used summary indicator for the level of fertility in a certain year t is 
the Total Fertility Rate (TFR), defined as the number of children a woman is expected to have over 
her lifetime, if the age-specific fertility of year t would hold through the woman's childbearing ages, 
and she would survive to the end of childbearing ages. Time series models were used to predict the 
TFR in stochastic forecasts prepared for the US (Lee & Tuljapurkar, 1994 ), Finland (Alho, 1998), the 
Netherlands (De Beer & Alders, 1999), and Norway (Keilman et al., 2001). One attractive property 
of time series models is that they not only give a prediction of future values of the variable in question, 
but also allow us to compute prediction intervals. 

*Revised version of a paper presented at the seminar "How to deal with uncertainty in population forecasting?" Vienna, 
12-14 December 2002. Comments made by seminar participants are gratefully acknowledged. Research was supported by 
grant nr. SERD-2000-00172 under the Fifth Framework of the European Commission. 
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A common finding with TFR-time series in industrialized countries is that these are non-stationary. 
As a consequence, long run prediction intervals, when unchecked, may become extremely wide. 
Therefore, adjustments are necessary. For instance, Lee & Tuljapurkar (1994) introduced upper and 
lower bounds to the TFR by a generalized logit-transformation. This way they constrained TFR­
predictions to between 0 and 4 children per woman on average. Alho ( 1998) found that time-series 
based TFR-prediction intervals 50 years ahead were 15 per cent wider than those obtained based on 
the volatility in the historical TFR-observations, and he decided to rely on the latter type of intervals. 
De Beer & Alders (1999) initially found a 95-per cent prediction interval for the TFR in 2050 equal 
to [0.6-2.8] based on time series models. Next, an analysis of fertility by birth order led them to 
suggest that an interval of [ 1.1-2.3] would be more appropriate. Keilman et al. (2001) simulated 
predicted TFR-values, and rejected TFR-simulations that would fall outside the interval [0.5-4] in 
any year up to 2050. 

Checks of this kind for time series predictions involve judgement. Therefore, additional informa­
tion will be useful when judging whether the subjective decisions and the adjustments are reasonable. 
One source of additional information is the accuracy of old TFR-predictions. Many statistical agen­
cies have published population forecasts in the past, including TFR-predictions. When compared 
with actual TFR-values observed for the years after the forecast was made, one can check the ob­
served TFR-accuracy against predicted TFR-accuracy, obtained by time series models. 

In practice however, analyses of this type are restricted to forecasts up to 10 years ahead, sel­
dom longer. This is because few statistical agencies have documented their population forecasts in 
sufficient detail before the 1960s, and hence the series of historical errors is rather short. However, 
fertility assumptions in official forecasts, in particular those on the long term, are often close to a 
recently observed level, which is held constant for the future. Hence, starting from a time series of 
observed fertility levels, one could compute so-called naive errors, i.e. errors that result from the 
naive assumption that future fertility will be the same as the current one. For a few countries, for 
example the Nordic countries, long time series for the TFR exist. This allows us to construct rather 
large data sets with nai've TFR-errors. 

The purpose of this paper is to compare the results of Total Fertility Rate predictions made by time 
series methods with those obtained by analysing both observed forecast errors and nai've errors. The 
focus is on the expected accuracy of the predictions, i.e. on the width of the prediction intervals. We 
shall use time series models to derive model-based prediction intervals for the TFR in Norway, Den­
mark, Sweden, and Finland up to 2050. For the short term and medium term (up to 10 yrs), expected 
TFR-errors are compared with empirical forecast errors observed in historical population forecasts 
prepared by the statistical agencies in these countries since 1969. Long-term TFR-errors obtained 
from the time series models are compared with naive errors in the TFR. The longest TFR-series we 
have is that for Finland, which starts in 1776. The Norwegian and Swedish series start in 1845 and 
1855, respectively, while observations for Denmark are available from 1911. 

2 Time Series Models 

Figure I plots the Total Fertility Rate for the four countries. The data sources are listed in the 
Appendix. 

The four countries show a similar pattern in the TFR, which reflects the demographic transition, 
followed by the effects of the economic recession in the 1930s and the baby boom in the 1950s 
and 1960s. Plots of first differences in the TFR (not shown here) revealed less similarity. Finland 
exhibits the strongest fluctuations, in particular before 1950. In the 20th century, all four countries 
show a tendency towards lower variability in the TFR, although this tendency is much stronger for 
Finland than for the other three countries, see Table I . Major events, such as the two world wars, and 
the occurrence of the Spanish Influenza in 1918/1919 are clearly reflected in the series for all four 
countries. 
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Figure 1. Total fertility rate. 

Table 1 

1925 

- Norway ! 
-Denmark 

·· ·- Sweden 
- Finland 

1950 1975 

Standard deviations of the first differences in the TFRfor various 
sub-periods. 

Norway Denmark Sweden Finland 

1776-1850 0.346 
1851-1900 0.135 0.142 0.319 
1901-1950 0.138 0.123 0.126 0.288 
1951-2000 0.065 0.074 0.073 0.071 

2000 

An important question is how much of the data should be used in the modelling. Several issues 
are at stake here. First, Box & Jenkins ( 1970, p.18) suggest at least 50 observations for ARIMA-type 
of time series models, although annual models (in contrast to monthly time series) probably need 
somewhat shorter series. Second, the quality of the data is better for the 20th century than for earlier 
years. This is particularly true for the denominators of the fertility rates, i.e. the annual numbers of 
women by single years of age. Third, one may question the relevance of data as long back as the 
mid- l 800s. Current childbearing behaviour is very different from that of women in the 19th century. 
Fourth, our ultimate goal is to compute long-term predictions of some 50 years ahead, which neces­
sitates a long series. 

The ultimate choice is necessarily a subjective one, which includes a good deal of judgement and 
arbitrariness. We believe that we strike a reasonable balance between conflicting goals by selecting 
the 20th century as the basis for our models. An analysis based on the last 50 years, say, would be 
unfortunate: it would include the baby boom of the 1950s and early 1960s, but not the low fertility 
of the 1930s, to which the boom was a reaction, at least partly. A base period stretching back into 
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the 19th century would be hampered by problems of data quality, and it would also unrealistically 
assume that the demographic behaviour over such a long period could be captured by one and the 
same model. In a sensitivity analysis we also experimented with base period 1945-2000. For Norway 
and Finland we found 95 per cent prediction intervals that were smaller (by 1.4 and 0.5 children per 
woman on average, respectively) than those that we have accepted for further analysis (see Table 4). 
For Denmark and Sweden they were larger (by 0.8 and 1.2 children per woman, respectively). To 
increase comparability across countries, we used a TFR time series starting in 1900 for Denmark as 
well. Danish TFR-values for the years 1900-1910 were estimated on the basis of observed Crude 
Birth rate values; see the Appendix. 

Traditional time series models of the ARIMA type assume homoscedasticity, i.e. constant residual 
variance. Given the tendency towards less variability in the TFR in recent decades, such traditional 
models could not be used. The Autoregressive Conditional Heteroscedastic (ARCH) model intro­
duced in Engle (1982) combines time-varying variance levels with an autoregressive process. This 
model, and its generalizations (generalized, integrated, and exponential ARCH models, to name a 
few) have gained popularity in recent years (Bollerslev, 1986). The model has already proven useful 
in analysing economic phenomena such as inflation rates, volatility in macroeconomic variables, and 
foreign exchange markets; see Bollerslev ( 1986) for a review. Application to demographic time series 
is less widespread. Yet, given the varying levels of volatility in the TFR during the 20th century, an 
ARCH-type of model is an obvious candidate. 

Let Z1 be the logarithm of the TFR in year t. Then the model is 

Zt = c + </>Zt-1 +Vt + r/1 Ui ,t + ri2U2,1 + r/3U3,t + r/4U4,t 

Vt = 't/11 Vr-1 + 't/f2V1-2 + · · · + 'tf!m Vt-m + Bt 

q 

ht = (J) + L O'.iB;_i 

i=l 

(1) 

where e1 "' N(O, 1). This is the AR(m)-ARCH(q) model. The outliers caused by the two world wars 
and by the Spanish Influenza are handled by between two (Denmark and Sweden) and four (Norway, 
Finland) dummy variables U; ,1• In addition we have w > 0 and a; '.:::: 0. 

The maximum number of terms m included in the autoregressive expression of v1 was set equal to 
10, but few of the 't/f-estimates turned out to be significantly different from zero. Similarly, estimates 
for ai suggested that the order (q) of the CH-part of the model could be one or two, not higher. 
This led to the specifications for the AR(m)-ARCH(q) model with dummy variables for the four 
countries as given in Table 2. 

Table 2 

ARCH models with dummy variables for the TFR in Norway, Denmark, 
Sweden, and Finland, 1900-2000. 

Dummy variables AR:v1 = CH:h1 = 
Norway 1915, 1919, 1920, 1946 1/f2v1-2 + s1 w + a1s;_ 1 
Denmark 1920,1942 1/f1v1-1+s1 w+a1s;_ 1 
Sweden 1920,(1942-45] 1 1ft1v1_,+s1 w +a1s;_1 
Finland 1919, 1920,1940, 1941 1/f2v1_2+s1 w+a1s;_ 1 
Note 1: one common dummy variable for each year in the period 
1942-45. 
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Table 3 lists the estimation results, with t-values in parentheses. None of the C-estimates were 
significantly different from zero. Yet the constant was retained in the model: trial calculations omitting 
the constant resulted in implausibly low point predictions for the TFR in 2050, ranging from a high 
1.38 children per woman in Norway, to a low 1.21 children per woman in Sweden. The predictions 
for 2050 based on the model with constant are in the interval from 1. 71 (Denmark) to 1.46 (Finland). 

Note the high a 1-estimate for Finland. It reflects the large variability in the Finnish data. The 
Swedish a 1-estimate is close to zero-however, omitting the ARCH(l) part from the model (which 
essentially boils down to assuming constant variance) would lead to rejecting the null hypothesis of 
constant variance in the residuals, as trial calculations showed. 

Table 3 

Parameter estimation results for the models in Table 2; !-values in parentheses. 

1)1 1)2 1)3 1)4 c </> 1/11 1/12 (L) a1 

Norway -0.0680 -0.0531 0.1830 0.1016 0.0114 0.9754 0.4771 0.0005 0.3626 
(-2.34) (-2.41 ) (8.78) (2.28) (0.61) (48.07) (5.41) (5.18) (2.45) 

Denmark 0.1493 0.0901 0.0157 0.9701 0.3249 0.00009 0.2721 
(2.06) (2.76) (0.86) (48.23) (3.35) (7.18) (1.95) 

Sweden 0.2258 0.0753 0.0215 0.9588 0.5788 0.0007 0.0000 
(10.40) (4.51) (l.15) (48.69) (6.53) (6.01) (0.00) 

Finland -0.2085 0.2909 -0.1095 0.1563 0.0053 0.9812 0.2135 0.0007 0.7080 
(-2.14) (1.72) (-6.43) (7.46) (0.47) (98.03) (2.38) (4.24) (3.48) 

The overall impression is that model (1) is a useful device to capture the TFR-trends in the four 
Nordic countries during the past century. We used the model to compute prediction intervals for 
the future TFR up to 2050. Since we cannot be certain that the estimated coefficients are equal to 
the real ones, we used simulation to obtain these intervals. In each of the 5000 simulation runs, 
parameter values were drawn from a multivariate normal distribution, with expectation equal to the 
parameter estimates in Table 3, and with corresponding covariance matrix as estimated earlier. The 
possibility that a pandemic as bad as the Spanish Flu, or a war with consequences as catastrophic 
as WWI or WWII could occur during the prediction period, was included in these simulations. For 
each of the two dummy variables, we first drew a random number from the binomial distribution 
with a probability of "catastrophe" equal to 11101. Next, the starting year for the catastrophe was 
determined on the basis of a random draw from the uniform distribution on the interval [2001, 2050]. 
Finally, the appropriate 17-value was drawn from its estimated distribution. 

The estimates for the AR-coefficient <P are all between 0.96 and 0.98. Although those estimates 
were extremely sharp (cfr. the corresponding t-values), the simulations resulted in a few ¢-values 
equal to or larger than one. These were rejected, and <P was redrawn until 5000 admissible values 
had been obtained for each country. 

Table 4 lists point forecasts (i.e. expected values) and prediction intervals for selected years up to 
2050. Long-range 95 per cent prediction intervals are roughly two children per woman wide. Ten 
years ahead 95 per cent intervals are 1.1 to 1.2 children per woman wide. 

The time-series model predicts an expected TFR-value up to 2050 around 1.7 children per woman, 
except for Finland, where the prediction is a low 1.5. Although this is not an impossible value, it 
is much lower than that in official population forecasts for Finland, for instance Statistics Finland 
(l.75, see Council of Europe, 2001) or the United Nations (1.85, see http : //www.un.org/esa/ 
population/publications/wpp2002 /wpp2002annextables.PDF). In this paper, we focus pri­
marily on the width of the predictive distribution, much less on its central tendency. In an actual 
fertility prediction, all long-term point predictions would have to be examined critically, for example 
by inspecting the mean number of children born to women in successive birth generations. 

Are the long-term prediction intervals in Table 4 reasonable? One may object that the interval 
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Table 4 

Simulated TFR-point forecasts and prediction intervals. 

67% interval 95% interval 

forecast lower upper interval lower upper interval 
bound bound width bound bound width 

Norway 
2000 1.85 
2005 1.86 1.72 2.02 0.30 1.55 2.21 0.76 
2010 1.83 1.61 2.10 0.49 1.37 2.48 1.11 
2015 1.80 1.53 2.16 0.63 1.23 2.63 1.40 
2035 1.72 1.33 2.23 0.90 0.90 2.84 1.94 
2050 1.68 1.24 2.25 1.01 0.77 2.96 2.19 

Denmark 
2000 1.77 
2005 1.78 1.63 1.97 0.34 1.45 2.18 0.73 
2010 1.77 1.54 2.06 0.52 1.32 2.40 1.08 
2015 1.76 1.48 2.10 0.62 1.21 2.53 1.32 
2035 1.73 1.34 2.19 0.85 0.94 2.73 1.79 
2050 1.71 1.27 2.21 0.94 0.82 2.82 2.00 

Sweden 
2000 1.54 
2005 1.61 1.44 1.79 0.35 1.29 2.03 0.74 
2010 1.62 1.37 1.92 0.55 1.12 2.30 1.18 
2015 1.64 1.32 2.00 0.68 1.02 2.49 1.47 
2035 1.66 1.19 2.16 0.97 0.76 2.80 2.04 
2050 1.67 1.16 2.18 1.12 0.69 2.83 2.14 

Finland 
2000 1.70 
2005 1.67 1.53 1.83 0.30 1.34 2.07 0.73 
2010 1.63 1.42 1.89 0.47 1.17 2.28 1.11 
2015 1.60 1.33 1.93 0.60 1.03 2.45 1.42 
2035 1.51 1.12 2.02 0.90 0.73 2.82 2.09 
2050 1.46 1.02 2.03 1.01 0.60 2.83 2.23 

bounds are rather wide. The Norwegian model predicts a 16 per cent chance of a TFR in 2050 of 
at least 2.2 children per woman, which is much higher than the European average of 1.4, but close 
to the current fertility level of developing countries such as Brazil, Lebanon, or Tunisia. The lower 
95 per cent bound in Finland in 2050 is 0.6 children per woman. Both upper and lower bounds 
are incompatible with current demographic theories for industrialized countries, one may argue. 
However, these objections are unconvincing, in our view, for three reasons. First, fertility theories 
have poor predictive performance. Keyfitz (1982) assessed various theories, and concluded that they 
have limited predictive validity in space and time, are strongly conditional, or cannot be applied 
without the difficult prediction of non-demographic factors . Fertility theories developed in more 
recent years do not fare much better (Lee, 1997, p.52; Van de Kaa, 1996, p.390). This situation is 
not specific for demography. Any generalizations about human behaviour are bound to be narrowly 
restricted to specific institutional settings or particular epochs (Nagel, 1961; Boudon, 1986; Henry, 
1987). Second, research on forecasting in other fields shows that subject matter experts often are 
too confident, in the sense that they tend to give prediction intervals that are too narrow (Armstrong, 
1985). We have no reasons to believe that the situation in demographic forecasting is very different. 
Third, the interval bounds should not be taken as probable fertility levels. On the contrary, the 95 
per cent bounds merely indicate the outliers of predicted fertility paths. Even the 67 per cent bounds 
reflect TFR-intervals with chances equal to only one in six. 
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3 Other Time Series Models 

In order to assess the robustness of the prediction intervals obtained in Section 2, we have 
experimented with several other time series models for Zr : 

• a pure AR(m )-model 
• an AR(m)-CH(l) model 
• an AR(m)-model with dummy variables. 

The results can be summarized as follows . 

Fitting an AR(m)-model or an AR(m)-CH( I) model 

A purely autoregressive model for Zr (with maximum lags equal to 5 for Norway, 2 for Denmark, 
1 for Sweden, and 2 for Finland) indeed indicated non-constant variance: using a Portmanteau Q-test 
and a Lagrange Multiplier (LM-) test, a hypothesis of homoscedastic residuals had to be rejected at 
the five per cent level for Norway, Sweden, and Finland. For Denmark, such a hypothesis was not 
rejected at the ten per cent level. When we introduced a CH( 1 )-part to the model in order to account 
for heteroscedastic residuals, the situation improved considerably for Denmark and Sweden, but 
for Norway and Finland, there were still some signs of heteroscedasticity at lag 1. A Kolmogorov­
Smirnov test hypothesis for normality could only be accepted for Norway and Denmark (at the five 
per cent level), not for the other two countries. 

Fitting an AR(m)-model with dummy variables 

Can the non-constant residual variance be captured by introducing dummy variables to the AR(m )­
model? This is the case for three countries: Finland was the exception. For the other three countries, 
dummy variables for the periods around 1918, 1944, and 1970 were introduced. A hypothesis of 
homoscedastic residuals at all lags could not be rejected (5%) for all three countries. The 95% pre­
diction intervals in 2050 turned out to be 2.7 (Norway), 3.0 (Denmark), and 3.5 (Sweden) children 
per woman wide-much wider than the intervals in Table 4. 

Based on these sensitivity tests we conclude that the ARCH-model in expression (1) gives a 
useful and reliable description of the development in the TFR in the four countries in the previous 
century. Next it remains to be seen whether the prediction intervals of this model are reasonable. 

4 Errors in Historical TFR Forecasts 

Prediction intervals determine the expected errors in the current forecast. Investigating observed 
errors in historical forecasts could provide an independent check of the expected errors. We have 
analysed the errors in historical TFR-forecasts prepared by statistical agencies in the four countries. 
Bibliographic details are given in the appendix. The help of Timo Nikander and Ossi Honkanen 
in Helsinki, Anna Qvist in Copenhagen, Jan Qvist in Stockholm, and Ake Nilsson in 0rebro is 
gratefully acknowledged. 

For Norway, we have TFR-forecasts starting in 1969, for Denmark the series starts in 1974, and 
for Sweden and Finland the starting year is 1972. Assumed TFR-values for each forecast from the 
jump-off year until 2000 were compared with observed values (Council of Europe, 2001). Most 
forecasts had more than one fertility variant, often two, or three. In that case, we included all variants 
in the data, because very few of the forecast reports contained a clear advice as to which of the 
variants the statistical agency considered as the most probable one at the time of publication. Hence, 
it was left to the user to select one of the variants. We may assume that all variants have been used, 
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although the middle one probably more often than the high or the low one (in case there were three 
variants). Below we shall use the standard deviation of the observed TFR-error. For Norway, the 
error patterns in this indicator based on all forecast variants were very close to those based on main 
variants only. For Sweden, the all-variants standard deviations were approximately 10 per cent higher 
than those based on main variants. We have 31 series of TFR-forecasts for Norway, 51 for Denmark, 
23 for Sweden, and 34 for Finland. Each series was ordered by forecast duration, with the jump-off 
year defined as duration 0. 

Since TFR-forecasts may be higher or lower than observed TFR-values, we have used the signed 
error of the TFR-forecasts, defined as the assumed minus the observed value. Therefore, a positive 
(negative) error indicates a value that is too high (too low). The purpose of the current analysis is to 
check the uncertainty in model-based TFR-predictions, in other words, the width of the model-based 
prediction intervals. Thus, for each forecast duration, we computed the standard deviation of the 
signed TFR-errors, as a measure of uncertainty. The empirical standard deviation reflects uncertainty 
in the future TFR appropriately, provided that the expected value of the TFR is predicted correctly. 
The latter assumption may be relaxed by inspecting the Root Mean Squared Error (RMSE) of the 
TFR, which adds a bias component to the standard deviation (Maddala, 1977). The empirical RMSE's 
for the four countries diverged only slowly from the standard deviations, and hence for the cases of 
Norway, Denmark, and Sweden they declined for long durations, too (although the decline set in a 
few years later than that in the standard deviation). Figure 2 plots these standard deviations. 
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Figure 2. Standard deviations of signed TFR-errors. 

Figure 2 shows that for the first years of the forecast, the standard deviations increase regularly, 
from less than 0.1 children per woman in the first forecast year (duration 0), to 0.2--0.3 children per 
woman five years ahead. Next, the patterns tend to stabilize (quite soon for Sweden, but at 10-15 
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years ahead also for Denmark and Norway). This stabilization, however, should not be interpreted 
as an indication that the uncertainty in TFR-predictions prepared since 1969 was roughly constant 
for durations longer than five years ahead. The stable pattern for durations beyond five years ahead 
in Figure 2 is a consequence of the fact that the data set is right-censored. The year 2000 was the 
last year for which TFR-errors were computed. Hence, there are very few errors for long forecast 
durations. For instance, 15 years ahead we have only 18 observations for Norway, 13 for Denmark, 
11 for Sweden, and 16 for Finland. Therefore, the long-term standard deviations in Figure 2 are not 
very reliable. At the same time, the errors at long durations all apply to the relatively stable period 
of the last ten years-see Figure 1. 

Assuming that the errors for a given duration and a particular country are approximately normally 
distributed, we can construct a confidence interval for the estimated standard deviation of that 
distribution. Table 5 gives these intervals, which were obtained on the basis of a x2-distribution with 
degrees of freedom equal to the number of observations minus 1. 

Table 5 

Estimated standard deviations in TFR-errors for forecast du­
rations of 5 and JO years, with corresponding 95-per cent 
confidence intervals in parentheses. 

Norway 
Denmark 
Sweden 
Finland 

5 years ahead 

0.308 (0.240-0.428) 
0.188 (0.152-0.245) 
0.307 (0.237-0.434) 
0.177 (0.142-0.236) 

10 years ahead 

0.417 (0.320-0.595) 
0.243 (0.187-0.348) 
0.333 (0.248-0.507) 
0.198 (0.150-0.293) 

We note that for forecasts five years ahead, errors for Norway and Sweden have considerably 
higher standard deviations than those for Denmark and Finland, even when estimation uncertainty 
is taken into account. This is probably due to the steep fall in the Norwegian TFR in the early 1970s, 
and the strong fluctuations in the Swedish TFR around 1990, see Figure 1. These factors made it 
rather difficult to prepare an accurate TFR-forecast, at least more difficult than for Denmark and 
Finland. The estimates and confidence intervals 10 years ahead still reflect this to a certain extent, 
although the (unknown) theoretical standard deviations of Denmark and Sweden are probably not 
very different from each other. 

5 Errors in Naive TFR-forecasts 

Inspection of historical official population forecasts shows that in many cases, forecasters in effect 
have assumed that the TFR would remain relatively close to its current level, even in the long run; 
see, for example, Lee (1974) for the US, Keilman (1990) for the Netherlands, and Texmon (1992) 
for Norway. This observation led Alho (1990) to propose inferring prediction intervals for the TFR 
from the errors of what he called naive forecasts, i.e. forecasts based on the nai"ve assumption that 
current levels will persist over a long time. Clearly, in times of falling fertility, demographers will 
extrapolate the decline for at least a few years, but the examples mentioned above demonstrate that 
a constant level is assumed quite soon. 

We have computed errors in the naive TFR forecasts for Norway, Sweden, and Finland for the years 
1900-2000, and for Denmark for the period 1911-2000. Hence the naive TFR forecasts for the first 
three countries are based on observed TFR levels for the years 1899-1999 (duration 0), 1888-1988 
(duration 1), 1887-1987 (duration 2), etc. This means that there are 101 errors for forecast durations 
0-50 years for Norway and Finland, and for durations 0-46 years for Sweden. For durations 47, 48, 
49, and 50 years there are 100, 99, 98, and 97 naive errors for the latter country. For Denmark, the 
error series are much shorter, in particular for longer forecast durations: the length declines regularly 
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Figure 3. Standard deviation of signed naive TFR-errors. 
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from 89 errors for duration 0 to 39 for duration 50. Figure 3 plots the standard deviations of these 
errors. We computed the errors in the log scale, but transformed the results back to the original scale. 

The Danish standard deviation falls for forecast durations longer than 20 years, because the long­
term errors apply to the period after World War II . Although this period included the baby boom and 
bust, the volatility in the TFR measured this way was less than that for the whole 20th century. The 
other three countries show tendencies of the same pattern, but much less extreme than the curve for 
Denmark. The four curves coincide quite well up to 20 years ahead. As to the long-term behaviour, 
Figure 3 suggests (ignoring the curve for Denmark) that standard deviations 50 years into the future 
are around 0.4 children per woman. 

We tested an assumption of normally distributed naive TFR-errors at forecast durations 35 and 50 
years ahead for Norway, Sweden and Finland. This assumption had to be rejected (5%) for Norway 
at a duration of 50 years, but not for the other five cases. Thus for the latter cases we can infer the 
width of the 67 per cent prediction interval as twice the standard deviation. For the case of Norway 50 
years ahead, we have to be more cautious. Not knowing the distribution, Chebyshev's inequality tells 
us that at least a share equal to (1 - 1 / k2 ) of probability mass is covered by a kcr-interval (centered 
around the mean). Hence the width of the 67-percent prediction interval in this case is estimated as 
at least .j3 times the standard deviation. 

6 Comparison of Model-based and Empirical Prediction Intervals 

Figure 4 facilitates a comparison of the expected width of prediction intervals from the three 
sources: time-series models, errors in historical forecasts, and na·ive errors. We have omitted long­
term naive errors for Denmark for reasons mentioned in Section 5. 
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Figure 4. Width of 67 per cent prediction intervals for the TFR. 

At a forecast duration of 5 years ahead, the model-based 67 per cent prediction intervals for 
Denmark and Finland agree quite well with those based on historical errors: in both countries the 
intervals are 0.3-0.4 children per woman wide. For Norway and Sweden the historical errors are 
much larger than those stemming from time-series models. One reason may be that the historical 
errors are not normally distributed. We have relatively few observations (23 for Sweden and 25 for 
Norway), and therefore the normality assumption could not be tested. In any case, one has to be 
cautious. The na"ive intervals are very close to the model-based ones. 

When we consider ten-year ahead forecasts, the number of empirically observed TFR-errors 
becomes even less (ranging from 17 to 22 for the four countries). With due caution one may 
conclude that the intervals are roughly 0.5 children per woman wide, primarily based on the time­
series models and the na"ive errors, but (for the cases of Denmark and Finland) supported by the 
historical errors. 

Medium term 

At the medium term, at 35 years into the future, historical errors cannot be used. We note that there 
is rather good agreement between model-based errors and nai"ve errors for Norway, Sweden, and 
Finland. The model-based intervals are approximately 0.7-0.8 children per woman wide for these 
three countries. 

Long term 

At 50 years into the future, the agreement between model-based intervals and naive intervals is 
rather good for the three countries for which we could do the comparison. Figure 4 suggests 67 per 
cent intervals that are approximately 0.75-0.85 children per woman wide for Norway, Sweden, and 
Finland. 
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7 Conclusion 

In this paper we have shown how time series methods may be combined with information from 
historical and na1ve forecasts when one wants to construct long-term prediction intervals for the 
Total Fertility Rate (TFR). We compared the expected accuracy of three types of TFR-predictions 
for Norway, Denmark, Sweden, and Finland. Time-series models were fitted to data for the period 
1900-2000. These resulted in model-based prediction intervals for the TFR up to 2050. For the short 
term (5-10 yrs), we analysed empirical forecast errors observed in historical population forecasts 
prepared by the statistical agencies in these countries after 1969. We also analysed medium-term 
and long-term (up to 50 years) error patterns based on so-called nai·ve forecasts, i.e. forecasts that 
assume that recently observed TFR-levels apply for the future. 

For the short term, model-based intervals and those derived from historical errors tend to be of the 
same order of magnitude, although we have to be cautious with historical errors, because our data set 
is rather limited. Naive errors provide useful information both for the short and the long run. Indeed, 
model-based intervals 50 years ahead agree quite well with nai"ve errors-based intervals, except for 
Denmark. For the latter country, the data set did not allow us to compute reliable nai·ve error patterns 
for forecast periods beyond 20 years. In general, one may conclude that historical TFR-errors and 
naive errors do not indicate that model-based prediction intervals are excessively wide. We found 67 
per cent intervals that are approximately 0.5 children per woman wide for a forecast horizon of 10 
years, and roughly 0.85 children per woman wide 50 years ahead. 

The three types of data sets show us that we have to be modest when we try to predict the accuracy 
of our TFR-forecasts, at least when we assume 

• the same variability in the future TFR as that in the past 100 years (ARCH-model) 
• the same short-term forecastability as in the past 30 years (historical errors) 
• the same long-term forecastability as in the past 90-150 years (na1ve errors). 

Some scholars may react that the model-based intervals are too wide and thus reflect too much 
uncertainty in the TFR-predictions. Our analysis does not give statistical evidence for such a conclu­
sion. If, nonetheless, one believes (for instance, on judgemental grounds) that the expected accuracy 
of TFR-predictions is better than what time series models, historical forecasts, and naive forecasts 
show, the results presented in this paper can serve as a useful benchmark in the discussion. 
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Resume 

Nous avons construit un modele de series temporelles du type ARCH pour calculer des intervalles de prediction pour 
l'lndice Synthetique de Fecondite (ISF) pour la Norvege, la Suede, la Finlande, et le Danemark jusqu' a l'annee 2050. Pour le 
court terme (5-10 ans dans le futur), on compare Jes erreurs attendues pour l'ISF avec Jes erreurs calculees dans des previsions 
demographiques historiques, preparees par des bureaux de statistique dans ces pays depuis 1969. Les erreurs a moyen terme 
et long terme (jusqu' a 50 ans dans le futur), sont comparees avec des structures d'erreur fondee sur des previsions <lites 
"naives"- c'est-a-dire, des previsions qui supposent que le niveau d'ISF observe pour une periode recente est valable aussi 
pour le futur. 

A court terme, nous trouvons que Jes intervalles de prediction calcules par le modele de series temporelles et ceux derives 
des erreurs historiques sont du meme ordre d'amplitude. Cependant, il faut etre prudent, car la collecte des donnees de base 
historiques est limitee. Les erreurs "na·ives" foumissent de I' information utile pour le court terme et le long terme. En effet, 
des intervalles de prediction fondes sur des erreurs naives a 50 ans dans le futur se comparent tres bien avec des intervalles 
fondes sur le modele de series temporelles, sauf pour le Danemark. Pour ce pays, Jes donnees de base ne nous permettent 
pas de calculer des intervalles "naifs" pour des periodes de prevision au-dela de 20 ans. En general, on peut conclure que Jes 
erreurs historiques et les erreurs naives ne montrent pas que les intervalles de prediction fondes sur des modeles de series 
temporelles du type ARCH sont excessivement larges. Nous avons constate que Jes intervalles a 67 pour cent de l' ISF ont une 
amplitude d'environ 0.5 enfants par femme a !'horizon de 10 ans, et approximativement 0.85 enfants par femme a 50 ans. 

8 Appendix: Data Sources 

Observed TFR 

The Council of Europe (200 I) publishes annual TFR-values for Norway, Denmark, Sweden, and 
Finland for the years 1960-2000. 
Chesnais (1992, Appendix 2) tabulates annual observed TFR-values for Sweden since 1855 and for 
Denmark starting in 1911. 
Brunborg & Mamelund (1994, Table la) give annual TFR-values starting in 1845. 
Turpeinen ( 1979, p.112) gives Finnish TFR-values for each year in the period 1776-1925. Those for 
later years are taken from the Statistical Yearbook of Finland. 

For Denmark, Chesnais tabulates annual TFR-values starting in 1911, and isolated data points for 
1903 and 1908. On the other hand, his Table Al.5 lists pre-1911 values for the Danish Crude Birth 
Rate (CBR). We have estimated TFR-values for the years 1900-1910 based on a linear regression 
between TFR and CBR. A plot of TFR and CBR showed a near linear relationship for the years 
1911-1940. We have used this relationship and "backcasted" the Danish TFR for the years 1900-
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1910. This way, we obtained the values and 95 per cent prediction intervals as given in Table Al. 
The TFR in Figure 1 and its first difference do not reveal any apparent anomalies in the predictions 
for the years 1900-1910. 

Table Al 

Backcasts and 95% prediction interval bounds for the TFR of Denmark, 1900-1910. 

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 

Prediction 4.07 4.07 3.99 3.91 3.94 3.86 3.88 3.83 3.89 3.83 3.71 
L95 4.01 4.01 3.93 3.85 3.88 3.80 3.81 3.77 3.83 3.77 3.65 
U95 4.12 4.12 4.04 3.96 3.99 3.91 3.93 3.88 3.94 3.88 3.77 

Chesnais (1992, p.545) reports a TFR in 1908 equal to 3.84, and in 1903 equal to 4.04. Our 
estimate for 1908 is close to Chesnais' value, while the 1903-estimate is somewhat lower. 

TFR Predictions in Official Population Forecasts 

Norway 

We have updated the data originally assembled by Texmon ( 1992), who collected, among others, 
TFR errors for the forecasts of 1969-1987 during the years 1969-1989. Updates were made based 
on Statistics Norway ( 1994, 1997, 1999). 

Denmark 

Various issues of "Befolkning og valg" published by Danmarks Statistik, viz.1983:15, 1984:20, 
1985:12, 1986:16, 1988:13, 1989:12, 1990:17, 1992:2, 1992:16, 1993:13, 1994:12, 1995:15, 1996:14, 
1997: 12, 1998: 15, 1999: 11, 2000: 11, 2001: 11. For earlier forecasts we consulted "Statistiske Efter­
retninger" issues 1978 A39, 1980 A 7, 1981 A40, and 1982 A33, and "Statistiske UndersiZ\gelser" nr. 
33 published in 1975. 

Sweden 

Jan Qvist and Ake Nilsson (personal communications) of Statistics Sweden provided us with 
assumed TFR-values in forecasts prepared by Statistics Sweden starting in 1972. Most of these 
values can also be found in the following reports published by Statistics Sweden: 
"Information i prognosfragor" issues 1972:5, 1973:6, 1974:7, 1975:6, 1976:3, 1978:5, 1983:2. Later 
forecasts have been published in "Demografiska rapporter" 1986, 1989:1, 1991:1, 1994:3, and 
2000:1. Forecasts with base years 1997, 1998, 1999 have been published at Statistics Sweden's 
home page, and in Statistical Yearbooks of Sweden issues 1998, 1999, 2000. 

Finland 

From Ossi Honkanen of Statistics Finland (personal communication) we received assumed TFR­
values in official Finnish population forecasts starting in 1972. Most of these values were annual. In 
some cases, we interpolated linearly between values given for distinct calendar years. Most of these 
values can also be found in the following reports published by Statistics Finland: 
"Statistisk rapport" issues VA 1972:7, VA 1973:6, VA 1975:12, VA 1978:17, VA 1982:5, VA 
1982:5, and VA 1985: 10; "Statistiska meddelanden" 49: 1972; "Statistical surveys" issues 52: 1974, 
64: 1979, 70: 1983; "Muistio" 91 : 1984; "SVT/OSF Population" issues 1989:3, 1992:6, 1993: 10, 
1995:9, and 1998:6. 

[Received December 2002, accepted November 2003] 
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Summary 

The Lee-Carter method for modeling and forecasting mortality has been shown to work quite well 
given long time series of data. Here we consider how it can be used when there are few observations at 
uneven intervals. Assuming that the underlying model is correct and that the mortality index follows a 
random walk with drift, we find the method can be used with sparse data. The central forecast depends 
mainly on the first and last observation, and so can be generated with just two observations, preferably 
not too close in time. With three data points, uncertainty can also be estimated, although such estimates 
of uncertainty are themselves highly uncertain and improve with additional observations. We apply the 
methods to China and South Korea, which have 3 and 20 data points, respectively, at uneven intervals. 

Key words: Mortality forecast; Limited data; Lee-Carter method. 

1 Introduction 

Mortality forecasts are traditionally based on forecasters' subjective judgments, in light of his­
torical data and expert opinions. This traditional method has been widely used for official mortality 
forecasts, and by international agencies. A range of uncertainty is indicated by high and low scenar­
ios, which are also constructed through subjective judgements. 

In the hands of a skilled and knowledgeable forecaster, the traditional method has the advantage 
of drawing on the full range of relevant knowledge for the middle forecast and the high-low range. 
However, it also has certain difficulties. First, official mortality projections in low mortality countries 
have been found to under-predict mortality declines and gains in life expectancy when compared to 
the subsequent outcomes (Keilman, 1997; National Research Council, 2000; Lee & Miller, 2001) . 
United Nations' projections for European and North American countries have also under-predicted 
life expectancy gains (Keilman, 1998; National Research Council, 2000). These errors have led to 
under-prediction of the elderly population, and particularly the oldest old. For Third World countries, 
the UN projections have come close on average for countries in Asia and Latin America (with only a 
small negative bias), but have seriously under-predicted gains in the Mideast/North Africa (National 
Research Council, 2000). For sub-Saharan Africa the projected gains have been much too great, due 
to the effects of the HIV/AIDS epidemic which could not have been anticipated. From this review of 
past performance, it appears that there may be a systematic downward bias in the traditional method, 
at least as it has been applied in this particularly historical period. 

*Research for this paper was funded by a grant from NIA, R37-AG11761. 
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A second difficulty is that it is not clear how to interpret a variable's high-low range unless a cor­
responding probability for the range is stated. The traditional method, unfortunately, cannot provide 
such a probabilistic interpretation. Nor is it clear whether the range is supposed to refer to annual 
variations or to some sort of general trend or long run average. Third, it is not clear how to combine 
the uncertainty indicated by the high-low range with other uncertainties. How is the uncertainty of 
a forecast for a region, such as Asia, to combine the uncertainties of the forecasts of the individual 
countries in the region? Do we expect some cancellation of errors across the countries? Similarly, 
how are we to use the high-low range in assessing the overall uncertainty of a population projection 
that also involves high-low ranges for fertility and perhaps migration? 

Recently, Lee & Carter ( 1992) developed a method (henceforth LC) that uses standard methods for 
forecasting a stochastic time series, together with a simple model for the age-time surface of the log 
of mortality, to model and forecast mortality. A forecast is produced for the probability distribution 
of each future age specific death. The method reduces the role of subjective judgment, since standard 
diagnostic and modeling procedures for statistical time series analysis are followed. Nonetheless, 
decisions must be made about how far back in history to begin, exactly what model to use, and how 
to treat historically specific shocks such as wars or intense epidemics. 

The method has been used to forecast mortality in a number of OECD countries. For the G7 
countries, the LC method forecasted life expectancies that are significantly higher than official pro­
jections (Tuljapurkar, Li & Boe, 2000). Tests were performed for the US, in which projections were 
formulated at earlier dates based on data available before that date, and hypothetical tests were com­
pared to the subsequent mortality (Lee & Miller, 2001). The resulting forecasts had a negative bias, 
but substantially less than the bias in the official projections of the time. The probability intervals 
were reasonably accurate. The 95% probability interval covered 97% of the subsequently observed 
life expectancies. Less complete performance tests for Canada, France, Sweden and Japan were also 
encouraging (Lee & Miller, 2001). The LC method has also been used to forecast mortality for some 
Third World countries, for example Chile (Lee & Rofman, 1994). 

Like all time series analysis, the LC method extrapolates historical data. Applications to the 
US and other G7 countries were able to draw on mortality time series extending back at least a 
half-century, and often more. This was also true of the application to Chile. For most Third World 
countries, however, mortality data are very limited. For example for China, age-specific death rates 
at the national level are available only for the years 1974, 1981 and 1990. It has often been suggested 
that the LC approach cannot be used widely for Third World countries because its data demands are 
too great, relative to what is typically available. 

This paper discusses ways in which the LC method can be used for countries with limited mortality 
data. To produce a LC forecast, four items of information are required, where the LC notation, to 
be introduced later, is given in parentheses: 1) a baseline age schedule of mortality (a(x)); 2) the 
relative pace of change by age (b(x)); 3) the overall rate of change (drift in the random walk model 
for k(t)); 4) variability about the trend in mortality decline (the variance of the innovation term in the 
random walk model). Sometimes these items may be estimated for a particular country with severely 
limited data, using methods developed in this paper. In addition, it may sometimes be possible and 
desirable to borrow information from one or more other countries that are believed to be similar in 
relevant respects. 

If age specific death rates are available for only a single year, then they can provide the baseline 
mortality schedule, and the other three items must be borrowed from another country. If age specific 
death rates are available for two years, then they can provide estimates of the baseline pattern, the 
pattern of change, and the rate of drift. One would need to borrow the variance from another country, 
but might also consider using another country for the drift and pattern of change as well, since these 
would be imprecisely estimated. If age specific death rates are available for three years, possibly 
spaced at varying intervals, as in the case of China, then in principle one can estimate all four items 
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of information and produce full forecasts with no borrowing. The new methods for doing this are the 
central contribution of this paper. In practice, estimates may be too imprecise and one might want to 
borrow information, but that would not be a necessity. 

In this paper, we will not develop the borrowing strategy, although it would also appear to be 
promising. Instead, we will consider single-country methods for dealing with incomplete data, when 
we have age specific death rates for at least three periods, ideally separated by a number of years. 

In order to apply the LC method to countries with limited mortality data, at least two questions 
need to be answered. The first is how to apply the LC method to mortality data collected at unequal 
intervals a number of years apart. The second question is what quality of results can we expect to 
derive through the LC method, when the historical data are only available for a small number of time 
points, as in the case of China. We answer these two questions in this paper. 

2 The LC Method Using Data at Single-year Intervals 

Any use of statistical time series methods to model and forecast a variable relies on an explicit or 
implicit assumption that the process generating the series is similar over the historical period, and 
in the future which is to be forecasted . The usual assumption is that after an appropriate process 
of taking differences, the resulting process is covariance stationary. The LC method also requires 
this assumption, and it may be necessary to choose the relevant historical period to comply with 
this requirement. At the same time, one should not choose the historical period in such a way as to 
minimize the variance in the series. Some kinds of change in the structure of the process over the time 
can be handled through use of special models such as GARCH (e.g., Hamilton, 1994, p.665). The LC 
model uses time series methods to make forecasts over a much longer time horizon than is usually 
the case, and consequently questions can be raised about the appropriateness of assuming structural 
similarity of the process over such long time horizons. The LC model also makes assumptions about 
similarity of demographic structure of mortality over long time periods, by treating the relative 
proportional rates of change of mortality by age (the b(x) coefficients to be defined below) as fixed 
over time. Applications of the model to industrial populations have found that in fact these relative 
rates of change were different in the first half of the 20th century than in the second half of the 
century, or alternatively that they are different at higher levels of life expectancy. Nonetheless, the 
basic LC model appears to fit the data for many populations surprisingly well. 

Let the death rate for age x at time t be m (x, t), for t = 0, 1, 2, .. . , T, and let the average over 
time of log(m(x, t)) be a(x) . The LC method first applies the singular-value decomposition (SVD) 
on {log[m(x, t)] - a(x)} to obtain 

log[m(x, t)] = a(x) + b(x)k(t) + s(x, t). (1) 

The purpose of using SVD is to transfer the task of forecasting an age-specific vector log[m(x, t)] 
into forecasting a scalar k(t), with small errors s(x, t) . Notice that b(x)k(t) is an age (row) by time 
(column) matrix and the columns are proportional. The condition for Js(x, t) I to be small is that 
the columns of {log[m(x, t)] - a(x)} be close to proportional. This condition for Js(x, t)I to be 
small appears to hold not only for the G7 countries, but more generally, except for war and other 
unusual times. The SVD is a technique to maximally utilize the over-time similarity in the age 
pattern of {log[m(x, t)] - a(x)}, by finding b(x) and k(t) to minimize L,:=o L,_:0 s

2 (x, t) . Define 

the explanation ratio to be R = 1- L,:=o L,_:0 s2(x , t)/ L,:=o L,_:0{1og[m(x, t)]-a(x)}2. Actual 
values of R for the G7 countries over the period of 1950-1994 are greater than 0.94 in (Tuljapurkar et 
al., 2000). In other words, more than 94% of age-specific mortality change in G7 countries between 
1950 and 1994 was accounted for by change in k(t). 

Ignoring the small errors s(x, t), the second stage of the LC method is to adjust k(t) to fit the 
reported values of life expectancy at time t. This stage leads to perfect description of life expectancy 
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in history, and hence to better forecasts of future life expectancy in the future. (The original LC 
method fit the observed total number of deaths in the second stage, but fitting life expectancy is much 
simpler and works just as well.) 

The adjusted k(t) is then modeled using standard time series methods. In most applications to 
date, it has been found that a random walk with drift fits very well, although it is not always the best 
model overall. Unless some other time series model is found to be substantially better, it is advisable 
to use the random walk with drift because of its simplicity and straightforward interpretation. The 
random walk with drift is expressed as follows: 

k(t) = k(t - 1) + c + e(t)a, e(t)-N(O, 1), E(e(s)e(t)) = 0. (2) 

In (2), the drift term c, which is usually negative, represents the linear trend component in the 
change of k(t), while e(t)a represents deviations from this linear change as random fluctuations . A 
linear component exists in any change, and is generally more significant in shorter periods. According 
to (1), the linear component of k(t) corresponds to a constant rate of decline for m(x , t), reflecting 
a stable reduction in mortality. The linear component of k(t) has persisted through the second half 
of the 20th century and earlier for G7 countries (Tuljapurkar et al., 2000). It should exist for other 
countries, so long as their mortality declines in a stable manner. This linear decline is the basis for 
the LC method to forecast mean mortality. Deviations from the linear change in k(t) are regarded as 
random fluctuations, modeled as e(t)a, and then simulated to produce uncertainty for the forecasts . 

For different t, [k(t) -k(t -1)] are assumed to be independently and identically distributed (i.i.d.) 
variables with mean c and standard deviation a. Parameter c is estimated as the average across all 
observed t and t - 1 of [k(t) - k(t - l)], 

....... 1 T k(T) - k(O) 
c = - L[k(t) - k(t - 1)1 = . 

T t=l T 
(3) 

Using the estimated value of c, 2, the standard error of e(t)a is estimated as 

....... 
() = (4) 

1 T 
T Llk(t) - k(t - 1) - cF . 

t=l 

The values of k(T) and k(O) in (3) are obtained only from one sample or realization of the matrix 
m (x, t). In other hypothetical realizations of history, yielding different samples, we would derive 
different sample values ofC. In other words, the cin (3) is a statistic when k(t) is a stochastic process, 
and a certain number when sample values of k(t) is used. Let the expected value ofcbe the average 
of all its sample values. The differences between the expected and sample values of c can be defined 
as errors in estimating c. Using a, the standard error in estimating c is expressed as 

Jvar(C) = ~ ~ 3r· (5) 

Because the e(t)s in (2) are normally distributed, so the distribution of statistic c is also normal 
with mean c and variance var(C), and therefore there is a standard-normal random variable rJ that 
makes 

c= c + Jvar(C)ry . (6) 

When c is used as an estimated value in forecasting, how to deal with the rJ that is a certain 
but unknown value? We know the probability for random variable rJ to take any value, and thus in 
forecasting we can simulate the process in which rJ takes all possible values. In other words, although 
it is impossible to know the exact value of c, we know the probability for c to be in any range by 
(6), and simulating rJ utilizes this knowledge into forecasting. Randomly choosing a small range of 
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17 according to the corresponding probability, and a set of sample values of e(s) that are independent 
with 17 for s = (T + 1) tot, a trajectory of forecasted k(t) fort > Tis obtained according to (2) and 
(6) as, 

t 

k(t) = k(T) + [2 - Jvar(c)17](t - T) +Ci L e(s). (7) 
s=T+I 

Note that this particular trajectory for future k(t) will depend partly on the estimated drift, c; partly 
on a randomly-simulated difference between the true c and c; and partly on the random innovations. 

A large number of such stochastically simulated trajectories for future k(t), 1000 in this paper, 
provides the basis for the stochastic forecast. The frequency distribution of these simulated trajectories 
provides an estimate of the probability distributions or confidence intervals for the forecast items 
of interest. In (7), the reason for 17 to be independent from e (s) is, as pointed out by Lee & Carter 
(1992), that the 17 describes random changes in the historical period while e(s) for s > T are in the 
future. 

One trajectory of forecasted k(t) yields a corresponding trajectory of forecasted m(x, t) from (1) 
as 

log[m(x, t)] = log[m(x, T)] + b(x)[k(t) - k(T)], (8) 

and a large number of trajectories compose the stochastic forecasts of m(x, t). Note that in (8), the 
most recently observed age-specific death rates, m(x, T), are used as the baseline mortality rather 
than a(x) as in the original LC. This approach here seems preferable because it ensures that the 
forecasts begin from the most recently observed mortality schedule (Bell, 1997). 

3 The LC Method Using Data at Unequal Intervals 

Here we begin our discussion of applying the LC method in the case of limited data, possibly 
with as few as three observations separated by unequal intervals. Obviously, standard statistical time 
series analysis cannot be used in this case. However, if we make the strong assumption that k(t) 
follows a random walk with drift, then we can use as few as three observed m(x, t) schedules to 
find all the parameters of the LC model. The trick is that because of the assumption we do not need 
to figure out the appropriate model, which would require much more data. Since the condition for 
the k(t) in the LC model to be a random walk with drift is that mortality declines stably, which has 
already been observed for many countries, both developed and Third World, the strong assumption 
is defensible. 

Now let mortality data be collected at times u(O), u(l), ... , u(T). In the case of China, u(O) = 
1974, u(l) = 1981, and u(2) = 1990. Parameters a(x) are calculated as "L,'{'=0 log[m(x, u(t))]/T. 
Applying SVD on [log[m(x, u(t))] - a(x)], b(x) and k(u(O)), k(u(l)), ... , k(u(T)) are obtained. 

For k(u(t)), however, (2) becomes 

k(u(t)) - k(u(t - 1)) = c[u(t) - u(t - l)] + a[e(u(t - 1) + 1) + · · · + e(u(t))] . (9) 

Thus, for different t, [k(u(t)) - k(u(t - l))] are no longer identically distributed. Consequently, 
estimating c and a from (9) cannot be as simple as that for i.i.d. variables. 

Because the means of the second term in the right-hand side of (9) are still zero, the unbiased 
estimate of c is obtained as: 

..... L;=1[k(u(t)) - k(u(t - l))] k(u(T)) - k(u(O)) 
c- --------

- "L,'{'= 1[u(t) - u(t - l)] - u(T) - u(O) · 
(10) 

Since the variances of the second term in the right-hand side of (9) are no longer the same for 
different t, the derivation of the standard error of e(u (t) ), Ci, becomes somewhat complicated, and is 
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derived in the appendix as 

--.2 "Li=! {k(u(t)) - k(u(t - 1)) - c[u(t) - u(t - 1)]}2 

() = T 2 

(T) _ (O) _ Lr=l[u(t)-u (t-1)] 
U U u(T)-u(O) 

,.._, "Li=I {k(u(t)) - k(u(t - 1)) - C[u(t) - u(t - 1)]}2 

"" (T) _ (O) _ L;=1[u(t)-u(t-1)]2 

U U u(T)-u(O) 

(11) 

An illustration of (10) and (11) is given in Figure 1, with three observations of k(t) shown as 
circles at times u(O), u(l) and u(2). The slope of the straight line connecting the first and last values 
of k(t) is the cgiven by (9). The intermediate observation at time u(l) is shown here as above this 
straight line. Its vertical displacement above the line is the sum of errors, i.e., the sum of realizations 
of e(t)a in the second term of the right hand side of (9), between times u(O) and u(l). The end of 
the upper dashed line shows the expected value of k(t) at time u(2), given the observed k(t) at u(l) . 
The vertical distance between this expectation and the k(t) observed at u(2) is the sum of errors 
between times u ( 1) and u (2) . Equation ( 11) describes how to calculate the strength of the errors, Ci, 
according to these observed sum of errors. 

Q 

' 
Estimated c~ 

' 1 
' sum of ', 

k(t) errors 

Figure 1. Linear trend and errors. 

sum of 

errors 

The standard error in estimating c, .JVaf(C), is obtained from (10) and (11) as 

Jvar(c) = 
var{°L,;=1[e(u(t - 1) + 1) + · · · + e(u(t))]} 
~~~~~~~~~~~~~~~= 

[u(T) - u(0)]2 

a2 a 

u(T) - u(O) ~ .ju(T) - u(O) · (l
2

) 

When [u(t) - u(t - 1)] = 1, (10), (11) and (12) reduce to (3), (4) and (5), respectively. Having 
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the values of c and a, forecasting is carried out by (7) and (8), regardless of whether we are using 
data with single-year-intervals or unequal-intervals. 

The equations presented above give the answer to the first question posed, how to apply the LC 
method to data observed at unequal-intervals. We now tum to the second question: when the historical 
data are available only at a few time points, what results can we realistically expect the LC method 
to provide? 

3.1 The Mean Forecasts Based on Data at Few Time Points 

A special feature of the LC method is that it converts the task of forecasting an age-specific vector 
log[m(x, t)] into that of forecasting a scalar k(t). We will start by discussing how data limitations 
affect the forecast of k(t) . 

First, cis the average rate of decline in k(t), both for forecasting and for describing history. Just 
as the average speed of linear movement depends only on the initial and terminal positions and their 
times, so cis determined only by the first and last values of k(u(t)) and u(t), and is independent 
of other values of k(u(t)), as can be seen in (10). Thus, the mean forecasts of k(t) depend mainly 
on the death rates at starting and ending points of the historical period, and mortality data at years 
between the two points do not matter much. This property implies that the mean forecasts generated 
by applying the LC method to countries with limited data could be just as accurate as those for the 
G7 countries, if the formers' historical data span a long enough time period. In the example of China, 
the mean forecasts are determined by C: which is the slope of the line that connects the positions of 
k(t) at 1974 and 1990. What happens in between, and how often it is observed, does not matter. 

Second, ( 12) indicates that the error in estimating c declines with the length of the historical period 
[u(T) - u(O)], not with the number of time points (T + 1) at which mortality data are available. This 
conclusion can be explained intuitively. According to (10), a given random disturbance in k(u(T)) 
or k(u(O)) will make smaller difference forC'; when the denominator, [u(T) - u(O)], is larger. In the 
example of China, ifcwere not close enough to c, the reason would be that the period of 16 years is 
not long enough, not that the 3 time points are too few. 

Turning to mean forecasts of m(x, t), (8) shows that a(x) can be omitted altogether in forecasting, 
and that mean{log[m(x, t)] - log[m(x, T)]} = mean{b(x)[k(t) - k(T)]}. We show in the appendix 
that b(x) is estimated without bias, and the errors in estimating b(x) are independent of k(t), so that 
mean forecasts of k(t) can be used to derive mean forecasts of m(x, t). The answer to a part of the 
second question, therefore, is that the LC method can provide accurate mean mortality forecasts for 
countries with historical data at only a few time points, if the earliest and latest points are sufficiently 
far apart in time. 

3.2 The Probability Intervals for Forecasts Based on Data at Few Time Points-How Accurate Can 
They Be? 

The probability intervals for k(t), such as the 95% probability interval of k(t) at different times, 
are based on (i in (11), which captures historical random fluctuations in k(t). To obtain positive (i 

from (11), the number of time points must be larger than 2. In other words, for only two years of 
data, the LC method cannot provide uncertainty forecasts, since there is no deviation from the linear 
change of k(t). 

Because (i measures random deviation from the linear component of k(t), its estimation error, 
measured by var(a), should depend also on the number of these fluctuations or the number of time 
points. Using the sampled value of a, which is the unbiased estimate of a, var(a) is described by 
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(14a) in appendix as 

(13) 
1 ,,.._ 

T 2 O'. 

2{ (T) _ (O) _ L:,= 1[u(l)-u(t-1)] } 
U U u(T)-u(O) 

Jvar(a) ~ 

Define the relative error in estimating a, or the relative error ofa, as re(a) = ,Jvar(a)/(i. Then 
for given the number oftime points, the wider the span (u(T) - u(O)), the smaller the re(a). Fixing 
the span, re(a) decreases with increasing the number of time points. Given the span and the number 
of time points, re(a) reaches minimum when sampling in equal intervals. For the shortest span of 
three years, re(a) is as high as 1 / --12 ~ 0. 7 07. 

Similar to the reason of (6), for statistic a there is a standard normal variable() that makes 

(}' =a - Jvar(a)() = a[l - re(a)()], (14) 

In forecasting, errors from estimating a can be compensated, by using the a in (14) to substitute 
a in (12) and (7) as 

.--::- ,,.._ 1 - re(a)() ,,.._ ,;;: ~ 
K(t, ()) = k(T) +LL - a 17](t - T) + a[l - re\a)()] L e(s). 

Ju(T) - u(O) s=T+l 
(15) 

How to include the full content of (15) in forecasting is an issue to be explored. In this paper our 
K (t, ()) is forecasted as an ordinary stochastic process, whose mean and variance must take certain 
value at any time. In (7), 17 may take different values in different forecast trajectories, since its effect 
is to make trajectories depart from the estimated center trend randomly, and hence can be described 
as a certain amount of uncertainty and then included in forecast uncertainty. In (15), however, e 
cannot take different values in different forecast trajectories. This is because that allowing () to 
take different values would make the variance of K (t, ()) uncertain, beyond the range of ordinary 
stochastic process. In other words, the effect of using different values of () is to make forecast 
uncertainty stronger or weaker randomly, and such an effect cannot be described as a certain amount 
of additional uncertainty to be absorbed in forecast uncertainty. For this reason, we use K (t, ()) to 
distinguish (15) from (7), to indicate that K (t, ())provides a family of statistic forecast, in which each 
member is a k(t) that is produced by (15) using a specific value of() with corresponding probability. 

The () should be independent with 17, because c is estimated without bias so that mean[C -
a ..;~(;~~~~0) 17] = c. Since L~=T+l e(s) describes random changes in the future, while () reflects 
estimating errors in using historical data, they should also be independent. 

Because the mean of K (t, ())with respect to 1J and L~=T+l e(s) is k(T) + c(t - T), independent 
of(), indicating that errors in estimating uncertainty does not affect the mean forecast of k(t). 

Taking() = 0, at which the probability density function of() reaches maximum, (15) reduces to 
(7) and produces the most possible uncertainty forecasts of k(t). Since a is the unbiased estimate of 
a, the most possible uncertainty forecast is also unbiased. To reach the most possible and unbiased 
forecast, the forecasted 95% probability intervals of k(t) should be given by (15) using () = 0, or 
simply by (7). 

Errors in estimating uncertainty would lead to uncertainty of uncertainty, which can be described 
by the 95% wide and narrow bounds of the forecasted 95% probability intervals. Using e = 1.96, 
the 95% probability intervals yielded by (15) can be called wide bounds of the forecasted 95% 
probability intervals, because they are wider than that of using() = 0. Similarly, taking() = -1 .96, 
(15) produces narrow bounds of the forecasted 95% probability intervals. Because the chance of 
having a 95% probability interval that is wider than the wide bound or narrower than the narrow 
bound is 5%, the range between wide and narrow bounds covers 95% of all possible 95% probability 
intervals. For this reason, the wide and narrow bounds obtained from using() = ±1.96 in (15) can 
be called the 95% wide and narrow bounds of the forecasted 95% probability intervals. 
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Turning to the uncertainty forecasts of m(x, t), we show in the appendix C that the errors in 
estimating b(x) are negligible, when the explanation ratio of SVD is high and the number of time 
points is small. Thus, the uncertainty of forecasts of m (x, t) derives exclusively from uncertainty in 
the forecasts of k(t). Using the 95% wide and narrow bounds of k(t), (8) provides 95% wide and 
narrow bounds of m (x, t) and of life expectancies. 

The answer to the other part of the second question is, therefore, that the LC method can provide 
uncertainty forecasts for countries with limited data. However, with only a few years of data, the 
uncertainty forecasts would be remarkably uncertain. Of course, when plentiful data are available, the 
uncertainty of uncertainty would be negligible, because re(a) approaches zero when u (T) - u (0) = T 
and T increases. 

4 Application to China 

To provide an example of the worst situation for the LC method to estimate the uncertainty of its 
forecasts, we will apply it to the case of China. We use China's two-sex combined mortality data for 
the years 1974, 1981 and 1990. Data of years 1981 and 1990 are from census of 1982 and 1990. The 
1974 data are from the China Death Cause Survey of 1973-1975, Yearbook of Chinese Population, 
1985. These data are in 5-year age groups and the open age interval covers 85 years and older. The 
Coale-Guo (1989) approach is used to extend death rates up to the group aged 105 to109 years, so 
that ages 110 and older form the open age interval. Applying SVD to these data, the explanation 
ratio is 0.96. In general, SVD tends to result in a higher explanation ratio when there are fewer 
years of data because then the number of parameters is relatively greater compared to the number of 
observations. In China, the year 1974 represented the time when both rural and urban populations 
were covered by essential but efficient health-care systems, and in the years 1981 and 1990 the rural 
health-care system collapsed due to the reform launched in 1978. Given the major change in the 
health-care system, 0.96 is a high value for the explanation ratio. 

The mean forecasts would reflect longer trend of mortality change, if there were mortality data 
before 1974 or after 1990; but they do not require data at years between 1974 and 1990. Figure 3 
compares our mean forecast of life expectancy for China to the United Nations middle projection 
(2001 ). The two forecasts are quite close overall, but our forecasts are initially higher and subsequently 
lower than those of the United Nations. Considering the impact on the health-care system from the 
urban reform in the 1990s, a life expectancy lower than our forecasts might well be observed, say 
from the 2000 census. Assuming a quick reinstatement of the health-care system at the national level, 
our longer-term forecasts could turn out to be too low. These possibilities, however, are based more 
on subjective judgments than on recorded trends. 

Without considering errors in estimating a, the unbiased uncertainty forecasts, expressed as 95% 
probability intervals for k(t) and life expectancy, are shown by the solid curves in Figures 2 and 3, 
respectively. Because the 95% probability interval for life expectancy covers more than 10 years at 
2040, the uncertainty is strong. Considering the recent changes in the health-care system of China, 
this high uncertainty is not surprising. The value ofa, however, is estimated from data at only three 
time points and hence may not be close enough to its expected value. The relative estimating error, 
re(a), is about 0.252, which is quite high. Taking this estimation error into account, the resulting 
95% wide and narrow bounds of 95% probability intervals for k(t) and life expectancy are plotted 
in Figures 2 and 3, by dashed and dash-dot curves respectively. To different readers, this may or 
may not be too uncertain, but these intervals are better than the high-low ranges, which have no 
probabilistic interpretation. 



28 N. LI, R. LEE & S. TuLJAPURKAR 

20 

Observations 

0 
~----A 

-
-20 ~--

' 
' ' ' 

-40 ' - ' ~ ' ~ ' -c 
(I) 

-60 -en 
:::I 
'C 
<( 

-80 

Forecasts: 
' -100 Dashdot--The 95% narrow bound of 95% forecasts 

Dashed--The 95% wide bound of 95% forecasts ' 
Solid--Unbiased 95% forecasts 

-120 

1980 1990 2000 2010 2020 2030 

Year 

Figure 2. Observations and 95%forecasts of k(t) of China. 

Forecasts: 
80 Dashdot--The 95% narrow bound of 95% forecasts 

Dashed--The 95% wide bound of 95% forecasts 
78 

76 

>,74 
(.) 
c: 
ca 
t)72 
(I) 
a. 
~ 70 

2 
:.:J 68 

66 

64 

62 

Solid--Unbiased 95% forecasts 
Circles--United Nations 

Observations 

1980 1990 2000 2010 

Year 
2020 

; - - ; 

/ 

; \ 

2030 

\ 

\ 

Figure 3. Observations and 95% forecasts of life expectancy of China. 

2040 

\ - -

2040 



Using the Lee-Carter Method to Forecast Mortality for Populations with Limited Data 29 

5 Application to South Korea 

Between the mortality data situation of China and the G7 countries, there are many Third World 
nations in transition from having limited mortality data to collecting death reports annually. All Third 
World countries will move through this transition sooner or later. For these countries, age-specific 
death rates are available annually in recent periods. However, such periods are often not long enough 
for the LC method to provide accurate forecasts. For these countries, the LC method can be used to 
forecast mortality by combining the recent annual data with earlier data available at unequal time 
intervals. The formulas developed in this paper apply directly to these countries, because whether or 
not the recent data are collected annually does not matter. To provide an example for using the LC 
method to these countries, we choose the case of South Korea. 

The sex-combined age-specific death rates of South Korea are available for the years 1972, 1978, 
and then annually for 1983 through 2000. Data for years 1983 through 2000 were obtained from 
the Korea National Statistical Office (http: //www.nso.go.kr/eng/). For 1972 and 1978 data were 
obtained from the United Nations (through personal communication with Thomas Buettner). The 
period that contains annual data lasts for18 years. Although it is hard to determine whether such a 
period is long enough to apply the LC method, adding data at the two earlier years improves the 
situation in any case. These data are also in 5-year age group and the open age interval covers 80 
years and older for most of the years. The Gompertz formula is used to estimate the death date for 
the age group 80-84. The Coale-Guo (1989) approach is then used to extend death rates to the age 
group 105-109 years, and ages 110 and older form the open age interval. The explanation ratio of 
the fitted SVD model is only 0.84, implying that the changes in the age pattern of mortality have 
been stronger and less regular in South Korea than in China and the G7 countries. 

The LC method uses a drift term in the random walk model to describe the linear change in k(t), 
and treats deviations of k(t) from this linear change as random fluctuations. When there are only a 
few years of data, these deviations are assumed to be random fluctuations, although it is not possible 
to rule out the presence of a nonlinear trend. In the case of South Korea, with 20 time points over a 
period of 28 years, we are on firmer ground. Figure 4 shows clearly that the k(t) did indeed change 
linearly with random fluctuations about the trend. 

If there were no random fluctuations, the linear trend in the historical change of k (t) would suggest 
forecasting future changes of k(t) along such a linear trend, as is done for the mean forecasts of k(t) 
for 2002 through 2050 plotted in Figure 4. In history, however, k(t) did not change exactly along 
the linear trend, but fluctuated around it randomly. The standard error of these random fluctuations, 
estimated as Ci, measures the amount of uncertainty around the linear historical trajectory. Assuming 
that the random disturbances in the future will resemble those in the past, the random walk model 
derives the unbiased uncertainty forecasts for k(t), as described by the 95% probability intervals and 
plotted in solid curves in Figure 4. The forecasts of k(t) simply extrapolate the historical mean trend 
and uncertainty into the future, without subjective judgments. Because mortality data are available 
at more time points and in longer period than that of China, the re(cr) is about 0.139, much smaller 
than that of China. As a result, the uncertainty of uncertainty forecast is much less than that of China, 
as can be seen in Figure 4. 

The corresponding forecasts of life expectancy, derived from the forecasts of k(t) shown in Figure 
4, are shown in Figure 5. It can be seen that the mean forecasts from using the LC method are 
significantly higher than those of the United Nations. Most of the difference can be attributed to the 
lower United Nations estimates of South Korea's life expectancy for 1980 to 1995. However, the 
United Nations forecasts would still be lower than the LC forecasts, even if the data used were the 
same. 

For China, the 50-year LC forecast is for life expectancy of 76 in 2040, a gain of about 7 years 
over the level observed in 1990. The projected pace of increase is modest, at 1.4 years per decade. 
For South Korea, the 50-year LC forecast is for life expectancy of 88 in 2050, a gain of 12 years 
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over the level observed in 2000. The forecasted pace of increase in South Korea is 2.4 years per 
decade, the rate of increase found by Oeppen & Vaupel (2002) for the record (or leader) national life 
expectancy from 1840 to 2000. Despite the historical precedent, this seems to be a very fast rate. The 
2050 life expectancy forecast for South Korea is ahead of all LC forecasts for the G7 except that of 
Japan (Tuljapurkar et al., 2000). Is this reasonable and plausible? Or would we expect the pace of 
improvement in South Korean mortality to decelerate as it approached the life expectancy levels of 
the leader countries? 

This question raises the general issue of whether mortality forecasts should be done not country by 
country, but rather for collections of countries in some coordinated way. One possibility is to model 
mortality change in individual nations as a process of convergence toward a trending target. That 
target could be tied to international trends, but reflect individual features of each country. The process 
of convergence would be subject to disturbance, as would the evolution of the international trend. 
Lee (2002) has developed a preliminary analysis of this sort. However, it is important to note that 
in these LC forecasts, Japan remains in the leader position, well ahead of South Korea. Therefore, 
the case for deceleration would have to be based solely on the plausibility that South Korea could 
overtake the leading European countries by 2050, which it is now trailing by 2 to 4 years. 

6 Discussion 

The methods developed here extend the LC approach to situations in which mortality data are 
available at only a few points in time, and at unevenly spaced intervals, situations often encountered 
in statistics for Third World countries. We have shown that useful forecasts can still be derived, both 
for the mean and for the probability interval about the mean forecast. Other modifications of the 
approach, not developed here, would include borrowing missing information from similar countries, 
and forecasting mortality change as a process of convergence within an international system. 
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Resume 

La methode Lee-Carter de modelisation et de prevision de Ia mortalite a prouve son bon fonctionnement avec des series 
de donnees existant sur une longue periode. Nous envisageons ici son utilisation lorsqu'on ne dispose que de quelques 
observations a intervalles irreguliers. En supposant que le modele sous-jacent est correct et que l'indice de mortalite suit 
une marche aleatoire avec derive, nous trouvons que cette methode peut etre utilisee avec des donnees eparses. La prevision 
centrale depend alors principalement de la premiere et de la demiere observation. Elle peut done etre generee a partir de 
deux observations seulement, de preference pas trop proches dans le temps. Avec trois points, on peut aussi estimer I'alea, 
bienqu'un tel estimateur de I'alea soit lui-meme tres aleatoire. 11 s'ameliore cependant lorsqu'on dispose d'observations 
supplementaires. Nous appliquons notre methode a la Chine et a la Coree du Sud, pour Jesquelles nous avons respectivement 
3 et 20 points a intervalles irreguliers. 

Appendix 

A. Estimating variance for independently distributed variable e(u(t)) 

Similar to the single-year-interval situation, we start from describing E{[k(u(t)) - k(u(t - 1)) -
c[u(t) - u(t -1)]]2}, using the c estimated from (10). Since [k(u(t)) -k(u(t-1))] are independently 
distributed, so that which one to be the first does not matter and we may focus on t = 1. Suppose 
that fort = 1 the second term of the right-hand side of (9) is [e(l) + e(2) + · · · + e(m)], and the 17 
that covers in the whole historical period includes e(l), e(2), ... , e(n), there is 

E{[k(u(l)) - k(u(O)) - r:,;=l~k(u(t)) -k(u(t - l))][u(l) - u(0)]]2} 
Lt=l [u(t) - u(t - l)] 

= E{[k(u(l)) - k(u(O)) - c[u(l) - u(O)] -

(r:,;= 1 ~k(u(t)) - k(u(t - l))] _ c)[u(l) _ u(0)]]2} 
L,1= 1[u(t) - u(t - 1)] 

= E{[a f,e(i) - [r:,;=l~k(u(t)) -k(u(t - l))] - c][u(l)- u(0)]]2} (la) 
i=l L,1= 1[u(t) - u(t - 1)] 

= E {[at e(i) _ r:,;=1[k(u(t)) -;(u(t - 1))] - c[u(t) - u(t - l)] [u(l) _ u(0)]]2} 

i=l L,1=1[u(t) - u(t - l)] 

= E {[at e(i) - ma L,7=1 e(i) ]2} 
i=l n 

()2 

= -E{[(n - m)(e(l) + · · · + e(m)) - m(e(m + 1) + · · · + e(n))]2}. 
n2 

Notice that all e(i) in the last row of the right-hand side of (la) are i.i.d. variables and are different 
from each other with respect to i, all cross terms, e(s )ei t, shall disappear. Therefore 

E{[k(u(l)) - k(u(O)) - c[u(l) - u(0)]]2} 

()2 
= 2 E{[(n - m)2(e2(1) + · · · + e2(m)) + m2(e2(m + 1) + · · · + e2(n))]} 

n 

= (n - m )2nw2 + (m )2(n - m)a2 
n n 

n-m 
= (--)ma2 

n 

= [1 - u(l) - u(O) ][u(l) - u(O)]a2. 
u(T) - u(O) 

(2a) 
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Because which [k(u(t)) - k(u(t - l))] to be used as the first does not matter, (2a) applies to any t: 

E {[k(u(t)) -k(u(t - 1)) -c[u(t) - u(t -1)]]2 } = [1- u(t) - u(t - l) ][u(t) - u(t - l)]CT2 . (3a) 
u(T) - u(O) 

Sum (3a) through all t and divide the coefficient of CT 2 on both sides, there is 

2 L;=1[k(u(t)) - k(u(t - 1)) - c[u(t) - u(t - 1)]]2
} 

CT = E{ T 2 • 
u(T) _ u(O) _ L:,=1[u(t)-u(t-l)J 

u(T)-u(O) 

(4a) 

Therefore 
..-.2 L;=l {k(u(t)) - k(u(t - 1)) - c[u(t) - u(t - 1)]}2 

CT = T 2 ' u(T) _ u(O) _ L:,=1[u(t)-u(t-l)J 
u(T)-u(O) 

(Sa) 

is the unbiased estimate of CT 2 . 

B. Errors in estimating Ci 

Let 
v(t) = {k(u(t)) - k(u(t - 1)) - qu(t) - u(t - 1)]}2

. (6a) 

From (3a), v(t) includes [1 - u~~i)~~~~)][u(t) - u(t - l)] squared i.i.d. variables that are assumed 

normal with mean zero and variance CT 2 . Thus, v(t)/CT2 obeys the Chi-square distribution with the 
degree of freedom [1- u(t)-u(t-l)][u(t) - u(t - l)]: u(T)-u(O) 

v(t) u(t) - u(t - 1) --x 2 ([1 - ][u(t) - u(t - l)]). (7a) 
CT 2 u(T) - u(O) 

Therefore, 

t v(tLX2(t[1 - u(t) - u(t - l)][u(t) - u(t - l)]) = 
t=l CT2 r=l u(T) - u(O) 

and 

X2(u(T) - u(O) - L;=l[u(t) - u(t - 1)]2 ), 
u(T) - u(O) 

var[t v(t)] = 2{u(T) _ u(O) _ L;=1[u(t) - u(t -1)]
2 

}. 

t=l CT 2 u(T) - u(O) 

According to (Sa) and (9a), the variance of statistic Ci2 is obtained as 

CT2 T v(t) 
var(Ci2

) = var[ r L -] = 
(T) _ (0) _ L:,=1[u(t) - u(t - l)J2 _

1 
CT2 

Thus 

U U u(T)-u(O) 1-

2CT 4 

u(T) _ u(O) _ L.:;=1[u(1)-u(1-l)J
2 

· 
u(T)-u(O) 

2 2 
T CT • 

u(T) _ u(O) _ L:,=1[u(t)-u(t-l)J2 

u(T)-u(O) 

(8a) 

(9a) 

(lOa) 

(I la) 
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On the other hand, statistic a can be assumed normally distributed approximately 

a~ a+ Jvar(a)e, e-N(O, 1). 

Because that a can also be written as 

a= J1li. ~ [a2 + Jvar(a2)e] ~ (]' + Jvar(a
2

) e, 
2a 

the standard error ofa is obtained from (l la)-(13a) 

Jvar(a) = 
1 

T 2 (]'. 

2[u(T) _ u(O) _ L:,=1[u(1)-u(1-l)] ] 
u(T)-u(O) 

(12a) 

(13a) 

(14a) 

Because (13a) describes the distribution of a positive variable (a) as normal, it is not exact and 
will make (14a) approximate. To examine the accuracy of (13a), we choose a = 1 and randomly 
select 1000 values of e(t) as the sample values of (k(t) - k(t - 1) - C) to simulate 1000 values ofa 
using ( 4 ), for each case of using data in 2 to 100 single-year intervals. Meanwhile, we analytically 
calculate the distribution of a using (12a) where Jvar(a) is given by (14a). Comparing values a 
from simulating and analytical calculation, Figure 6 indicates that (13a) is accurate. Substituting a 
by a will make (14a) further approximate, but derives the relative error of a, re(a) = Jvar(Cl)/a. 
Comparing to simulated values of re(a) that are obtained from simulated a, Figure 7 shows the 
analytical calculated re(a) given by (14a) where a is substituted by a is also accurate. 
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C. Errors in estimating a(x) and b(x) 

In order to discuss errors in estimating a(x) and b(x), their expected values must be defined. 
Viewing the values of m(x, t) as from one sample, the corresponding values of a(x), b(x), k(t) and 
E(x, t) in (1) are also from this sample. The values of m(x, t) would be different in other samples, 
so that (1) would produce different sample values of a(x), b(x), k(t) and E(x, t) in other samples. 
Let expected values of a(x) and b(x) be corresponding averages of all sample values, the errors in 
estimating a(x) and b(x) can be defined as the differences between sample and expected values. 

Without enough sample values of a(x) and b(x), their expected values cannot be obtained and 
therefore assumptions have to be introduced. For example, in assessing the errors of estimating c, 17 
in (2) are assumed as i.i.d. variables. In order to assess errors in estimating a(x) and b(x), E(x, t) in 
(1) have to be assumed as i.i.d. variables over time t, and independent across age x. In fact, these 
assumptions have already been used in applying SVD, because SVD minimizes L,'{'=1 L,:,0 t:

2 (x, t), 
and terms E(x, t)E(y, s) are ignored. 

Noticing that the LC method uses k(t) to explain m(x, t) in history and forecast m(x, t) in the 
future, k(t) and m (x, t) can be regarded as independent and dependent variables respectively. Observ­
able variable values may be common, but not necessary. In structural equation models, for example 
(Agresti & Finlay, 1997, pp.634-638), independent and dependent variables are unobservable but 
measured using factor analysis on other observable variables. In terms of structural equation model, 
k(t) is a latent variable that describes the underlying force of mortality change, and SVD is used to 
measure the values of k(t) from observed m(x, t). From this point of view, although values of a(x) 
and b(x) are estimated by SVD, they can be re-estimated using ordinary least square (OLS) on the 
unequal-interval version of (1) for each x separately, 

log[m(x, u(t))] = a(x) + b(x)k(u(t)) + E(x, u(t)). (15a) 
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In (15a), values of log[m(x, u(t))] are observed, of k(u(t)) are measured by SVD, and s(x, u(t)) 
are assumed i.i.d variables. The reason of using OLS is that its estimates of a(x) and b(x) are 
identical to that of SVD, since otherwise one of the SVD or OLS does not minimize its target 
function. There are three reasons of doing the re-estimation. The first one is that it interprets a(x) 
and b(x) as unbiased estimates in terms of OLS. The second reason is this re-estimation points out 
that the errors in estimating a(x) and b(x) can be assumed independent from k(t), because these 
errors come from s(x, u(t)) that are orthogonal to k(t) according to SVD. The third reason is that 
the re-estimation assesses errors in estimating a(x) and b(x) (e.g., Fox, 1997, p.115) as 

a'}(x) 
var(a(x)) = u(T) _ u(O), (16a) 

(17a) 

(18a) 

Equations (16a)-(18a) show that var(a(x)) and var(b(x)) come from the SVD errors s(x, u(t)) . 
Involving estimating errors in a(x) and b(x), therefore, is to take the SVD errors into account. By 
doing so, potential improvements, in explaining historical change of m (x, t), would be to reduce the 
(1-R) unexplained fraction left by SVD to some extend, which may not be necessary when the R is 
close to 1. To do so, a'}(x) needs to be precisely estimated, which is impossible for using data at a 
small number of time points. Therefore, involving estimating errors in a(x) and b(x) is an issue that 
is sophisticated when the SVD explanation ratio is high, and difficult when the number time points 
is small. 

[Received December 2002, accepted November 2003] 
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Summary 

In this paper we examine how the Lee-Carter model fares with Swedish data for the period 1901-2001 
and for segments of this period. We have choosen to censor ages less than age 40 as those ages only are of 
marginal interest to the forecast. At age 40 some 98 to 99 percent of the birth cohorts are survivors. In 
the study we only consider the unweighted kt estimates. The Lee-Carter model provides very good fits 
to the data. When splitting up the base period there seems to be an interaction beween the age and time 
components of the model. In order to deal with the different phases of falling mortality for males and 
females possibly one should choose the past 25 years as a base in the model. Selecting the base period is 
however a judgmental issue depending on the main focus of the forecast. Is it long-term, short-term or, 
as in Sweden, a combination of both? 

Key words: Mortality; Forecasting; Lee-Carter model; Trend shifts. 

1 Introduction 

In 2001 , the life expectancy in Sweden reached 82.1 and 77.6 years for females and males, re­
spectively. In a temporal perspective this means that life expectancies increased by about 25 years 
since 1900. This historically unprecedented advance in longevity has bestowed upon us longer lives 
and better opportunities for realizing our full potential as human beings. At the same time, however, 
this development also imposes its challenges. Over time, falling fertility and declining mortality 
have resulted in an aging population; the proportion of old people is now steadily increasing in the 
industrialized world. This is a new social and economic reality to which society is adapting itself. 
As a result, projecting the old age population is a more important endeavor than it used to be and 
mortality forecasting has come more into focus. 

In the context of making population forecasts , Statistics Sweden faces the dual task of making 
both long and short term projections. For this reason it is necessary for us to focus on both short and 
long term developments in mortality. 

Existing methods for making population projections naturally fall into three categories: (i) ex­
trapolation of mortality trends without considering causes of death, (ii) cause of death specific 
extrapolations, and (iii) extrapolations that build on factors such as changing life styles and advances 
in medicine among other things. Most institutions working with population projections undoubtedly 
work with these three aspects of mortality change albeit the third one can have more a character of 
speculation. 

*Working Paper presented at the seminar on "How to deal with uncertainty in population forecasting?" in Vienna, December 
12-14,2002 
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In addition to several relatively simple time series models for projecting age-specific mortality, a 
new ingenious time series model has been suggested by Lee & Carter (1992). This model involves 
partly a time invariant mortality schedule, partly age-specific and time-specific parameters which 
provide a temporal adjustment to the mortality schedule and hence provides a temporal description 
of age-specific mortality. This model also accommodates the application of a random-walk model 
for portrayal of the temporal stochastic effects of mortality. It is generally believed that the best 
approach to estimating the model is to make use of long time series of age-specific mortality. 

Wilmoth (1993) has proposed a weighted estimation procedure for the Lee-Carter model. In the 
recent past the interaction between age-bound and time-bound changes have been discussed in the 
literature (Carter & Prskawetz, 2001; Booth, Maindonald & Smith, 2002). 

In this paper we examine how the Lee-Carter model operates with Swedish data for the period 
1901-2001. The first part of the paper is dedicated to a description of how age-specific mortality by 
sex has changed over time. To this end we have made use of calendar year experiences for the above 
mentioned period. In the second part of the paper we apply the Lee-Carter model to the data. This 
application involves that we make use partly of the complete time series of data, partly to segments 
of the time series. This gives us an opportunity to discuss how the estimated parameters depend on 
the choice of time period. Although the application is limited to Swedish data, we believe that it has 
relevance in the context of other mortality experiences as well. 

The last part of the paper addresses issues concerning application of the Lee-Carter model to age 
and cause specific mortality. 

2 Data and Method 

The analysis of mortality and trend shifts is based on yearly central death rates by sex for the 
period 1901-2001. The central death rates have been estimated as 

l d~ m =------
x (P~=~ + PD/2 

where d~ is the number of deaths at age x (end of year) in calendar year t, P~ is the population aged 
x December 31 in year t. 

For the description of age-specific mortality, the Lee-Carter method (Lee & Carter, 1992) is 

ln(mx,r) =ax + bxkr + ex,r. 

ax age-specific constants describing the general pattern of mortality for the whole base period 
k1 index of the level of mortality capturing the main time trend in death rates 
bx age-specific constants describing the relative speed of change in mortality at each age 
ex ,r is an error term. 

To obtain unique parameter estimates, ax is determined as the mean of ln(mx,r) over time for 
each x. The sum of bx for all xis set to 1, and the sum of k1 for all t to 0. To find a least squares 
solution, the singular value decomposition (SVD) method was applied to the normalized matrix 
of death rates (Good, 1969). The first column vectors of the returned decomposition matrices and 
leading value were used. In calculating the parameter estimates the SVD subroutine in the SAS 
(IML) software package was applied. In this study, we only consider unweighted kr. 

In this model, the time factor k1 is intrinsically viewed as a stochastic process, and is found to be 
accurately modeled by a simple time series model 

kr = kr-1 - Z +er 
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where z is a constant average rate of decline, and e1 is a random term whose statistical properties are 
estimated from the data. This particular aspect of the model is not discussed nor used in the paper. 

3 Mortality Decline in Sweden 1900 to 2001 

In 1900, the life expectancy for females was 53.7 years. In the year 2001 it had increased to 82.1 
years. For men the similar increase was from 50.8 to 77.5 years. During this period the average 
increase in life expectancy per calendar year was 0.28 for females and 0.26 for men. In reality, 
however, the increase in life expectancy was more pronounced before 1950 than after (table 1). 
Before 1950 the average increase in life expectancy per calendar year was 0.38 year for both males 
and females, with a steady sex differential of about 3 years. 

Table 1 

Life expectancy at birth and at age 65 and average annual increase by sex. 

Life expectancy Life expectancy 
at birth at age 65 

Year Males Females Males Females 

1900 50.8 53.7 12.1 13.0 
1950 69.8 72.4 13.5 14.3 
1980 72.8 78.9 14.3 18.0 
2001 77.6 82.1 16.9 20.1 

Average yearly increase in remaining life expectancy f or periods between 
1900 and 2001. 

at birth at age 65 

Period Males Females Males Females 

1900-2001 0.26 0.28 0.05 O.Q7 
1900-1950 0.38 0.38 0.03 0.03 
1951-2001 0.15 0.19 0.06 0.11 
1951-1980 0.10 0.21 0.02 0.12 
1981-2001 0.23 0.15 0.12 0.10 

From 1950 and onwards the yearly increase in life expectancy slowed down (figure 1). For males 
it almost came to a standstill during the 1960s. Beginning about 1980 we saw a new trend shift 
once again involving a rapidly increasing life expectancy for males. In 1980, the difference in 
life expectancy between males and females had grown to six years. After 1980 the male-female 
differential in life expectancy abated and in 2001 had declined to 4.5 years in favor of females. 

The remaining life expectancy at age 65 shows clear trend shifts in 1950 and 1980. After 1950 the 
increase in life e6s slowed down for males. From 1980 and onwards, the increase in e6s for males 
gained some momentum. 

Figures 2 and 3 give an overall portrayal of a century of mortality decline in Sweden. The data 
is by single-year ages for ages 10-99 years. In spite of the massive amount of detail and random 
fluctuation, the overall picture is one of a smooth temporal development. The Spanish Flu left a 
noticeable footprint in 1918. With few exceptions, the mortality curves for the different ages follow 
each other with but few crossovers; especially for ages between 50 and 90. At higher ages, random 
fluctuations make it difficult to identify the different curves from each other. 

Up to 1950 the mortality decline was essentially the same for males and females with rapid 
declines at younger ages and a slower decline among the elderly. Falling rates of infectious diseases 
and diseases of the respiratory organs account for this improvement. Among the elderly the mortality 
decline was slow, especially for males. 

From 1950 and onwards, we see a clear trend shift. For males the mortality decline stopped and 



40 

90 

30 

20 

10 

0 

H. LUNDSTROM & J. QVIST 

65 

__:__.------:-; 75 

l.-....;....-~--""""""'~=== 85 

1900 1920 1940 1960 1980 2000 

Figure 1. Life expectancy at birth and at ages 30, 50, 65, 75 and 85: Sweden 1900-2001. 

turned into an increase at ages between 30 and 55 . For females a more pronounced mortality decline 
started at all ages in 1945. For middle-aged males the increase in mortality was mainly due to 
increases in heart and vascular diseases. 

From the end of the 1970s there was another trend shift. Mortality rates for males started to 
decline once more, possibly due to health related information and a change toward a more healthy 
life style with fewer smokers, a reduction in alcohol consumption, improved dietary habits, and 
general improvements in the health sector. For middle aged females, the rapid mortality decline 
originating during the mid 1930s slowed down around 1960. 

The overall picture is that the age pattern of mortality has changed over time. On the whole, a 
linear decline in age specific mortality on the logarithmic scale is only visible for shorter periods. 
For females however a linear trend in mortality decline seems approximately true since 1960. For 
males, a linear trend seems to have prevailed only during the past 20-25 years. 

Fitting the Lee-Carter Model 

The above-mentioned descriptive analysis of mortality changes in Sweden between 1901 and 
2001 is now reviewed by means of recourse to the Lee-Carter model. To this end, we study how 
the unweighted estimates of k(t) vary over time. In passing, it must be noted that estimates of b(x ) 
and k(t) are complimentary, that is, it is the product of the two that brings forth the time changes in 
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age-specific mortality. To begin with, we study the estimates with respect to the period 1901-2001. 
This set of estimates of b(x) and k(t) forms the basis for various comparisons with corresponding 
estimates for other time periods. 

Figure 4.1 shows k(t) for calendar years 1901-2001 (all ages involved). It will be appreciated 
that k(t) for both males and females displays an obvious linear trend. In consequence, it may be 
concluded that age-specific mortality (in the sense of single-year age central death rates) has fallen 
nearly exponentially over time. The broken linearity around 1918 is attributable to the well-known 
Spanish flu. A close inspection of figure 4.1 also reveals that mortality fell the fastest around the 
middle of the century and that, on the whole, the drop in mortality was faster for females than for 
males . These results tie in very well with the descriptive analysis. 

Figure 4.2 shows estimates of the age-specific component b (x) . The figure shows, as indeed is well 
known, that the mortality decline was more pronounced for younger than for older people. Clearly, 
during the 20th century, the drop in mortality for a life aged 1 was several times that of a life aged 
70, for example. 

Figures 5.1 and 5.2 show observed central death rates as well as rates fitted from the model. 
The goodness of fit for the unweighted estimation process brings forth some discrepancies. The 
progression of k(t) provides a better fit to younger than to older ages. The most visible discrepancy 
is at old age for men as well as for women. Projecting the old age population as correctly as possible 
is important to us. A weighted estimation process may make up for the lack of fit relative to the 
unweighted process (Wilmoth, 1993). In the following, we have instead choosen to censor ages less 
than age 40. The reason for this is that the spectrum of diseases is more stable or homogeneous at 
ages 40 and over; in fact, during the past decades, mortality changes at ages less than 40 have had a 
decreasing impact on the projected population. Indeed, in the Swedish life table for the year 2000, 
at age 40 some 98 or 99 percent of the birth cohorts are survivors. 

When disregarding mortality below age 40, the fit provided by the model was somewhat improved. 
Nevertheless, several departures from a "good fit" remained (figures 4.3, 4.4, 5.3 and 5.4). 

Changes during the.first half of the 20th century, 1901-1951 

During the first half of the 20th century, the mortality index k(t) for ages 40 and over decreases 
much the same way for males and females . The exception is for 1918 on account of the Spanish flu. 
The index accelerates somewhat toward the middle of the century (figures 4.5 and 4.6). 

The age-specific modulation b (x) is nearly the same for males and females. The reduction in mor­
tality is almost exclusively at ages between 40 and 65. At ages above 65, the reduction is more or less 
insignificant. Stated otherwise, at ages where chronic diseases establish themselves, the reduction in 
mortality is but slight. It is noticeable that the reduction in mortality, partly due to effective treatment 
of infectious diseases, mainly is a phenomenon among those aged 40-60. 

Figures 5.5 and 5.6 display the small differences between observed central death rates and those 
fitted from the model. Generally, the unfolding of k(t) is the same at all ages in the chosen age 
interval. Hence, the unweighted Lee-Carter model provides an unusually close fit at ages 40-90. 

The first half of the 20th century involves changes that sometimes are described as the epidemiolog­
ical transition which involves that mortality due to infectious diseases and diseases of the respiratory 
organs fall precipitously. During this time period the life expectancy for men increased from 51.6 to 
70.0 years and for females from 54.1 to 72.7 years. 

Changes1951-2001 

During the second half of the century, k(t) follows a linear and smooth development for females 
(figure 4.7). The fall in mortality for women aged 40-90 is steeper than during the previous fifty-year 
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Estimates based on data for ages 0-95 
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Estimates of parameters based on data for ages 0-95 
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period. For males the time changes are considerably different. During most of the period there is no 
fall in mortality for men. However thirty years into the period the index drops markedly. The changes 
in cause of death structure for both men and women are, in the first place, due to falling incidences 
of cardio-vascular diseases. This characterizes the latest unfolding of the epidemiological transition. 

The age effects for this period stand out as very different from those of the first half of the 20th 
century. A peak of pronounced age effects is visible at steadily increasing ages. For females the 
transition toward lower mortality has its foundation at ages 70-80 years. For males this foundation 
is centered among the middle-aged. Nevertheless, pronounced age effects are also visible for men at 
higher ages. 

The fit afforded by the Lee-Carter model is very good for both males and females. This despite 
the fact that the unfolding of k(t) for males varied a great deal (figures 5.7 and 5.8). 

Fundamentally, during the second part of the century the life expectancy for females increased 
from 72.7 to 82.1 years while for males the increase was from 70.0 to 77.6 years. In other words, 
the life expectancy for females increased a great deal more than for males. The differential in life 
expectancy between the sexes is now about 4.5 years. Some 20 years ago it was as much as 6 years. 

In order to arrive at a clearer picture of mortality trends during the latter part of the 20th century, 
we have divided this period into two segments; namely the periods 1951-1981 and 1981-2001. What 
demands this division of time is mainly the mortality changes affecting males. For women, there is 
not much difference in parameter estimates between those two time periods. 

1951-1981 

During this period the mortality index k(t) falls very slowly for males (figure 4 .9). The fall for 
females however is significant and maintains strong linearity. On the other hand, the age factor b(x) 
is now altogether reversed relative to estimates for previous periods. In as much as b(x) now takes 
on negative values, signifying increasing mortality, the scale on which b(x) is measured is much 
different from diagrams where k(t) declines. The increase in mortality is mainly for those aged 
40-55 years. Around age 70, estimates approach 0 from the positive side indicative of a very slight 
fall in mortality. At most ages estimates of b(x) are relatively high, something that is balanced by 
decreasing estimates of k(t) . The fall in mortality at the highest ages however is on par with what 
has previously been observed. For women the age factor effects are smoothly distributed, centering 
at ages around 70. 

1981-2001 

Once again, in recent years the mortality index has taken on a linear and decreasing form for both 
males and females. The fall is less obvious for females than for men. A tampering effect is found for 
females during the most recent years (figure 4.11). 

The age factor for males (figure 4.12) shows a relatively strong effect at ages up to 70-80 years. 
For females such effects seem to be located at ages as high as 80. At higher middle-ages, age effects 
for women are relatively weak. 

4 Summary and Commentary 

In Sweden there was a substantial drop in mortality at all ages during the 20th century. Throughout 
this period it was mortality among the youngest that fell the most. Largely, males and females share 
this development. Sweden has changed from being a nation with high to one of low mortality. Similar 
developments are found for the majority of industrialized countries. 

As a result of changes in mortality during this century, life expectancy at birth has increased by 
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some 25 to 30 years. Increases in life expectancy were more pronounced during the first half of the 
century than during the latter. In particular, females have come to enjoy much longer life expectancies 
than males. This change however has mostly taken place during the latter half of the century. This 
effect is largely due to falling mortality at higher ages, something that materializes when studying 
changes in the remaining life expectancy at adult ages. 

The determinants behind this improvement primarily fall into two different categories. In the first 
place comes a reduction of infectious diseases during the first part of the century, something that 
mostly benefited younger persons. Improved and more nutritious diets along with improved sanitary 
conditions and housing, supplemented by advances in the treatment of infectious diseases underlie 
this development. Nevertheless, some diseases such as pneumonia and certain specific infectious 
diseases remained responsible for sustained mortality. 

In the second place it is observed that the reduction in chronic diseases during the second part of 
the century to an increasing extent involves the aged population. This drop is mainly due to reduced 
illness from cardio-vascular diseases. Fewer smokers, more healthy diets and increased physical 
activity together with advances in medicine are thought to underpin this development. 

The Lee-Carter model is widely applied for the purpose of projecting mortality. The model involves 
a three-stage process of application. These steps build on a base model, weighting of parameters and 
extrapolation. In this paper we have limited ourselves to working with the unweighted model and 
performed an explorative analysis. We believe that working with unweighted parameters facilitates 
a better understanding of discrepancies that arise from working with different time periods. In this 
perspective, we have primarily focused on mortality at ages above 40 since k(t) is more consistent 
for such ages. 

The unweighted Lee-Carter model provides very good fits to Swedish mortality over extended 
time periods. Nevertheless, it also has its weak sides. 

When estimating the parameters in the model using the whole 20th century as a base period, the 
structure of the constant b(x) estimates reflect a general age structure for the whole period. Splitting 
up the base period, the drop in mortality changes its main age location from younger ages during the 
early part of the century to older ages toward the latter. This suggests an interaction between b(x) 
and k(t). Possibly this effect can be lessened by application of the estimation procedure suggested 
by Wilmoth (1993). 

Another problem concerning estimation of the model is that the reduction in cardio-vascular 
diseases has been somewhat irregular. While, at the beginning of the 1950s, the risks of cardio­
vascular diseases among females declined fast over time, such a development did not take place for 
males. Instead, such male mortality risks increased for some decades. Possibly improved economic 
conditions during this period involved a range of negative health consequences. Increased use of 
tobacco and alcohol paired with employment demanding less physical activity than before is thought 
to have left its marks on the mortality development. 

Health agencies and news media began to inform the public about the risk factors underlying 
cardio-vascular diseases as a result of extensive epidemiological and medical studies. However, it 
was not until the end of the 1970s that clearly visible changes in the health behavior of males began 
to surface. Today the proportion of smokers among Swedish men is among the lowest in the world, 
about 20 percent. In terms of estimating future mortality trends it is necessary to consider the different 
phases of mortality transition for males and females; the distance between these phases is about 25 
years. 

The Lee-Carter Model as a Means of Projecting Mortality 

Our analysis of Swedish mortality suggests that using the past fifty years as a base period for the 
Lee-Carter model is preferable to making use of an entire century of mortality change. This choice 
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is motivated due to the fact that main drops in mortality come from two different sources, namely a 
reduction in infectious diseases and a reduction in chronic disease. Furthermore, in order to deal with 
the different phases of falling mortality for males and females, one should possibly limit the focus to 
the past 25 years. Besides, males who began a downward mortality transition later than females with 
respect to chronic diseases have recently experienced deeper drops than females. This we believe is 
especially called for when making mortality projections for Sweden in the short and medium term. 
On the other hand, we recognize the need for the length of the base period to be reasonably on par 
with the length of the projection period which extends to 2050. 

The Lee-Carter model is sometimes used for making long-term extrapolations of life expectancies 
(periods that extend more than 50 years into the future) . The base for making such extrapolations 
is also lengthy and often covers the entire 20th century. When little consideration is given to the 
time-bound changes in the distribution of causes of death, perhaps it is justified to say that what 
underlies the extrapolation is an assumptive improvement in health behavior and living styles. What 
base period one should choose depends on the objective of the forecast. If it is primarily a long term 
forecast of life expectancy, irregular short term trends are not so important. On the other hand, in a 
short term forecast they can be crucial for calculations such as the tendency of stagnation in mortality 
decline for females in the late 1990s. 
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Resume 

Dans cet article nous examinons comment le modele Lee-Carter se comporte avec Jes donnees suedoises pour la periode 
1991-2001 et pour des parties de cette penode. Nous avons choisi d'exclure Jes ages en dessous de 40 ans car ces ages ont 
un interet marginal pour la projection. A 40 ans, de 98 a 99% des membres d'une cohorte sont encore vivants. Dans J'etude 
nous considerons uniquement Jes estimateurs non ponderes. Le modele Lee-Carter foumit de tres bons ajustements pour Jes 
donnees. En divisant la periode de base ii semble qu'il y ait une interaction entre Jes composantes age et temps du modele. 
Afin de tenir compte des differentes phases de chute de la mortalite pour Jes hommes et Jes femmes, on devrait choisir Jes 
25 annees passees comme periode de base dans le modele. Le choix de la periode de base est cependant une question de 
jugement selon l'objectif principal de la projection. Est-ce a long terme, a court terme ou comme en Suede une combinaison 
des deux? 
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Summary 

Household projections are key components of analyses of several issues of social concern, including 
the welfare of the elderly, housing, and environmentally significant consumption patterns. Researchers 
or policy makers that use such projections need appropriate representations of uncertainty in order 
to inform their analyses. However, the weaknesses of the traditional approach of providing alternative 
variants to single "best guess" projection are magnified in household projections, which have many output 
variables of interest, and many input variables beyond fertility, mortality, and migration. We review 
current methods of household projections and the potential for using them to produce probabilistic 
projections, which would address many of these weaknesses. We then propose a new framework for a 
household projection method of intermediate complexity that we believe is a good candidate for providing 
a basis for further development of probabilistic household projections. An extension of the traditional 
headship rate approach, this method is based on modelling changes in headship rates decomposed by 
household size as a function of variables describing demographic events such as parity specific fertility, 
union formation and dissolution, and leaving home. It has moderate data requirements, manageable 
complexity, allows for direct specification of demographic events, and produces output that includes the 
most important household characteristics for many applications. An illustration of how such a model 
might be constructed, using data on the U.S. and China over the past several decades, demonstrates the 
viability of the approach. 

Key words: Model; Probabilistic forecast; Household. 

1 Introduction 

Anticipating changes in the number, size, and composition of households is an important element 
of many issues of social concern. For example, the living arrangements of the elderly are a key 
determinant of their needs for socio-economic, physical and psychic assistance, and household 
projections are therefore critical to understanding challenges in this area (Gonnot et al., 1995; 
Bongaarts & Zimmer, 2001). Similarly, several studies stress the importance of the household as 
a unit of consumption. Household members share living space, energy, water, and other goods, 
leading to potentially important economies of scale. Household composition, particularly by age, 
also affects consumption patterns (King 1999; Select Committee on Environment, Transport and 
Regional Affairs, 1998; Van Diepen, 1994, 1995; Martin, 1999; Muller et al., 1999). Changes in 
consumption due to shifts in distributions of households by type can induce significant environmental 
pressure (MacKellar et al., 1994; Jiang, 1999; O'Neill et al., 2001; Prskawetz et al., 2001; Liu et al., 
2003; Keilman, 2003). 
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No international organization produces household projections for countries or regions of the world, 
as is done for population by the United Nations, IIASA, the World Bank, and the U.S. Census Bureau. 
Rather, statistical offices of some individual countries produce their own projections to meet needs 
regarding housing demand, household services, or elderly support (King, 1999; Hollmann et al., 
2000). 

Most existing household forecasts are based on a headship rate approach, in which an independent 
population projection is combined with a forecast of probabilities, by certain population subgroups, 
of heading households of different types. Household projections therefore must cope with uncertainty 
not only in the population projection, but also in the projection of headship rates. The most common 
approach is either to produce only a single best guess projection, or a small number of alternative 
variants (King, 1999; Hollmann et al., 2000). However, the variants approach is not well suited for 
household forecasts. First, it is difficult to define variants for headship rates, because the link between 
demographic events-which provide the theoretical basis for alternative variants-and the headship 
rates is unclear. Second, even if the household projections are performed with a more sophisticated 
method based directly on demographic events, the variant approach is unwieldy. There are many 
potentially relevant input variables that could be varied in alternative variants; in addition to total 
fertility (parity specific), mortality, and migration, other important factors are age at leaving home, 
and union formation and dissolution rates. It is not even clear which output variable should be used 
as the metric for the typical high/medium/low variants often produced in this approach. Should these 
be defined in terms of numbers of households, number of elderly households, age composition, 
multi-generation households, sex of household head, or what? Users have a range of different needs, 
and there is no single outcome that is of primary importance in all applications. Even if one were 
to select a single outcome as a basis for defining variants, the projection would be "probabilistically 
inconsistent" (Lee, 1999) in that the highest variant in terms of that outcome would not be the 
highest variant in terms of others. In summary, the weaknesses of the traditional variants approach 
in population forecasting (Keilman, 2003; Lee, 1999; Alho, 1998) are compounded for household 
forecasts . 

Probabilistic household projections could address some of these problems. A single probabilistic 
projection accounting for uncertainty in the various demographic rates important to household 
dynamics would produce a distribution of outcomes that could be analysed with respect to a number 
of different metrics. Just as a probabilistic population projection can produce consistent uncertainty 
distributions for population size and for age structure, a probabilistic household projection could 
produce consistent uncertainty distributions for household numbers, sizes, and age composition, all 
of which would also be consistent with the uncertainty distributions for population size and age 
structure. Probabilistic household projections would also be valuable to users who employ them in 
applied analyses that support decision-making. Quantification of the likelihood of various outcomes 
is valuable to formal decision analysis, as well as input to policy discussions (O'Neill, 2004). 

Probabilistic household projections would, however, be a formidable task. In addition to the 
methodological issues confronted by probabilistic population projections, they would also have to 
address new issues related to the additional variables and the demographic events and social processes 
they represent. We first briefly review current methods of household projections and the potential 
for using them to produce probabilistic projections. We also discuss the one existing probabilistic 
household projection in the literature (de Beer & Alders, 1999; Alders, 2001 ). We then propose a 
new household projection method of intermediate complexity that we believe is a good candidate for 
providing a basis for further development of probabilistic household projections. It has moderate data 
requirements, manageable complexity, allows for direct specification of demographic events, and 
produces output that includes the most important household characteristics for many applications. 
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2 Household Projection Models 

Several different types of household projection models have been developed over the past few 
decades (Kuijsten & Vossen, 1988). Econometric models (both static and dynamic) model the 
relationships between household characteristics and socio-economic, cultural, and environmental 
determinants. Examples include the Cornell model in the U.S.A. (Caldwell et al., 1979), the UPDATE 
model for households in small areas in England (Duley et al., 1988), and the NEDYMAS model in 
the Netherlands (Nelissen & Vossen, 1989). However, these models are much less developed in terms 
of household structures than purely demographic models. Our interest here is in models capable of 
producing at least a modest set of household characteristics as output, so we focus our discussion on 
three types of purely demographic models: headship rate models (static macro-demographic models), 
micro-simulation models, and dynamic macro-demographic models. 

2.1 Headship Rate Model 

The headship rate method involves extrapolating proportions of household heads in population 
categories defined by certain combinations of age, sex, and possibly marital status. The headship 
rate projections are combined with an independent projection of the population by age and sex (and 
marital status) to produce a projection of households broken down by demographic characteristics 
of the head of the household. 

Three different methodologies for projecting headship rates have been used: ( 1) linearly or expo­
nentially extrapolating these changes into the future; (2) using regression models of the relationships 
between headship rates and major socio-economic factors combined with projections of those fac­
tors; and (3) developing scenarios based on information on government policies, such as housing 
policy for the elderly or for university students. 

Projections of headship rates are intended to represent the results of dynamic demographic pro­
cesses; however, the demographic processes themselves remain black boxes. Thus it is very difficult 
to incorporate demographic assumptions about future changes in demographic rates such as fertility, 
marriage, divorce, and mortality into the headship rate projections. Nevertheless the headship rate 
method is often used, because it is easy to apply and its data demands are modest. Over the past few 
decades, household projection models have been predominantly of the headship rate type. 

A headship rate method is an attractive option as a basis for probabilistic projections given its 
limited data demands, relative simplicity, and manageable number of variables. Headship rate mod­
els could be made probabilistic by combining probabilistic population projections with probabilistic 
projections of the headship rates, perhaps defined using some combination of time series models, 
ex-post error analysis, and expert judgement. The task would be challenging, given the large number 
of rates that would need to be projected. Each age- and sex-specific headship rate would need its own 
forecast, particularly since changes in rates can vary strongly across groups. For example, headship 
rates changed the most in the older age group, particularly among women, between 1940 and 1980 
in the U.S. (Kobrin, 1973; Carliner, 1975; Sweet, 1984). 

Moreover, assumptions about the covariance of changes in the components and headship rates, 
across age and sex groups, and between the forecast years would need to be made. While statistical 
analysis of relationships between the components and headship rates would be possible, it would be 
more direct to analyze relationships between the components and the household-related demographic 
rates (union formation and dissolution, leaving home) themselves, and the results would be easier 
to assess. For example, the correlation between headship rates and fertility is not straightforward. 
Low fertility is often associated with the postponement of marriage. If the age at leaving home is 
also postponed, headship rates would decline; if not, they would increase due to increasing numbers 
of young single adults. Thus it would be preferable to explicitly include in a household projection 
assumptions regarding changes in the age at leaving home and age at marriage, rather than to directly 
model the relationship between fertility and headship rates. 
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2.2 Microsimulation 

Microsimulation household models are virtually probabilistic (Hammel et al. , 1976; Wachter, 
1987; Smith, 1987; Galler, 1988; Nelissen, 1991; Oskamp, 1997). These models take individuals 
as the unit of analysis, simulate each demographic event, and determine the changes in individual 
status usually using Monte Carlo methods combined with probability distributions for transition rates 
(Wachter, 1998). The model has major advantages in studying the variability of individuals and their 
distributions across households. For example, this method is especially well suited for studying kin 
networks, in which available kin may or may not live together in a household. Goldstein & Wachter 
(2001) recently applied a new method of using contemporary survey data as a basis for projecting 
spouse and sibling ties differentiated by educational level and race. Limitations of the method include 
the very large data requirements, and the fact that the simulation itself often must include a very 
large "population" of individuals to reduce sampling error. 

2.3 Dynamic Macro-demographic Models 

In dynamic macro-demographic models, the unit of analysis is the group, e.g. an age and parity 
class or all households of a given type. Transition matrices are used to update the composition of 
the population by group over time (Keilman et al., 1988). Prominent examples include the LIPRO 
Model developed by Van Imhof & Keilman (1991). LIPRO projects a large number of household 
types and accounts for many types of demographic events; however, data on transition probabilities 
(and projections of their changes) among 69 types of events that individuals may experience are 
necessary. These data have to be collected in a special survey because they are not available in the 
conventional demographic data sources. 

The ProFamy model developed by Zeng et al. (1997) takes a somewhat different approach that 
extends Bongaarts' nuclear status life table model. ProFamy only requires data that can usually 
be obtained from conventional demographic data sources. The model uses the individual as the 
unit of forecast; all individuals are classified according to eight dimensions of demographic status. 
Projections are performed based on status transition rates, and then distributions of households by 
size and type are derived based on characteristics of reference persons (or household 'markers') in a 
manner that produces consistent projections of households and individuals. Since 1997, Profamy has 
been used to produce household forecasts for Germany, the U.S. (Zeng et al., 1999), China (Jiang, 
1999), and Austria (Prskawetz et al., 2001 ). 

Probabilistic projections based on dynamic macro-dynamic household models would be possible 
by defining uncertainty distributions for the transition rates. The main challenge would be the very 
large state space such projections would need to cover. For example, the transition rates rely on 
standard schedules defined by age-, sex-, (sometimes parity-, and marital-status-) specific rates for 
mortality, first marriage, parity specific fertility, migration, leaving parental home, divorce, remarriage 
by the divorced, and remarriage by the widowed. Deriving probability distributions for all of these 
events, given limited data on many events, would be problematic, as would account for possible 
correlations among events. 

Nonetheless, the macro-demographic approach is attractive in that it allows the application of 
available data, and of expert opinion, directly to demographic events themselves rather than to 
indirect measures such as headship rates. One possibility for managing the large state space is to 
simplify the model by only retaining the demographic events that the household projection in a 
given setting is most sensitive to. For example, fertility and leaving home are the most important for 
household formation in developing countries like China, while marriage and union dissolution are 
important for some developed countries. 
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2.4 An Existing Probabilistic Household Forecast 

The only existing probabilistic household forecast was made by De Beer and Alders at Statistics 
Netherlands (De Beer & Alders, 1999; Alders, 2001) for the Netherlands up to year 2050. The 
Statistics Netherlands household forecasting model in general is an approach somewhat between a 
headship rate model and a macro dynamic model. It consists of four steps: 

1. Project the population by age, sex and marital status; 
2. Assume future trends in household position rates distinguished by age, sex and marital status, 

for six household positions: living at the parental home, living alone, living with a partner, 
being a single parent, living in an institution, and other; 

3. Based on the results of steps 1 and 2, calculate the number of persons by age, sex and household 
position; 

4. Calculate the number of households by assuming that persons living alone and lone parents 
count for one household, persons living with a partner count for a half household, and children 
living with their parents and people living in an institution count for no households. 

Uncertainty in the future number of households is derived by defining uncertainty distributions 
for household position rates in the year 2050, and interpolating between the resulting population 
distributions by household position and current conditions. Obviously, the different position rates 
are not independent: if people within a given population group are more likely to occupy a certain 
position in a household, then they must be less likely to occupy others. The authors approach this 
problem by defining uncertainty distributions for each position rate in a step-wise fashion. 

• First, an assumption is made about the probability distribution for living in an institution. Con­
ditional on that assumption, and the distribution of population by age and sex, the uncertainty 
distribution for rates of (and total population) living in private households by age and sex are 
calculated. 

• Second, an uncertainty distribution for the rates of leaving parental home is assumed; combined 
with the distribution of population living in private households, this yields an uncertainty 
distribution for the population leaving parental home. 

• Third, given the uncertainty distribution for the population leaving parental home, the uncer­
tainty distribution for the probability of living alone is assumed. The rest of the people are 
mainly persons living with a partner. 

For the year of 2050, the uncertainty distributions for the percentage of the population in the 
different household positions are derived by repeated draws from these underlying uncertainty 
distributions. Perfect correlation across ages and sex is assumed. Each draw yields the number of 
persons by age, sex and household position, and then the number of households. The percentages 
for years between the baseline and 2050 are interpolated, implying perfect autocorrelation. 

Results show that in 2050 the 67% uncertainty interval ranges from 7.5 million to 9 million. The 
width of this interval is smaller than that between deterministic high and low variants from Statistics 
Netherlands. While De Beer & Alders (1999) presents only the uncertainty in total numbers of 
households, uncertainty intervals for average household size and for population (and proportions) 
by five household positions (living alone and lone parent are combined) are also available from this 
model (M. Alders, personal communication). 

This approach has the advantage of combining assumptions about demographic events with 
household formation and dissolution, while avoiding the problem of requiring large amounts of data 
unavailable from conventional demographic sources. However, the principal limitation is that while 
it provides abundant information on the population in different household positions, it produces 
limited information about household types and size. For many users, the most important information 
from a household forecast is the number of households, the distribution of households by size, and 
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the distribution of households by age of the householders, especially for application to analysis of 
consumption (MacKellar et al., 1995; Jiang, 1999; O'Neill & Chen, 2002; Prskawetz et al., 2001; 
Karl, 2000). 

3 A New Approach-the Size/ Age-Specific Headship Rates Model 

We propose a new method of making household forecasts that extends the traditional headship 
rate method. Instead of applying total age-specific headship rates to the future population, the new 
method applies age-specific headship rates decomposed by household size. In addition, changes in 
these age- and size-specific headship rates are modeled as functions of the demographic processes to 
which they are most sensitive. This method has the advantages that ( 1) it produces output on future 
changes in household numbers, size distributions, and distributions by the age of the householder, 
which have been identified as the most useful characteristics in applied problems; (2) it explicitly 
models the relationships between demographic events and headship rates, rather than treating them as 
a "black box"; and (3) it is simple enough that the resulting model could be used as the basis for more 
computationally intensive applications, such as probabilistic projections, or integrated assessments 
of interdisciplinary issues. 

We illustrate the new approach with the cases of U.S. and China. Using census data, we analyze 
the changes in age-specific headship rate by household size for the period 1960-1990 in the U.S. 
and 1982-2000 in China (Figures 1 and 2). We describe observed changes in rates, and propose 
qualitative explanations for these changes in terms of trends in specific demographic events. We 
argue that these explanations provide a strong basis for specification of a model of size-specific 
headship rates and describe a model framework in terms of key variables likely to explain most of 
the changes in these rates. This framework could be used as the basis for a new household projection 
model and estimated from data and from the results of more complex projection models. 

Figures la and 2a show that the total age-specific headship rates for the U.S. and, especially, 
for China have been quite stable over the past decades. In the U.S., headship rates have increased 
somewhat over this period, but the general age pattern has not changed much. There are clear 
differences across countries: China has lower headship rates beyond about age 55, and before age 35. 
The lower headship rate in early adulthood is driven primarily by later age at leaving parental home 
compared to most Western countries. The low rates at older age groups are a result of the preference 
for living with an adult child (mostly a son). After retirement, Chinese elderly usually pass on the 
household head title to their adult children, resulting in a significant decrease of headship rate in 
older age groups. In contrast, most American elderly continue to head a household so that headship 
rates increase until age 75. 

The relative stability of total headship rates in both countries masks the fact that there have been 
substantial changes in the propensity of household formation and household dissolution over the past 
few decades. Figures 1 and 2 show that size-specific headship rates in U.S. and China have changed 
considerably, especially in China. These changes have been driven by trends in demographic rates 
such as fertility, mortality, union formation and dissolution, and leaving home. We argue that changes 
in headship rates for each household size are traceable to trends in particular kinds of demographic 
rates, and thus make a theoretically grounded basis for a projection model. 

Before considering each household size in turn, note that in general, the headship rates for 
different sizes display clear overall age patterns in both the U.S. and China. For one- and two-person 
households, the headship rate is high for the elderly above age 60 and for young adults below age 
30. For households with 3 or more members, the headship rates are low in young adult age groups, 
increase and reach a peak for the age group 30-45, then decrease and become very small for the 
oldest old. 

For households of size 1, the shape of the age-specific headship rate curve at younger ages is 
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Figure 1a. Age specific headship rate in US 
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Figure 1 b. Age specific headship rate of household size 1 in US 
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Figure 1. Age-specific headship rate by household size in U.S. , 1960-1990. 

determined primarily by the age-specific rates at which children leave parental homes, and the age­
specific rates of marriage and divorce. At older ages, changes in life expectancy and the changes in 
the gender disparity of life expectancy are probably the primary determinants of the shape of the 
curve, with smaller contributions from changes in the divorce/remarriage rate and in preferences for 
living independently from children. 

Figure l indicates that headship rates in the U.S. increased the most for households of size l over 
the period of 1960-1990. The increase is especially significant among the elderly. We hypothesize 
that changes in life expectancy have been the primary reason. In the U.S., life expectancy at birth 
increased from 69.9 to 75.4 between 1960 and 1990. By itself, this improvement would be expected 
to be associated with a greater likelihood of living with a spouse at older ages; all else equal, this 
would actually decrease headship rates of one-person households. However, at the same time life 
expectancy was increasing, the difference in life expectancy between men and women increased as 
well, from 6.6 to 7 .1 years over the same period. The difference in remaining life expectancy at age 65 
increased even more, from 2.8 to 3.9 years (Federal Interagency Forum on Aging-Related Statistics, 
2002). The trend toward larger gender differences would be expected to lead to increased numbers 
of single person households. Rates of union dissolution have increased over this period and have 
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Figure 2a. Age specific headship rate in China 
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Figure 2. Age-specific headship rate by household size of China, 1982-2000. 

likely contributed to the change in headship rates as well. The divorce rate (number of divorces per 
100 existing marriages) increased from 9% in 1960 to 21%in1987 (Popenoe, 1993); the proportion 
of a given marriage cohort that voluntarily ends their union was around 33% in the middle of the 
century, but increased to more than 50% in the end of 1980s (Furstenberg, 1990). Increasing union 
dissolution would lead to larger number of people entering the older age groups without a spouse, and 
thus more likely to be living alone. Lastly, improvements in the health and financial status of older 
Americans may have led to a continuation of a trend toward preferences for living independently at 
older ages. At the beginning of the 20th century, more than 70 percent of people aged 65 or older 
resided with kin. By 1980, only 23 percent of elderly lived with relatives (Bianchi & Casper, 2000). 
Older Americans now are more likely to spend their later years with spouse or living alone than with 
adult children. 

Changes in the one-person household headship rate at younger ages have likely been driven by 
changes in the age at leaving home (an event which tends to create one-person households), and 
the age of union formation (an event which tends to reduce the number of one-person households). 
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Before 1950, most young Americans left their parental home for or after marriage. Since then, more 
and more young people leave home for education, employment or simply for increased independence. 
At the same time, Americans were significantly postponing marriage. In 1960, only 10 percent of 
women ages 25 to 29 had never married. By the end of the century, more than 40% of women in that 
age group had not been married, and the majority (52%) of men were still unmarried at these ages 
(Bianchi & Casper, 2000). The combined effect of these trends led to increases in the one-person 
headship rate between 1960-1980. During the 1980s, there was a slight decrease in the headship 
rate for young adults. This occurrence actually strengthens the case for ascribing changes to changes 
in leaving home and union formation/dissolution. During that decade, the average age of leaving 
parental home increased and the proportion returning to parental home increased, because of the 
increase in housing prices and improved standards of living in the parental home (Goldscheider et 
al., 1999). Similarly, the divorce rate has declined since the early 1980s (Bianchi & Casper, 2000); 
given that most divorces happen among young couples below aged 30, this trend counteracts the 
effects of later marriage. 

Trends in China for one-person headship rates at older ages were opposite to the general trend in 
the U.S., showing a decrease in the period 1982 to 2000 (Figure 2). This trend is consistent with the 
observed increase of life expectancy over this period (from 67.8 to 70.0), coupled with no change 
in the gender difference in life expectancy. Since divorce rates have not changed substantially, and 
neither have preferences (the elderly still prefer to live with children, particularly in rural China), 
these two factors did not influence one-person headship rates as they probably did in the U.S. The 
observed increase in the headship rate in younger age groups most likely resulted from a trend toward 
more and more young people leaving the parental home for the purpose of education, jobs, or for 
independence. 

For two-person households, changes in the rate and mean age of marriage (for single people) and 
of first birth and divorce (for married couples) are the primary determinants the shape of headship rate 
in the early adulthood group. For the late-middle aged group, changes in the propensity of leaving 
parental home may affect the headship rate when there is only one child remaining in a household. 
At older ages, mortality is the prime determinant. 

In the United States, although the two-person headship rate did not change much for the elderly, it 
increased somewhat for other age groups, most likely due to the lengthening of the interval between 
marriage and first birth (Morgan, 1996). Another reason may be the increase in the divorce rate, 
which one would expect to create a larger number of single parent households with one child. An 
increase in non-marital fertility may also have played a role (Popenoe, 1993). 

In China, there was a striking increase in the two-person headship rate above age 40, especially 
between 1990 and 2000. This trend is likely a reflection of the increasing number of children 
establishing their own nuclear households, leaving parents behind in an "empty nest". At older ages, 
this reflects the improvement in mortality, which prolongs the period during which both spouses are 
living together. 

For households of size 3, the shape of the headship rate curve in the childbearing age groups 
changes with fertility of parity 1 and 2, both of which can affect the headship rate in either direction 
depending on the number of parents in the household. Union dissolution rates will also affect headship 
rates for this size household, as will changes in the propensity of leaving parental home. 

In the U.S., the three-person headship rate decreased for older age groups due to the increasing 
propensity of children to leave the parental home and of the elderly to live independently from their 
children. Changes at younger ages are subtler. One identifiable trend is the shift in the first peak in 
headship rates from the mid-20s age group to the early 30s age group (a second, slightly larger peak 
follows in the mid to late 40s). This shift is likely due to the increase in the mean age of first births. 
The probability of completing first-birth by women aged 35 decreased from more than 45% in the 
1950s to less than 30% in the 1970s (Morgan, 1996). The slight dip in the headship rate after this 
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initial peak is due largely to second births, and the second peak after age 45 is due to the first children 
leaving home. 

Changes in the headship rate for size 3 in China have been quite different. The most important 
change has been the large increase in the headship rate for the middle age groups, due to an increasing 
proportion of couples with only one child since the early 1980s. A second change has been first an 
increase (during the 1980s) and then a decrease (during the 1990s) of the headship rate in the early 
20s age group. This pattern likely reflects the trend toward younger marriage and earlier first births in 
the 1980s, as the family planning policy of "Later marriage, longer birth interval, and fewer children" 
implemented in the 1970s was relaxed, and then a reversal toward later marriages and first births 
during the 1990s due to socio-economic and cultural changes supporting these trends. 

For four-person households, changes in fertility at parity 2 and 3 are the main determinant of 
changes in the pattern of headship rate. For example, in the U.S., the peak in the headship rate curve 
increased in magnitude and shifted from occurring in the mid to late 20s in the 1960s and 1970s, to 
the mid to late 30s in the 1980s and 1990s. This change was driven by a shift to later second births 
and a dramatic decrease in the probability of giving third births (Morgan, 1996). 

In China the headship rate increased in the middle age groups due to a decline in the probability of 
third births, especially in rural areas during the 1980s. The headship rate declined during the 1990s 
for people aged 25-35 because young couples increasingly had only one child. Headship rates also 
declined in the 1990s for the late middle age and early old age groups, most likely due to the growing 
number of first children moving out for job opportunities and education. 

The headship rate pattern for size 5+ is driven largely by fertility of parity 3+ and the propensity 
of leaving parental home. For example, the U.S . generally experienced a large decrease in headship 
rates, and a shift in the peak rate to older ages. This pattern reflects later childbearing, along with a 
sharp decline in fertility since the end of the 1960s. Increasing union dissolution and early ages at 
leaving home have also contributed. 

In China, there have been very large decreases in the 5+-person headship rate over the past 20 
years, due to rapid fertility declines. However, there is a small increase of headship rate for ages 
16-24, a result of an increase in the number of young people leaving parental home for jobs and 
education, and sharing living space in order to reduce the expense of housing. 

In summary, the evolution of age patterns of size-specific headship rates has a clear connection 
to the changes of demographic events. The opposite approach, tracing the impacts across household 
sizes of given demographic events, can also give insight into the functional relationships between 
events and headship rates. 

For example, changes in parity-specific fertility affect headship rates for different sized households 
in a number of ways, as we have discussed. The increase in fertility of first births will change the 
headship rate for the childbearing age group (15-49) as follows : decrease headship rates of size 1 
(as single parents have a child and become two person households), increase headship rates of size 
2 for single parent households (the consequence of the first effect), decrease headship rates of size 2 
for two parent households, and increase headship rates of size 3 of two parent households. Effects 
of fertility by parity on headship rates for all household sizes are summarized in Table 1. 

Similarly, the impacts of increasing divorce rates on the age patterns of size-specific headship 
rates are summarized in Table 2. Empirical studies indicate that divorce rate is the highest among 
those aged 25-35. Young heads with no children tend to have less stable marriages than those who 
have children. Therefore, an increase in the divorce rate will increase headship rates of size 1 for 
the young age group, decrease headship rates of size 2 for young couples without children, increase 
headship rates of size 2 for single parents with one child, and decrease headship rates of size 3 for 
couples with one child. 
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Table 1 

Impacts of increase in the total fertility rate on headship rates, while all else is equal. 

Headship rate Parity 

1 2 3 

Household size l - (15-49, l parent) No effect No effect 

Household size 2 + (15-49, l parent) - (15-49, I parent) No effect 
- (15-49, 2 parents) 

Household size 3 + (15-49, 2 parents) + (15-49, I parent) No effect 

Household size 4 No effect + (15-49, 2 parents) + (15-49, l parent) 
- (15-49, 2 parents) 

Household size 5+ No effect No effect + (15-49, 2 parents) 

Table 2 

Impact of the increase in divorce rate on headship rates while else 
is equal. 

Household Size Effect on headship rate in young age group 

l + 
2 - (couple with no child) 

+ (couple with one child) 

3 - (couple with one child) 

4 Conclusion: Toward a New Model 
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These examples strongly suggest that, based on current understanding and empirical data, changes 
in the age patterns of size-specific headship rates can be modelled by parameterizing the changes 
for different age groups as a function of the dynamics of important demographic events. We propose 
that age- and size-specific headship rates are best modelled as the sum of three functions, one 
describing each of three broad age categories that serve as proxies for different life cycle stages: 
young adulthood, middle age, and elderly. Thus, the starting point for our basic model, based on our 
preliminary analysis for the U.S. and China, is: 

h(i, x) = gi(i, x) + g2(i, x) + g3(i, x) + s(i, x) 

where h(i, x) is the headship rate for household size i at age x, g(i, x) is a function capturing effects 
acting mainly on one of three broad age categories (1 =young adult; 2 =middle age; 3 =elderly), 
and s is an error term. In tum, 

g(i,x) = f(r1,r2,r3, . .. ) 

where r n is a variable describing a particular demographic rate. The demographic rates that we expect 
to influence each of our three "g" functions are given in Table 3, which summarizes the discussion 
in the previous section. 

Existing empirical data will likely be insufficient to estimate all model parameters, given that 
the household formation and dissolution involves many demographic events, and data for some 
events are unavailable in conventional population data sources. Thus, it would likely be necessary to 
use "synthetic data" generated from a more complex household projection model, such as existing 
dynamic household models. For example, one strategy would be to generate a number of scenarios 
that systematically vary different demographic rates, and observe the effect on size-specific headship 
rates. Model parameters could then be estimated from this "data". The end result would be a reduced­
form model with parameters estimated such that it reproduced the behavior of the more complex 
model, and could be tested against empirical data for specific countries. 
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Table 3 

Demographic events and parameters of importance to a model of size-specific headship rates. 

Household Size Demographic events and parameters 

Early adulthood group Middle age group Senior age group 

1 Propensity of leaving Marriage, remarriage and Mortality, propensity of 
home, age and rate of divorce rate, propensity of leaving home 
marriage, divorce rate leaving home 

2 Age and rate of marriage, Propensity of leaving Mortality, propensity of 
age and rate of first birth, home, divorce rate, leaving parental home 
divorce rate mortality 

3 Fertility rate of first and Propensity of leaving 
Mortality, propensity of 

second birth, divorce rate home, divorce rate 
leaving home 

4 Fertility rate of second and Fertility of second and Mortality, propensity of 
third birth, divorce rate third birth, propensity of leaving home 

leaving home 

. .. . .. . .. . .. 

Our extension of the headship rate approach is amenable for use in probabilistic forecasting 
because it reduces the complexity of the model (compared to full macro-demographic household 
models) while retaining demographic processes as important inputs to which expert opinion and 
other forms of information can be applied in order to develop forecasts . For example, in this model 
one might specify probability distributions not only for fertility, mortality, and migration, but also 
for variables such as the mean age at leaving home, mean ages of parity-specific births, and rates and 
mean ages of marriage and divorce. Judgment, supported by empirical analysis, would also need to 
be applied to the correlation matrix. For example, in many countries changes in age at marriage are 
likely to be correlated with changes in age at first birth, and fertility may be correlated with mean 
age at leaving home. Careful attention would need to be paid to these possibilities. 

Here we have presented the basic model framework, and used data to support our argument 
regarding its viability. Clearly, further work is required to develop a first illustrative model for testing. 
However, our analysis demonstrates one plausible strategy for achieving the goal of probabilistic 
household projections. 

Acknowledgements 

Jiang Leiwen's work was supported by a grant from the U.S. Department of Energy program on 
Integrated Assessment of Global Climate Change Research. 
We thank Wolfgang Lutz for helpful conversations in formulating ideas for this paper. 

References 

Alders, M. (2001). Huishoudensprognose 2000-2050: veronderstellingen over onzekerheidsmarges. Maandstatistiek van de 
bevolking, Jaargang 49 (August) (in Dutch). 

Alho, J.M. ( 1998). A Stochastic Forecast of the Population of Finland. Helsinki : Statistics Finland. 
Bianchi, S.M. & Casper, L.M. (2000). American families. Population Bulletin, 55(4). 
Bongaarts, J. & Zimmer, Z. (200 l ). Living arrangements of older adults in the developing world: Analysis of DHS household 

surveys. Policy Research Division Working Paper no. 148. New York: Population Council. 
Caldwell, S.B., Greene, W., Mount, T., Saltzman, S. & Broyd, R. (1979). Forecasting regional energy demand with linked 

macro/micro models. Papers of the Regional Science Association, 43, 99-113. 
Carliner, G. (1975). Determinants of household headship. Journal of Marriage and the Family, 37(1), 28-38. 
De Beer, J. & Alders, M. (1999). Probabilistic population and household forecasts for the Netherlands. Paper for the European 

Population Conference, August 30-September 3, 1999, The Hague, The Netherlands. 
Duley, C., Rees, P. & Clarke, M. (1988). A microsimulation model for updating households in small areas between census. 

Paper presented at the NIDl/RUU workshop "Multi-state demography: measurement, analysis, forecasting", Oct. 
31-Nov. 4, 1988, Zeist, The Netherlands. 



Toward a New Model for Probabilistic Household Forecasts 

Federal lnteragency Forum on Aging-Related Statistics. (2002). http : //www.aoa.dhhs.gov/agingstats. 
Furstenberg, F.F., Jr. (1990). Divorce and the American family. Annual Review of Sociology, 16. 

63 

Galler, H. (1988). Microsimulation of household formation and dissolution. In Modelling Houselwld Formation and Disso­
lution, Eds. N. Keilman, A. Kuijsten and A. Vossen, pp. 139-159. Oxford, UK: Clarendon Press. 

Goldscheider, F., Goldscheider, C. , St. Clair, P. & Hodges, J. (1999). Changes in returning home in the United States, 
1925-1985. Social Forces, 78(2). 

Goldstein, J. & Wachter, K. (2001). Survey-based stochastic kinship forecasting. Paper presented at the General Conference 
ofIUSSP, August 2001, Salvador, Brazil. 

Gonnot, J.-P., Keilman, N. & Prinz, C. (Eds.) (1995). Social Security, Household and Family Dynamics in Aging Societies. 
Boston: Kluwer Academic Publishers. 

Hammel, E., Hutchinson, D. , Wachter, K., Lundy, R. & Deuel, R. (1976). The SOCSIM demographic-sociological microsim­
ulation program. Research Series No. 27. Berkeley, CA: Institute of International Studies, University of California. 

Hollmann, F. W., Mulder, T.J. & Kallan, J.E. (2000). Methodology and assumptions for the population projection of the United 
States: 1999 to 2100. Working Paper No. 38. Washington, DC: Population Division, U.S. Census Bureau. 

Jiang, L. (1999). Population and Sustainable Development in China-Population and Household Scenarios for Two Regions. 
Amsterdam: Thelasis. 

Karl, G. (2000). Human Settlement Statistics. United Nations Center for Human Settlements (UNCHS). 
Keilman, N. (2003). The threat of small households. Nature, 421(6922), 489-490. 
Keilman, N., Kuijsten, A. & Vossen, A. (Eds.) (1988). Modelling Household Formation and Dissolution. Oxford, UK: 

Clarendon Press. 
King, D. (1999). Official household projections in England: Methodology, usage and sensitivity tests. Paper presented at 

"Joint ECE-EUROSTAT Work Session on Demographic Projections", May 3-7, 1999, Perugia, Italy. 
Kobrin, F.E. (1973). Household headship and its changes in the United States, 1940-1960, 1970. Journal of the American 

Statistical Association, 68(344), 793-800. 
Kuijsten, A. & Vossen, A. (1988). Introduction. In Modelling Household Formation and Dissolution, Eds. N. Keilman, A. 

Kuijsten and A. Vossen, pp. 3-12. Oxford, UK: Clarendon Press. 
Lee, R.D. (1999). Probabilistic approaches to population forecasting. In Frontiers of Population Forecasting, Supplement to 

Vol. 24, 1998, Eds. W. Lutz, J.W. Vaupel and D.A. Ahlburg. New York: Population and Development Council. 
Liu, J., Daily, G., Ehrlich, P. & Luck, G. (2003). Effects of household dynamics on resource consumption and biodiversity. 

Nature, 421(6922), 530-533. 
MacKellar, F.L., Lutz, W., Prinz, C. & Goujon, A. (1995). Population, households and C02 emissions. Population and 

Development Review, 21(4), 849-865. 
Martin, N. (1999). Population, households and domestic water use in countries of the Mediterranean Middle East. Interim 

Report IR-99-032. Laxenburg, Austria: IIASA. 
Morgan, P. (1996). Characteristic feature of modern American fertility. In the Supplement "Fertility in the United States: New 

Patterns, New Theories", pp. 19-63. Population and Development Review, Volume 22. New York: Population Council. 
Muller, C., Gnanasekaran, G.S. & Knapp, K. (1999). Housing and Li.ving Arrangements of the Elderly, An International 

Comparison Study. New York: International Longevity Center-USA, Ltd. Almanac Phase 4. 
Nelissen, J. (1991). Household and education projections by means ofa microsimulation model. Economic Modelling, 8(4), 

480-511. 
Nelissen, J. & Vossen, A. (1989). Projecting household dynamics: a scenario-based microsimulation approach. European 

Journal of Population, 5(3), 253-279. 
O' Neill, B.C. (2004). Conditional probabilistic projections: an application to climate change. lnternat. Statist. Rev. , 72(2), 

forthcoming. 
O'Neill, B.C. & Chen, B.S. (2002). Demographic determinants of household energy use in the United States. In Population 

and Environment: Methods and Analysis, Eds. W. Lutz, A. Prskawetz and W.C. Sanderson, pp. 53-88, Supplement to 
Vol. 28, 2002, Population and Development Review, New York: Population Council. 

O'Neill, B.C., MacKellar, F.L. & Lutz, W. (2001). Population and Climate Change. Cambridge, UK: Cambridge University 
Press. 

Oskamp, A. (1997). Local Housing Market Simulation: A Micro Approach. Amsterdam: Thesis Publishers. 
Popenoe, D. (1993). American decline, 1960-1990: A review and appraisal. Journal of Marriage and the Family, 55(3), 

527-542. 
Prskawetz, A., Jiang, L. & O'Neill, B. (2001 ). Demographic composition and projections of car use in Austria. Paper presented 

at the General Conference of IUSSP, August 2001, Salvador, Brazil. 
Select Committee on Environment, Transport and Regional Affairs. (1998). Tenth Report. London, UK: The United Kingdom 

Parliament. 
Smith, J.E. (1987). The computer simulation of kin sets and kin counts. In Family Demography: Methods and their Application, 

Eds. J. Bongaarts, T.K. Burch and K.W. Wachter, pp. 249-266. Oxford, UK: Clarendon Press. 
Sweet, J.A. (1984). Components of changes in the number of households: 1970-1980. Demography, 21(2), 129-140. 
Van Diepen, A. (1994). Demografische ontwikkelingen en milieugebruik. In Bevolkingsvraagstukken in Nederland Anno 1994: 

Demografische Ontwikkelingen in Maatschappelijk Perspectief, Eds. N. van Nimwegen and G. Beets, pp. 357-374. 
NIDI Report No. 35. The Hague, the Netherlands: NIDI (in Dutch). 

Van Diepen, A. (1995). Population, land use and housing trends in the Netherlands since 1950. Working Paper WP-95-63. 
Laxenburg, Austria: IIASA. 

Van Imhoff, E. & Keilman, N. (1991). Li.pro 2.0: An Application of a Dynamic Demographic Projection Model to Household 
Structure in The Netherlands. Amsterdam/Lisse and Berwyn, PA: Swets & Zeitlinger Inc. 



64 L. JIANG & B.C. O'NEILL 

Wachter, K. (1987). Microsimulation of household cycles. In Family Demography: Methods and their Application, Eds. J. 
Bongaarts, T.K. Burch and K.W. Wachter, pp. 215-227. Oxford, UK: Clarendon Press. 

Wachter, K. (1998). SOCSIM: Description of the Program, http : //demog.berkeley.edu. 
Zeng, Y., Vaupel, J.W. & Wang, Z. (1997). A multidimensional model for projecting family households-with an illustrative 

numerical application. Mathematical Population Studies, 15(3), 187-216. 
Zeng, Y. , Vaupel, J.W. & Wang, Z. (1999). Household projection using conventional demographic data. In Frontiers of 

Population Forecasting, Eds. W. Lutz, J.W. Vaupel and Dennis A. Ahlburg, Supplement to Vol. 24, 1998, Population 
and Development Review. New York: Population Council. 

Resume 
Les projections de menages sont des elements cles des analyses de problemes sociaux tels que la situation des personnes 

ligees, le logement, Jes habitudes de consommation et leurs consequences sur l' environnement. Les chercheurs ou responsables 
politiques qui utilisent de telles projections ont besoin de representations correctes de !'incertitude pour etayer Ieurs analyses. 
Cependant, Jes faiblesses de l'approche traditionnelle consistant a foumir des variantes alternatives a la projection fondee sur 
la "meilleure hypothese" sont amplifiees dans Jes projections de menages, qui produisent en sortie de nombreuses variables 
interessantes et utilisent en entree nombre de variables autres que la fecondite, la mortalite et les migrations. Nous examinons 
Jes methodes actuelles de projections de menages et leur potentiel d'utilisation pour produire des projections probabilistes 
palliant toutes ces faiblesses. Nous proposons ensuite un nouveau cadre pour une methode d'une complexite moyenne qui a 
nos yeux pourra foumir une bonne base pour un developpement ulterieur des projections probabilistes des menages. Extension 
de l'approche traditionnelle des taux directeurs, cette methode est fondee sur la modelisation des changements dans ces taux, 
decomposes par taille des menages, en fonction de variables decrivant Jes evenements demographiques tels que: fecondite 
specifique de parite, formation et dissolution d'une union, depart du domicile. Elle a peu d'exigences de donnees, une 
complexite gerable, permet la specification directe des evenements demographiques et produit en sortie Jes caracteristiques 
les plus importantes des menages pour de nombreuses applications. Une illustration de la fa\'.On dont le modele pourrait etre 
construit, utilisant des donnees des Etats-Unis et de la Chine sur Jes dix dernieres annees, demontre la viabilite de cette 
approche. 
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Summary 

In recent years Statistics Netherlands has published several stochastic population forecasts. The degree 
of uncertainty of the future population is assessed on the basis of assumptions about the probability 
distribution of future fertility, mortality and migration. The assumptions on fertility are based on an 
analysis of historic forecasts of the total fertility rate (TFR), on time-series models of observations of the 
TFR, and on expert knowledge. This latter argument-based approach refers to the TFR distinguished by 
birth order. In the most recent Dutch forecast the 95% forecast interval of the total fertility rate in 2050 
is assumed to range from 1.2 to 2.3 children per woman. 

Key words: Stochastic population forecasts; Uncertainty; Expert knowledge; Fertility. 

1 Introduction 

The Dutch population forecasts published by Statistics Netherlands every other year project the 
future size and age structure of the population of the Netherlands up to 2050. The forecasts are based 
on assumptions about future changes in fertility, mortality, and international migration. Obviously, 
the validity of assumptions on changes in the long run is uncertain. It is important that users of 
forecasts are aware of the degree of uncertainty. In order to give information about the degree 
of uncertainty in population forecasts, Statistics Netherlands produces stochastic population and 
household forecasts (De Beer & Alders, 1999). Instead of publishing two alternative deterministic 
(low and high) variants in addition to the medium variant, as was the practice up to a few years ago, 
forecast intervals are made. These intervals are calculated by means of Monte Carlo simulations. The 
simulations are based on assumptions about the probability distributions of future fertility, mortality, 
and international migration (see e.g. Alders & De Beer, 2002). 

In the Dutch population forecasts the assumptions on the most likely future changes in fertility 
are specified by making assumptions on the future values of the total cohort fertility rate (CFR) 
distinguished by birth order. In the most recent Dutch forecasts, assumptions underlying the medium 
variant, describing the most likely development, are based on a detailed analysis of age-specific 
fertility rates, both from a cohort and a period perspective. Moreover, evidence on the desired number 
of children from the Netherlands Family and Fertility Survey is used. These analyses have lead to the 
assumption in the 2000 Population forecast that future generations of women will have 1. 75 children 
per woman on average. In the long run, age-specific fertility rates are assumed to remain constant. As 
a consequence, the total fertility rate in 2050 equals the average number of children for women born 

*Paper presented at the seminar "How to deal with uncertainty in population forecasting?", 12-14 December 2002, Vienna, 
Austria. 
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around 2020. It should be noted that the description 'medium variant' refers to the former practice 
when several deterministic variants were published. Since no variants are published anymore, it is 
no longer appropriate to speak of a medium variant. However, abandoning this terminology would 
make users think that the medium variant is different from the most likely forecast. For this reason 
we will still use the term 'medium variant' when we are referring to the most likely forecast. 

This paper examines how assumptions on the uncertainty of future changes in fertility in the 
long run can be specified. The use of expert knowledge plays an important role in the assumption 
making process. Section 2 describes the general methodology that is used for stochastic population 
forecasting. In section 3 the methods are applied to the Dutch fertility forecasts. 

2 Methods for Stochastic Forecasting 

Population forecasts are calculated by means of the cohort component model. The input of 
the model is based on assumptions about future changes in fertility, mortality, and migration. In 
the Dutch population forecasts, assumptions on fertility refer to age-specific rates distinguished 
by parity, mortality assumptions refer to age- and sex-specific mortality rates, assumptions about 
immigration refer to absolute numbers distinguished by age, sex and country of birth, and assumptions 
on emigration are based on a distinction of emigration rates by age, sex and country of birth. 

Forecast intervals can be derived from simulations. On the basis of an assessment of the probability 
of the bandwidth of future values of fertility, mortality, and migration, the probability distribution of 
the future population size and age structure can be calculated by means of Monte Carlo simulations. 
For each year in the forecast period, values of the total fertility rate, life expectancy at birth of men and 
women, numbers of immigrants and emigration rates are drawn from the probability distributions. 
Subsequently, age-sex-specific fertility, mortality and emigration rates, and immigration numbers 
are specified. Each draw results in a population by age and sex at the end of each year. Thus the 
simulations provide a distribution of the population by age and sex in each forecast year. 

To make the simulations, several assumptions have to be made. First, the type of probability 
distribution has to be specified. Subsequently, assumptions about the parameter values have to be 
made. The assumption about the mean or median value can be derived from the medium variant. Next, 
assumptions about the value of the standard deviation have to be assessed. In the case of asymmetric 
probability distributions, additional parameters have to be specified. Finally, assumptions about the 
covariances between the forecast errors across age, between the forecast years, and between the 
components have to be specified (see e.g. Lee, 1996). 

The main assumptions underlying the probability distribution of the future population relate to the 
variance of the distributions of future fertility, mortality, and migration. The values of the variance 
can be assessed by using one of the following three methods: 

a. an analysis of errors of past forecasts 
b. model-based estimates of forecast errors 
c. expert knowledge or judgement. 

These methods do not exclude each other; rather they may complement each other. For example, 
even if the estimate of the variance is based on past errors or on a time-series model, judgement plays 
an important role. In publications, however, the role of judgement is not always made explicit. 

2.1 An Analysis of Errors of Past Forecasts 

The probability of a forecast interval can be assessed on the basis of an analysis of the errors 
of forecasts published in the past. On the assumption that the errors are approximately normally 
distributed-or can be modelled by some other distribution-and that the future distribution of the 
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errors is the same as the past distribution, these errors can be used to calculate the probability of 
forecast intervals of new forecasts . Keil man ( 1990) examines the errors of forecasts of fertility, 
mortality, and migration of Dutch population forecasts published between 1950 and 1980. He finds 
considerable differences between the errors of the three components. For example, errors in life 
expectancy grow considerably more slowly than errors in the total fertility rate. Furthermore, he 
examines to what extent errors vary between periods and whether errors of recent forecasts are 
smaller than those of older forecasts, taking into account the effect of differences in the length of the 
forecast period. 

In order to assess to what extent errors of past forecasts provide useful information on the degree 
of uncertainty of new forecasts it has to be examined whether new forecasts are better than older 
ones. This comparison of errors of forecasts made in different periods requires that we know the 
reasons why the forecaster chose a specific method for a certain forecast period. This information 
enables us to conclude whether a certain forecast was accurate, because the forecaster chose the 
right method for the right period, or whether the forecaster was just more lucky in one period than in 
another. Thus simply comparing the forecast errors of successive forecasts does not tell us whether 
recent forecasts are better than preceding forecasts . 

Another question related to the analysis of errors of past forecasts is how likely it is that similar 
developments will occur again. The 1965-based forecasts in the Netherlands were rather poor because 
forecasters did not anticipate the sharp decline in fertility between 1965 and 197 5. If it is assumed 
that it is very unlikely that such developments will occur again, one may conclude that errors of new 
forecasts are likely to be smaller than those of the 1965-based forecasts . For that reason, the degree 
of uncertainty of new forecasts can be based on errors of forecasts that were made after 1965. 

The decision as to which past forecasts are to be included is a matter of judgement. Obviously, one 
may argue that an 'objective' method would be to include all forecasts made in the past. However, this 
implies that the results depend on the number of forecasts that were made in different periods. Since 
more forecasts were made after 1985 than in earlier periods, the errors of more recent forecasts weigh 
more heavily in calculating the average size of errors. On the other hand, for long-term forecasts, 
one major problem in using errors of past forecasts for assessing the degree of uncertainty of new 
forecasts is that the sample of past forecasts tends to be biased towards the older ones. As for recent 
forecasts the accuracy cannot yet be checked except for the short term (Lutz, Goldstein & Prinz, 
1996). Forecast errors for the very long term result from forecasts made a long time ago. 

One way of assessing forecast errors in the long term is to extrapolate forecast errors by means of 
a time-series model (De Beer, 1997). The size of forecast errors for the long term can be projected 
on the basis of forecast errors of recent forecasts for the short and medium term. Thus, estimates of 
ex ante forecast errors can be based on an extrapolation of ex post errors. This method combines the 
analysis of past errors with the use of model-based estimates of errors. 

2.2 Model-based Estimates of Forecast Errors 

Instead of assuming that future forecast errors will be similar to errors of past forecasts, one may 
attempt to estimate the size of future forecast errors on the basis of the assumptions underlying the 
methods used in making new forecasts. If the forecasts are based on an extrapolation of observed 
trends, ex ante forecast uncertainty can be assessed on the basis of the time-series model used for 
producing the extrapolations. If the forecasts are based on a stochastic time-series model, the model 
produces not only the point forecast, but also the probability distribution. For example, ARIMA 
(Autoregressive Integrated Moving Average)-models are stochastic univariate time-series models 
that can be used for calculating the probability distribution of a forecast (Box & Jenkins, 1970). 
Alternatively, a structural time-series model can be used for this purpose (Harvey, 1989). The latter 
model is based on a Bayesian approach: the probability distribution may change as new observations 
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become available. The Kalman filter is used for updating the estimates of the parameters. 
One problem in using stochastic models for assessing the probability of a forecast is that the proba­

bility depends on the assumption that the model is correct. Obviously, the validity of this assumption 
is uncertain, particularly in the long run. If the point forecast of the time-series model does not 
correspond with the medium variant, the forecaster apparently does not regard the time-series model 
as correct. Moreover, time-series forecasting models were developed for short term horizons, and 
they are not generally suitable for long term forecasts (Lee, 1996). Usually, stochastic time-series 
models are identified on the basis of autocorrelations for short time intervals only. Alternatively, the 
form of the time-series model can be based on a judgement to constrain the long-run behaviour of the 
point forecasts such that they are in line with the medium variant of the official forecast (Tuljapurkar, 
1996). However, one should be careful in using such a model for calculating the variance of ex ante 
forecast errors, because of the uncertainty of the validity of the constraint imposed on the model. In 
assessing the degree of uncertainty of the projections of the model one should take into account the 
uncertainty of the constraint, which is based on judgement. 

Rather than identifying an appropriate time-series model and analytically deriving forecast in­
tervals from the selected model, empirical forecast errors can be assessed by means of calculating 
the forecast errors of simple baseline projections. Alho (1998) notes that the point forecasts of the 
official Finnish population forecasts are similar to projections of simple baseline projections, such 
as assuming a constant rate of change of age-specific mortality rates. If these baseline projections 
are applied to past observations, forecast errors can be calculated. The relationship between these 
forecast errors and the length of the forecast period can be used to assess forecast intervals for new 
forecasts. 

2.3 Expert Knowledge or Judgement 

In assessing the probability of forecast intervals on the basis of either an analysis of errors of 
past forecasts or an estimate of the size of model-based errors, it is assumed that the future will be 
like the past. Instead, the probability of forecasts can be assessed on the basis of experts' opinions 
about the possibility of changes in trends. For example, fertility forecasts are usually based on the 
assumption that trends like the increase of female labour force participation will continue. Even 
though a reversal of this trend may not be assumed to occur in the most likely variant, an assessment 
of the probability of such an event is needed to determine the uncertainty of the forecast. More 
generally, an assessment of ex ante uncertainty requires assumptions about the probability that the 
future will be different from the past. If a forecast is based on an extrapolation of past trends, the 
assessment of the probability of structural changes which may cause a reversal of trends cannot 
be derived directly from an analysis of historical data and therefore requires the judgement of the 
forecaster. Lutz, Goldstein & Prinz ( 1996) argue that subjective distributions are to be preferred to a 
time-series approach, because "structural changes and unexpected events are likely to happen". Lutz, 
Sanderson, Scherbov & Goujon ( 1996) assess the probability of forecasts on the basis of opinions of 
a group of experts. The experts are asked to indicate the upper and lower boundaries of 90 percent 
forecast intervals for the total fertility rate, life expectancy, and net migration up to the year 2030. 
Subjective probability distributions of a number of experts are combined in order to diminish the 
danger of individual bias. 

In the Dutch population forecasts, an assessment of the degree of uncertainty of fertility forecasts 
is primarily based on expert judgement, taking into account errors of past forecasts and model-based 
estimates of the forecast errors. 
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3 Assumptions on Fertility 

In the Dutch population forecasts the assumptions about future changes in fertility are based on 
a distinction by parity. Accordingly, the assumptions about the standard deviation of forecast errors 
are based on a distinction by parity. The assumptions relate to the upper and lower limits of a 95% 
interval. This implies that it is assumed that it is very unlikely that a forecast that is higher than the 
upper limit or lower than the lower limits will come true. 

The assumptions underlying the medium variant refer to cohort fertility. In the long run, age­
specific fertility rates are assumed to remain constant. As a consequence, the total fertility rate in 
2050 equals the average number of children for women born around 2020. The 2000 Dutch population 
forecast assumes a level of 1.75 children per woman for the TFR in 2050 (De Jong, 2001). 

3.1 An Analysis of Errors of Past Forecasts of Fertility 

The first population forecast that was published by Statistics Netherlands dates from 1950. In total 
23 forecasts of the TFR are published. Between the mid-eighties and mid-nineties the population 
forecasts were revised every year. Since 1996 the forecasts for the long run are revised every other 
year, and for the short run (5 years ahead) in the intermediate years. Figure 1 shows some of the 
historic forecasts of the TFR. As is clear from figure 1, the 1965-based forecast was rather poor since 
it did not anticipate the sharp decline in fertility during the late sixties and early seventies. 
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Figure 1. Historic forecasts and observations of the TFR in the Netherlands. 

To assess the accuracy of the (medium variants of the) historic forecasts, errors are calculated 
by subtracting the observed values from the forecasted values. An empirical 67% interval was then 
obtained specifying the lower and upper boundaries such that one sixth of the errors is lower than 
the lower boundary and one sixth is higher than the upper boundary. Similarly, a 95% interval is 
calculated. Figure 2 shows the duration specific intervals, together with the mean of the errors. It 
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should be noted that the number of forecasts on which the intervals are based, decreases with the 
forecast lead time. The intervals for the duration of 3 years are based on 20 forecasts, and those for 
the duration of 20 years on only 4 forecasts. 

What strikes one's attention from figure 2 is that the intervals are rather asymmetric around zero. 
The mean is significantly positive. This is to a large extent due to the 1965-based forecast. If the same 
analysis is applied to all forecasts except the 1965-based forecast, the mean is close to zero (figure 
3). Moreover, the 95% interval is much smaller and more symmetric. As was stated in section 2.1 the 
question is to what extent this analysis provides useful information about the degree of uncertainty 
of new forecasts. If it is assumed that it is unlikely that developments that took place in the sixties 
will occur again, one may assume that errors of new forecasts will be smaller than those of the 
1965-based forecast. 
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Figure 2. Mean and 67% and 95% interval of errors of past forecasts of the TFR. 

The question as to which historic forecast to use can only be based on judgement. Figure 4 
compares the analysis in which all forecasts are used with analyses in which the 1965-based forecast 
and the forecasts made before 197 5 are excluded respectively. The duration is restricted to 10 years. 
For this duration at least 14 historic forecasts are available if all forecasts are included. 

Two conclusions can be derived from figure 4. First, the differences between the 67% interval and 
the 95% interval indicate that the errors are not normally distributed. Second, the way in which the 
errors increase over the forecast lead time is somewhat different than in the latest forecast where it 
was assumed that the errors increase proportional to the square root of the forecast lead time (like in 
a random walk model). 

One problem in using forecast errors from historic forecasts for assessing intervals of long-term 
forecasts is that there are no forecast errors for a period of 50 years. Therefore the standard deviation 
of forecast errors for the long run is assessed on the basis of a projection of forecast errors for shorter 
time horizons. A random walk model is used for this purpose. 

Table 1 shows the 95% interval for the TFR in 2050. If the model is applied to all forecasts since 



Assumptions on Fertility in Stochastic Population Forecasts 

1,8 ----------------- --- ---- - ----------·--·-------------- -----

1,6 --------- -·- ··-··- -·-· - ·------------------------------------------- - -- -. ·---- --

1,4 

1,2 -t---------------------------~------

1,0 +---------- ------- ---------------

0,8 +-------------------~:~:·o/.~ori;m,,.'P.1'11~v~Q,--------

·· ··-·-·- -·--·---
0,6 +--- -----------.. -.-.. . -.-.. -.. -.. -.. --~~-------------

0,4 +--------~-------------------'<------__ ....... , ·-. 
0,2 +----~-------------~B~Z~~~n~in~te~rv~a~I-,,~?~/---'~;~.-----

. :,:;_·:,;:.::...·:....-- --- - - --- - --- - - - - -- - -- -- -- - __ ,, m~ "-''--·~------'"-' "-·· 

0,0 ~--~-;.:._--"""""==~_= __ =_=_::::_:::: __ =_==_=_,,.,_-------~~"-.;;:::=;;;;;::;::~ 
-- -- ----- --- ....__ ___ _ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
Forecast duration in years 

Figure 3. Mean and 67% and 95% interval of errors of past forecasts of the TFR, excluding 1965-basedforecast. 

Table 1 

Random walk model of forecasts errors of the TFR. 

95% interval of TFR in 2050 

Lower bound Upper bound 

All forecasts since 1950 0.89 2.61 
All forecasts excL 1965 Forecast 0.97 2.53 
All forecasts since 1975 1.23 2.27 

2000 Population forecast 1.20 2.30 

71 

1950 the 95% interval ranges from 0.9 to 2.6 children per woman. If only forecasts made since 1975 
are included, the interval is again much smaller: 1.2-2.3 children per woman. The interval assumed 
in the latest Dutch forecast equals that of the forecasts made since 1975. The decision as to which 
forecasts one is to include cannot be made on purely statistical grounds. Judgement plays a role. 
This choice is based on an analysis of fertility rates by parity. The large forecast errors in the 1960s 
and 1970s occurred when fertility was at a considerably higher level than at present. Fertility rates 
for third and fourth births were much larger. Similar forecast errors in the same direction seem very 
unlikely in the future. Fertility rates of parity 3 and higher can hardly decline to the same extent as 
in the past, since they are already rather low. This would imply that fertility rates of parity 1 and 2 
would have to decline much more than they did in the past. It would imply, for example, that a vast 
majority of women would remain childless. The Netherlands Fertility and Family Surveys (FFS), 
however, indicate that only a small minority of women from the younger generations wish to remain 
childless. Thus, very low fertility levels would imply that a large number of women could not realise 
their expectations. Similar large errors in an upward direction do not seem likely either, because of 
the changed position of women. The strong increase in the female labour force participation rates 
does not make it very likely that the percentage of women having three or four children will increase 
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Figure 4. Width of 67% and 95% interval of errors of past forecasts of the TFR. 

strongly. For this reason it is assumed that the interval of new forecasts is smaller than that based on 
the errors of the forecasts made before 197 5. 

It should be noted that the 95% interval in 2050 as modelled by the random walk model of 
the errors of all forecasts (0.89-2.61 children per woman) is small compared to the corresponding 
empirical 95% interval as shown in figure 4. Since only a few historic forecasts are available, the 
latter interval is determined to a large extent by outliers (e.g. the 1965-based forecast). Although 
such outliers cannot be excluded, the probability that such errors will occur again is very small as 
was explained before. 

3.2 Model-based Estimates of Forecast Errors of Fertility 

The assessment of the standard deviation of the TFR can also be based on time-series models. 
A random walk model (without drift) seems an appropriate choice since the forecasts that were 
made in the past resemble random walk forecasts . Except for the 1950-based forecast all forecasts 
assume more or less a continuation of the current level of the TFR (see figure 1 ). Moreover, whereas 
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other models (with more parameters) may provide a better fit of the data, they may lead to an 
underestimation of the degree of uncertainty since it is not sure that such a model is also valid for 
the future TFR. 

The random walk model is applied twice. First, it is applied to observations of the TFR since 1950, 
and second to observations since 1975. Figure 5 shows the results of this model when applied to the 
TFR. 
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Figure 5. Point forecast and 95% forecast interval ofTFR based on a random walk model. 

Not surprisingly it makes a big difference whether or not observations before 1975 are included. 
If the observations before 1975 are excluded the 95% interval of the TFR in 2050 ranges from 1.2 to 
2.2 children per woman. Otherwise, the interval ranges from 0.7 to 2.7 children per woman. These 
differences are largely due to the sharp decline in the fertility rates in the late sixties, in particular 
fertility rates for parity 3, 4 and higher. If the random walk model is applied to the TFR distinguished 
by parity, the differences are rather large for parity 3 and higher and rather small for parity 1 and 2. 

In section 3.1 we noted that it is a matter of judgement whether or not to include old forecast errors 
in assessing forecast intervals of new forecasts. The same applies to the model-based estimates of 
forecast errors. 

3.3 An Expert Knowledge Approach to Fertility Forecasts 

The expert knowledge approach to specify assumptions about the forecast interval of the average 
number of children is based on the distribution by parity. Note that if there is no perfect correlation 
between the forecast errors for the separate parities, the 95% forecast interval for the total number 
of children does not equal the sum of the 95% intervals for the separate parities. However, if the 
correlation is strong, albeit not perfect, the difference with the 95% interval is only small. Since 
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the assumptions refer to the order of magnitude of the probabilities rather than the exact level, the 
difference may be ignored in specifying the assumptions. Thus it is assumed that the forecast interval 
of the total number of children equals the sum of the assumed forecast intervals for the separate 
parity-specific fertility rates. 

First children 

In the Netherlands about 90% percent of women born in 1945 had at least one child (see table 
2). For younger generations the percentage of women who had their first child before age 30 has 
decreased considerably. According to the medium variant of the 2000 Duteh population forecasts, 
the percentage of young women having their first child before age 30 will be only half that of the 
generation born in 1950. However, above age 30 the differences between successive cohorts will 
become much smaller. According to the medium variant, 80% of future generations of women will 
have at least one child. For the upper limit of the 95% forecast interval, 90% seems a reasonable 
assumption. There are several reasons for this assumption. First, the percentage cannot be much 
higher because of infecundity. It is estimated that about 5% of couples cannot have children because 
of infecundity (De Jong & Steenhof, 2000). Moreover, not all women will find a partner. Furthermore, 
dissolution of a partnership may lead to childlessness. Consequently, it is assumed to be unlikely 
that the percentage of women born in 2020 that will remain childless will be lower than 10. This 
percentage is high compared with historic values. Assuming that 90% of women would have at least 
one child would imply that either fertility above age 30 would increase very strongly or that there 
would be an increase of fertility at young ages, in contrast with the trend of the last decades. Thus, 
l 0% childlessness seems an appropriate choice for the upper limit of the 95% interval of first children 
(table 2). 

Table2 

Cohort fertility rates by birth order. 

Cohort 1945 Cohort 2020 

Number of children Observation Lower limit of 95% Medium variant Upper limit of95% 
interval interval 

I 0.88 0.60 0.80 0.90 
2 0.75 0.50 0.65 0.80 
3 0.25 0.05 0.20 0.40 
4 or more 0.12 0.05 0.10 0.20 

Total 2.00 1.20 1.75 2.30 

A reasonable assumption for the lower limit of the 95% interval seems a value of 60%. It seems 
unlikely that childlessness would be over 40%. One of the reasons for this assumption is that 
successive fertility surveys, held by Statistics Netherlands, indicate that the vast majority of women 
wants to have children. For example, in the 1998 Fertility and Family Survey less than 10 percent of 
women with a low level of educational attainment and less than 20 percent of highly educated women 
who were born in the second half of the 1960s expect to remain childless (De Graaf & Steenhof, 
1999). A 40% level of childlessness would imply that either a large percentage of women would 
not realise their expectations, for example, as women would face increasing problems in combining 
children and a paid job or their attitudes towards having children would change dramatically, as 
younger women would give higher priority to their career than to raising children or, for many 
women, postponement would result in ultimate childlessness. Of course, such a development is not 
impossible but it does not seem very likely either. It would imply that the percentage of women 
having children would decrease even more than it did during the last decades. The value of 60% is 
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lower than the current period total fertility rate for first births. This level will only be reached by 
young cohorts if a sudden end to the increasing trend in the percentage of women having their first 
child above age 30 takes place. 

Second children 

About 75% of women born in 1945 had two children or more. According to the medium variant 
of the 2000 Dutch population forecasts, 65% of future generations of women will have at least two 
children. This implies that 15% will have only one child. For the upper limit of the 95% interval, 
80% of women having at least two children seems a reasonable assumption. This is equal to the level 
for women born in the second half of the 1930s. This percentage implies that a very high proportion 
of women that has children will have at least two children. A higher percentage does not seem likely 
since there will always be women who will not have any children at all. Moreover, some women will 
have only one child, due to the dissolution of their relationship or because they have their first child 
at a relatively high age. 

The lower limit of the 95% interval is assumed to be 50% (see table 2). In view of the strong 
preference for a family size of two children which appears from the Dutch FPS, a lower percentage 
does not seem likely. Moreover, recent data on fertility show that women no longer postpone having 
their first child. This enlarges the likelihood that a second child will be born. If the average age at 
the birth of a first child would continue to increase, the probability that a second child will be born 
will become smaller, due to infecundity or because women believe that they are too old for another 
child. 

Third children 

The percentage of women having at least three children declined sharply between cohorts 1935 
and 1945 from about 45% to 25%. According to the medium variant of the Dutch forecast, 20% 
of future generations of women will have at least three children. This implies that about one third 
of women having a second child will also have a third child. In comparison to the other parities, 
uncertainty for parity three is relatively large, because having a third child in the Netherlands is more 
or less a free choice. It is much less bounded by norms and values than having a first or second child. 
This explains why the fertility rates for third children do not show a monotonous development. While 
the other parities have shown very stable patterns, the figures for parity three fluctuate: a decrease 
for women born in the thirties and the first half of the forties, followed by an increase for women 
born in the fifties and a decrease for those born in the sixties. 

The lower limit of the 95% interval is assumed to equal 5%. Obviously the percentage cannot be 
much lower. This is considerably lower than the percentages observed in the past. The upper limit is 
assumed to be 40%. Even in Sweden, where the number of births of third children increased sharply 
in the early 1990s, the period fertility rate for parity three did not reach this level. Moreover, this 
peak was only temporary. In the mid 1990s fertility rates in Sweden dropped sharply. 

Four or more children 

The fertility rate for fourth and higher order births equals 0.10 for women born after 1945. Note 
that since this figure refers to an addition of birth orders 4, 5, etc. this cannot be interpreted as the 
fraction of women having at least four children. According to the medium variant the fertility rate for 
birth order 4+ equals 0.10. The lower limit of the 95% interval is assumed to equal 0.05. Obviously 
the value cannot be much lower, taking into account that this is the addition of birth orders 4 and 
higher. The upper limit of the 95% interval is assumed to equal 0.20. This does not seem to be very 
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high compared with past developments, but it does not seem very likely that the high level of fertility 
of generations born before the Second World War will be reached again. In combination with a high 
level of labour force participation of women it is not very likely that a high percentage of women 
will have four or more children. One possible cause of a high level of fertility could be the increase 
in the foreign population, but that effect will probably be small. True, the percentage of foreign 
women in the childbearing ages is increasing, but the level of fertility of foreign-born women has 
been decreasing strongly. 

Total fertility 

Women born in 1945 had two children on average. According to the medium variant of the 2000 
Dutch population forecasts the average number of children in future generations will equal 1.75. If 
the 95% forecast intervals for the separate birth orders are added up, the resulting interval for total 
fertility ranges from 1.2 to 2.3 children per woman. A higher value than 2.3 would imply that the level 
of fertility of women born before the Second World War would be approached (for example, women 
born in 1935 had on average 2.5 children). Due to the changed situation of women (higher level of 
educational attainment, higher labour force participation, changed sex roles within the family) this 
seems rather unlikely. A lower value than 1.2 does not seem very likely either. It would imply that 
either women will by no means have the number of children they want or that the attitudes towards 
having children would have to change drastically. True, developments during the last decades have 
shown that the level of fertility can change sharply. However, the reduction concerned mainly a 
decrease in the number of third and following children. A comparable decrease starting from the 
current level would imply a much more fundamental change. It would not imply that women would 
have less children, but rather that considerably more women will not have children at all (even a 
strong increase in the percentage of women having only one child would not be sufficient). 

3.4 Specification of the Assumptions 

The preceding sections describe three different methods to assess the standard deviation of the 
TFR. The results of the methods that use historic forecasts or time-series models depend to a large 
extent on which forecasts or base period they pertain to. It is up to the forecaster to select the most 
appropriate one. Table 3 summarises the main results obtained so far. 

Table 3 

Comparison of methods. 

Extrapolation of errors of historic forecasts 
Based on all forecasts since 1950 
Based on all forecasts excl. 1965 forecast 
Based on all forecasts since 197 5 

Random walk model of TFR 
Based on observations since 1950 
Based on observations since 1975 

Expert judgement (parity-specific) 

95% interval ofTFR in 2050 

Lower bound Upper bound 

0.89 2.61 
0.97 2.53 
1.23 2.27 

0.69 2.73 
1.22 2.20 

1.20 2.30 

As mentioned in section 2, both an analysis of historic forecast errors and model-based estimates 
of forecast variances can be combined with expert judgement. One problem in using information on 
historic forecasts to assess the uncertainty of new long-run forecasts is that there are hardly any data 
on forecast errors for the long term. Alternatively, forecast errors for the long term can be projected 
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on the basis of forecast errors for the short and medium term. Time-series of historic forecast errors 
can be modelled as a random walk model (without drift). On the basis of this model, applied to all 
forecasts made since 1950, the standard error of forecast errors 50 years ahead is estimated at 0.44. 
This implies that the 95% forecast interval for the year 2050 equals 0.9-2.6 children per woman. If 
only forecasts made since 1975 are incorporated the interval is much narrower: 1.2-2.3 children per 
woman. 

Alternatively, the standard error of forecast errors can be projected on the basis of a time-series 
model describing the development of the TFR. If all observations since 1950 are included, the lower 
and upper bound of the 95% interval in 2050 are 0 .7 and 2.7 children per woman respectively. This 
seems an unlikely wide margin. The lower limit would imply that only a minority of women would 
have children. The upper limit would imply that a vast majority of women would have three or 
more children. The probability of both developments is extremely small. Even for a 95% interval 
this margin seems to be much too wide. However, if only observations after 1975 are included the 
interval is again much smaller. 

So, next to the question as to which model or method is preferred the question is which observation 
period (of forecast errors or of observed values of the TFR) should be selected. This question is 
answered by the expert judgement approach. Arguments are given as to why it is unlikely that the 
developments of the late sixties will occur again, or analogously, that forecast errors made in the 
1965-based forecast will be made again. So, it is not surprising that the results of the argument-based 
approach are very similar to the results of the model based on forecast errors made since 1975 and 
to the results of the model based on the observations of the TFR after 1975. 

To conclude, in the Dutch population forecasts the 95% forecast interval of the TFR in 2050 was 
assumed to equal 1.2-2.3 children per woman. Moreover, it was assumed that the forecast errors 
increase over time similar to the random walk model (errors increase with the square root of the 
forecast horizon). 

The judgemental assumptions made in section 3.3 refer to cohort fertility rather than period 
fertility. However, the forecast interval for the TFR equals the interval for cohort total fertility. To 
obtain this result simulations of age-specific fertility rates arranged by calendar year are transposed 
into an arrangement by year of birth of the mother. This transposed set of simulations is used to 
calculate intervals for the completed cohort fertility rate (CFR). To compare the intervals for the TFR 
and the CFR the interval for a specific cohort is compared with the interval of the TFR 30 years later. 
The reason for this shift of 30 years is that women are on average 30 years old at childbearing. Figure 
6 shows that the intervals of the TFR and the CFR are indeed almost equal. Keilman & Hetland 
( 1999) draw the same conclusion on the basis of Norwegian data. 

The width of the 95% interval of 1.2-2.3 children per woman in 2050 in the Dutch population 
forecast corresponds reasonably well with that of the 90% forecast interval for Germany, ranging 
from 1.0 to 1.9 in 2030, which is assumed by Lutz & Scherbov (1998). Keilman, Pham & Hetland 
(2002) assume a much wider interval for Norway. On the basis of an ARIMA model they calculate 
a 95% interval of the TFR in 2050 ranging from 0.7 to 3.5 children per woman. The result was 
obtained by restricting the TFR to the interval 0.5-4 children per woman. The authors interpret this 
latter interval as a "100 per cent prediction interval". The width of the 95% interval depends heavily 
on the assumption about the maximum value of the TFR. If the authors would have assumed the 
100 per cent interval to range between, say, 1 and 3, their 95% interval would have been much more 
close to that for the Netherlands. Thus, even though a time-series model is used, the forecast interval 
is to a large extent determined by judgement. 
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Figure 6. Comparison of the 95% interval of period fertility (TFR) and cohort fertility (CFR). 

4 Discussion 

Long-term developments in fertility are uncertain. To assess the degree of uncertainty of future 
developments in fertility and other demographic events several methods may be used: an analysis of 
errors of past forecasts, a statistical (time-series) model and expert knowledge or judgement. These 
methods do not exclude each other; rather they may complement each other. For example, even if the 
assessment of the degree of uncertainty is based on past errors or on a time-series model, judgement 
plays an important role. However, in publications the role of judgement is not always made explicit. 

Expert knowledge or judgement usually plays a significant role in population forecasting. The 
choice of the model explaining or describing past developments cannot be made on purely objec­
tive, statistical criteria. Moreover, the application of a model requires assumptions about the way 
parameters and explanatory variables may change. Thus, forecasts of the future cannot be derived 
unambiguously from observations of the past. Judgement plays a decisive role in both the choice of 
the method and the way it is applied. "There can never be a population projection without personal 
judgement. Even models largely based on past time-series are subject to a serious judgemental issue 
of whether to assume structural continuity or any alternative structure" (Lutz, Goldstein & Prinz, 
1996). 

One main question in (stochastic) forecasting is which observation period should be the basis for 
the projections. An extrapolation of changes observed in the last 20 or 30 years may result in quite 
different projections than an extrapolation of changes in the last 50 years or more. Another important 
question is the choice of the extrapolation procedure: linear or non-linear. This question is difficult to 
answer on empirical grounds: different mathematical functions may describe observed developments 
equally well, but may lead to quite different projections in the long term. In conclusion, judgement 
plays an important role in fertility extrapolations. 

Instead of an extrapolation of trends forecasts of fertility may be based on an explanatory ap­
proach. In making population forecasts usually a qualitative approach is followed. On the basis of an 
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overview of the main determinants off ertility (e.g. changes in life sty le, labour force participation of 
women, educational level, etc.) and of assumptions about both the impact of these determinants on 
the development of fertility and future changes in the determinants, it is assessed in which direction 
fertility may change. Clearly, if no quantitative model is specified, the assumptions about the future 
change in fertility are largely based on judgement. However, even if a quantitative model would be 
available, judgement would still play an important role, since assumptions would have to be made 
about the future development in explanatory variables. 

The methodology described has been applied to assess the uncertainty of future fertility in the 
Netherlands. In comparison to some other European countries fertility in the Netherlands has been 
rather stable in the past decades. Therefore, an assessment of the uncertainty of fertility in these 
countries may lead to broader forecast intervals. 
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Resume 
Au cours de ces demieres annes, !'Office statistique neerlandais (CBS) a publie uncertain nombre de previsions stochas­

tiques sur la population. Le degre d'incertitude de la future population est evalue a partir d'hypotheses sur la distribution 
probable de la recondite, de la mortalite et de la migration. Les hypotheses relatives a la fecondite se basent sur une analyse des 
previsions historiques de l'indicateur conjoncturel de fecondite (ICF), sur des modeles d' observation de series chronologiques 
de l' ICF et sur l'avis des experts. Cette demiere approche basee sur Jes arguments s'applique a l'ICF distribue par rang de 
naissance. Dans les previsions neerlandaises Jes plus recentes, on considere que l'intervalle de prevision de 95% de l'indicateur 
conjoncturel de fecondite en 2050 varie entre 1,2 et 2,3 enfants par femme. 
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Summary 

Among the different sources of uncertainty in population forecasting, uncertain changes in the structure 
of heterogeneous populations have received little attention so far, although they can have significant 
impacts. Here we focus on the effect of changes in the educational composition of the population on the 
overall fertility of the population in the presence of strong fertility differentials by education. With data 
from India we show that alternative paths of future female enrolment in education result in significantly 
different total fertility rates (TFR) for the country over the coming decades, even assuming identical 
fertility trends within each education group. These results from multi-state population projections by 
education are then translated into a fully probabilistic population projection for India in which the results 
of alternative education scenarios are assumed to expand the uncertainty range of the future TFR in the 
total population. 

This first attempt to endogenize structural change with respect to education-which is the greatest 
measurable source of fertility heterogeneity in Asia-has resulted from a larger exercise of the Asian 
Metacentre for Population and Sustainable Development Analysis to collect empirical information, 
scientific arguments as well as informed opinions about likely future population trends in Asia from 
a large number of population experts in the region. In this process, future changes in the educational 
composition of the population have been identified as a key driver of future fertility. 

The actual probabilistic population projections for India show that with high certainty, the Indian 
population will continue to grow to about 1.3 billion over the next quarter of a century. After that the 
uncertainty will get much wider, ranging from a continued strong increase to the beginning of a population 
decline in India. 

Key words: India; Population; Education; Projections; Uncertainty. 

1 Background 

Asia's population, which comprises more than half of the world's population, is currently going 
through significant structural changes. While the population of Asia is still expected to grow from 
currently 3.5 billion to around 4.8 billion in 2050, for the second half of the century we expect 
the beginning of a population decline (see Lutz et al., 2003). Simultaneously, it will experience 
significant population aging. Asia is also in the midst of a major structural transition with respect to 
its human capital, i.e., the number of people by level of education. While the great majority of older 
cohorts of Asians have little to no education, the younger cohorts tend to be much better educated. 
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Since the better-educated women have lower fertility, this has direct demographic consequences. 
The improvements have been particularly impressive in China, where it is estimated that within two 
decades China will have more working age people with secondary and tertiary education than Europe 
and North America taken together (Lutz & Goujon, 2001). 

But trends in Asia are very heterogeneous. China, which is currently the world's most populous 
country, has fertility well below the replacement level and is soon expected to be surpassed in size by 
India, which has higher fertility and a much younger population. For most of the 21st century, India 
will be the world's most populous country, with a projected 17 percent of the world' s population in 
2050. Hence, the future of the world's population will be significantly influenced by the future trends 
in India's population. 

These future demographic trends in India are, however, highly uncertain. A lot will depend on 
the still unknown speed of fertility decline and the post-transition fertility level as well as the future 
spread of the AIDS epidemic or other health problems. The projections cited above only refer to the 
best guess from today's perspective, or more precisely the median of an uncertainty distribution. It 
is hard to say precisely how social, economic and even environmental changes will play together in 
determining the future trends in fertility, mortality and migration in India. On the other hand, we 
are not completely ignorant about the future size or structure of the population. Many of the people 
who will be alive in 2030 have already been born and we know their cohort sizes. Also, we can 
assume with high probability that a country in the midst of its fertility transition will continue with 
its fertility decline until a low level is reached. How should we communicate this to policy makers, 
who want to get the best synthesis of what we can say about the future trends to base their planning 
on these forecasts? To tell them that we simply do not know will not serve them well, especially if we 
think we know more than nothing. It is a bit more informative to say, here is one scenario and here is 
another, but we do not know how likely they are. This still does not help them much in their planning. 
Giving them just one projection, however, and telling them that this is the way the future will look, 
is probably highly welcomed by the planners but dangerous, if there are any costs associated with a 
projection error. A false feeling of certainty can be harmful and we should not create it, especially 
when we know better. Hence, the challenge for the population forecaster is to try to be specific of 
what we think is more certain and what is less certain, and to what degree uncertainties differ. The 
most comprehensive and efficient way to do so is to produce probabilistic forecasts. 

In the context of developing countries with very limited data availability, methods of probabilistic 
population projections that are based on time series analysis are often not applicable because there 
are no time series. Also, methods that are based on the ex post error analysis of past population 
projections are of very limited applicability in a country that is in the midst of a demographic 
transition. Because of this one still expects significant structural change-we know that the future 
will be different from the demographic changes that occurred over the past decades. This essentially 
leaves us with the third approach to probabilistic forecasting, which is based on the evaluation 
of expert arguments. The strengths and weaknesses of expert-based approaches are extensively 
discussed elsewhere (Lutz et al., 2004; Lutz et al., 1999). In short, the key to avoid most personal 
biases in assessing the uncertainty ranges of future demographic trends is to focus on the evaluation of 
substantive arguments that experts put on the table and hence try to inform the subjective probability 
distribution by as much objective and scientific information as possible. 

In the Asian context this task was taken on by the Asian MetaCentre for Population and Sustainable 
Development Analysis. The Asian MetaCentre is a group of population research institutes throughout 
Asia with headquarters at the National University of Singapore and a training branch at Chulalongkom 
University in Bangkok (for more information, see www.populationasia.org). A series of two 
workshops in 2001 and 2002 was dedicated to an exercise to identify the main drivers of demographic 
change in Asia and to translate these insights into probabilistic projections. This included the more 
traditional analysis of past time series when available, the study of the errors of past projections-
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where such could be found-and individual expert statements about the assumptions of the most 
likely trends in vital rates together with subjective quantitative assessments of the uncertainty ranges. 
This exercise also included new methods, such as a rather large number of in-depth interviews of 
experts in which they were extensively asked about their reasons for making certain assumptions 
rather than others, and during which an attempt was made to assess with which assumptions the 
experts felt more confident or less confident. These interviews were conducted by an expert in 
cognitive science, who is an expert on experts, but not on population. Based on these findings the 
exercise then went one step further to try to explicitly model the one structural determinant that 
has been singled out as the most important one, namely female education, and make the future 
fertility uncertainty dependent on future education in the context of probabilistic projections. To our 
knowledge such a structural approach to probabilistic projections has not been applied before. 

This approach of expert argument-based projections distinguishes between resource experts who 
provide the arguments and meta-experts who guide the process and operationalize the assumptions. 
In this exercise carried out by the Asian MetaCentre, the authors of this paper served as the meta­
experts with more than 50 Asian national population experts serving as resource experts. This is 
explained in more detail in Lutz & Scherbov (2003). In this paper we only focus on discussing the 
assumptions and projections for India. 

2 Fertility Assumptions 

We chose to single out the one structural argument about the determinants of the future course 
in fertility that would feature most prominently in most of the expert interviews. The choice was 
not difficult, because in addition to the rather diffuse reference to all kinds of government policies, 
female education clearly stood out as the single most important factor mentioned. Almost all of the 
national experts from the different countries in Asia involved in the exercise consistently mentioned 
that they thought that the improving level of female education has been and will be the main driver 
of fertility decline. 

The line of argumentation in these interviews seems clear: The combination of great educational 
fertility differentials in Asia (more highly-educated women have significantly lower fertility) with 
the fact that younger women are and will be more educated than older women, greatly contributes to 
fertility decline. These educational fertility differentials are pervasive all over Asia and in countries 
with very different overall levels of fertility. 

Table 1 gives the recent educational fertility differentials for women in India and China. It shows the 
total fertility rate (TFR) for four categories of women: those without any formal education and those 
with some primary, secondary and tertiary education. The precise definition and discussion of these 
categories and data sources are given in Lutz & Goujon (2001). The table clearly and impressively 
shows how in these two major countries, higher education is associated with lower fertility. The 
total TFR gives the fertility of the total population with weights of the different educational groups 
corresponding to the current educational composition in India and China. 

Table I 

Education-specific differentials and total TFR for women in 
India and China. 

No education 
Some primary education 
Some secondary education 
Some tertiary education 

Total Fertility Rate 

India 2000 China 2000 

3.78 
2.89 
2.36 
1.96 

3.30 

2.43 
2.14 
1.63 
1.08 

1.80 
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Figure 1 gives the age-, sex- and education-specific population pyramid for India as estimated for 
the year 2000. The pyramid clearly shows that younger cohorts of women in India are better educated 
than older ones, although the gender gap is still significant. 
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Figure 1. Population pyramid for India, 2000. 

When we think about the future of the national-level fertility in India, we must differentiate 
between two different effects: (a) the change in the educational composition of the population, and 
(b) the fertility trends within each educational group. We will first discuss these factors separately 
and then ( c) study their joint effect. 

(a) Alternative trends in education 

As can be inferred from Figure 1 future improvement in the educational composition of the 
population is a near certainty. It is already pre-programmed into the age structure. The younger, 
better-educated cohorts will inevitably become older and replace the older, less-educated cohorts. 
Disregarding the unlikely case of massive adult education programs only the future education of 
the young cohorts is uncertain at this point, depending on future school enrolment rates at different 
levels. Policies can make a difference here. We capture this difference through two alternative 
and rather extreme scenarios on girls' and boys' education in India, one (pessimistic) scenario in 
which all enrolment rates stay constant in the future [scenario A: constant enrolment] and another 
in which India manages to implement the ambitious education goals as defined in the 1994 Cairo 
World Population Conference (ICPD) [scenario B: ICPD]. This highly optimistic scenario assumes 
the elimination of the gender gap in primary and secondary education by 2005-10, 90 percent net 
primary enrolment by 2010-15 and secondary enrolment of 75 percent by 2025-30, as well as an 
increase in transition to tertiary education by 5 percentage points until 2025-30. Trends between 
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2000 and the target year are based on linear interpolation. The results from these two scenarios are 
depicted in Figure 2 for the year 2030. 

Figure 2 clearly shows that the two scenarios are virtually identical in 2030 for men and women 
above age 55. For younger cohorts the constant enrolment rates scenario shows an essentially frozen 
educational composition with a significant gender gap in education being maintained. Under the 
ICPD scenario the educational composition improves significantly for the younger cohorts and the 
gender gap essentially disappears below age 25. 

(b) Trends in education-specific fertility 

During the course of the Asian MetaCentre exercise, there were quite some discussions about what 
should be assumed in terms of future education-specific fertility trends. We considered three different 
options for dealing with this issues: ( 1) assuming proportional fertility changes in all educational 
categories, (2) assuming convergence of all educational fertility trends to one target level, or (3) 
assuming that education-specific fertilities will move to the observed levels of another country that 
is already further advanced in the process of fertility decline. Option (1) is not meaningful as a 
general rule because in some countries the fertility of university graduates is already so low that 
no further declines will be expected, despite declines in average fertility. Also, for countries for 
which time series exist, the declines do not seem to go in parallel. Option (2) is not meaningful in 
this context, because if we have complete convergence, by definition the changes in the educational 
composition do not affect aggregate fertility. And substantively all of the Asian countries studied 
maintained significant differentials, even at very low aggregate fertility levels. For these reasons we 
chose Option (3), which is consistent with the frequent demographic practice to think in terms of 
analogies, as is more generally done in the context of the demographic transition. Specifically, for 
the case of India presented here, we assumed that in 2030, India will have education-specific fertility 
rates comparable to those of China today. 

What is the substantive justification for this particular assumed analogy between China today 
and India tomorrow? First, the aggregate TFR in India in 2030 is assumed by most projections to 
go to a level similar to that in China in 2000. Also, India and China are both huge and greatly 
heterogeneous countries. In this sense the national-level fertility differentials by education do not 
just reflect some volatile patterns as they may appear in small populations. Finally, the data given 
in Table 1 show declines in each educational group of between 26 and 45 percent or on average 
one-third. A sensitivity analysis that assumes that each of the fertility rates in India in 2000 declines 
linearly by one-third until 2030 yields virtually the same results as the assumed move to the Chinese 
pattern of 2000. 

(c) Combined scenarios 

Table 2 defines 12 scenarios that result from the cross-classification of different future trends 
in the educational structure of the population, and different trends in education-specific fertility 
rates. The first four scenarios that keep the educational structure of the population frozen are of 
a purely hypothetical nature because, as has been mentioned above, it is already embedded in the 
age structure that the younger, more educated age groups over time will move the age scale and 
improve the average education of the female population of reproductive age. But it is still important 
to talk about this hypothetical case of the educational composition by age remaining constant in 
its current form, because it serves as a point of reference in the minds of experts thinking about 
this issue. For this reason Figure 3 shows the aggregate level TFR resulting from scenarios 1 and 
2 in 2050 as black dots to the right of the figure. If the educational composition remains frozen 
and the education-specific fertility remains constant (scenario 1), then clearly the aggregate TFR 
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INDIA,ICPD education goals scenario, year: 2030 
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INDIA,Constant enrolment rate scenario, year: 2030 
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Figure 2. Education-specific age pyramids for India under the two alternative education scenarios in 2030 as described in 
the text. 
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remains constant over time. Scenario 2 gives the case in which the educational composition remains 
frozen, but education-specific fertility rates decline as discussed below. In this case the aggregate 
TFR declines by about one child, which is the fertility trend effect that is completely free of the 
effect of the changing educational structure. 

Table 2 

Definition of 12 scenarios combining different possible trends in the educational structure with different 
assumptions about education-specific fertility trends. 

Fertility trends for 
educational categories 

All fertility rates constant 
Rates reach Chinese level by 2030 
China +0.5 by 2030 
China -0.5 by 2030 

Educational Structure of Population 

Structure constant Enrolment rates ICPD goals for 
(purely hypothetical) constant enrolment 

l 5 (c.enr-c.fert) 9 (ICPD-c.fert) 
2 6 (c.enr-medium) 10 (ICPD-medium) 
3 7 (c.enr-high) 11 (ICPD-high) 
4 8 (c.enr-low) 12 (ICPD-low) 

Figure 3 gives four lines for the cross-classification of the two assumptions for education-specific 
fertility (constant versus linear change to the Chinese pattern) with the two education assumptions 
(constant enrolment versus the ICPD scenario). When comparing scenarios 5 and 9 and 6 and 10, 
respectively, we see that the changing educational structure makes a significant difference, even with 
identical education-specific fertility trends. By 2050 this difference accounts for more than half a 
child, i.e., more than one-third of the level of fertility as given by scenario 10. If we also consider 
the hypothetical case of a frozen education structure (scenario 2), the difference due to differential 
educational structures becomes almost one child. This clearly illustrates that the experts have made a 
valid and quantitatively important point when they suggested that the changing educational structure 
would be a major force towards lower fertility. 
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Figure 3. Selected scenarios for combining education assumptions with education-specific fertility trends. 
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3 Probabilistic Population Projections 

How should these insights be translated into probabilistic fertility assumptions? The first thing 
that is unclear in this context is whether experts, when they stressed the effect of the changing 
educational composition, had one of the two extremes-the constant enrolment scenario or the ICPD 
scenario-or something in between in mind. A qualitative discussion with some of the experts at the 
second seminar indicated that this uncertainty about future school enrolment should be assumed to 
be part of the total fertility uncertainty. As to the uncertainty of education-specific fertility trends, 
it was assumed that the uncertainty range considered here would be half a child up and down, as 
compared to the mean trend (scenarios 6 and 10), which is the linear move from the Indian 2000 rates 
to the Chinese 2000 rates by 2030. This is consistent with what was assumed in Lutz et al. (2001) . 
There the 80 percent range was assumed to be plus/minus one child if the TFR was above 3 .0, and 
plus/minus 0.5 if it was below 2.0, with linear interpolation in between. Since this was supposed 
to include the education uncertainty in addition to the education-specific fertility uncertainty, these 
assumptions are roughly consistent. 

Figure 4 gives the four scenarios that combine the plus/minus 0.5 children in education-specific 
fertility assumptions with the two extreme education scenarios. Following the logic outlined above 
the appearing range between scenarios 7 and 12 is then taken to represent the 90 percent uncertainty 
interval of a normal distribution representing India's fertility uncertainty in any given year between 
2000 and 2050. 
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~----=:;;;;.:::::::===--=···-=·:.:- -=--=--=·--:::i. (1 2)-(ICPD-low) 

0.5 +----------------------------! 

0.0 +-. ~~~~~~~~~~~~~~~~~~~~~~~~,....., 
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Figure 4. Selected scenarios combining education-specific f ertility trends, which are 0.5 children higher and lower than the 
mean with different future education trends. 

A final step was to translate these fertility uncertainty ranges, which include the education un­
certainty in addition to the uncertainty of education-specific fertility trends, into full probabilistic 
population projections. While the fertility distribution is based on the range between scenarios 7 and 
12 as discussed above, the stochastic mortality assumptions are taken from the projections given in 
Lutz et al. (2001). It is assumed that life expectancy increases by two years per decade with an 80 
percent uncertainty range from zero to four years of improvement per decade. For simplicity a closed 
population is assumed here. The stochastic model chosen assumes annual fluctuations in birth and 
death rates following the model that is described in Lutz et al. (2004). 

Figure 5 presents the fractiles of the distribution of India's future population size resulting from 
1,000 simulations. The white line gives the median of the uncertainty distribution with half of the 
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simulated population futures above that line and half below. The black area shows the inner 20 
percent of the uncertainty distribution, the dark gray the inner 60 percent, and the light gray the 95 
percent interval. Five percent of the simulated paths lie either above or below the outer lines. As 
with all such projections the uncertainty range opens up over time. The graph also shows that for 
the coming two decades the uncertainty range is very narrow, which implies that with very high 
probability, India's population will increase from presently 1 billion to more than 1.2 billion by 
2020. The median shows a stabilization of India's population size after 2035 at a level of roughly 
1.4 billion. But the uncertainty range becomes very broad beyond 2030. This is due to the fact that 
after around 30 years the uncertainty about the number of potential mothers is added to that of the 
number of births per woman. While in more than 20 percent of the simulations, India's population 
starts to decline after 2030, in another 20 percent of the cases, it shows very significant continued 
growth, with the upper end of the 95 percent interval reaching 1. 7 billion by 2050. 
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Figure S. Resulting distribution of total population size in India. 
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As discussed above, the future fertility uncertainty is greatly influenced by the uncertainty in the 
future of education trends. This becomes apparent when comparing the total population numbers 
in 2050 that result from scenarios 6 and 10 as discussed above, i.e., the central fertility decline 
assumption combined with the two different educational scenarios. The difference is very significant 
and in the order of 0.2 billion. In other words, these calculations imply that with otherwise identical 
assumptions, an India that will follow the ICPD education goals will have 200 million people less 
than an India with constant school enrolment ratios. 

Table 3 gives the numerical results of these new probabilistic population projections for India. The 
values given refer to the median, with the 80 percent intervals given in parentheses. This shows that 
despite an expected further population growth of around 40 percent over the coming five decades, 
India's population will also become significantly older. The proportion above age 65 will increase 
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from currently only 5 percent to around 14 percent with the 80 percent uncertainty range going from 
0.12 to 0.16. The proportion of children below age 15 will likely decrease to about half its level, 
from currently 0.35 to only 0.17. For the children, the 80 percent uncertainty interval is much larger, 
ranging from 0.11 to 0.21. 

Table 3 

Medians and 80 percent ranges (in parentheses) for selected projection output parameters in 
India. 

2000 2025 2050 

1.009 1.321 1.403 
India, Total Population (1.009-1.009) (1.268-1.374) (l.208-1.603) 

0.335 0.238 0.167 
India, Proportion below age 15 (0.335--0.335) (0.212--0.260) (0.113--0.213) 

0.615 0.691 0.697 
India, Proportion 15--65 (0.615--0.615) (0.671--0.714) (0.660--0.733) 

0.050 0.071 0.138 
India, Proportion above age 65 (0.050--0.050) (0.068--0.075) (0.117--0.161) 

India, Old-Age Dependency 0.081 0.103 0.198 
Ratio (65+ I 15--65) (0.081--0.081) (0.099--0.107) (0.172--0.228) 

12.395 9.690 5.060 
India, Support Ratio (12.395-12.395) (9.332-10.053) (4.388-5.811) 

The fact that the uncertainty ranges differ greatly by age is most clearly shown by the probabilistic 
age pyramid in Figure 6. Unlike such pyramids for industrialized countries, where there is visible 
uncertainty at a very old age due to the uncertainty about the path of future old age mortality, this 
is not yet visible in India because the population is still much younger and life expectancy is still 
much lower. Hence, the giant share of the uncertainty of India's future population is due to fertility 
uncertainty and to a smaller extent to uncertainty about future child and young adult mortality. 

These results for India show that the world's most populous country of the 21st century is likely 
to simultaneously experience significant further population growth and population aging. The pro­
portion above age 60 will almost triple over the coming half century. This will pose formidable 
challenges to old age social and economic support systems. At the same time the total population 
will continue to grow significantly by some 40 percent, bringing many of the infrastructural problems 
associated with rapid population growth. The good news is that over the coming decades the pro­
portion of the total population that is of working age will also increase substantially, thus providing 
a "demographic window" or "demographic bonus" for more rapid economic development. If this 
opportunity is used for heavy investments in education and human capital formation (along the lines 
of the IPCD scenario) this would significantly strengthen India's economic and political standing in 
the world and improve the quality of life of its citizens. 

4 Discussion 

The paramount importance of the specific path of the future fertility trends in India on the total 
population size is an ex post justification for spending a considerable amount of time and effort to 
capture some of the structural determinants of future fertility trends in India. Whether there will 
be 200 million more Indians in 2050 is not a trivial issue. As we have shown, this will depend 
significantly on the future educational efforts in India. 

The analysis presented here has only been a first step in the direction of trying to incorporate this 
very important structural dimension of population uncertainty into population projections. Much 
more attention should be given to this and other important structural drivers of fertility decline in 
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developing countries in the future. Here we focused on female education as probably the most im­
portant observable source of fertility heterogeneity. Urbanization would be the next logical candidate 
for such analysis. But it should probably be cross-classified with education (Cao & Lutz, 2004). 

The great sensitivity of the future level of aggregate fertility to the change in the educational com­
position of the population raises disturbing questions about the way fertility assumptions are usually 
derived for developing countries that are in the midst of structural changes of the sort described here 
for India. When future paths of aggregate-level fertility are being assumed in regular population 
projections, then these should reflect all possible forces that influence aggregate fertility. It is not 
clear, however, that without an explicit formal model of the sort presented in this paper, the extent 
of the effect of these compositional changes can be adequately assessed in a more or less intuitive 
manner. In principle, this reflects the general problem of describing the dynamics of heterogeneous 
populations, which can show unpredicted behavior if the heterogeneity is not accounted for. The best 
strategy thus should be to make sure that at least the observable and most significant measurable 
sources of heterogeneity are explicitly incorporated in the analysis of population dynamics. In most 
developing countries education is such a source of heterogeneity that should be made explicit. 

In conclusion we can say that the explicit consideration of some of the most important drivers of 
changes in demographic rates can make a major difference in the way we see the population evolve 
in the future. This is particularly true in the context of probabilistic population projections, where 
the uncertainty about the evolution of the structure of heterogeneous populations is added to the 
uncertainty about demographic trends within each sub-population. This aspect is quantitatively more 
important in heterogeneous populations, such as India, than in the more homogeneous ones. 

How to deal with this issue in the context of specific populations to be forecasted, cannot be deter­
mined purely by statistical models. It requires deep substantive analysis and inevitably a degree of 
expert judgment. But in any case we should be careful to base our assumptions on explicit arguments 
that are open to the usual instruments of scientific review and evaluation. 
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Resume 

Parmi Jes differentes sources d'incertitude dans Jes projections de population, Jes changements dans la structure de 
populations Mterogenes ont rl!\:u peu d'attention jusqu'ici, en depit de l'impact significatif qu'ils peuvent avoir. Nous nous 
concentrons ici sur Jes effets de changements dans la composition educative de la population sur la fertilite globale de 
la population, en presence de forts differentiels de fertilite par niveau d'education. A partir de donnees de l'lnde, nous 
montrons que des parcours educatifs differents des femmes conduisent a des taux globaux de fertilite significativement 
differents pour le pays dans Jes decennies a venir, meme avec l'hypothese que les tendances de fertilite restent identiques a 
l'interieur de chaque groupe educatif. Ces resultats de projections de population par niveau educatif sont ensuite traduits en 
une projection de population entierement probabiliste pour l'lnde, dans laquelle Jes resultats de scenarios educatifs altematifs 
sont supposes accroitre le degre d'incertitude du futur taux global de fertilite dans la population totale. Cette premiere tentative 
d'endogeneiser le changement structure! en fonction de I' education--qui est la source la plus mesurable d'heterogeneite de la 
fertilite en Asie-est issue d' un exercice plus large conduit par le Metacentre Asiatique pour I' analyse de la population et du 
developpement durable dans le but de collecter de l'information empirique, des arguments scientifiques ainsi que I' opinion 
d'un grand nombre d'experts de la population de la region sur Jes futures tendances probables de la population en Asie. 
Dans ce processus, Jes changements futurs dans la structure de la population par niveau d'education ont ete identifies comme 
un facteur cle de la fertilite future. Les projections de population probabilistes pour l'Inde montrent avec un degre eleve 
de certitude que la population va continuer a croitre jusqu'a environ 1.3 milliard dans le prochain quart de siecle. Au dela 
l'incertitude devient beaucoup plus grande, entre le prolongement d'un fort accroissement et le debut d'une baisse de la 
population indienne. 
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Summary 

The traditional high-low-medium scenario approach to quantifying uncertainty in population forecasts 
has been criticized as lacking probabilistic meaning and consistency. This paper shows, under certain 
assumptions, how appropriately calibrated scenarios can be used to approximate the uncertainty intervals 
on future population size and age structure obtained with fully stochastic forecasts. As many forecasting 
organizations already produce scenarios and because dealing with them is familiar territory, the methods 
presented here offer an attractive intermediate position between probabilistically inconsistent scenario 
analysis and fully stochastic forecasts~ 

Key words: Age structure; Population forecasting; Population size; Scenarios; Stochastic; Uncertainty. 

1 Introduction 

Traditionally, population forecasts have included high, medium, and low variants, with the medium 
being the most likely outcome. The high and low scenarios are said to be "plausible" but lack any 
probabilistic interpretation. High and low scenarios tend to produce extremes in either population 
size or in population age structure, but not in both at once. Scenarios typically have smooth time 
trajectories, assigning zero probability to fluctuations in fertility and mortality that occur in real 
populations. A recent evaluation concludes that "no consistent probabilistic interpretation can be 
given to the high-low scenarios in population forecasts". (National Research Council, 2000). 

Stochastic population forecasts have been developed that try to address these difficulties. A number 
of approaches have been tried. Approaches based on stochastic renewal (Lee & Tuljapurkar, 1994; 
Keilman, Pham & Hetland, 2002; Alho & Spencer, 1991) have used time series analysis to forecast 
future mortality and fertility rates which are allowed to fluctuate randomly over time. (Typically, 
migration remains deterministic.) Monte Carlo methods are then used to produce a large number 
of future population trajectories. The quantiles of these simulated trajectories give the prediction 
intervals for measurements of population size, and age-structure. An analytic theory of stochastic 
renewal has also been developed (Cohen, 1986; Lee & Tuljapurkar, 1994; Alho & Spencer, 1991), 
but modem computing power makes the Monte Carlo approach simpler in most cases. The world 
forecasts by Lutz, Sanderson & Scherbov (2001) have used a hybrid of methods including expert 
opinion, scenarios, and auto-correlated time series to produce probabilistic projections. 

Fully stochastic forecasts quantify the uncertainty in population size, age groups, and age structure 
in a probabilistically consistent way. This internal consistency allows the incorporation of mortality 
and fertility uncertainty, simultaneous prediction intervals for several age groups and functions of 
age groups, and population outcomes to be integrated over time. This last feature is of particular 
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advantage when assessing the viability of national pension systems for which the age structure of a 
population over many decades is of interest (Lee & Tuljapurkar, 1998). 

Despite these advantages, population projectors have been slow to switch over to fully stochastic 
forecasts. Their reluctance is not surprising. Stochastic forecasts are data-intensive, requiring detailed 
historical information to estimate the variability of vital rates. They also assume that variability in the 
future will be similar to that of the past. Finally, from a technical point of view, stochastic forecasts 
are difficult to produce-whereas scenario projections require relatively little training and can be 
produced with existing software, stochastic forecasts have required research scientists knowledge­
able about time series estimation and customized programming. 

Moreover, scenarios are easy to explain to users and easy for users to interpret. The middle sce­
nario is interpreted as the most likely outcome (Keyfitz, 1972). "High" and "low" may lack assigned 
probabilities but do have simple conditional interpretations. If fertility and mortality follow the 
hypothesized paths then the impact for future population will be as shown. This if-then approach 
translates vital rate trajectories into population outcomes, a rough sensitivity analysis of how popu­
lation size and age-structure depend on levels of fertility, mortality, and migration 

This paper addresses the reluctance of forecasters to make the leap from using scenarios to fully 
stochastic forecasts. We do this by describing the conditions under which the results of scenario­
based forecasts closely approximate those that could have been obtained using a fully stochastic 
approach. 

The procedure presented here is a compromise. It does not produce exactly correct results, but it 
yields surprisingly accurate figures with little additional effort on the part of the forecasters. Those 
who use this approach have the benefits of both using a methodology with which they are familiar 
and obtaining the desirable features of probabilistically consistent uncertainty intervals. To do this, 
we first give scenarios a specific probabilistic interpretation; then we combine the results for different 
age-segments in a probabilistically sensitive manner. 

Past comparisons between scenarios and stochastic forecasts have compared forecasts that differ in 
many dimensions including both the expected level of fertility and mortality and the range of fertility 
and mortality (Lee & Tuljapurkar, 1994; Keilman et al., 2002). The approach here is to calibrate the 
two approaches so that a comparison can reveal the differences and similarities intrinsic to the two 
methods. Lutz & Scherbov (1998) used a similar approach but a different method of calibration. 

The paper begins with a discussion of how to give of scenarios, particularly fertility scenarios, a 
specific probabilistic interpretation. Next we consider how to combine the results of forecasts for 
different age-segments in a probabilistically sensitive manner. Throughout, we compare the results 
of this modified scenario approach with published fully stochastic forecasts by Lee & Tuljapurkar 
(1994). 

2 The Modified Scenario Approach 

Our first task is to assign a probabilistic interpretation to the vital rates scenarios. Figures 1 and 
2 show some sample paths from stochastic forecasts of fertility and life expectancy. The distance 
between the bold solid lines gives the 95 percent uncertainty intervals for fertility and life expectancy 
in any given year. The vertical span between the heavy dashed lines in the fertility figure gives the 95 
percent interval of the long-term average of fertility, which will be described below. The intervals for 
for the average are narrower than the intervals for a given year because because the ups and downs 
in fertility cancels out to some extent. 

A key difference between scenario-based forecasts and stochastic forecasts is that the scenarios 
incorporate nearly perfect temporal autocorrelation. If, for example, fertility is high in the first 
5 years of the scenario forecast, it is assumed to remain high for the entire forecast. Stochastic 
forecasts, on the other hand, use time series models to incorporate an empirically estimated amount 
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Figure 1. Sample paths and forecast intervals of stochastic forecast of total fertility rate. 
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Stochastic fertility model is a mean-constrained ARMA(l,l) model with coefficients given in Lee & Tuljapurkar (1994). 
The figure shows 4 sample paths generated with Monte Carlo simulation; these can be identified by their large ups and downs. 
The heavy solid U-shaped outer bounds give the 95 percent prediction interval for the TFR in any year, with the heavy 
middle line giving the median TFR. The heavy dashed U-shaped inner bounds give the 95 percent prediction interval for the 
cumulative average of the TFR up to that date. Both prediction intervals were estimated from the quantiles of 1000 simulated 
runs. Note that the bounds on the cumulative average cover roughly the same interval from years 20 through 80. 

of autocorrelation over time. In the illustration, the fertility model is a constrained mean ARMA( 1, 1) 
model (Lee, 1993) and the mortality model is a random walk with drift (Lee & Carter, 1992a). 

In an earlier paper, Lutz & Scherbov ( 1998) used the prediction interval on fertility in a given year 
to construct scenarios. They found that this produced larger estimates of uncertainty than the fully 
stochastic approach because-as Lee (1999) points out the stochastic forecasts incorporate some 
"cancellation of errors", whereby a path that has high fertility in one year is likely not to be the same 
path that has high fertility in the next year. 

An alternative approach, adopted here, is to calibrate scenarios to a smoothed version of the 
stochastic realizations, averaging out the highs and lows. Specifically, we construct scenarios based 
on the uncertainty in the cumulative average off ertility from the beginning of the forecast to the date 
of interest. The cumulative average X (t) is defined as :L~ X (i)/ t. 

An interesting feature of the cumulative average is that its variance is nearly constant after about 
year 20 of the forecast. In the absence of serial correlation, the variance of the cumulative average 
would shrink over time. However, the observed temporal autocorrelation is sufficient to keep the 
uncertainty interval nearly stable from year 20 through year 80 of the forecast, and shrink significantly 
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Figure 2. Sample paths and forecast interval of stochastic forecast of life expectancy. 
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Stochastic mortality model is a random walk with drift (Lee & Carter, 1992a) with specification and coefficients given 
by Lee & Tuljapurkar (1994 ); life expectancy is not forecasted directly but rather is a function of the mortality index. The 
figure shows 3 sample paths generated with Monte Carlo simulation; these can be identified by their large ups and downs. 
The heavy solid U-shaped outer bounds give the 95 percent prediction interval for life expectancy in any year, with the heavy 
middle line giving the median life expectancy, as estimated from the quantiles of 1000 simulated runs . 

only later on. This property is convenient because it means that the bounds on the calibrated fertility 
scenarios can be approximated by a moving moving average with a window of several decades, and 
that the choice of window width will have a small effect on the interval coverage. The stability of 
the uncertainty interval of the cumulative average is a robust finding. It also is produced by other 
autoregressive specifications (e.g., AR(l)) and in other populations in the industrialized world (e.g. 
France). However, it is possible to construct models that have less stable uncertainty intervals for the 
cumulative average of forecast fertility (Congressional Budget Office, 2001). 

For fertility the use of the variation in long-term averages seems justifiable on several counts. 
First, forecasters are generally not interested in the number of births in a particular year, but rather 
in the number of births over broad time intervals that determine the size of future broad age groups. 
Second, the wide span of reproductive years for any cohort means that over the course of generations, 
the number of potential parents in a broad age interval rather than the numbers of potential parents in 
a single year of age are what-in combination with period fertility-determine the number of births 
in a given year. 

Analytically, it is difficult to show that the cumulative average is the right kind of average to use 
in age-structured populations experiencing stochastic renewal. However, a simple non-overlapping 
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generation model in which one generation reproduces the next can be used to show that calibrating 
scenarios to the cumulative average will give approximately the same variance as the fully stochastic 
approach. This is demonstrated in appendix B. 

Stochastic forecasters have used the cumulative average to compare the variability of their fertility 
forecasts with scenarios (Lee, 1993; Congressional Budget Office, 2001). The modified scenario 
approach set out here simply takes this comparison one step further, interpreting the prediction 
interval bounds of the cumulative average as high and low scenarios. 

The second step in improving scenario-based forecasts is to combine the uncertainty of different age 
groups in a probabilistically sensible manner. The temporal correlation of the scenarios for fertility 
assure that a large number of births in the first years of a forecast will always be accompanied by a 
larger than expected number of births later on. Similarly, high fertility and low mortality will create 
larger than expected population sizes across all ages, while low fertility and high mortality will do 
the opposite. The resulting estimates of variability in age structure will be distorted because of the 
perfect correlations that are produced using the scenarios. A way to correct this distortion is to take 
account of the magnitude of correlation that exists between broad age-segments. 

Table 1 

Age segment correlations and coefficients of variation from 
stochastic forecasts. 

Forecast Correlation Coef. of Variation 
Year O,W Y, W O,Y y w 0 

10 1.00 0.10 0.09 0.06 0.00 0.01 
20 1.00 0.06 0.05 0.15 0.00 0.02 
30 0.23 0.63 0.02 0.22 0.03 0.04 
40 0.12 0.78 O.Dl 0.30 0.07 0.06 
50 0.08 0.82 -0.01 0.39 0.12 0.08 
60 0.04 0.83 -0.04 0.46 0.20 0.09 
70 0.12 0.86 0.00 0.52 0.28 0.10 
80 0.47 0.88 0.31 0.57 0.36 0.16 

Estimated from simulation of stochastic forecasts as given in 
Lee & Tuljapurkar (1994) with 400 independent runs. Y is 
youth population aged 0-19, W is working-age population 
aged 20-64, and 0 is old-age population aged 65+. Coefi-
cient of variation is ratio of the observed standard deviation to 
the observed mean. 

Table 1 shows the correlations estimated between broad age groups over time for the fully stochastic 
forecast developed by Lee & Tuljapurkar (1994). The correlations between the working age and old 
age segments are close to zero for years 30 through 70, due to the independence of fertility and 
mortality assumed in the stochastic forecasts. The high correlations between the working and old age 
segments in the first two decades is due to the mortality model being used which assumes correlated 
effects across all ages in a given period (Lee & Carter, 1992a). This high degree of correlation can 
be neglected since there is virtually no variation in the size of the working age population. The 
working age and elderly age segments become positively correlated at the very end of the forecast 
when fertility uncertainty reaches the oldest age segment. Generational reproduction then introduces 
a positive correlation between the size of the elderly generation and those born afterwards. With 
these two caveats, there is little correlation between the size of the working and old-age population 
segments. 

Generational reproduction also assures a high degree of correlation between generations for 
working and young age segments for forecast years 30 through 80. Before about year 30, the slight 
uncertainty in the number of working age is determined by mortality. After about year 30, the size 
of the first wave of births determines in large part the size of the second wave, producing the high 
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correlations we see in Table 1. Although uncertainty in fertility rates also has an effect, it is of second 
order, particularly when there is positive autocorrelation of fertility rates over time. 

The set of correlations and seen in Table 1 are based on my replication of the Lee and Tuljapurkar 
stochastic forecasts of the U.S. population. In general, a forecaster will not have a fully stochastic 
forecast in hand-that is why he or she is interested in using scenarios. Accordingly, rather than using 
the correlations produced by the U.S. forecasts, the approach we use to approximate the uncertainty in 
dependency ratios assumes independence (p = 0) between the elderly and the rest of the population 
and perfect correlation (p = 1) between the size of the young and working population. 

Assuming zero correlation between the elderly and the rest of the population also allows one to 
treat fertility and mortality as independent factors for the time period we are considering, since the 
number of elderly is unaffected by future fertility for the first 60 or 70 years of the forecast. 

3 Results 

We now investigate how close the modified scenario approach comes to reproducing the uncertainty 
estimates from fully stochastic forecasts, assumed to give the true uncertainty of future population 
estimates. It should be kept in mind, however, that even fully stochastic forecasts omit many sources 
of uncertainty including estimation of the baseline population, specification error in time series 
models, and the probability of significant events that did not occur in the past, such as nuclear war 
(Lee & Carter, 1992b ). 

The stochastic forecasts of the United States population by Lee & Tuljapurkar (1994) constitute 
our benchmark case. (For details see appendix A.) For simplicity, we use the estimated Lee and 
Tuljapurkar time series models for fertility and mortality but omit migration and project only the 
female population. 

Fertility scenarios are calibrated to the same 95 percent prediction bounds of cumulative average 
fertility produced by the stochastic forecasts-the heavy dashed lines in Figure 1. The life expectancy 
scenarios are calibrated to the 95 percent prediction interval of the forecast shown in Figure 2. Using 
this broader interval for life expectancy, rather than some kind of cumulative average, turns out to 
produce reasonable uncertainty ranges. 

The observed 1990 U.S. female population is then projected according to three variants, which we 
label "large", "small", and "medium". The large variant is for high fertility and low mortality. The 
medium variant is for medium fertility and mortality. The small variant is for low fertility and high 
mortality. 

This choice of variants assures the greatest variation in age-segment sizes. As will be seen, a 
further round of calculation is needed to take into account the proper level of uncertainty on age 
structure. 

3.1 Uncertainty in Total Population Size and the Size of Broad Age Segments 

Figure 3 presents the total population size and the number of young, working and elderly estimated 
over time by the three variants. Fertility is the overwhelming source of uncertainty in population 
size (Alho, 1992), and we can see that the calibration of fertility scenarios to the prediction interval 
on the cumulative average of stochastic fertility has indeed created a very close match between the 
uncertainty intervals from the two approaches. This is a new finding. Past comparisons have shown 
that stochastic forecasts and scenarios have different ranges of uncertainty around age-segment sizes 
and total population (Lee & Tuljapurkar, 1994; Lutz & Scherbov, 1998). But no earlier comparisons 
have calibrated fertility so that its effective variation is similar in the two approaches. 

The extremely close match for total population size between the two approaches results from 
two offsetting differences between the stochastic and scenario forecasts. The scenarios couple high 
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Figure 3. Population size according to stochastic and scenario forecasts of U.S. females from 1990. 
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In the scenario approach uncertainty for component age groups sums to the uncertainty in the population. In the stochastic 
approach, the uncertainty in the total population is less than the sum of the uncertainty of the components because of offsetting 
variability. Scenarios are calibrated to the uncertainty ranges in mortality and cumulative fertility. 

fertility with low mortality and vice-versa, inflating slightly the bounds on total population size 
compared to the independence between factors assumed in the stochastic forecast. On the other 
hand, we can see that the scenarios underestimate slightly the width of the interval covering each of 
the age segments, presumably because they do not allow the same degree of short-term variation in 
fertility rates that produces extremes in age-group sizes. The net result is that the scenarios produce 
almost exactly the same uncertainty ranges on total population size as the fully stochastic forecasts. 
An important qualitative feature is that the scenarios pick up the asymetry in the prediction interval 
seen in the stochastic forecasts that is due to the log-normality of population size predicted by 
stochastic renewal theory (Tuljapurkar, 1992). 

3.2 Uncertainty in Age Structure Measures 

To produce uncertainty estimates on age-structural measures from scenarios, we combine the 
uncertainty of different age groups in a probabilistically sensitive manner, taking into account the 
general magnitude of the correlations between age segments observed in Table 1. 

Demographers define dependency ratios as the ratio of dependent population age groups to the 
working age population. Following convention, the working age population W consists of those aged 
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Figure 4. Stochastic forecast of total fertility rate 95% forecast interval for each year and 95% forecast interval for cumulative 
average. 
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The traditional scenario approach uses within-scenario age group sizes. The adjusted approach takes account of the 
possibility that all age group sizes may not be "large", or "small", at the same time. 

20 through 64, the young population Y of those aged 0 through 19, and the elderly population 0 of 
those aged 65 and above. Then, the old-age dependency ratio (ODR) is 0 / W; the youth dependency 
ratio (YDR) is Y / W; and the total dependency ratio (TDR) is (Y + 0)/ W, the sum of the youth and 
old-age dependency ratios. 

Our strategy is to estimate the uncertainty in dependency ratios using the standard approximation 
for the variance of correlated random variables (e.g. Rice (1995)), 

a;1y ~ (~;) 
2 

(d: + ci - 2Pxrcxcy), (1) 

where µx and µy are the means of X and Y, ex and cy are the coefficients of variation (the ratio of 
the standard deviation to the mean), and Pxr is the correlation between X and Y. 

Using the exact values of the correlation observed between age groups would produce the best 
estimate of uncertainty. In general, however, these will not be known, and so we assume correlations 
of 1 between the young and working age populations and 0 between the elderly and non-elderly 
populations. We estimate the coefficients of variation, assuming normality, as one-fourth the ratio of 
the width of the prediction interval to the central forecast. 

Figure 4 shows the dependency ratios of the stochastic approach and those produced by the 
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modified scenarios. The figure also shows the dependency ratio ranges produced by taking the range 
of dependency ratios directly from the scenario output. 

In the case of the old-age dependency ratio, the modified scenario approach produces an uncertainty 
interval that tracks the stochastic intervals nearly exactly for the first 40 to 50 years of the forecast, 
and does so much better than the direct use of scenarios. After this, the width of the modified scenario 
intervals are comparable to the stochastic intervals but the use of the normal approximation does not 
capture the asymmetry of the stochastic forecast intervals. Still, allowing fertility and mortality to 
vary independently produces much more accurate uncertainty intervals than does the traditional use 
of scenarios. 

In the case of the youth dependency ratio, our assumption of perfect correlation between the 
young and working age populations is equivalent to the traditional use of scenarios. Both scenario 
approaches produce somewhat narrower uncertainty bounds than they should. For example, using 
the observed correlation between the young and the working age segments given in Table 1 would 
increase the uncertainty by a factor of almost a third in the 70th year of the forecast. Still, our general 
finding is that the bounds on the youth dependency ratio, even assuming perfect correlation, are of 
the same general magnitude as those produced by the stochastic forecast. 

Finally, we tum to the total dependency ratio, which requires an additional assumption to be 
made about the covariance between the youth and elderly dependency ratios, since var(X + Y) = 
var(X) + var(Y) + 2cov(X, Y). The fully stochastic results (not shown) reveal that in these forecasts 
the old-age and youth dependency ratios are negatively correlated, although it is not clear that this 
is a general property across populations. Our estimates of uncertainty in the old-age and youth 
dependency ratios are both on the low side, so assuming no covariance between the two ratios offsets 
this bias. The result is a remarkably close match in the uncertainty intervals from the stochastic 
and the modified scenario forecasts. The improvement relative to the traditional use of scenarios is 
dramatic. 

4 Adjusting Dependency Ratios from Traditional Scenarios: A Worked Example 

In applications of the method proposed here, one would not generally have estimated versions of 
the fertility and mortality time series-if one did, one could just continue with the fully stochastic 
forecast. The more likely real-world situation is that one has the output from scenarios and wants to 
present these in a probabilistically sensible manner. To do this, one would take the output for each 
age group from the scenarios, use the bounds generated for each age group and total population 
directly from the scenarios, but recomputing the uncertainty in the total dependency ratios using the 
methods proposed here. 

As an example, Table 2 presents the projected populations in year 50 of the forecast (year 2040) 
based on the scenarios used in this paper. The coefficients of variation estimated as (Large-Small)/( 4 
x Medium), based on assuming normality with the Medium scenario as mean. We then apply 
equation 1 assuming p = 0 for the ODR and p = 1 for the YDR. The TOR is calculated by assuming 
independence between the ODR and YDR, making the variances additive. 

The table shows the original and adjusted dependency ratios along with the ranges calculated 
using equation 1. We see that the YDR is unaffected by the adjustment, since the scenarios implicitly 
assume correlations of 1 between the young and working age groups. The uncertainty range in 
the old-age dependency ratio, on the other hand, increases substantially, some 5-fold, due to our 
adjustment. This is because the original scenarios always combine large working populations with 
large elderly populations and small working populations with small working populations, whereas 
in fact independence-or something very close to it-is warranted. The adjusted uncertainty in the 
total dependency ratio is also larger than the uncertainty implied by the original scenarios. Here the 
adjustment increases the estimate of uncertainty by about a factor of 1/4. The adjusted TDR differs 
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Table 2 

Illustrative example of calculation of adjusted dependency ratios. 

(a) Age-group results of year 50 of scenario forecasts 

Age group 

0-19 
20-64 
65+ 

Millions of females 
Small Medium Large 

36.7 18.4 62.5 
78.9 64.2 94.8 
32.2 27.9 36.5 

(b) Original and adjusted dependency ratios 

OOR 
original adjusted original 

Low 0.39 0.31 0.29 
Medium 0.41 0.41 0.47 
High 0.43 0.51 0.66 

Coef. of Var. 

YOR 

0.30 
0.10 
0.07 

adjusted 

0.29 
0.47 
0.66 

TOR 
original adjusted 

0.72 0.66 
0.87 0.87 
1.04 1.08 

Coefficients of variation estimated using normal approximation as one-fourth the differ­
ence between Large and Small divided by Medium. "Original" dependency ratio uncer­
tainty is directly from scenario outputs. "Adjusted" uncertainty range between "Low" 
and "High" is the 95% forecast interval based on equation 1 and normal approximation. 
Adjusted TOR assumes independence of YOR and OOR. 

from the original TDR by larger amounts later in the forecast (See Figure 4 ). 
This example illustrates how to use the scenario results, conditional on having scenarios that 

themselves have some probabilistic interpretation. In real applications, one would need to specify 
the scenarios. Alternatives to stochastic time series could involve the use of judgement and expert 
opinion (Lutz et al., 2001) and/or ex post evaluation of past scenarios. These approaches are discussed 
further below. 

5 Discussion 

In this section, we first discuss the need for accurate estimates of uncertainty and then consider 
ways to implement the modified scenario approach using stochastic time series methods, expert 
opinion, and existing scenario-based forecasts. 

5.1 How Accurate do Uncertainty Measures Need to Be? 

The modified scenario approach produces uncertainty intervals that are broadly similar to those 
produced by the fully stochastic forecasts. But differences emerge, particularly for forecast horizons 
beyond about 60 years when fertility uncertainty begins to influence the number of elderly. 

How accurate do estimates of uncertainty need to be? It is sometimes argued that estimates of 
uncertainty from the fully stochastic forecasts are misleadingly precise. Exact intervals are produced 
but these are conditional on the correct specification of the time series model and more importantly 
on the assumption that past variability is a good estimate of future uncertainty. In such a situation, 
approximations of stochastic forecasts such as those produced here may arguably give a somewhat 
more appropriate, even if less precise, depiction of the uncertainty in uncertainty estimates. 

At a practical level, the degree of uncertainty at longer time horizons is often of less interest to 
contemporary planners because advance warning will come if unexpected changes take place. For 
example, a baby boom in the decade of the 2020s would surprise most contemporary observers. But 
because it will take some years for these newborns to enter school, even more years for them to enter 
the workforce, and many decades for them to enter the retirement system, there will be advance 
notice, which new forecasts can then take into account. Even when a long planning horizon is legally 
mandated, as is the 75 years for actuarial reports of the U.S. social security system, policy debates 
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usually revolve around changes expected in the next several decades. A final factor giving short 
horizons greater importance is that policy makers recognize that the distant future is more uncertain 
than the near future and are thus less likely to lock in inflexible policies with extremely long time 
horizons. For all of these reasons it is important to emphasize the success of the modified scenarios 
during the first five decades of the forecast. 

5.2 Calibrating Scenarios 

Here, I have calibrated scenarios to the prediction intervals generated by stochastic time-series 
models. When time-series models for vital rates are available, it will usually be worth continuing 
with fully stochastic forecasts of the population, with calibrated scenarios best used as a tool for 
checking stochastic forecasts. 

The modified scenario approach is most useful when time series estimates are either unavailable 
or, for whatever reason, unbelievable. In these instances, one would want to calibrate the scenarios to 
some other standard. Two approaches seem reasonable. The first is a minor modification of existing 
scenario methods whereby experts either within or outside of forecasting agencies specify high and 
low scenarios. In this case, the results presented here suggest that there be an explicit statement 
by those designing fertility scenarios that the scenarios apply to long-term averages, not to the 
uncertainty in any given year. The stability of the uncertainty interval of the averages over a broad 
range of cumulative averages from 20 to 80 years reduces the need for experts to worry about the 
precise form of the average they are considering, as long as it is made clear that it is at least several 
decades. 

A second approach would use the effective uncertainty range covered by past scenarios and apply 
it to the current production of scenarios. Stoto has found that forecasts in the industrial world tend 
to cover about a two-thirds prediction interval in population size in any given year (Stoto, 1983). 
The present analysis suggests doing an ex post analysis exercize but with a focus on the cumulative 
average of fertility. The quantile range covered by past scenarios could then be used to give a 
probabilistic interpretation to the results from new scenario-based projections, extrapolating these 
ex post errors into the future. 

Scenario forecasts could also be made without specifying the probability interval covered by "high" 
and "low" but by using the methods of combining age segments and calculating the uncertainty in 
dependency ratios. This would assure greater consistency in the uncertainty range of population age 
group sizes, total population, and dependency ratios, so that all would cover approximately the same 
uncertainty interval, even if it remained undefined. 

6 Conclusion 

We have found that scenarios, when used with some care, can come close to reproducing the 
uncertainty estimates produced by fully stochastic population forecasts. The key elements are the 
specification of a probability interval covered by the scenarios, the calibration of fertility scenarios 
to variability in long-term average fertility, and the probabilistic combination of uncertainty from 
distinct age segments. 

Several caveats are in order. The first is that the uncertainty estimates from our use of scenarios 
came closest to the estimates from stochastic scenarios for the first 60 years or so. For long term 
forecasting, full incorporation of stochastic renewal becomes more important. Second, our results 
apply to populations in which future fertility and mortality can be assumed to be independent 
and where there is little mortality at younger ages. The probabilistically sensitive use of scenarios in 
populations in which mortality effects the size of the young and working age populations needs further 
research. Third, the methods used here apply only to broad age segments. They are inappropriate for 
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assessing the relationships between the joint uncertainty of functions of narrower age groups. For 
uncertainty estimates for detailed age-distributions, the fully stochastic approach is needed. Finally, 
further research is needed to assess uncertainty in time-integrated functions of population structure, 
such as the viability of pay-as-you-go pension systems. Unlike the scenarios presented here, the fully 
stochastic approach can be integrated over time without concerns about probabilistic consistency. 

Overall, our results suggest some interesting future applications of probabilistically sensible 
scenario forecasts. It may be possible to translate existing scenario forecasts into approximate 
probabilistic forecasts fairly easily. It also suggests a method for translating expert-based forecasts 
into probability intervals. Finally, the approach offers a useful first step for those agencies considering 
the production of probabilistic forecasts using the fully stochastic time-series approach. 

Acknowledgement 

I thank Gyanendra Badgaiyan for research assistance and am grateful for comments on an earlier 
version of this paper to Juha Alho, Ronald Lee, Tim Miller, Guy Stecklov, Shripad Tuljapurkar, 
Warren Sanderson, and participants of the Stochastic Forecasting Workshop held in December 2002 
at the Vienna Institute for Demography. 

References 

Alho, J.M. & Spencer, B.D. (1991). A population forecast as a data base: implementing the stochastic propagation of error. 
Journal of Official Statistics, 1, 295-310. 

Alho, J.M. (1992). The magnitude of error due to different vital processes in population forecasts. International Journal of 
Forecasting, 8, 301-314. 

Cohen, J.E. (1986). Population forecasts and confidence intervals for Sweden: a comparison of model-based and empirical 
approaches. Demography, 23, 105-126. 

Congressional Budget Office (2001). Uncertainty in social security's long-term finances : a stochastic analysis. CBO Paper, 
December 2001, Congress of the United States. 

Keilman, N., Pham, D.Q. & Hetland, A. (2002). Why population forecasts should be probabilistic-illustrated by the case 
of Norway. Demographic Research, 6, 410-453, Article 15. 

Keyfitz, N. (1972). On future population. J. Amer. Statist. Assoc., 67(338), 347-363. 
Lee, R.D. (1993). Modeling and forecasting the time series of U.S. fertility: age distribution, range, and ultimate level. 

International Journal of Forecasting, 9, 187-202. 
Lee, R.D. (1999). Probabilistic approaches to population forecasting. In Frontiers of Population Forecasting, Vol. 24 of 

Supplement to Population and Development Review, Eds. W. Lutz, J. Vaupel and D. Ahlburg, pp. 156-190. New York: 
Population Council. 

Lee, R.D. & Carter, L. (1992a). Modeling and forecasting the time series of U.S. mortality. J. Amer. Statist. Assoc., 87, 
187-202. 

Lee, R.D. & Carter, L.R. (1992b). Modeling and forecasting U.S. mortality: rejoinder. J. Amer. Statist. Assoc., 87(419), 
674--675. 

Lee, R.D. & Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: beyond high, medium, and low. J. 
Amer. Statist. Assoc., 89(428), 1175-1189. 

Lee, R.D. & Tuljapurkar, S. (1998). Stochastic forecasts for social security. In Frontiers in the Economics of Aging, Ed. D. 
Wise, pp. 393-420. Chicago: University of Chicago Press. 

Lutz, W. & Scherbov, S. (1998). An expert-based framework for probabilistic national population projections: the example 
of Austria. European Journal of Population, 14, 1-17. 

Lutz, W., Sanderson, W. & Scherbov, S. (2001 ). The end of world population growth. Nature, 412, 543-545. 
National Research Council (2000). Beyond Six Billion: Forecasting the World 's Population, Eds. J. Bongaarts and R.A. 

Bulatao. Washington, DC: National Academy Press. 
Rice, J.A. (1995). Mathematical Statistics and Data Analysis, second edn. Belmont, California: Duxbury. 
Stoto, M. (1983). The accuracy of population projections. J. Amer. Statist. Assoc., 78, 13-20. 
Tuljapurkar, S. (1992). Stochastic population forecasts and their uses. International Journal of Forecasting, 8, 385-391. 



Simpler Probabilistic Population Forecasts: Making Scenarios Work 105 

Resume 

L'approche traditionnelle a trois scenarios (superieur-moyen-inferieur) pour quantifier !'incertitude dans !es projections de 
population a ete critiquee pour son manque de signification et de coherence probabilistes. Cet article montre, sous certaines 
hypotheses, comment on peut utiliser a bon escient des scenarios calibres pour estimer !es intervalles d'incertitude sur la 
taille et la structure par age de la population totale, obtenues avec des projections entierement stochastiques. De nombreuses 
organisations produisent deja des scenarios de projections que !'on sait traiter. Aussi !es methodes presentees ici apportent 
un point de vue intermectiaire interessant entre !'analyse d'un scenario incoherent au sens probabiliste et !es projections 
entierement stochastiques. 

Appendices 

A Stochastic Processes for Vital Rates 

All of the estimates in this paper are based on the estimates in Lee & Tuljapurkar (1994) and Lee 
( 1993). The fertility model used is a constrained autoregressive moving average model, ARMA( 1, 1 ), 
given by 

Fr = cFr-1 + F(l - c)ur + dur-1, (2) 

withe= 0.9676andd = 0.47978, theultimatemeanlevelequalto F = 2.1 and with Ur rv N(O, <Yu). 

<Yu = 0.110663. This index of fertility is translated to age specific fertility rates according to the 
schedules in Lee (1993). 

The mortality model is a random walk with drift, given by 

Kr = Kr - Z + Er, (3) 

with z = 0.365 and E1 rv N(O, a€), a€ = 0.651. This mortality factor is translated to age-specific 
mortality rates, namely 

logmx.r =ax+ f3xKr. 

The schedules ax and f3x are given in Lee & Carter (1992a). 
Both formulations assume perfect autocorrelation between age-groups from year to year. Estimates 

of uncertainty omit uncertainty in the estimation of parameters, following Lee & Tulj apurkar ( 1994 ). 

B A Generational Model of Stochastic Renewal 

To represent the stochastic forecast, let X r be the net reproductive rate of generation t such that 

G1 = (X1 • Xr-1 · ... · X l)Go. 

The Xr are serially correlated random variables such that 

Xr = M +Er. 

where M is the expected net reproduction rate and E is a random variable with zero mean, variance 
a? andcov(Er, Er-1) ::'.'.: 0. 

As an alternative, generation size in the scenario based forecast can be defined as 

G: = Y 1Go, 

where now Y is a single random variable that when multiplied by itself t times will give the change 
in Go that gives Gr. 

Letting Zf = yr and Z1 = n1 X;, we wish to find E(Y) and var(Y) such that E(Zr) = E(Z;) 
and var(Z1) = var(Z;). Using the delta method to first order for the expectation (Rice, 1995), 
E(Z1) ::::::; E(X1) ... E(X1) = M 1 and E(Z;) ::::::; E(Y)1

• Thus E(Y) R:! M . The same method, after 
some algebra, gives a first order approximation of the variance of the generational stochastic model 
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of 
var(Z1) ~ M 2<r-l>var(X1 + ... + Xr). 

Substituting Y = Xi for all i , the delta approximation of the generational scenario model gives 

var(Z:> ~ M2<r-1>var(tY). 

We can now find the variance of Y by setting var(Z1) = var(Z;) . This gives 

var( Y) = var , (
X1+ ... +Xr) 

t 

which shows that calibrating Y to the variance of the cumulative average of X will equalize the 
variances of generation size. 

The generational model differs from that used in applications in several respects. First, in appli­
cations the projections are age-structured, with age groups of 1 or 5 years rather than generational. 
Second, the scenario calibration ends up giving the scenarios Y a different variance for each year of 
the forecast, although as we saw this stabilizes after about year 20 because of autocorrelation in the 
process for annual fertility fluctuations. Finally, the application considers both fertility and mortality 
independently, rather than net fertility, although the distinction in low mortality populations is not 
substantial. 

The simulation results shown in the body of the paper show that these differences do not, in 
practice, change the approximate equivalence of the two approaches. 

[Received December 2002, accepted November 2003] 
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Summary 

Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as 
to whether it is possible to make conditional population forecasts in a probabilistic context. This paper 
shows that it is both possible and useful to make these forecasts. We do this with two different kinds of 
examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic 
scenario analysis is essential for policy-makers because it allows them to answer "what if'' type questions 
properly when outcomes are uncertain. The second is a new category that we call ''future jump-off date 
forecasts". Future jump-off date forecasts are valuable because they show policy-makers the likelihood 
that crucial features of today's forecasts will also be present in forecasts made in the future. 

Key words: Forecasting; Population forecasting; Probabilistic forecasting; Scenarios; Scenario analysis. 

1 Introduction 

The last decade and a half has witnessed rapid development in the area of probabilistic population 
forecasting (see Alho, 1990, 1997; Alho & Spencer, 1985; Keilman et al., 2002; Lee, 1999; Lee 
& Tuljapurkar, 1994; Lutz et al., 1996, 1997, 2001; Lutz & Scherbov, 1998; and Pftaumer, 1988, 
among others). A probabilistic forecast goes beyond a traditional deterministic one by providing 
an integrated estimate of the forecast's uncertainty, often a crucial quantity for decision-makers. 
These forecasts give distributions of outcomes rather than single numbers resulting from alternative 
scenarios. Since policy-makers often prefer to think in terms of alternative scenarios (for example, 
outcomes with and without a certain policy), the question has arisen as to whether it is possible to 
make conditional forecasts in a probabilistic context. 

This paper answers that question by demonstrating how to obtain conditional probabilistic pop­
ulation forecasts. We do this with two different kinds of examples. The first is the probabilistic 
analog of deterministic scenarios and the second is a new category that we call "future jump-off date 
forecasts". Both are important for policy analysis. 

Scenario analysis is essential for policy-makers because it allows them to answer "what if" type 
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questions. For example, they may want to know what the age structure of their country would be in 
fifty years if fertility were lower than in the official projections. Future jump-off date forecasts are 
valuable because they help in answering questions about the value of waiting to learn about how the 
future is unfolding. For example, a country may be deciding on whether to build up a retirement fund 
for its citizens. The decision could be made to raise taxes now or to wait ten years to improve its 
projections of future population aging. Future jump-off date forecasts allow us to assess how much 
uncertainty about the future is likely to be resolved by waiting. 

In Section 2, we briefly discuss the probabilistic forecasting methodology used in Lutz et al. 
(2001). It is the basis for the quantitative examples in the next two sections. In Section 3, we discuss 
the probabilistic counterpart of traditional scenario analysis. Section 4 presents a first look at future 
jump-off date forecasts. Section 5 contains some concluding thoughts. 

2 An Introduction to the Methodology 

Creating population forecasts from an initial distribution of the population by age and sex and 
forecasts of total fertility rates (TFRs ), life expectancies at birth, and net migration rates is a widely 
accepted procedure. Probabilistic population forecasts differ from deterministic forecasts in that they 
quantify the uncertainty of the course of future rates and therefore must specify future total fertility 
rates, life expectancies, and net migration rates as distributions and not as points. Distributions can 
also be used to quantify other uncertainties such as those relating to the base population size. 

In order to generate the required distributions, Lutz et al. (200 I) let v be the total fertility rate, the 
change in life expectancy at birth, or net migration to be forecasted for periods 1 through T and Vt be 
its forecasted value at time t. The forecasted value, Vt, can be expressed as the sum of two terms, its 
trend (mean) at time t, Vr. and its deviation from the mean at time t, Et. In other words, Vt =Vt+ Et, 

where Et is the idiosyncratic noise. The Vt were chosen based on the arguments given in Lutz et al. 
( 1994, 1996) and updated based on subsequent information. The s1 term is assumed to be a normally 
distributed random variable with mean zero and standard deviation a(st)· The a(st) are also based 
on arguments from the same sources. 

Due to the persistence of the factors represented by the s1, we would generally expect them to 
be autocorrelated. One of the most commonly used methods of specifying how the Et term evolves 
over time is the simple autoregressive formation (AR(l)), where s1 = a · s1_ 1 + Ut, where u1 is 
an independently distributed normal random variable with mean zero and standard deviation a(u). 
Another commonly used method is the moving average formation of order q, MA(q) where q is the 
number of lagged terms in the moving average. We use the following moving average specification: 

q 

Et= l::a; . Ut-i• 

i=O 

where ur-i are independently distributed standard normal random variables. To ensure that the 
standard deviation of s1 is equal to its prespecified value, 

a(s1) 

<Xj = J<i+T. 

The choice between AR(l) and MA(q) does not have to do with estimation, but rather with repre­
sentation. Data do not exist that would allow the estimation of the parameters of either specification 
at the regional level used in Lutz et al. (2001). Neither is more theoretically correct than the other. 
Both are just approximations to a far more complex reality. When comparably parameterized, they 
produce very similar distributions of s1 • 

The choice between the two, therefore, rests on which more accurately reflects arguments concern­
ing the future. From our perspective, the moving average approach has the advantage that the a(s1) 
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terms appear explicitly making it easier to translate ideas about the future into that specification. 
The future levels of vital rates can be correlated in different ways. Most important are (a) the 

correlations between deviations from assumed average trends in fertility and mortality rates, (b) the 
autocorrelation of deviations within each series of vital rates and (c) the correlations among the 
deviations from the average vital rate trends in different world regions. The forecasts of the world's 
population used in this paper assume: (1) a zero correlation between fertility and mortality deviations 
from their trends within regions, (2) a 31 term moving average specification separately for fertility 
and mortality deviations, which implies an autocorrelation between deviations one year apart of 
around 0.96, and (3) cross-regional correlations of fertility and mortality deviations within each year 
of 0. 7 and 0.9 respectively. This methodology is considerably different from the one used in Lutz et 
al. ( 1996, 1997), where piecewise linear paths for future vital rates were used. 

Due to temporal and regional correlations, vital rates paths for all regions are determined simulta­
neously and then used to make population forecasts, which were aggregated to the world total. This 
process was repeated 2,000 times, generating a distribution of world population sizes for each year 
from 2001to2100. 

3 Conditional Probabilistic Forecasting and Scenario Analysis 

One important audience for probabilistic forecasts is the user community. Often when demogra­
phers want to communicate the importance of particular variables in their forecasts to members of 
this community, they use scenarios. In population forecasting, scenarios are typically clear "if ... 
then" statements in which the implications of a certain set of assumptions on fertility, mortality and 
migration are being demonstrated (Lutz, 1995). Such scenarios can illustrate the laws of population 
dynamics but do not give the user any information about the likelihood of the described path. For 
instance, an immediate replacement fertility scenario merely shows what would happen if fertility 
immediately jumped to the replacement level without saying that this is a likely or even plausible 
path. For policy makers who want to know what would be the long-term consequences of alternative 
fertility trends resulting from alternative policies, for example, such scenarios can nonetheless be 
useful guides. Conditional probabilistic forecasting is a way of posing and answering the same type 
of question within a probabilistic framework. 

The first discussion of conditional probabilistic population forecasts, of which we are aware, 
appears in Alho (1997). Alho first turned the deterministic world population forecasts in Lutz et 
al. (1994) into a probabilistic one and computed the probability of the world's population falling 
between the high and low scenarios. Next, Alho considered the case where the UN's world population 
forecasts for 2025 could be regarded as a Lutz et al. (1994) forecast conditional on the success of 
family planning programs. Alho showed that if the probability of being between the UN's high and 
low variants was 75 percent, then those programs would have to reduce the variance of the proba­
bilistic version of the Lutz et al. (1994) forecasts by at least 42 percent. Alho regards this as "much 
too high to be credible" in light "of the past record of ineffectiveness of government interventions 
concerning fertility in the industrialized countries" (p. 83). He showed that if the reduction in the 
variance were less than 42 percent, then the probability content of the interval between the UN high 
and low variants must be less than 75 percent. 

Alho ( 1997) is an example of taking known unconditional and conditional distributions and learn­
ing about the nature of the conditional distribution by studying the plausibility of the conditions 
needed to obtain it from the unconditional one. Here, an example that is at the other end of the 
continuum, is presented. Starting with unconditional distribuHons and conditions that are of interest 
to policy-makers, the example demonstrates how probabilistic forecasting can produce conditional 
distributions that are useful in scenario analysis. There are many possible intermediate cases as 
well, where information about some aspects of conditional distributions and some features of the 
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conditions themselves are combined in order to investigate particular questions. An example of this 
can be found in O' Neill in this issue (O'Neill, 2004). 

The approach used here was developed in Sanderson et al. (2004). An application on whether 
immigration can compensate for Europe's low fertility appears in Lutz & Scherbov (2002). The 
example begins with Figure 1, which shows the distribution of the world's population in 2050 condi­
tional on average fertility and mortality levels for the world over the period 2000-2050. The x-axis is 
divided into three ranges labeled "low fertility", "medium fertility" and "high fertility" . Low fertility 
includes all of the 2,000 simulated futures where the average total fertility rate in 2000-2050 was 
below 1.6. Medium fertility includes those paths where the average total fertility rate was between 
1.6 and 1.8; and high fertility includes paths in which the average total fertility rate (over the whole 
projection period) was above 1.8 . 
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Figure 1. Median and interdecile ranges for the world population, conditional on three alternative fertility and mortality 
levels. The three lines within each category ref er to the low (left), central (middle) and high (right) groups of life expectancy. 
Source: Authors' calculations. 

Within each of the three panels there are three lines that have different symbols near their centers. 
The lines with the diamonds near their centers refer to paths where the global average life expectancy 
at birth was lower than 68 years. The lines with the dented squares refer to paths where the average 
life expectancy was between 68 and 71 and the lines with triangle shapes to paths with average life 
expectancies over 71. The aggregations of the total fertility rates and life expectancies at birth were 
chosen so that one-third of our paths was in each group. The symbols are placed at the medians of 
the distributions. The circles at the endpoints of the lines indicate the 80 percent prediction intervals. 

Now we are in the position to answer some "what-if"-type questions. For example, what would 
be the effect on world population size in 2050 of high fertility trends versus low fertility trends 
over the coming decades combined with the medium range of uncertainty for future mortality? We 
can immediately read the answer off the figure. In the middle group, the median population of 
the world in 2050, if we experienced low fertility, would be around 7.7 billion people with the 80 
percent prediction interval covering the range 7.0 to 8.3 billion people. If we experienced a high 
fertility world, the median population would be considerably higher, around 10.0 billion people, with 
a prediction interval between 9.2 and 10.9 billion people. The difference between the medians is 
2.3 billion people, which is quite large considering that the median of the unconditional population 
distribution is 8.8 billion people. Clearly, the difference in fertility is very significant. 

We can also read the figure to tell us about the influence of differences in life expectancies on future 
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population size. We can do this easily by looking at the middle panel, labeled "medium fertility" . 
When life expectancies are in the low group, the median population size is 8.3 billion. When they are 
in the high group, the median population is 9 .2 billion. Therefore, in 2050 the effect on population 
size of moving from low to high fertility, keeping life expectancy constant, is much larger than the 
effect of moving from low to high life expectancy, keeping fertility constant. 

Figure 2 is similar to Figure 1, except that it deals with the proportion 60 years and above. 
As fertility increases, the proportion 60 and above decreases, but as life expectancy increases, the 
proportion gets larger. Let us consider the difference in the proportion due to having high fertility 
as opposed to low fertility, again assuming medium life expectancy. The median proportion is 25 
percent when fertility is low and around 19 percent when it is high. Assuming medium fertility and 
varying mortality, we see that when mortality is low the proportion is below 20 percent, compared 
to 24 percent when mortality is high. Thus, the effects of fertility and mortality are more similar in 
determining the proportion 60 and above than they are in determining population size. 

The two examples in this section show that in making the transition from deterministic to prob­
abilistic forecasting, we do not have to give up on answering the kinds of "what-if" questions that 
users and policy-makers so often pose. 

World 
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Figure 2. Median and interdecile ranges for the global proportion above age 60, conditional on three alternative fertility 
and mortality levels. The three lines within each category refer to the low (left), central (middle) and high (right) groups of 
life expectancy. Source: Authors ' calculations. 

4 Conditional Probabilistic Forecasts with Future Jump-Off Dates 

In many policy areas, we come across the question: Should we act now or should we wait until 
we learn more? Waiting has a cost because it can foreclose certain policy options or make them 
more expensive. On the other hand, by waiting policy-makers could possibly acquire important and 
relevant information, and avoid potentially unnecessary policy interventions. Since population is an 
important driver of many processes, it is valuable to know how much the demographic outlook might 
change if we wait. 

For example, the question of whether to act now or wait to learn more is central to the debate over 
climate change policy. The climate change issue is characterized by both long timescales-today's 
emissions of greenhouse gases will affect the climate for decades to centuries-and substantial 
uncertainties in climate impacts on society and costs of emissions reductions. Many argue that it 
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would be beneficial to wait to learn more (and reduce uncertainties) before deciding whether, and 
how much, to reduce emissions. This strategy would avoid investments in emissions reductions that 
may tum out to be unnecessary. Others argue that reductions should begin now, because if climate 
change turns out to be serious, we would later regret not acting early. The question of how the 
potential for learning about various aspects of the problem affects today's optimal decision remains 
unresolved (Webster, 2002). It is possible that learning about the outlook for future population growth 
could impact such decisions. Population is one factor affecting the outlook for future greenhouse 
gas emissions. If, by waiting a decade or two, we learn that population is likely to be much lower 
in the future than we currently expect, our outlook for future emissions will also likely be revised 
downward, reducing the urgency of emissions reductions. If we learn that population is likely to 
be much higher, our outlook for emissions will also be higher, justifying more aggressive action to 
reduce emissions. 

Probabilistic forecasts with future jump-off dates are constructed to help us learn about the value 
of waiting for more information. These forecasts are, of course, conditional on what happens between 
the beginning of the current forecast period and the future jump-off date. For example, imagine that 
it is the year 2000 and forecasts are made of the distribution of the size of the world 's population in 
2050. How different would the forecasted distribution of population sizes be in 2050 if the forecast 
were made in 2010 instead of 2000? We do not have to wait to 2010 to answer this question. The 
technique of making probabilistic forecasts with future jump-off dates allows us to think about this 
question now. 

Projections in 2010 may differ from projections in 2000 because something is learned between 
now and then. At a minimum, the values of demographic variables like population size, fertility, 
mortality, and migration in that ten-year period will be observed. Other factors such as new policies, 
economic trends, or social conditions that are relevant to the outlook for future demographic rates will 
also be observed. It is possible as well that demographic theory will be improved through research, 
that new breakthroughs in health (or new epidemics of disease) will occur, or that new contraceptive 
technology will be developed. All of these types of learning could change the outlook for the future. 
Leaming based on these other factors is not considered here. In the example below, learning is only 
based on the observation of demographic variables. While learning by observation is only one type 
of learning, it is likely to be an important one in population projections. 

In this section, we take some small first steps toward understanding how this passive learning 
process takes place, so that users of forecasts are not surprised when forecasts change and so that 
policy makers can use probabilistic forecasts in the design of adaptive policies. 

Let us imagine that it is now 2010 and all the relevant population information has been compiled 
and is available. Certainly it would be appropriate to make new forecasts, even if the methodology 
and assumptions that were originally used were completely correct. The forecasts based in 2010 
would take into account what actually happened between 2000 and 2010. Without actually making 
new forecasts, the projections made in 2000 could be used to anticipate what new projections would 
look like. 

In order to make this inquiry practical, a very simple approach will be used here. Instead of 
observing exact population characteristics, the assumption is made that only whether or not global 
population size is above or below the median of its distribution can be observed. There is nothing 
theoretically attractive in dividing the observations into only two groups in 2010, but it makes this 
introduction to passive demographic learning as simple as possible. 

Table 1 consists of two panels. Panel A provides the distributions of future world population size 
expressed in intervals below 6 billion, 6 to 7 billion, 7 to 8 billion, and so on with the uppermost 
interval being above 12 billion. The numbers in the cells are the percentages of our 2,000 simulated 
future population paths. Median population sizes are in column 9. The tenth column contains an 
uncertainty measure, the relative interdecile range (RIDR) defined as the difference between the 



Conditional Probabilistic Population Forecasting 163 

ninth decile and the first decile of the distribution divided by the median. 
Panel B is based on a division of the 2010 distribution into population paths that were above 

the median in that year and those that were below it. There are 1,000 observations in each of these 
subgroups. There are two rows in Panel B for each decade following 2010, one labeled with an "L'' 
and another with an "H". The "L'' rows are the population distributions at the indicated date for the 
observations that were below the median in 2010 and the "H" rows are from the paths that were 
above the median in 2010. 

Table 1 

Forecasted distributions of the world's population size beginning in 2000 and beginning in 2010. 
Source: Authors' calculations. 

World (l) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Panel A: 2000 Jump-Off Date 

Below 6 6 to 7 7 to 8 8 to 9 9 to IO IO to 11 11 to 12 Above 12 Median RIDR* 

2000 0 IOO 0 0 0 0 0 0 6055 0 
20IO 0 85.05 14.95 0 0 0 0 0 6828 0.062 
2020 0 8.05 81.45 10.5 0 0 0 0 7538 0.129 
2030 0.1 3.05 41.85 47.35 7.5 0.15 0 0 8085 0.195 
2040 0.15 3.75 24.85 40.25 25.15 5.2 0.65 0 8525 0.27 
2050 0.5 5.05 18.95 30.95 26.8 13.45 3.3 1 8796 0.352 
2060 1.55 7 17.45 25.75 22.35 16.25 6.45 3.2 8935 0.427 
2070 4 8.35 16.9 21.2 19.9 15.05 8.5 6.1 8974 0.52 
2080 6.8 10.1 16 18.45 18.45 12.55 9 8.65 8890 0.606 
2090 IO 12.75 14.85 17.9 15 12.25 6.45 I0.8 8678 0.702 
2IOO 14.25 14.05 14.45 16.5 12.9 I0.45 6.85 10.55 8413 0.779 

* Relative Interdecile Range (RIDR) is measured as the difference between the ninth decile and the first decile divided 
by the median. 

World (1) (2) (3) (4) (5) (6) (7) (8) (9) (IO) 

Panel B: 2010 Jump-Off Date 

Below 6 6 to 7 7 to 8 8 to 9 9 to 10 IO to 11 11 to 12 Above 12 Median RIDR* 

2020/L 0 16.1 83.9 0 0 0 0 0 7268 0.088 
2020/H 0 0 79 21 0 0 0 0 7787 0.081 
2030/L 0.2 6.1 70.3 23.4 0 0 0 0 7704 0.147 
2030/H 0 0 13.4 71.3 15 0.3 0 0 8486 0.139 
2040/L 0.3 7.5 42.3 42.4 7.4 0.1 0 0 7996 0.224 
2040/H 0 0 7.4 38.l 42.9 I0.3 1.3 0 9083 0.216 
2050/L 1 9.9 31. 1 36.6 17.9 3.2 0.3 0 8152 0.294 
2050/H 0 0.2 6.8 25.3 35.7 23.7 6.3 2 9521 0.279 
2060/L 3.1 12.8 26.9 31.3 17.3 6.8 1.6 0.2 8256 0.389 
2060/H 0 1.2 8 20.2 27.4 25.7 11.3 6.2 9760 0.352 
2070/L 7.8 13.6 23.9 25.2 17.4 8.7 1.9 1.5 8213 0.485 
2070/H 0.2 3.1 9.9 17.2 22.4 21.4 15.1 10.7 9891 0.438 
2080/L 12.5 14.7 22.2 19.8 16.9 7.9 4.1 1.9 8045 0.568 
2080/H 1.1 5.5 9.8 17.1 20 17.2 13.9 15.4 9816 0.536 
2090/L 16.1 18 18.5 18.3 13.3 9.4 3.6 2.8 7888 0.641 
2090/H 3.9 7.5 11.2 17.5 16.7 15.1 9.3 18.8 9638 0.647 
2IOO/L 22 17.7 16.6 17.6 9.9 9 3.6 3.6 7652 0.716 
2100/H 6.5 I0.4 12.3 15.4 15.9 11.9 10.1 17.5 9328 0.734 

* Relative Interdecile Range (RIDR) is measured as the difference between the ninth decile and the first decile divided 
by the median. 

One disadvantage of this very simplified example is that the forecasts with jump-off dates in 2000 
and 2010 are not exactly comparable. The vital rate paths used in the 2000 forecasts all start at their 
observed values, while the paths in forecasts that have the 2010 jump-off date have a distribution of 
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starting values. One way of testing the plausibility of this example is to consider the uncertainty of 
forecasts of various durations based on a jump-off date of 2000 and a jump-off date of 2010. Holding 
duration constant, the example would be questionable if the uncertainties of N year ahead forecasts 
were very different depending on whether they were made in 2000 or 2010. When the jump-off date 
is the year 2000 and a forecast is made for 10 years into the future, the uncertainty measure in 2010 
is 0.062, which can be read off the row in Panel A labeled 2010. In the case of a forecast made 10 
years ahead based on being below the median in 2010, the uncertainty measure in 2020 is 0.088. 
This can be read off the row in Panel B labeled 2020/L. 

The uncertainty measures for 10- through 90-year ahead forecasts based on 2000 and the two 
sub-samples from 2010 are shown in Figure 3. The results from the two 2010 groups track those 
from 2000 quite well, but are always slightly higher than the uncertainty measures based on 2000. 
Figure 3 is what is expected given the construction of the example and it suggests that it is plausible 
to proceed. 
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Figure 3. Comparison of the Relative Interdecile Ranges (RIDR)for forecasts made for IO through 90 years ahead starting 
from 2000 and starting from an observation either above the median or below the median in 2010. Source: Authors ' 
calculations. 

The median population forecast for 2100 based on information up to 2000 is 8.414 billion people. 
After a 10 year wait, the median forecast for 2100, based on being above or below the median in 
2010, would either be 7.652 billion or 9.328 billion. It would seem that if anyone were to predict 
914 million more people in the world in 2100 from the perspective of 2010, the forecaster must have 
made a big mistake in 2000. Yet, this could well happen even if the methodology is probabilistically 
correct. A prediction of a 2100 population size in 2010 that is 762 million smaller than the one that 
was predicted in 2000 is also easily possible. These are substantial differences. Clearly, forecasts 
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of the future will be different in 2010 than they are today. One interesting feature of probabilistic 
forecasting is that it can give us some idea about how much different future forecasts could be from 
current ones, and with what likelihood. 

Population size in 2010 has such a persistent effect because of a number of factors. First, past 
population size influences future population size. Paths that yield large populations in 2010 will also 
yield large populations in 2100, even if population growth rates after 2010 are the same. Second, 
some populations are large in 2010 because they had high fertility rates. These high fertility rates 
alter the age structure of the population making it younger. Younger populations tend to grow more, 
other things being equal, a process that demographers call "population momentum". Fertility and 
mortality themselves have persistence built into them. The persistence of fertility and mortality means 
that on paths where fertility was high and mortality was low, leading to relatively large populations 
in 2010, they are likely to remain high and low respectively for a while. The effects of the persistence 
of fertility and mortality over time are compounded by the relatively high interregional correlations 
of fertility and mortality, by the persistence caused by population momentum and by the size effect 
itself. 

It is crucially important that attention be given not only to the effects of the passage of time on the 
median forecast, but to the entire distribution of forecasted population sizes. Most of the differences 
in the distributions based on the paths above and below the median in 2010 are in the extremes 
(tails) of the distributions. For example, 6.5 percent of the paths that were above the median in 2010 
resulted in populations of less than 6 billion in 2100, compared to 22.0 percent of the paths that were 
below the median in 2010. The difference at the high end of the distribution is even more striking. 
Over 17 percent of the paths that were above the median in 2010 ended the century with 12 billion 
people or more. In contrast only 3.6 percent of the paths that were below the median in 2010 did so. 

This has been a very short and simplified presentation of the basic concepts of conditional 
probabilistic forecasting with future jump-off dates. It is meant only to be suggestive. This analysis 
of learning with the passage of time has illustrated how sensitive the long-term population outlook 
is to near-term trends. It can also help to understand why projections of population size in 2100 have 
changed so significantly over the past 10 years. We have simply learned a great deal over the past 
decade. During this decade population growth has been lower than originally expected and this has 
significantly decreased our new long-term expectations. 

5 Concluding Thoughts 

Conditional probabilistic projections represent a way to combine the benefits of probabilistic 
projections, particularly the quantification of uncertainty, with the benefits of alternative scenarios, 
which give clear indications of the sensitivity of results to underlying assumptions. We have shown 
that the same kinds of conclusions about, for example, the relative importance of fertility and mortality 
trends to population size outcomes can be drawn using conditional probabilistic forecasts as can be 
drawn using alternative deterministic scenarios. An added benefit is that the conditional probabilistic 
forecasts provide an estimate of the likelihood of the underlying demographic conditions, as well as 
an estimate of their effect on outcomes. These projections can be extremely useful to both the research 
and policy communities. For instance, many analyses of the potential for long-term environmental 
change are based on the approach of considering a set of alternative future scenarios conditional 
on different sets of assumptions about future development. The scenario approach dominates as 
a response to deep uncertainty about the many socio-economic, technological, and environmental 
factors that must be included in such analyses. Conditional probabilistic projections present a possible 
means of retaining some of the advantages of the probabilistic approach without discarding the 
benefits of conditional scenarios (see O'Neill in this issue for an example (O'Neill, 2004)). 

Probabilistic projections with future jump-off dates, which are conditional on how population 
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characteristics evolve between now and the future jump-off date, present a new way to address an 
important set of research questions that are also policy relevant. They provide a means of anticipating 
how our forecasts might change in the future and how likely those changes appear to be at the moment. 
These kinds of analyses cannot be done deterministically. As there can be costs and benefits to changes 
in the outlook for the future, these projections could have interesting new applications. For example 
in the climate change issue, the prospects of learning about technological costs, or about physical 
aspects of the climate system, have been incorporated into analyses of whether it is better to act now 
or to wait to learn more. However as far as we are aware, no such analysis-for climate change or 
any other issue-has been performed taking into account the prospects for learning about the outlook 
for population. 
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Resume 

Puisque !es decideurs politiques prererent souvent penser en terme de scenarios alternatifs, la question se pose de savoir 
s'il est possible de faire des previsions demographiques conditionnelles dans un contexte probabiliste. Cet article montre 
a la fois le bien-fonde et l'utilite de telles previsions, et cela a travers deux types d'exemples. Le premier est !'analogue 
probabiliste de I' analyse par scenarios deterministes. L' analyse conditionnelle de scenarios probabilistes est essentielle pour 
!es decideurs politiques parce qu'elle leur permet de repondre convenablement aux questions de type "que se passera t'il 
si" en cas de resultats incertains. Le second exemple est une nouvelle categorie que nous appelons "future jump-off date 
forecasts" (previsions demographiques dans laquelle I' annee de base est deja dans le futur). Ces dernieres sont essentielles parce 
qu'elles revelent aux decideurs politiques avec quelle probabilite !es caractenstiques cruciales des previsions demographiques 
d'aujourd'hui seront aussi actuelles pour !es previsions faites a l'avenir. 
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Summary 

Future changes in population size, composition, and spatial distribution are key factors in the analysis 
of climate change, and their future evolution is highly uncertain. In climate change analyses, population 
uncertainty has traditionally been accounted for by using alternative scenarios spanning a range of 
outcomes. This paper illustrates how conditional probabilistic projections offer a means of combining 
probabilistic approaches with the scenario-based approach typically employed in the development of 
greenhouse gas emissions projections. The illustration combines a set of emissions scenarios developed by 
the Intergovernmental Panel on Climate Change (IPCC) with existing probabilistic population projections 
from IIASA. Results demonstrate that conditional probabilistic projections have the potential to account 
more fully for uncertainty in emissions within conditional storylines about future development patterns, to 
provide a context for judging the consistency of individual scenarios with a given storyline, and to provide 
insight into relative likelihoods across storylines, at least from a demographic perspective. They may also 
serve as a step toward more comprehensive quantification of uncertainty in emissions projections. 

Key words: Population; Projection; Uncertainty; Scenario; Climate change. 

1 Introduction 

The threat of human-induced climate change, popularly known as global warming, presents a 
difficult challenge to society over the coming decades (Watson et al., 2001 ). The production of 
so-called "greenhouse gases" as a result of human activity, mainly due to energy production through 
the burning of fossil fuels such as coal, oil, and natural gas, is expected to lead to a generalized 
warming of the Earth's surface, rising sea levels, and changes in precipitation patterns. The potential 
impacts of these changes are many and varied-more frequent and intense heat waves, changes in 
the frequency of droughts and floods, increased coastal flooding, and more damaging storm surges­
all with attendant consequences for human health, agriculture, economic activity, biodiversity, and 
ecosystem functioning. 

Future changes in population size, composition, and spatial distribution are key factors in the anal­
ysis of climate change (O'Neill et al., 2001). Demographics enter the problem in a number of ways: 
as one determinant (among many others) of emissions of greenhouse gases, and therefore of how 
much climate may change in the future; as a determinant of the impacts of climate change, and there­
fore how serious any given level of climate change might be; and potentially as a factor in political 
arrangements for addressing climate change (as, for example, in emissions reduction schemes based 
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on per capita emissions levels). It is not just population size that matters: age structure, urbanization, 
and composition by household size and type are all of potential importance to these different aspects 
of the climate issue, as are population characteristics that are less demographic in the traditional 
sense but are often analyzed by demographers: educational status, health status, and poverty. 

As demographers are well aware, there is great uncertainty in projecting any of these factors into 
the long-term future. However, the population component of the climate problem is in no way unusual 
in this respect. Uncertainties can be even larger in other factors, such as future labor productivity, 
rates of technological progress and of per capita GDP growth, consumption patterns, the response of 
the climate system to greenhouse gas emissions, and impacts of climate change on ecosystems and 
societies. 

Recently, growing attention has been focused on methods of accounting for uncertainty in various 
components of the climate problem (see, e.g., Webster et al., 2002; Wigley & Raper, 2001; Moss & 
Schneider, 2000; Lempert et al., 2000; Nordhaus & Popp, 1997). However, no study has devoted any 
specific attention to quantification of population uncertainty and its relevance to integrated assess­
ments of climate change, despite the existence of fully probabilistic, global population projections 
(Lutz et al. , 2001). 

This paper proposes a new approach to accounting for demographic uncertainty within projections 
of greenhouse gas emissions. Accounting for uncertainty in emissions is important for at least two 
reasons. First, emissions projections play a key role in estimating what the consequences of climate 
change might be if no action were taken in response to it. Such estimates essentially define climate 
change as a problem to the extent that serious consequences seem possible. Emissions are the first 
step in this "cascade of uncertainty" (Moss & Schneider, 2000) from emissions, to climate change, 
to impacts, and therefore play a key role. Second, analyses of the costs of achieving given emissions 
reduction targets are sensitive to the so-called reference emissions path: the assumed level of emis­
sions over time in the absence of policy. Reaching a given target in an otherwise high-emissions 
world would be much more difficult than in a world in which emissions would tum out to be quite 
low anyway. 

To date, there have been two main approaches to accounting for uncertainty in emissions: al­
ternative scenarios, and fully probabilistic projections. Here approach is proposed that combines 
elements of both: conditional probabilistic projections. Section 2 describes current approaches in 
more detail, and the rationale for the conditional probabilistic approach. Following that (section 3) 
the methodology is discussed and applied to a well-known set of emissions scenarios. Results are 
presented (section 4), and the paper concludes with a short discussion (section 5). 

2 Uncertainty and Greenhouse Gas Emissions 

Alternative Scenarios 

Currently, the dominant approach to accounting for uncertainty in future greenhouse gas emissions 
is the development and analysis of alternative scenarios. The scenario approach to uncertainty has 
a history of at least 50 years, beginning with post-World War II military planning, extending to 
business strategy development for major corporations, and more recently to planning for sustainable 
development (Schwartz, 1991). Scenarios are stories about the way the future might unfold. They 
can be qualitative, quantitative, or both, and they can be used in a variety of ways, including for 
educating participants in the scenario development process about the issues at hand, or for communi­
cating key insights to the intended audience. Scenarios tend to be used as an approach to uncertainty 
when problems are complex and uncertainties are very large, precluding meaningful estimates of 
the likelihood of various future outcomes. In decision analysis, scenarios are often used as a basis 
for searching for "robust strategies", i.e. options for responding to a problem that are likely to work 
reasonably well regardless of how the future unfolds (e.g., Lem pert et al., 2000). 
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The Intergovernmental Panel on Climate Change (IPCC) used the scenario approach to develop 
a plausible range of climate change consequences assuming no additional climate policy measures 
are taken in the future. Based on a set of 40 different emissions scenarios (detailed in the IPCC 
Special Report on Emissions Scenarios (SRES), Nakicenovic et al., 2000), the IPCC estimates that 
the increase in global average temperature over the next 100 years could range from 1.4 °C to 5 .8°C 
(Cubasch et al. , 2001). The SRES emissions scenarios are not probabilistic. Instead, the rationale 
was to explore a wide range of plausible futures, each "equally sound" (Nakicenovic et al., 2000) 
but with no judgment made as to their relative likelihood. 

The SRES scenario development process consisted of three main steps. First, four different quali­
tative "story lines" were developed, describing broad socio-economic and technological development 
patterns that could unfold over the 21st century. While the SRES storylines are multidimensional, 
they can usefully be distinguished along two dimensions, "globalization" and "sustainability". Glob­
alization refers to "the extent of economic convergence and social and cultural interactions across 
the regions" and sustainability to "the balance between economic objectives and environmental and 
equity objectives" (Nakicenovic et al. , 2000, Section 4.2.1 ). The story lines were called Al, A2, B 1, 
and B2, with no significance given to this ordering; 1 vs. 2 distinguishes the degree of globalization 
vs. regionalization, and the A vs. B distinction is based on the degree of economic vs. environmental 
orientation. Brief summaries are included in Table 1 to make the discussion more concrete. 

Table 1 

Brief summaries of the SRES storylines, from Nakicenovic et al. (2000, Section 4.2.1 ). 

Storyline Summary 

Al "The Al storyline and scenario family describes a future world of very rapid economic growth, 
low population growth, and the rapid introduction of new and more efficient technologies. Major 
underlying themes are convergence among regions, capacity building, and increased cultural and 
social interactions, with a substantial reduction in regional differences in per capita income. The 
Al scenario family develops into four groups that describe alternative directions of technological 
change in the energy system." 

A2 "The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme 
is self-reliance and preservation of local identities. Fertility patterns across regions converge very 
slowly, which results in high population growth. Economic development is primarily regionally 
oriented and per capita economic growth and technological change are more fragmented and slower 
than in other storylines." 

B 1 "The B 1 storyline and scenario family describes a convergent world with the same low population 
growth as in the Al storyline, but with rapid changes in economic structures toward a service 
and information economy, with reductions in material intensity, and the introduction of clean 
and resource-efficient technologies. The emphasis is on global solutions to economic, social, and 
environmental sustainability, including improved equity, but without additional climate initiatives." 

B2 "The B2 storyline and scenario family describes a world in which the emphasis is on local solutions 
to economic, social, and environmental sustainability. It is a world with moderate population growth, 
intermediate levels of economic development, and less rapid and more diverse technological change 
than in the B 1andA1 story lines. While the scenario is also oriented toward environmental protection 
and social equity, it focuses on local and regional levels." 

Next, particular quantitative paths for fundamental driving forces of emissions, including pop­
ulation and gross domestic product (GDP), were selected that were judged to be consistent with 
each storyline. Finally, six different modeling teams produced quantitative interpretations of the 
story lines, using the quantitative paths for driving forces as inputs, resulting in 40 different scenarios 
for energy use, land use, and associated greenhouse gas emissions over the next 100 years. Figure 1 
shows the range of C02 emissions resulting from the SRES scenarios, categorized by storyline. The 
range is very wide, covering a possible increase in emissions of C02 by a factor of 5 over the next 
100 years, as well as a decline to emissions below today's level. 
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Figure 1. Range of global C02 emissions covered by each SRES storyline. Several variants of the A 1 storyline were produced; 
only one (AJB) is shown. 
Source: Based on data in Nakicenovic et al., 2000. 

Probabilistic Emissions Projections 

Several studies have produced fully probabilistic emissions projections. Early work by Nordhaus 
& Yohe (1983) and Edmonds et al. (1986) developed probabilistic versions of energy-economic 
growth models to calculate uncertainty distributions for optimal emissions, given uncertainty in a 
long list of parameters, including those affecting population growth, labor productivity, the energy 
system (e.g., elasticities of substitution between fuels), and the carbon cycle. These projections were 
the first to systematically explore uncertainty in long-term emissions projections, and were useful in 
estimating how wide the plausible range of outcomes actually was (Keepin, 1986). 

More recently, Wigley & Raper (2001) made their own assumptions about the relative likelihood 
of the SRES scenarios. They assign each SRES scenario an equal probability as part of an effort to 
produce probabilistic projections of global average temperature change (see New & Hulme (2000) for 
a similar approach and Dessai & Hulme (2001) for an approach that treats storylines independently). 
In contrast, Webster et al. (2002) take an approach independent of SRES. They use an expert opinion­
based estimate of uncertainty distributions for key parameters of an energy-economic growth model, 
which they then use to generate an uncertainty distribution for future emissions and climate change. 

There are a number of points of view on the desirability, and credibility, of assigning subjective 
relative probabilities to alternative scenarios of future emissions. Schneider (2001, 2002) argues for 
developing subjective probability estimates based on expert opinion, since the judgment of experts 
is preferable, in his view, to the plethora of judgments that different users and policy makers will 
make in the absence of guidance on this point. Webster et al. (2002) amplify this view, describing 
the question as not one of whether probabilities will be assigned to scenarios, but when and by 
whom. Since methods have been developed to control known biases in expert judgment, it is better 
that probabilities be assigned by experts in decision analytic techniques than by users. In contrast, 
Griibler & Nakicenovic (2001) argue that assigning subjective probabilities to emissions scenarios 
would be inappropriate and infeasible. Probability distributions for conditions such as population, 
economic growth, technological development, agricultural practices, diets, etc. (all determinants 
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of emissions) would themselves be insufficient; probabilities for ways in which these conditions 
would interact would also be necessary, producing an unmanageable explosion of uncertainty, in 
their judgment. Attempts to assign subjective probabilities in the face of such complications risks 
"dismissal of uncertainty in favour of spuriously constructed 'expert' opinion". 

Conditional Probabilistic Emissions Projections: Rationale 

One route to managing the complexity of the problem is to preserve the scenario approach to 
uncertainty when considering possible broad patterns of development in the future (i.e., story lines), 
but use subjective probabilities in quantifying uncertainty in the consequences of those development 
patterns for emissions. The basic rationale for such conditional probabilistic projections is that more 
meaningful judgments can be made about the likelihood of future trends given a particular develop­
ment path, than can be made about the relative likelihood of different development paths actually 
occurring. Stated in terms of the SRES scenarios, one may be able to assign more meaningful prob­
abilities to emissions outcomes conditional on, say, the A2 world coming to pass, than one could to 
the relative likelihood of the A 1, A2, B 1 and B2 story lines occurring in the first place. 

Intuitively, one expects this proposition would hold, because by reducing the state space that 
must be considered, the conditional approach makes uncertainties more manageable. For example, 
it may be judged difficult, if not impossible, to assign meaningful probabilities to the rate of per 
capita economic growth over the coming decades. One reason may be that it is difficult to judge how 
globalization is likely to proceed-whether trade barriers will become more or less restrictive, for 
example-which will have important consequences for economic growth. However, if one restricts 
the set of possible futures that must be considered to only those in which globalization proceeds 
rapidly and trade barriers are reduced, confidence in judgments of the probability distribution of 
future economic growth rates, conditional on that storyline, may increase. This type of reasoning 
can be extended to many different factors that are included in storylines of the future. In fact, it 
would seem that as long as the conditions placed on the future (through story lines) are relevant to the 
outcomes of interest, then it should be possible to make better judgments of conditional probabilities 
of outcomes than of unconditional ones. 

The following sections illustrate the possibility of developing conditional probabilistic emissions 
scenarios, using the IPCC SRES scenarios as a basis. First probabilistic population projections con­
ditional on the story lines used in the SRES scenarios are developed. Next, they are combined through 
simple linear scaling with per capita emissions rates derived from the SRES scenarios. While this 
latter step is an oversimplification of the relationships between population and other factors affecting 
emissions, it serves to illustrate the kind of emissions results one might obtain from a fuller account­
ing for population uncertainty. 

The results of developing conditional probabilistic projections both for population and for emis­
sions can be useful for several reasons: 

1. They can be used as a means of judging the likelihood of a single existing scenario (of 
population or of emissions) given a particular storyline; 

2. They can be used to develop a single new scenario that has a probabilistic interpretation for 
use in scenario analysis (e.g., O'Neill et al., 2003); 

3. They can provide a fuller accounting for uncertainty (in population or in emissions) within 
story lines; 

4 . They might provide some insight into the relative likelihood of outcomes across storylines 
(discussed further below); 

5. They may serve as a step toward more comprehensive probabilistic projections in the future. 
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3 Methodology 

Conditional probabilistic population forecasts were first discussed by Alho ( 1997), who began with 
known unconditional and conditional projections, and evaluated the plausibility that the conditional 
projections could be derived from the unconditional ones. Sanderson et al. (2004, see this issue) take 
a different approach, beginning with unconditional projections and deriving conditional forecasts 
that demonstrate, within a probabilistic framework, the sensitivity of outcomes to key variables. 
Lutz & Scherbov (2002) use the conditional probabilistic approach in a similar manner to compare 
the sensitivity of the European population to changes in immigration and fertility. These studies 
demonstrate that sensitivity analysis, traditionally carried out within a deterministic framework, is 
also possible within a probabilistic framework. This paper builds on that approach by applying the 
concept of conditional probabilistic projections to emissions scenario development. The necessary 
steps are: 

1. Specify qualitative descriptions of future trends in demographic rates (fertility, mortality, 
migration) judged to be consistent with a given storyline; 

2. Define quantitative probability distributions of demographic rates consistent with the qualita­
tive descriptions; 

3. Generate a probability distribution of population outcomes conditional on the distributions of 
demographic rates; 

4. Generate a probability distribution of emissions based on the distribution of population out­
comes. 

Table 2 provides a summary of the qualitative fertility, mortality and migration assumptions 
made by the SRES authors for each storyline for the industrialized country regions (IND) and the 
developing country regions (DEV). The "high", "medium", and "low" descriptions are interpreted as 
relative to the overall outlook within each region (i.e., high fertility in the IND region means the high 
end of the plausible range for that region, but may in fact be lower than low fertility paths for the DEV 
region, which occupy the low end of the plausible range for the DEV region). Based on descriptions 
in the SRES report (primarily in sections 4.3 and 4.4 ), a summary of the reasoning for these choices 
is as follows (it would be possible to offer alternative interpretations of the demographic rates most 
likely to be associated with each storyline, but it is considered outside the scope of this paper): 

• In the Al storyline, rapid economic development, associated with improved education and 
reduced income disparities, is assumed to drive a relatively rapid fertility decline in the high 
fertility regions. Fertility is generally below replacement level in the long run. Fertility in 
industrialized regions is assumed to follow a medium path at least in part so that, relative 
to the developing regions, the scenario "is consistent with the assumption of convergence of 
social and economic development" (p. 193); i.e., the assumption is that social and economic 
convergence will lead to demographic convergence as well. For mortality, it is assumed that the 
conditions leading to low fertility are also consistent with relatively low mortality, so mortality 
is assumed to be low in all regions. No explicit discussion of migration is provided, although 
the projection eventually adopted assumes medium migration levels. 

• In the A2 storyline, the regional orientation and slower rate of economic growth, limited flow 
of people and ideas across regions, and orientation toward family and community values was 
judged to be consistent with a relatively high fertility in all world regions. Mortality was 
assumed to be high as well, based on the assumption that conditions leading to high fertility 
would also lead to relatively high mortality in all regions. Although the storyline describes a 
limited flow of people across regions, the medium migration flows were chosen, as in all other 
story lines. 
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• The B 1 storyline shares the same population projection as the Al storyline, although for some­
what different reasons. Rapid social development, particularly for women, and an emphasis on 
education drives a relatively rapid decline in fertility in developing country regions (as opposed 
to the Al storyline, in which economic development is seen as the main driver). Reasoning for 
fertility in industrialized countries, and for mortality and migration assumptions, are the same 
as in Al. 

• In the B2 storyline, economic development is moderate, particularly in the developing country 
regions. However education and welfare programs are pursued widely and local inequity 
is reduced through strong community support networks. The mix of moderate economic 
development, and strong but heterogeneous social development results in an assumption of 
medium fertility and mortality paths. Migration is again assumed to be medium, with no 
explicit discussion of this choice. 

For each storyline, the SRES authors selected one population projection from the literature that 
was judged to be consistent with these assumptions (see Table 2). A similar approach (selection 
or creation of a single scenario within storylines) was taken for quantifying GDP and rates of 
technological progress within storylines. 

The next step in developing conditional probabilistic projections (which will substitute for the 
single scenarios used in SRES) is to express the qualitative demographic assumptions associated with 
each storyline as quantitative uncertainty distributions. These conditional distributions are derived 
from the global probabilistic projection from IIASA (Lutz et al., 2001). The methodology for 
generating the IIASA projection consists of a combination of expert- and argument-based judgment 
on future fertility, mortality, and migration; a time series approach to generating individual trajectories 
for each rate; and consideration of the magnitude of errors in past projections to guard against 
underestimation of uncertainty. The final product is a distribution of 2000 equally likely simulations 
at the level of 13 world regions. The conditional probabilistic projections are generated by selecting 
from this complete (unconditional) distribution a subset of simulations consistent with the SRES 
assumptions as expressed in Table 2. 

Table 2 

Demographic assumptions in SRES storylines (IND=industrialized country regions; 
DEV=developing country regions). 

Storyline Fertility Mortality 

Al/Bl IND: medium IND: low 
DEV: low DEV: low 

A2 IND: high IND: high 
DEV: high DEV: high 

Migration 

IND: medium 
DEV: medium 

IND: medium 
DEV: medium 

Projection Source 

Lutz et al., 1996 

Lutz et al., 1996 

B2 IND: medium IND: medium IND: medium UN, 1998 
DEV: medium DEV: medium DEV: medium 

In principle, the "high", "medium", and "low" categories for demographic rates would be best 
defined by the scenario-builders themselves, because they may have had specific ideas in mind that 
are not clearly stated in the storyline descriptions. For example, was "high" fertility in the A2 world 
intended to imply a rather extreme case (perhaps near the 95th percentile of possible outcomes), 
or simply a fertility rate that is moderately higher than an unconditional medium or "best guess" 
outcome? Should fertility always be high in this scenario, or should it be high on average, with periods 
of medium or low fertility also possible? Should it be high in all regions simultaneously, or high on 
average across all regions? In the absence of specific guidance in the SRES report, this paper takes 
as a starting point that high, medium, and low should represent ranges of demographic rates that are 
equally likely and are mutually exclusive. That is, in each region and for each variable representing 
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one of the demographic components (total fertility rate, life expectancy, and net migration) high, 
medium, and low should be defined as those ranges covering the top, middle, and bottom third, 
respectively, of all outcomes in the IIASA unconditional probabilistic projections. 

To carry out the selection process, an index of each demographic rate must be adopted, and an 
appropriate level of regional aggregation chosen. As an index, the average values of each variable 
over the period 2000-2050 were used, since several essential elements of the reasoning behind the 
choice of population scenario in SRES apply to the currently high fertility regions (e.g., relationships 
between fertility and economic and social conditions, and the correlation between fertility and 
mortality), and these regions will have above replacement fertility mainly in the first half of the 
century. For regional disaggregation, average values for two world regions, Industrialized (IND) and 
Developing (DEV) were considered, which matches the level of detail for which qualitative storyline 
elements relevant to demographics are provided in SRES. Averages are calculated from underlying 
rates in the IIASA projections. Fertility, life expectancy, and net migration for the IND and DEV 
regions are specified as the population-weighted average of these variables across the subregions. For 
fertility, the population aged 15--65 is used, the most relevant age group available. For net migration, 
the absolute values of the subregional levels are used. 

The selection process therefore consists of producing an average fertility, mortality, and migration 
rate for each of 1,000 simulations in the unconditional projection, with averaging performed over 
the period 2000-2050 and over two groups of regions. Simulations are then ranked according to 
each demographic rate in each region, and assigned to high, medium, and low categories by dividing 
each ranking into three sets of outcomes containing the first 333, next 334, and last 333 simulations. 
Those simulations matching the assumptions in Table 2 for all three rates for each SRES storyline 
become part of the conditional probabilistic projection for that storyline. This approach produces 
what might be called input-constrained conditional probabilistic projections, since the conditions 
(storylines) impose constraints on the demographic rates that serve as inputs to the projection. (It is 
also possible to develop output-constrained projections, in which constraints on population size or 
age structure are used to select individual simulations, a type of inverse approach.) 

Before examining results, it is important to stress that alternative approaches to the selection 
process are possible. For example, the definition of the high, medium, and low categories could be 
based on intervals of absolute values of demographic rates rather than on the assumption that each 
category should be equally likely. This strategy is not pursued here because there is no obvious basis 
for defining the intervals of absolute values that would clearly recommend it. Additionally, category 
definitions need not be derived by simply dividing the unconditional distributions into mutually 
exclusive terciles. This division is clearly a simplification that gives all simulations within a tercile a 
weight of 1, and all outside the tercile a weight of zero. One could consider a definition in which a more 
smoothly varying distribution of weights was applied to the unconditional distribution. Furthermore, 
one could choose a different metric than the 50-year average value used here. For example, one 
might choose to extend the averaging period to 100 years, or to use consecutive or overlapping 
50-year periods to extend the constraints over the whole century (O'Neill, submitted). These choices 
have implications for trends in the medians and for the variance of the conditional distributions of 
the underlying rates. Finally, one could choose different levels of regional aggregation to which 
the criteria are applied. Applying criteria to all 13 IIASA regions simultaneously, versus applying 
them to averages across several regions, also affects the variance of the conditional distributions of 
demographic rates. The methodological choices made in this paper are intended to match the level 
of specificity provided in the SRES story lines, and to remain as simple as possible. 

4 Results 

First we discuss the results for the population outcomes, and then for emissions. 
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Conditional Probabilistic Population Projections 

Figures 2a-c show the results of the process of selection of population distributions, for the world 
and two regions for the A2 storyline. Figure 2a shows the individual simulations underlying the 
conditional projection for the world, along with the median and 60% and 95% uncertainty intervals. 
For comparison, the single population path used in the SRES A2 storyline is shown as a thick gray 
line. Two main conclusions emerge. First, the probabilistic projections indicate substantial scope 
for uncertainty in population size conditional on the A2 storyline. The 60% uncertainty interval for 
global population in 2100 is 8.5 to 12 billion, and the 95% uncertainty interval is 7 to 15 billion. 
Second, the SRES population assumption is high relative to the conditional probabilistic projection. 
Early in the century it falls at about the upper limit of the 60% uncertainty interval, and by the end of 
the century is at 15 billion, the upper limit of the 95% uncertainty interval and about 4 billion higher 
than the median. 

The systematic downward bias in the probabilistic projections relative to the SRES assumptions 
for A2 is due primarily to changes in the outlook for fertility and mortality in different regions of 
the world. The population projections used in SRES were developed in 1996, while the conditional 
distributions are based on projections made in 2001 . Figures 2b and 2c show that the DEV region 
mirrors the global result, with the SRES population size reaching the upper bound of the 95% 
uncertainty interval by the end of the century, while the IND region assumption is high but more 
moderately so, falling just above the 60% uncertainty interval. More detailed regional analysis shows 
that difference between the SRES population assumptions and the conditional projections vary across 
smaller regions. Regions showing the largest differences include the Reforming Economies region 
(mainly the Former Soviet Union) and the Centrally Planned Asia region (mainly China) by the end 
of the century. 

Figure 3 summarizes the results for all storylines for the years 2050 and 2100 for the world and 
the two regions. It shows that the uncertainty range in the conditional projections is largest in the 
A2 storyline (when fertility is assumed to be high), and the smallest in the Al/Bl storylines (when 
fertility is assumed to be low), although in all storylines the conditional projections show a 95% 
uncertainty interval of at least +/-20% in terms of absolute population size relative to the median. In 
the year 2050, the SRES population assumptions are relatively close to the median of the conditional 
projections forthe Al/Bl and the B2 story lines. However by the end of the century, they appear high 
not only in the A2 storyline described above, but also in the DEV region in the B2 storyline (falling 
well above the 95% uncertainty interval), and in the IND region in the Al/B 1 storyline (falling at 
about the upper end of the 95% uncertainty interval). 

The quantitative differences between the SRES population assumptions and the conditional pro­
jections are sensitive to the definitions of high, medium, and low, as well as to the time periods and 
regional aggregations to which the criteria are applied, although the general patterns appear to be 
robust. 

Relative Likelihoods Across Storylines 

One intriguing possibility offered by conditional probabilistic projections is that, if they are drawn 
from a full unconditional projection, they should provide a basis for judging the relative likelihood 
across two or more conditional projections, not just the relative likelihood of outcomes within a 
given conditional projection. For example, if a conditional projection based on storyline X consists of 
twice as many (equally likely) simulations drawn from the unconditional distribution as a conditional 
projection based on storyline Y, then the demographic consequences of storyline X should be twice as 
likely as the demographic consequences of story line Y . Thus, comparing the conditional projections 
developed to be consistent with the four SRES story lines should give an indication of the relative 
likelihoods of the SRES story lines, at least from a demographic perspective. Such demographically-
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Figure 2c. Continued. 

based relative likelihoods could be combined with perspectives on other aspects of the scenarios to 
inform a larger process of considering relative likelihoods of alternative emissions scenarios. 

Table 3 shows, for each storyline, the number of simulations that match assumptions regarding 
each of the demographic rates individually, as well as combinations of rates. For example, it shows 
that, based on the definitions of high, medium, and low established above, there are 7 simulations 
(out of 1,000 total that were available for this analysis) consistent with the Al and Bl storylines in 
terms of fertility, mortality, and migration at the level of two world regions. There are 32 simulations 
consistent with the A2 storyline, and 14 simulations consistent with the B2 storyline. Thus, given 
the IIASA population projections, the SRES storylines, and the category definitions used here, the 
demographic assumptions consistent with the B2 and especially the Al/Bl storylines appear to be 
substantially less likely than the assumptions underlying the A2 storyline. 

Table 3 

Number of simulations meeting fertility ( F), life expectancy 
(LE), and migration (M) criteria, as well as combinations 
of them, associated with the SRES storylines. 

Storyline F LE M F+LE F+LE+M 

Al/Bl 62 301 334 16 7 

A2 268 297 334 80 32 

B2 207 266 334 49 14 

There are two separate reasons for this result. The A l/B 1 projection is relatively unlikely primarily 
because it mixes medium fertility rates in the IND region with low fertility rates in the DEV region. 
Because the IIASA projections assume a relatively strong correlation in fertility rates across regions, 
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this combination is less likely than the A2 assumption of high fertility in both regions. As shown in 
Table 3, there are only 62 simulations that meet the Al/Bl fertility assumptions, while there are 268 
simulations that meet the A2 fertility assumptions. 

The reason that the B2 projection is relatively unlikely is less obvious. A counterintuitive con­
sequence of the regional correlations in demographic rates is that, even if it is equally likely that a 
single variable in a single region will fall in the high, medium, or low category at any given time, it 
is not equally likely that several regions will simultaneously experience high, medium, or low rates 
within one simulation. In general, it is substantially more likely that several regions will experience 
simultaneously low or high rates, than simultaneous medium rates. For example, Table 3 shows that 
while there are 268 simulations in which fertility is in the high category in each of the two world 
regions (i.e., in the A2 storyline), there are only 207 in which it is in the medium category in both 
regions (i.e., in the B2 storyline). This pattern holds for mortality assumptions as well: there are 
more simulations (297) in which mortality is high in both regions than simulations (266) in which 
it is medium in both regions. (Results follow the same general pattern when demographic rates in 
particular years, rather than averaged over time, are used, and when based on alternative regions or 
groups of regions.) 

This result is likely due to a combination of factors. One factor is a consequence of the nature 
of the standard means of generating correlated variables. This process weights extreme values more 
heavily (through the squared terms in the definition of the correlation coefficient) than values close 
to the means, and therefore the generation process produces values that are more strongly correlated 
when they are relatively high or low, and more weakly correlated near the means. Another factor is 
that, even if the correlation were identical across categories, imperfect correlation produces a relative 
deficit in pairs of medium values because the "medium" category is bounded both from above and 
from below, while the "high" category has only a lower boundary and the "low" category has only an 
upper boundary. As a result, when imperfect correlation spreads the location of variable pairs across 
the state space, more are "lost" from the medium category than from the high or low categories. The 
net result of both factors is that scenarios consistent with medium values for vital rates in all regions 
(such as B2) are less likely than scenarios consistent with high values for fertility and mortality in 
all regions (such as A2). 

It is possible that this pattern could be consistent with expectations for the real world. It may be that 
extreme values of fertility or mortality in one region would be expected to exert a strong influence 
on rates in other regions, but that moderate values would have a weaker influence. However, the 
empirical basis appears to be too thin to strongly support any particular claim at this point. Thus no 
great weight can be placed on conclusions regarding relative likelihoods of different story lines. 

Conditional Probabilistic Emissions Projections 

In principle, deriving conditional probabilistic emissions projections would require quantifying 
uncertainty within story lines not only in population, but also in each of the other elements driving 
emissions, as well as in the relationships between them. In this paper, the matter is greatly simplified 
by assuming that all SRES emissions scenarios within each storyline are equally likely, converting 
each to a per capita C02 emissions path (excluding land use emissions), and combining all per capita 
emissions paths with all population simulations underlying the conditional population projections 
for each storyline. The result is a set of equally likely emissions paths for each storyline, which 
can then be interpreted as a conditional probabilistic emissions projections and compared with the 
scenarios developed in SRES. 

Neither the assumption of equal likelihood across the SRES per capita emissions scenarios within 
story lines, nor the assumption of a linear relationship between population and per capita emissions, 
is well founded. As discussed above (section 2), the SRES authors made no judgments about relative 
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likelihoods across scenarios, and attempts to make such judgments have been controversial. Here, 
the assumption of equal likelihood of emissions scenarios within storylines probably has more to 
recommend it than judgments across storylines, but still must be treated as speculative. Whether 
population is linearly related to per capita C02 emissions or not is also questionable. There is some 
evidence that historically this has been the case (Dietz & Rosa, 1997), and typical optimal growth 
models used in climate analysis also tend to demonstrate an essentially linear relationship (Gaffin & 
O'Neill, 1997; O'Neill et al., 2001). However, the dependence of emissions on population has not 
been analyzed in more detailed models. 

Figure 4 shows the conditional probabilistic emissions projection for the A2 storyline, compared 
with the four A2 emissions scenarios from SRES. (Two SRES scenarios were dropped from this 
storyline: A2 IMAGE, results of which are not provided in SRES for all time periods, and A2-Al 
MINICAM which models a combined storyline scenario that switches to Al assumptions partway 
through the simulation period.) 
The same basic conclusions drawn for the conditional population projections hold here as well. First, 
the conditional probabilistic emissions projections indicate a substantially wider range of uncertainty 
in emissions than do the original four SRES scenarios. The 60% uncertainty interval is 18-27 GtC/yr 
by 2100, and the 95% uncertainty interval is 14-32 GtC/yr. In comparison, the SRES A2 scenarios 
span a much smaller range of 28-33 GtC/yr. Second, the probabilistic projections are generally 
substantially lower than the SRES A2 emissions scenarios at the global level. While one of the four 
SRES scenarios is below the median over the first 30 years, by the end of the century all four are 
above the 60% uncertainty interval, and one of them is above the 95% uncertainty interval. 
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Figure 4. Probabilistic emissions projections for the world conditional on the A2 storyline. Black lines: median (solid), 
60% uncertainty interval (dashed), and 95% uncertainty interval (dotted) for emissions based on the l!SA 2001 conditional 
projections. Gray line: SRES A2 emission scenarios. 

Figure 5 presents results for all storylines for the world and the two regions, reported in terms of 
cumulative C02 emissions over the period 2000-2100 (cumulative emissions are a better indicator of 
impact on climate than emissions at a point in time). It shows that differences between the conditional 



Conditional Probabilistic Population Projections 181 

projections and the SRES scenarios are the largest for the A2 storyline. In the B2 storyline, the SRES 
scenarios cover about half of the 95% uncertainty interval in the conditional projection, although 
they are still relatively high, with nearly all scenarios falling above the median of the conditional 
projections, particularly in the developing country region. For the Al and Bl storylines the SRES 
scenarios essentially span the full 95% uncertainty interval of the conditional projections, both at 
the world level and within the two regions. This occurs even though the conditional probabilistic 
population projection for these storylines covers a wide range by 2100, and is substantially lower 
than the single SRES population assumption in the industrialized country region (Figure 3b ). The 
reason the SRES emissions scenarios compare differently to the conditional projections is that the 
SRES scenarios include a fairly wide range of possible per capita emissions trends in the A 1 and B 1 
story lines (particularly in Al). Thus in terms of total emissions, uncertainty in per capita emissions 
can to some extent make up for a lack of uncertainty in population. This is not in general a good way 
to account for potential uncertainty in outcomes, however, because there are often other aspects of 
an analysis, besides total emissions, that may also depend on the population assumptions-land use 
change or climate change impacts are two examples. Uncertainty in per capita emissions will not 
make up for Jack of uncertainty in population assumptions when addressing these other components 
of the problem. 

2500 
,. )K ::K 2.5 

.. 0 20 

• 50 
2000 RO 

0 BO ., 
::K 97.5 

)K : )K o SRES • •o • • • 
1· - 0 • ""' • •o 

.. )K 0 • 
• 0 

.. )K •• ,_ • 0 : )K • <> -
" ,- .. 

.. )K : o ;i:: • ::K 
" )K •• i <> " ::K l o • It 

10 " ::K : 0 )K 0 • ao " 'i )K 

= ~ · ~ 
i~ • )K e )K ~ · ·-· ~ : ~ 

~· 
.. 

0 &)K 0 0 0 
-' -' -' -' a: > a: > a: > a: > 0 0 w 0 0 w 0 0 w 0 0 w :;: ~ 0 :;: ~ 0 :;: ~ 0 3i: ~ 0 

0 
B 
en c: 
0 

1500 ·c;; 
en . E 
w 
C\J 
0 
(.) 
Q) 1000 > 
'@ 
3 
E 
:::J 
(.) 

500 

0 
A1 81 A2 82 

Figure 5. Cumulative C02 emissions, 2000-2100, for individual SRES scenarios (gray dots), and percentiles (median and 
the bounds of the 60% and 95% uncertainty intervals) of conditional probabilistic projections, for each storyline. 

5 Discussion and Conclusions 

Uncertainty in future greenhouse gas emissions has typically been approached in one of two ways: 
through the development and analysis of alternative scenarios, and through fully probabilistic pro­
jections based largely on expert opinion. Here I have proposed a new option: the use of conditional 
probabilistic projections. This approach essentially combines the other two. Alternative sets of condi­
tions are developed using scenario development methods, while uncertainty given a particular set of 
conditions is then defined probabilistically. The example presented here illustrated the concept using 
the SRES story lines as constraints in developing a set of four conditional probabilistic population 
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and emissions projections. 
Results demonstrate that the approach can provide a fuller accounting for uncertainty in population 

and emissions within storylines. They show, for example, that the uncertainty range for population 
within each storyline could well be quite wide, in contrast to the single population scenario assumed 
in SRES. In terms of emissions, the conditional probabilistic projections indicate an uncertainty 
distribution in the A2 and, to a lesser extent, the B2 storylines that is substantially wider than the 
range covered by the SRES scenarios. Furthermore, the conditional probabilistic approach can give 
a sense of whether existing emissions scenarios are biased in a particular direction. The B2 and, 
particularly, the A2 scenarios used in SRES fall at the upper end of the conditional distribution 
of emissions, suggesting that a fuller accounting for population uncertainty, using the most recent 
population projections, would produce generally lower emissions within these two story lines. These 
conclusions must remain tentative since they make important assumptions about relative likelihoods 
of per capita emissions paths and about relationships between variables. They are also dependent on 
the particular choices made in defining the criteria for the conditional projections. Nonetheless they 
suggest that substantial changes in the outlook for emissions (within storylines) are possible using 
the conditional probabilistic approach. 

This exercise also raised several points regarding the population projections on which it is based. 
For example, the set of 1000 simulations available for the IIASA (Lutz et al., 2001) projections 
contained relatively few simulations that matched a rather broad set of criteria for three variables and 
two world regions over one time period. Adding additional criteria, more regions, or additional time 
periods as constraints quickly makes the task impossible. This implies that when producing uncon­
ditional population projections, it would be useful to generate a much larger number of simulations 
in order to support applications calling for the conditional probabilistic approach. In addition, this 
application to the SRES scenarios demonstrated that the correlations assumed in the unconditional 
population projections have important implications for results. The IIASA projections are based 
on a single assumption about the strength of correlations between variables, over time, and across 
regions. This substantially reduces the number of simulations matching storylines that assume a 
different correlation. One effect is simply practical: it may be hard to find enough simulations in this 
case to characterize fully the uncertainty distribution. However it also means that the judgment of 
the relative likelihood across story lines, which should in principle be possible using the conditional 
probabilistic approach, is extremely sensitive to the specification of correlations. Conclusions re­
garding relative likelihoods must await further work on the empirical and theoretical basis for these 
correlations. 

Finally, while the aim of this paper has been to explore how probabilistic approaches to uncertainty 
in population might benefit emissions projections, it is also worth considering the benefits of the 
storyline approach to the treatment of uncertainty in population projections. Story lines are a device 
for structuring thinking about a future with deep uncertainty. They are also a means of making projec­
tions more useful to users. Assumptions regarding the reasoning behind the choice of driving forces, 
parameter values, and modeling approaches are made more explicit. More explicit discussion of the 
reasoning motivating the input assumptions that underlie probabilistic population projections would 
make them more useful to the interdisciplinary research community. Demographers producing such 
projections might consider storylines as one way of communicating this information. Users from 
other fields need to know the conditions under which demographers think that, for example, fertility 
may tum out to be high in South Asia, or very low in Western Europe, or what might lead trends 
across regions to be strongly or weakly correlated. For a user searching for ways to join projections 
from one field with projections from another, it is this underlying reasoning that provides the link. 
Making this reasoning as explicit as possible would greatly facilitate interdisciplinary work. 
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Resume 

Les changements futurs dans la taille, la composition et la distribution spatiale de la population sont des facteurs cles 
dans !'analyse du changement climatique, et leur evolution future est tres incertaine. Dans Jes analyses du changement 
climatique, on tient traditionnellement compte de !'incertitude sur la population en utilisant des scenarios altematifs couvrant 
un eventail de resultats. Cet article illustre comment des projections a probabilite conditionnelle permettent de combiner 
Jes approches probabilistes avec l'approche basee sur des scenarios, typiquement employee dans Jes travaux de projections 
d'emissions de gaz a effet de serre. La presentation combine un ensemble de scenarios d'emissions developpe par le Panel 
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lntergouvememental sur le changement climatique (IPCC) avec des projections de population probabilistes existantes de 
l'IIASA. Les resultats demontrent que Jes projections a probabilite conditionnelle peuvent expliquer plus completement 
!'incertitude sur Jes emissions dans le cadre de scenarios conditionnels des modeles de developpement futurs, qu'elles 
peuvent permettre de juger de la coherence de scenarios individuels avec un scenario donne, et de foumir une idee des 
vraisemblances relatives dans Jes scenarios, au moins d'un point de vue demographique. Ils peuvent aussi servir d'etape vers 
une quantification plus precise de !'incertitude dans Jes projections d'emissions. 

[Received May 2003, accepted January 2004] 
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Summary 

Probabilistic population forecasts are useful because they describe uncertainty in a quantitatively 
useful way. One approach (that we call LT) uses historical data to estimate stochastic models (e.g., a 
time series model) of vital rates, and then makes forecasts. Another (we call it RS) began as a kind of 
randomized scenario: we consider its simplest variant, in which expert opinion is used to make probability 
distributions for terminal vital rates, and smooth trajectories are followed over time. We use analysis and 
examples to show several key differences between these methods: serial correlations in the forecast are 
much smaller in LT; the variance in LT models of vital rates (especially fertility) is much higher than in 
RS models that are based on official expert scenarios; trajectories in LT are much more irregular than in 
RS; probability intervals in LT tend to widen faster over forecast time. Newer versions of RS have been 
developed that reduce or eliminate some of these differences. 

Key words: Probabilistic forecast; Population forecast; Trajectory; Vital rates; Scenario; Random scenario; 
Dependency ratio. 

1 Introduction 

Population forecasts are widely used by governments, and agencies such as the United Nations, 
as an essential part of policy analysis. A population forecast requires launch data-the size and 
composition of the initial population, its vital rates-and a procedure for forecasting the population's 
vital rates (mortality, fertility, immigration) over the period covered by (also called the span of) 
the forecast. Forecasters recognize that the demographic basis for forecasting vital rates over time 
is inadequate, in the sense that any single forecast is likely to be off the mark. In consequence, 
demographers attempt to incorporate uncertainty into forecasts , usually by generating a range of 
forecasts along with some indication of their relative likelihood. A widely used method to indicate 
uncertainty is to prepare three forecasts , called High- Medium-Low, in which the Medium is most 
likely, and the others indicate the range of less likely outcomes. This is what the United Nations 
and the United States Census Bureau, for example, do in official projections. In practice there may 
be many more than three underlying forecasts but they are combined to present three outcomes for 
any quantity of interest-we call these scenario forecasts. The shortcomings of such forecasts are 
discussed by, for example, Lee & Tuljapurkar (2000). 

There are three general ways of improving on scenario forecasts. One method, due to Keyfitz 
(1981), Stoto (1983) and Keilman (1998), starts with a historical analysis of errors in past forecasts. 
The statistical properties of errors are assumed to be the same in future forecasts as in the past, so 
that the historical data may be used to generate prediction errors. A second approach is a stochastic 



186 S. TuLJAPURKAR, R.D. LEE & Q. LI 

forecast as described by Lee & Tuljapurkar (1994)-a statistical analysis of historical data is used 
to estimate dynamic stochastic models (e.g., a time series model) of the variability in vital rates. A 
stochastic forecast is then made using these models-here we call it the LT forecast-that yields 
probabilities for different ranges of any outcome of interest. In effect, the LT method relies upon a 
probability distribution for the trajectories of the process that is generated dynamically. The main 
point of the LT method is that a forecast should reflect as directly as possible the uncertainty 
displayed by historical data. The philosophy of the LT method is based on and shared by other 
dynamic approaches to generating future uncertainty, notably the work of Alho & Spencer ( 1985), 
Cohen ( 1986), and Alho ( 1990) who uses in addition a form of post hoc error analysis to project 
predictive probability distributions. 

A third approach due to Pflaumer (1988) and Lutz et al. (1996, 1997) uses a random scenario 
method that we refer to here as an RS forecast. In its original versions, an RS forecast uses historical 
and other analysis, and expert opinion, to assert that vital rates at a particular future target date (or 
set of dates) will lie in a specified range and have a particular probability distribution. Expert opinion 
may be solicited formally: see Lutz et al. (1996) for a discussion and example. To generate an RS 
forecast, one target value of vital rates at the target date is selected from the assumed distribution, 
and it is assumed that vital rates will follow some specified smooth trajectory from launch value to 
target value. A forecast is made using vital rates on this trajectory; a new target is selected, a new 
trajectory of rates is generated, a new forecast is made; and so on until one has a large set of forecasts . 
These forecasts have a probability distribution that reflects the forecaster's assumptions about target 
values, their distribution, and the trajectory of vital rates. This probability distribution is now used 
as a basis for making probabilistic forecasts for quantities of interest. 

The original RS and LT approaches are very different in their approach to formulating the dynamics 
that underlie their respective forecasts. The objective of this paper is to compare the two approaches 
in terms of the properties of the forecasts that they generate. We use two examples to compare the 
original RS and LT approaches-first, a stylized model of a population without age structure, and 
second, a complete projection model for the US population with a launch date of 1997. The stylized 
model highlights the differences between the dynamics of the stochastic processes in RS and LT, and 
the complex model shows how the content of the forecasts differs in various substantive ways. Our 
practical aim is to educate makers and users of forecasts to the key differences that arise between 
the two types of forecast, especially in terms of probability distributions of outcomes and dynamic 
correlations between important variables over time. 

Our comparison deliberately employs stylized versions of RS and LT in which any differences 
between the two approaches are likely to be large. In practice, as pointed out by many forecasters, 
virtually all forecasts may require elements of both approaches. For example, the LT approach 
exploits long runs of accurate historical data when they are available, whereas the RS approach is a 
way of filling in gaps in the data or in the mechanisms of change. Thus it is natural and sometimes 
essential to consider intermediate modelling methods. One notable effort in this direction is the 
work of Lutz et al. (2001) who extended the original RS method by assuming that the vital rate 
trajectories have an additional random component. Their new method is a substantial advance over 
the original RS, but we will not discuss it here. Our goal is not to make a comprehensive comparison 
between actual forecast outcomes using the latest methods, but only to show how different forecast 
methodologies can generate persistent differences in the forecasts that they yield. Armed with the 
understanding that we provide here of how these differences arise in simple cases, the reader will be 
prepared to explore how the newer methods of Lutz et al. (2001) narrow these differences to good 
effect. 

The next two sections compare a simple stylized RS model and an LT model for two cases: 
first, a simple scalar population dynamics, and second, the more realistic case of projecting the US 
population. The final section discusses our findings and conclusions. 
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2 Scalar Forecasts 

We begin with the simplest setting in which to examine how one makes a forecast. Consider a 
population which has total size N(t) at the end of year t-in this section we ignore age structure and 
other details. During the subsequent year the population is assumed to grow by a ratio R (t + 1) to a 
number 

N(t + 1) = R(t + l)N(t). (1) 

To make a forecast starting with a known N (0) at year t = 0 until the end of a forecast span of 
T years, we need only specify the growth factors R(l), R(2), ... , R(T). How do we specify and 
compare forecasts in the simplest versions of the RS and LT approaches? We present below simple but 
representative models for the dynamics as used in RS and LT, and examine their outcomes; analytical 
results are given but the focus is on graphical comparisons using a representative numerical example. 

A Simple RS Model and Forecast 

A simple stylized RS forecast is described by assumptions about the final distribution of the growth 
rates, and the intermediate trajectories. 

1. There is a known initial growth factor R(O) and initial population N(O) . 
2. The growth factor in the last year, R(T), has a most likely value RM. With high probability 

(say 90%) the value of R(T) will lie in the range from RL < RM to RH > RM. In practice, 
these values can be based on a survey of expert opinion. 

3. The value of R(T) has either a uniform or a normal random distribution with mean RM and a 
variance aR that reflects the range assumed above. 

4. Given any particular value of R(T), the growth factors for all forecast periods are obtained by 
interpolation between R(O) and R1, 

R(t) = (1 - h(t))R(O) + h(t)R(T), (2) 

where h(O) = 0, 0 :::: h(t) :::: 1, and h(T) = 1. We assume a specific interpolation function, 
e.g., h(t) = (t/T). 

To make the RS forecast we simply select a value of R(T) according to the assumptions, generate 
a trajectory of N(t) between t = 1 and T, and repeat. Our numerical illustrations are based on 500 
such trajectories. 

A Simple LT Model and Forecast 

A simple LT model for this setting is described by assumptions about a stochastic process that 
generates trajectories of growth rates over time. 

1. There is a known initial growth factor R(O) and initial population N(O). 
2. The growth factor R(t) is a serially correlated random process with an expected mean of RM 

and follows the equation 

R(t) - RM= p(R(t - 1) - RM)+ e(t), (3) 

where e(t) is an iid random process, independent of R(t), with zero mean and variance ae . 
3. We specify RM, based on either evidence about trends or expert opinion. 
4 . We specify p and ae. In actual application, we would estimate these by fitting the model 

equation (3) to historical data- this is a fit conditional on the assumed value RM. 
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To make an LT forecast we generate a stochastic sequence of R(t) for times t = 1 to T using 
equation (3), forecast the corresponding sequence of N(t), and repeat. Here too, our numerical 
illustrations are based on 500 such trajectories. 

A Numerical Example 

In both the RS and LT cases we obtain many (here, 500) trajectories and then use these samples 
of the forecast trajectory to generate probability forecasts . For example, if T = 50, we can describe 
our forecast of N(25) fort= 25 in several ways: 

1. Plot the 500 trajectories of N(t) through t = 25. 
2. Use a histogram (or some better statistical density estimator) to estimate the probability 

distribution of N(25). 
3. Display a predictive distribution that shows the estimated quantiles of the forecast distribution 

of N(25). 
4. Estimate the mean and standard deviation of N(25). 

In our numerical example, for both RS and LT we set initial values 

R(O) = 1.028, N(O) = 6. 

The target for the RS example at T = 50 is chosen to be symmetric with 

RL = 0.01, RM = 0.02, RH = 0.03. 

For a normally distributed target we set the RS final variance to be aR = (RM - RL)/1.6448. For a 
uniformly distributed target we set aR =(RM - RL)/0.45. 

In the RS example we pick some R(T) from the target distribution and then connect R(O) to this 
final value by an interpolation as in equation (2). The baseline case we use is the linear case with 
h(t) = (t/T) . We compare this with a slower than linear approach to the target with a quadratic 
interpolation h(t) = (t/T) 2 . We also compare the baseline with a faster than linear approach to the 
target with a square-root interpolation h(t) = (t / T) 112

. 

The steady state variance of the LT growth rates is 

a},T =a} /(1 - p2). (4) 

We use values of p from the set {-0.9, -0.5, 0, 0.5, 0.9} . The last value is what we expect for a 
highly correlated series, as is typical of human fertility rates. 

Making a Comparison 

How should we make a sensible comparison between our simple stylized RS and LT models? In a 
practical case, such as the US forecast in the next section, the two methods use distinct approaches 
to arrive at the statistical dynamics of growth rates. As a result, the means and variances of the vital 
rates over time may well be different and in turn will produce differences in the forecasts-we must 
then keep track of such differences in making any comparison. But in the present simple case we are 
free to set the parameters in a way that highlights only the essential differences in the dynamics of 
simple RS and LT models. To keep the models as comparable as possible, we set the LT mean value 
of growth rate to be RM, the same as the RS value, and also make the asymptotic variances equal by 
setting aLT = aR which means that we set 

(5) 
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Given these parameter settings, any differences we find are due solely to the different ways in which 
the two approaches model the vital rates. 

Comparing Forecast Properties 

Trajectories 

Figure 1 shows 25 trajectories from an RS simulation using a normally distributed target and linear 
interpolation; also shown are the trajectories that go to the High, Mean and Low target growth rates. 
Note the smooth trajectories do not cross, and the High-Mean-Low range contains almost all the 
results. 

w 
N 

24 RS Forecast, 25 trajectories 
Normal target, linear interpolation 
Dashes are High, Mean, Low 
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Figure 1. A subset of trajectories (solid lines) of the RS version of a scalar projection, also shown (dashed lines) are 
trajectories based on the high, medium, low targets. 

Figure 2 shows 25 trajectories from an LT simulation with p = +0.9. Note that trajectories do 
cross, there is a much wider range of population sizes and a "looser" distribution. Instead of a 
High-Mean-Low we show three trajectories that span the outcomes at the end of the projection, i.e., 
the trajectories whose terminal values are the median and the upper and lower 95% at the end of the 
forecast. 

Probability Distributions of Forecast Population 

A general feature of RS is that the shape of the target distribution of R(T), which is set by 
assumption, largely determines the shape of the distribution of N(T). To see why, note that in RS 

N(T) = [(l - h(l))R(O) + h(l)R(T)] [(l - h(2))R(O) + h(2)R(T)] . . . (6) 

[(1 - h(l))R(O) + h(T - l)R(T)] N(O). 
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Figure 2. A subset of trajectories (solid lines) of the LT version of a scalar projection, also shown (dashed lines) are 95 
percent prediction intervals based on 500 simulated trajectories. 

Hence log N(T) has the same distribution as 

L log([(l - h(i))R(O) + h(i)R(T)]). 
i 

The factors in this sum are perfectly correlated with each other and the distribution of each will be 
very similar to that of R(T) - to obtain each factor we multiply R(T) by a number and add a number. 
Therefore the distribution of N(T) must be similar to the distribution of R(T) . 

This distributional feature of RS is illustrated by Figure 3, in which the top panel is a histogram 
of the forecasted values of N(50), the lower panel is a histogram of log N(50). This figure was 
generated using a uniformly distributed target, i.e., a uniform distribution for R(50), and we see 
that the result is an approximately uniformly distribution of N (50). Note that the logarithm of N is 
also approximately uniformly distributed. We note also that if we instead use a normally distributed 
RS target, we obtain an approximately normal distribution (not shown here) for both N(50) and its 
logarithm. 

In contrast to RS, a general feature of LT is that the distribution of N(T) for large T (say T > 10 
or so), is always approximately lognormal. To see why note that in LT we have 

log N(T) - log N(O) = L log R(i) , (7) 

where the R(i) are a serially correlated sequence. But the elements of the sequence are not perfectly 
correlated and in fact the correlation between R(t) and R(t + s) goes to zero at the rate p 5 as the 
difference s > 0 increases. This implies that the sum on the right side of the above equation must 
obey the central limit theorem and be asymptotically normally distributed. In other words, log N(t) 
in LT will be roughly normally distributed and N(t) will be roughly lognormally distributed. We do 
not illustrate this feature here. 
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Figure 3. Histograms of 500 forecast values of population in a scalar projection RS model that uses a uniform distribution 
of the target growth rates in the final year. Upper panel shows the population, lower panel the logarithm of population. 

Growth Rate of Variance 

The growth rate of forecast variance in RS depends strongly on the trajectory along which vital 
rates converge to their target value (e.g., faster or slower than linear) and only weakly on the shape 
of the target distribution. This is illustrated in Figure 4. To focus on the growth rate of the variance in 
N(t) we have scaled out the average growth rate, which in RS is the growth rate along the trajectory 
towards RM. As we might expect, variance grows most rapidly when growth rates converge slowly 
to the target-in this case different RS trajectories start at the same growth rate but diverge rapidly. 
This also means that each trajectory is pretty close to its target rate after only a few years. Note that 
the variances in Figure 4 grow quadratically with time. This too is a feature of the RS projection, as 
may be seen from equation (7)-the variance of that sum of t perfectly correlated terms will grow 
as t2

. 
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In contrast consider equation (7) for LT-the variance of a sum of terms whose correlation dies 
out as the terms become more distant grows linearly as t. The contrast between forecast variances in 
RS and LT is shown in Figure 5. The three LT curves show how strongly serial correlation p affects 
the LT variance, but all three LT curves rise linearly with t at long times. The RS curve shows its 
characteristic quadratic rise. Note also that the small t variances change very differently-the LT 
variances rises quite rapidly with time at first, then drops to a linear change. The RS variance always 
grows quadratically. Thus early into the forecast the LT method will usually result in substantially 
greater forecast variance than will RS. 

1.4.-------,--------,-------,------,-----...---------, 
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Figure 4. Forecast variance as a function of forecast span in a scalar projection RS model. The three pairs of curves obtain 
for slow, linear, or fast approaches to the target. The choice of target distribution does not matter: solid lines for uniform 
target, dashed lines for a normal target. 

3 Age-structured Forecasts for the US 

We must first consider the appropriate setting in which to compare forecasts. In the scalar model 
of the previous section, we were free to set the parameters to minimize the difference between 
forecast methods. In contrast, here we are describing an actual country and demographic history 
for which both the simple RS method and the LT method must be based on separate analyses that 
result in dynamic models of mortality and fertility change. For example, the LT model below fits a 
time series model for fertility but constrains the long-run average fertility level. We constrain this 
average to equal the ultimate medium fertility scenario of the US Social Security Administration (a 
similar value is used by the US Census Bureau). The LT time series model generates fertilities that 
vary substantially around the constrained average. These official agencies also provide a range of 
high (optimistic) and low (pessimistic) values for the ultimate fertility, and in our simple RS model 
we assume that they would cover the ultimate probability range (95 percent in case of a normally 
distributed target). The trajectories of the simple RS are then bounded by that range at all times, and 
one can only change the variance by changing the target range-this is certainly possible but for 



1.2 

-~0.8 
~ 
:> 
llJ 
0 
i-: 0.6 
Cl) 

0.4 

0.2 

Random Scenario Forecasts Versus Stochastic Forecasts 

SCALAR VARIANCE RS AND LT 

VARIANCE OF N(t)/µ1 

µ=AVE GROWTH RATE 

; 
; 

, , , 

LT, p = 0.9 

, , , 

, , 
, 

, , , , 

, ' RS, Normal, Linear , , 

, ; LT, p = - 0.5 

," -·-·-·- ·-,-·-·-· ,,J'o-·- ·- ·-· 
'' .:."7:.:":·.:.:~~;. .~.'~ .. '' ... '' .. '' ' .. ' '' ... '' ''' '"' '' ''' ·~;:~·~·~·''' 

o~~""-"''----'-~~~---'~~~~~~~~~~~~~'--~~~~ 

0 10 20 30 
Forecast Span I 

40 50 60 

193 

Figure 5. Forecast variances compared for RS and LT in a scalar projection. Variance for LT is shown for three values of 
serial correlation p-solid line for p = +0.9, dotted line for p = 0, and dash-dot line for p = -0.5. Variance for RS is 
shown by the dashed line. See text for further discussion. 

our example we rely on the ranges used by official agencies. Thus here we cannot and do not force 
an equality in the long-run variances of the LT and RS methods. On the other hand, we do impose 
long-run similarities in the behavior of average fertility in the two approaches, because both require 
the assumption of a target. We discuss these issues further in the next section. 

LT Forecast 

The LT forecast for the US is the one used by Anderson, Tuljapurkar & Lee (2001) with launch 
data in 1996. Mortality follows a Lee-Carter model estimated using data from 1933 to 1996, fertility 
follows a time series model using data for the same period (for details consult the reference cited or 
Lee & Tuljapurkar, 1994 ), and the model trajectories for fertility and mortality are not correlated with 
each other. We note that fertility displays very high positive serial correlation and that the long-run 
variance in the total fertility rate projected by LT is high. Immigration is deterministic and follows 
the US Social Security Administration (1996) medium scenario, hereafter called the SSA medium 
scenario. The forecast span is 1997 to 2096. 

RS Forecast 

We first set assumptions for a stylized version of RS, based loosely on the conventional (not 
random) scenario methods used by the SSA. Our simple RS model is based on the early work of 
Pftaumer ( 1988) and Lutz et al. ( 1996) and is not representative of the newer RS methods in Lutz et 
al. (2001). The TFR in the target year 2096 is taken to have High, Medium, Low values of 2.2, 1.9, 
1.6, respectively. The Medium to Low difference is used to set the variance of a normally distributed 
target TFR. The age distribution of fertility is taken to be fixed over time at the value in the launch 
year. We choose a target in 2096 at random from this distribution and use linear interpolation to 
generate TFR values for all the launch years: we do this for every choice of target TFR. 
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Mortality targets are set in terms of targets for the value in 2096 of the expected lifespan at birth, 
denoted by eo. We start with SSA scenarios for 2075 and extend them by interpolation to get scenarios 
for 2096 (see table 1): 

Table 1 

eo Male 2075 Female 2075 Combined 2075 Combined 2096 

High 83.1 88.2 85.7 88.3 
Medium 79.3 84.2 81.8 83.3 

Low 76.4 81.2 78.8 79.5 

We use the difference between Medium and Low to set the variance of a normally distributed target 
eo for each sex. To make population projections we need the full age-specific death rates-we project 
these in four steps. One, choose a random eo(T) target for each sex. Two, assume that age-specific 
central death rates m(x , t) at t = 0 and at t =Tare proportional, m(x, t) = A.m(x, 0). Three, since 
we know m (x, 0) we can use e0(T) to compute a proportionality factor A.(T) such that the final 
death rates yield the desired expectation of life. Four, use linear interpolation between m (x, 0) and 
m (x, T) to find the death rates in any forecast year: do this for each sex along each trajectory. 

Forecasts of Population 

Any forecast of an age and sex structured population over a long span contains a huge amount of 
information. We choose only a few components of the forecast for our comparison, aiming to identify 
the key differences that obtain between LT and simple RS methods. Where relevant we indicate the 
substantive importance of the variables we have chosen to discuss. 

We begin with the dramatic difference between LT and RS forecasts in terms of the width of their 
prediction intervals for total population over the entire forecast span, shown by the 95% prediction 
intervals in Figure 6. Note that the LT forecast is substantially more uncertain even very early into the 
forecast. We note that in this example the RS forecast of population size is roughly normal because 
the underlying vital rates have normally distributed targets. 

Next, we consider (Figure 7) projections of one component of population, the age class 0 to 
1 year-births. Births matter to numerous policy issues, ranging from expenditures on maternal 
care to education. The upper left panel compares the mean of the LT and RS forecasts. Note that 
the RS forecast shows a "classical" demographic convergence with damped waves that die out by 
2050. The mean LT forecast shows substantial variation over time reflecting predicted future baby 
booms. Although the scale of the upper left panel makes the predicted means of the two methods 
look fairly close, there are differences of the order of several hundred thousand births over the entire 
forecast-see the logarithmic plot in the lower left panel. The upper right panel of Figure 7 shows the 
enormous difference in variance that we have mentioned before. The lower panels of Figure 7 make 
the same comparison between the logarithm of population in the age group 0 to 1 year. Considering 
that the distributions of RS and LT forecasts are very different (RS will be roughly normal, LT will 
be roughly lognormal) the logarithmic means show a larger difference than the arithmetic means. 

Figure 8 shows that the variance difference propagates into other important quantities-here the 
old age dependency ratio(ODR), defined as the ratio of the numbers of people over 65 years of age 
to the number of people between ages 20 and 64. The ODR is key to the management of pension 
policy, in which context it is a plausible proxy for the tax rates needed to support the elderly. The 
first notable point in Figure 8 is the close agreement between the RS mean forecast and the LT 
median-this means that even though we did not force assumptions in the two methods to agree, the 
average values of their forecasts are often close, as is the case here for ODR and to a lesser extent for 
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Figure 6. Percentiles showing the 95 percent predictive distribution of total population in RS (dashed) and LT (solid) 
projections for the United States, using age and sex specific projection models. 

the number of births. The second point to note is the enormous difference between the uncertainty 
of the forecasts-a difference that has implications for any policy analysis. Finally, it is interesting 
that the RS scenario shows very tight bounds, similar to what the US Census Bureau was reporting 
about a decade ago. 

The differences in forecast variance we have found above for total population, births, and ODR 
are found in every other projected variable that we examined, for example, the young dependency 
ratio (YDR). But the similarity between mean forecasts also persists across these variables. 

Temporal Correlation in Forecasts 

As pointed out earlier (Lee, 1999), variables in a scenario or simple RS forecast are typically 
highly correlated over time along trajectories, and this tends to lock the forecasted variables into 
highly correlated trajectories. We illustrate this observation with two examples. 

Figure 9 shows the correlation between the values of e0 (sexes combined) and TFR for both 
forecast methods in 2050. Note that the RS values fall in a tight grouping-indeed they are, as 
they should be, a bivariate normal distribution with larger variance along the fertility axis. The LT 
values are substantially more widely distributed: although TFR will be normally distributed in LT 
the distribution of eo is not normal. 

Finally, Figure 10 shows estimates of the serial autocorrelation along trajectories of the ODR, 
estimated using standard time series estimators. Notice that even after 90 years the RS forecasts have 
a correlation of nearly 0.8 with their starting values. The serial correlation of the LT forecasts falls 
much more rapidly, declining to about 0.3 in about 25 years. 
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Figure 8. Percentiles showing the 95 percent predictive distribution of the old age dependency ratio in RS (dashed) and LT 
(solid) projections for the United States, using age and sex specific projection models. 



Figure 9. Scatter plot showing simulated future values in 2050 of life expectancy eo and total fertility rate in RS (triangles) 
and LT (circles) models for the United States. 
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Figure 10. Serial autocorrelation of the old-age dependency ratio as forecast by RS (dashes) and LT (solid) models for the 
United States. 
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4 Discussion and Conclusions 

We used two forecasting contexts, one simple and stylized, one complex, to compare the proba­
bilistic forecasts that result from a simple random scenario (RS) approach and a stochastic modelling 
(LT) approach. Our goal has been to show what dynamic and substantive differences result from the 
differences in the formulation, estimation and dynamics of the models that generate the forecasts . 

In our stylized scalar model, we enforced equality of both the long-run averages and long-run vari­
ances of the vital rate (the population growth rate). This means that the differences we observed are 
driven entirely by the different ways in which uncertainty propagates in the RS and LT formulations 
of forecast dynamics. We found some key differences. First, the simple RS method yields predictive 
distributions whose shape is determined by the forecaster's assumptions about the shape of the target 
distribution of the random scenarios. In contrast, LT usually generates lognormal distributions of 
population and its components. Second, the rate of growth of forecast variance in RS is generally 
quadratic with time at long forecast spans, whereas LT yields a variance that increases linearly with 
time. Third, at short times into the forecast, the forecast variance initially grows faster in LT than RS. 

In our more complex example of the United States population, we construct a simple RS model 
and contrast it with an LT model that we previously developed. The long-run average vital rates 
in the two models are similar, but the variances in the long-run are different as dictated by the 
different models in the two approaches and their estimation. We noted one useful similarity and 
some important differences. The useful similarity is that the averages of many forecast quantities 
(e.g., old-age dependency ratio, total population) are quite close in the two approaches. Presumably 
this a reflection of the similarity in long-run average values of vital rates. One major difference we 
found was in the level of uncertainty as measured by the width of the predictive distributions of all 
quantities-the LT method yields greater uncertainty than RS over most of the forecast span with 
the difference increasing rapidly as we go more than say 25 years into the forecast . The driving force 
here appears to be the much larger variance of fertility in the LT model. The second major difference 
is driven by the high positive correlation along forecast trajectories in the RS model: this correlation 
persists over many decades, in contrast to LT in which the correlations damp out within a generation 
length. 

We note that the Lutz et al. ( 1996) projections assume much larger variance in TFR than do we in 
our simple RS method; indeed, they have in 2010 for North America a range of 1.4 to 2.3 to cover 90 
percent of a normal distribution. As noted, we relied on officially defined scenarios to obtain a range 
from an "optimistic" high to a "pessimistic" low. On the other hand, Lutz et al. ( 1996) use scenario 
arguments to arrive at the very different view that target fertility values lie in a much wider range. 
Indeed, we would argue that the use of a much more variable scenario by Lutz et al. supports a point 
we make-that simply "randomizing" a non-stochastic high-low scenario will not serve to capture 
the real variability of vital rates. 

The RS methods we use here are a "pure" random scenario method that has since been extended 
by Lutz et al. (2001) and there are related developments by others (e.g., Pflaumer, 1992). The LT 
methods that we use here are not purely derived by estimating stochastic models; indeed, as we have 
said, they require the imposition of long-run constraints on the average of fertility. The direction of 
new developments is towards hybrid methods that combine elements of the simple RS methods we 
use here with the LT method and related stochastic models. Our goal has been to provide a stylized 
but sharp comparison of the consequences of the two approaches when they are not hybridized. 
Makers and users of forecasts should be aware of these differences and the degree to which they may 
influence the content and interpretation of any probabilistic forecast. We believe that hybrid methods 
are a logical and important direction in the business of making better and more useful forecasts. 
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Resume 

Les projections de population probabilistes sont utiles car leur fa~on de representer !'incertitude est utilisable quantitative­
ment. Une approche possible (que nous appellerons LT) consiste a uti!iser des donnees historiques pour estimer de modeles 
stochastiques (c'est a dire des modelisations en series temporelles) des taux demographiques et, a partir de la, faire des 
previsions. Une autre approche (que nous appellerons RS) trouve sa source dans !'utilisation de sorte de scenarios aleatoires. 
Nous considerons ici sa variante la plus simple, dans laquelle on se sert de I' opinion d'experts pour construire une distribution 
de probabilite des taux demographiques finaux, puis on projette une trajectoire lissee dans le temps. Au moyen d'arguments 
analytiques et d' exemples, nous montrons plusieurs differences importantes entre ces methodes: Jes correlations au sein des 
series !ors des previsions sont bien plus faibles dans Jes modeles LT; la variance des taux demographiques (en particulier celle 
de la fertilite) est bien plus e!evee dans la modelisations LT que dans Jes modelisations RS, qui se fondent sur Jes scenarios 
des experts publics; la trajectoire des modeles LT est bien plus irreguliere qu ' avec LS; Jes intervalles de confiance dans Jes 
modeles LT ont tendance a augmenter plus vite au cours de la penode de prevision. De nouvelles versions des modeles RS 
Ont ete deveJoppees et reduisent OU eJiminent certaines des differences. 

Mot-cles: Prevision probabiliste; Prevision demographique; Trajectoire; Taux demograpiques; Scenario; Scenarios aleatoires; 
Ratio de dependence. 
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Summary 

The U.S. Census Bureau is approaching a critical decision regarding a major facet of its method­
ology for forecasting the United States population. In the past, it has relied on alternative scenarios, 
low, medium, and high, to reflect varying interpretations of current trends in fertility, mortality, and 
international migration to forecast population. This approach has limitations that have been noted in the 
recent literature on population forecasting. Census Bureau researchers are embarking on an attempt to 
incorporate probabilistic reasoning to forecast prediction intervals around point forecasts to future dates. 
The current literature offers a choice of approaches to this problem. We are opting to employ formal time 
series modeling of parameters of fertility, mortality, and international migration, with stochastic renewal 
processes. The endeavor is complicated by the administrative necessity to produce a large amount of 
racial and Hispanic origin detail in the population, as well as the ubiquitous cross-categories of age and 
sex. As official population forecasts must meet user demand, we are faced with the added challenge of 
presenting and supporting the resulting product in a way that is comprehensible to users, many of whom 
have little or no comprehension of the technical forecasting literature, and are accustomed to simple, 
deterministic answers. We may well find a need to modify our strategy, depending on the realities that 
may emerge from the limitations of data, the administrative requirements of the product, and the diverse 
needs of our user community. 

Key words: Stochastic forecasting; Racial disaggregation; Hispanic origin; Composition effects; User demand. 

1 Introduction 

In the early 1980's, the U.S . Census Bureau's population projections program was in a state of 
flux. For the previous three decades, the Census Bureau projections had been chasing the increases 
and decreases in American fertility during the baby boom and subsequent bust. All of its efforts had 
gone into devising projections that could cope with the rapidly changing fertility-on the one hand 
collecting data on birth expectations and emphasizing cohort completion rates and on the other hand 
defending itself by making the argument that the results were merely projections (of current trends 
or alternative assumptions) and should not be taken as forecasts. The alternative series were labeled 
by numbers or letters rather than high, medium or low and on some occasions an even number of 
series were projected so that no one could be considered the most-likely series. 

By 1980, fertility rates had entered a period of relative stability while major changes in the other 
components of population change, mortality and immigration had become more volatile. Both within 
and outside the Census Bureau, interest in the error structure of previous population projections raised 
the issue that official projections were indeed used as forecasts and needed to be treated as such 
(Keyfitz, 1981 ; Stoto, 1983 ). Moreover, even though most users wanted a single forecasted number, 
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it was important to provide an explicit range around the projected numbers that represented the total 
variability of the population and not just variability associated with fertility uncertainty. 

In an exchange of correspondence that year between Nathan Keyfitz at Harvard, William Kruskal 
at Chicago, and staff members of the U.S. Census Bureau, the importance of the error structure in 
population projections was discussed. Should official population projections be recast as forecasts 
with true error ranges that represented an historical empirically determined error range or should they 
take the more modest step of explicitly designating the alternative series as low and high, expanding 
the uncertainty analysis to mortality and immigration as well as fertility, and increasing the level of 
detail and sophistication of the projection methodology. Given the state of the theory, methods, data 
series, and computational power available at that time, the Census Bureau decided to take the latter 
course and embarked on a multi-year project to expand the detail and sophistication of the national 
population projections while retaining an essentially deterministic approach. 

The 1988 set of national population projections consisted of 30 series, 27 of which represented 
the combinations of high, middle, and low assumptions around each of the three components of 
population change (U.S. Census Bureau, 1988). The resulting projections permitted sensitivity 
analysis of the independent effects of fertility, mortality, and immigration on the age structure of 
the population (Long, 1989). This method attempted to address the general question by defining 
"high" and "low" series of the major inputs, and defining "highest" and "lowest" series projections 
by jointly assuming the extreme values for each component. The projections were based on classic 
cohort-component methodology; hence (for example) the highest series was composed of the high­
level assumptions of fertility and net migration to the United States, and the low-level assumption 
for mortality. These high and low assumptions were not probabilistic, but represented a qualitative 
judgment of the forecasters about "useful" upper and lower limits. In hindsight, the range often 
proved too small in the early years of the projection and perhaps too large for the later decades of 
the projection, as noted by Lee & Tuljapurkar ( 1994) and others. The range of high and low series 
offered a limited way to view the uncertainty of projected total population-but did not adequately 
represent the variability of internal ratios such as the proportion of the population in working ages. 

Other expansions in the sophistication and detail of the projections continued-resulting in an 
improved handling of the dynamics of mortality, incorporation of short-range time-series ARIMA 
forecasts of fertility rates, disaggregation of net immigration to various types of in-migration flows 
and separate emigration rates for the native and foreign-born populations, expansion of race categories 
to 8 combinations of race and ethnicity, and the expansion of age detail to single years of age to 100 
plus. 

Today, we find ourselves at a crossroads again. Advancements in the theory and methods of 
population forecasting (Ahlburg & Lutz, 1998) combined with the expanded computing power make 
probabilistic population projections feasible. The remaining question is "Can they be produced and 
distributed to the government and to the public in such a way as to serve the uses to which official 
population projections have been used in the past?" The answer involves both technical and policy 
issues. 

2 Choice of Probabilistic Methods 

One of the first choices to be made is whether to pursue an expert-based probabilistic method 
(Lutz, Sanderson & Scherbov, 1998) or a stochastic forecasting approach (Lee, 1998). Although it 
might seem at first glance that the expert-based approach would be more consistent with the U.S. 
Census Bureau tradition of using assumptions to set alternative variants of population change (Long, 
1984), there are several reasons to begin the foray into alternative probabilistic projections with a 
stochastic forecasting approach. 

Most importantly, the Census Bureau projections have always depended heavily on the develop-
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ment of a disaggregated set of data about the current and historical data on age-sex-race specific 
rates of fertility, mortality, and (recently) immigration. The empirical data base supplies the key 
grounding for initial conditions and short-term trends and even provides the database on which to 
validate the plausibility of alternative assumptions. Stochastic forecasts (especially those based on 
statistical time series analysis) provide the best basis to continue to ground official forecasts in the 
current and historical data. 

Secondly the Census Bureau has more experience in statistical time series analysis than it does 
in developing formal models of expert opinion. Several of the Census Bureau's projections in the 
1990's used short-term forecasts of fertility rates based on statistical time-series as one aspect of the 
projection method. Although the Census Bureau has had scattered workshops on the future course 
of fertility, there is no formal expert panel or advisory committee for setting assumptions of future 
levels-much less a formal methodology for determining the uncertainty in those estimates. 

Finally, stochastic forecasts with their ability to permit canceling of errors over time due to the 
less than perfect autocorrelation of errors appear to give the best chance of providing error ranges 
that are sufficiently wide in the short run without having excessively large error ranges in the very 
long run. 

The approach adopted in our current attempt is that of a stochastic forecast, based on an ex post 
analysis of historical trends in fertility, mortality, and net international migration. The forecasts are 
to be developed using time series procedures derived from Box-Jenkins (ARIMA methods). The 
approach follows most closely the approach favored by Ronald Lee and his colleagues (e.g., Lee & 
Tuljapurkar, 1994 ), although we are attempting alternative approaches to defining the parameters of 
the components of change. We are treating fertility, mortality, and migration separately. We define 
parameters for each component, and employ a vector autoregression (ARJMA) to forecast them. 
Regardless of how parameters are defined, a fundamental requirement of the process is a substantial 
time series of data, with some demographic detail consistent over time. 

3 Demographic Disaggregation 

A fundamental aspect of the Census Bureau projections has been the role of disaggregated calcu­
lations for specific demographic subpopulations with different trajectories for each race and ethnic 
group. In fact, it is this disaggregation combined with the marked differential in fertility by race in 
previous decades and the current marked differential in fertility by Hispanic origin that has been one 
of the major factors in driving demographic change in the Census Bureau's recent projections. 

Racial detail has been an attribute of United States population projections almost as long as they 
have been produced. Early projections were often simply disaggregated into a white/non-white racial 
dichotomy. Later projections expanded the racial categories to white, black, and other. In 1990, di­
chotomous Hispanic origin was introduced to the matrix. The number of racial and ethnic categories 
increased to eight (Hispanic origin crossed by four race groups: white, black, Asian and Pacific 
Islander, and American Indian or Alaskan Native) in our last projection series released in 2000. An 
important technical aspect of this practice is that the evolution of forecast population is subject to 
racial composition effects, meaning that forecast population change is influenced by the racial and 
ethnic composition of the population in the presence of differential rates of fertility and mortality 
for the various groups. Hence, the projection of racial and ethnic categories is inseparable from the 
projection of the population by age and sex. 

The base population for the current forecasts will be the 2002 estimate of the U.S. national popu­
lation (consistent with the 2000 census results) disaggregated by single years of age, sex, and three 
race/ethnic categories. To reduce complexity, we are confining our stochastic projections to three 
categories, 1) Hispanic origin, of any race, 2) non-Hispanic, reporting black alone, and 3) all others. 
By forecasting these three groups stochastically, we determine the total population by age and sex 
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and its forecast uncertainty. More detailed racial categories can then be projected deterministically 
within the three large ones (see following section on expanding detail for by race and Hispanic 
origin). This three-category distribution has the following desirable properties, from the standpoint 
of population forecasting. 

1. The categories are large, so there should be no difficulty with projecting single-year age 
distributions too "thin" to produce good results. 

2. Differential fertility and mortality among the three categories can be documented from histor­
ical data, although there is some potential for bias in the comparisons. Hispanic origin was not 
directly affected by the change to "check all that apply" in race definition. The non-Hispanic 
Black population was affected by the change in race definition, but relatively marginally. 

3. Differences among the categories with respect to demographic rates are substantial. The 
age pattern of childbearing and excess mortality (notably for infants) for the non-Hispanic 
Black population are distinctive. Fertility continues to be somewhat higher for the Hispanic 
population than for most non-Hispanic racial categories. 

As the decennial census is seen as defining the population universe for the projections, we have 
allowed no uncertainty in the census population. Associated with this assumption is the proviso that 
all population forecasts, including any estimates of uncertainty, are viewed as representing what 
Census 2000 would have enumerated at a future date. 

Parameters of the Components of Change 

In this method, rates for each of the major components of population change-fertility, mortality, 
and international migration-will be forecasted independently, and we assume no time series cor­
relation among the three major components. The independent variable of the vector autoregression 
in each case is a vector of parameters that summarize the demographic detail in the historical series 
and that can be used to reproduce the detail in the projected series. The large amount of detail in our 
planned projections places considerable stress on the need to summarize the inputs to the time series 
models through parameters. 

In the case of fertility, we plan to base our parameters on the mean and variance of the age pattern 
of fertility intensity by parity, as developed by Kohler & Ortega (2001). In this model, fertility is 
measured by the age schedule of rates of fertility for women of a given parity. While the schedule is 
computed from cross-sectional (as opposed to cohort-based) information, the rates are adjusted for 
the effects of tempo changes in the fertility of cohorts of women that produce bias when synthetic 
cohort information is analyzed. The fertility intensity schedule is summarized by its mean age and 
the variance of age, for each parity category of women. In our application, we plan to calculate these 
parameters for the first four parities of women. From the previous section, we must carry this out 
for three racial and ethnic categories, yielding a total of 12 categories for which mean and variance 
must be estimated and forecasted, or 24 parameters of fertility. The determinants of secular fertility 
changes in the United States tend to be expressed across racial and ethnic lines, but not in "lock step", 
and there is undoubtedly some time series correlation among the behavior of women of different 
parity. It must therefore be assumed that much of the time series covariance among the 24 parameters 
is non-trivial. 

This analysis is somewhat challenged by problems encountered in the data, which come from 
three sources. For numerators of rates, we rely on birth registration data supplied initially from 
reports of local administrators to state health departments. For the count of women by age, sex, and 
race, and Hispanic origin, we rely on administrative population estimates based on decennial census 
data. As these estimates do not provide women by parity, we measure the distribution of women by 
parity using data from the Current Population Survey (CPS), a monthly survey used to monitor the 



Developing Official Stochastic Population Forecasts at the US Census Bureau 205 

U.S. labor force that has included an annual supplementary questionnaire on childbearing. The time 
series of historical data is limited to 20 years, from 1980 to 1999, largely because of the lack of 
population data on Hispanic origin prior to 1980. Even in the period since 1980, the number of U.S. 
states reporting Hispanic origin in birth registration data did not embrace the entire country until 
1993. Hence, the estimation of fertility for the Hispanic origin population must be imputed from the 
experience of reporting states, resulting in some spurious discontinuities in the series. The fertility 
supplement to the CPS, used to estimate parity of women, is also lacking for a few of these years 
because of resource limitations, so the data must be interpolated from neighboring years. Finally, the 
limitation of the series to 20 years means that we are unable to calculate a full variance-covariance 
matrix of the 24 parameters, so that some of the covariance assumptions must be postulated. 

For mortality, we plan to develop a system of parameters after the model developed by Lee & 
Carter ( 1992). There is a possibility that we will need to increase the number of parameters to account 
for perturbations in the age pattern of mortality that do not conform to the Lee-Carter model. Be 
this as it may, we do not anticipate that the number of parameters will pose as much of a problem 
with mortality as it did with fertility. As with fertility, we will rely on a data series consisting of 20 
years of death registration data and population estimates. The limitations to the data on deaths by 
Hispanic origin are more severe than with fertility, with a substantial portion of the population in 
non-reporting states until the late 1990s. 

For international migration, the development of parameters will be somewhat cruder, consisting of 
a level of net migration and an indicator of central tendency for the age distribution, but disaggregated 
by groups of country of origin. The necessity to view international migration by country of origin is 
important for two reasons. First, the trend in migration to and from the United States is very much 
governed by the source of immigration, so disaggregating by groups of countries is essential to the 
interpretation of historical trends. Second, country of birth is an effective indicator of the racial and 
ethnic composition of the net migration flow, which can be determined after the forecast trends have 
been produced. For a historical series, we rely on 30 years of legal immigration data from the U.S. 
Immigration and Naturalization Service. This series requires considerable interpretation, because 
legal immigration to the United States does not embrace all residential movement across U.S. fron­
tiers. Indirect estimates of undocumented migration and emigration from the United States have been 
developed, but generally not as an annual series; hence, assumptions must be made regarding the 
impact of these components on the level and the degree of fluctuations in the annual series of net 
migration to the United States, which determine the degree of uncertainty in the forecast series. 

Generating Models and Realizations 

The actual implementation of this modeling strategy in producing population forecasts is com­
paratively routine, but very computer-intensive. Once the vector autoregressive models for the three 
major components are developed, the parameters of fertility, mortality, and international migration 
are forecast via a stochastic renewal process. Multiple forecast series, or "realizations" are produced 
for the three vectors of parameters, and they are combined to form the basis for projections of popu­
lation. The full schedules of age-sex-specific fertility and mortality rates, and the age-sex schedule 
of net international migration are generated from the parameters. Each population realization is 
developed by the cohort-component method, and all the elements that will compose the ultimate 
population forecast product are retained for each realization. Central values and prediction intervals 
of total population, age and sex categories, and summary demographic indicators can be determined 
from the realizations. Due to the large number of parameters, it is anticipated that the number of 
realizations will be very large, so we must prepare to abandon the individual realizations once the 
product demand has been fully assessed. 
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Expanding the Race and Hispanic Detail 

Even with the presence of race and Hispanic detail in the forecasting model, the results do not 
provide the level of output detail for race and ethnicity required of the Census Bureau's official 
population projections. As a result a post-hoc method must be designed to provide the required 
detail. 

In the 2000 census the four racial categories were expanded to five, as the Asian and Pacific 
Islander category was divided into two categories, Asian, and Native Hawaiian and Other Pacific 
Islanders. The instruction requiring a single race response was modified to an instruction of "check 
all that apply". The possibility of responses covering more than one of the five major categories 
increased the number of mutually exclusive response categories to 31, which, when crossed with 
dichotomous Hispanic origin yields 62 racial and ethnic categories to project, compared to 8 in 
previous series. 

Although Census Bureau forecasts do not need to show data for all 62 possible race and Hispanic 
origin combinations, they do need to show the following two summary classifications: a) "minimum" 
value for the five racial groups, composed of people who would report a single race only, with a sixth 
category defined by all those reporting two or more races, and b) "maximum" values for the five 
groups, composed of all who would report the given race either alone or in combination with another 
race. Both of these distributions can be shown for the Hispanic population and for the non-Hispanic 
population. In order to generate these two distributions from mutually exclusive categories, it is 
necessary to forecast the entire matrix of 62, each by age and sex. 

In the past, our strategy for developing projections of the 8 groups has been to treat them as 
separate populations in a cohort component framework, with the total population being a simple ag­
gregation of the eight groups. Of paramount importance to this approach is the working assumption 
that the 8 categories are closed with respect to childbearing. Fertility rates can thus be applied to 
projected cohorts of women to produce the population of the youngest age group within the racial 
and ethnic category. Under the new definition, this simplifying assumption is not plausible, since the 
multiple-report (2 or more races) categories owe their existence in part to racial differences between 
mother and child brought about by intermarriage. 

This complication along with the lack of any historical administrative time series for any demo­
graphic component of this detailed racial distribution renders impossible a stochastic treatment of all 
62 racial and ethnic categories. Consequently we settled on the simplified three-category race/ethnic 
distribution described in our methodology above. 

Then the specific race/ethnic distribution of children is separately modeled from data on the racial 
and ethnic composition of family households from the 2000 census. As there is no historical in­
formation whatever on the trend in the relationship of race of child to race of parents, we make a 
simplifying assumption that ignores any uncertainty in the specification of a child's race by race 
of parent. With this extension to the basic stochastic forecast, we are able to obtain much of the 
demographic detail that users have come to expect in our population forecasts. 

4 Policy Issues and Users Demands for Official Stochastic Forecasts 

Once the Census Bureau produces a set of official stochastic forecasts, our next step will be 
to lead users and governmental officials to accept and use them. There are several hurdles in this 
step that will require careful attention. Official projections or forecasts are expected to have several 
characteristics. 

First, many if not most users are interested in the single set of numbers that represents the most 
likely course of population change. If the methodology used to create stochastic forecasts does not 
also provide the best estimator of the future population then those users will be ill-served. Users 
will need to be cautioned about the change from a population variant approach. In prior projections, 
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there was internal consistency within a series-if not across series. Thus a series with a high fertility 
rate would be associated with a given mean age, dependency ratio, etc. With the stochastic method, 
this would no longer be the case since the forecast is for the distribution and even the set of medial 
values does not represent a coherent scenario. 

As we have already discussed, one of these characteristics is explicit detail about policy-relevant 
demographic groups. Racial, Hispanic origin, age, and sex detail are expected and will be provided 
by our methods. Some other detail that has been present in recent projections will be missing from 
this series. Separate projections of the native and foreign born populations that were a feature of our 
last projections will not be possible in this series given the lack of data for a stochastic method. 

Population forecasts must be for a long time horizon, irrespective of the limitations of the baseline 
data series that are used to specify models of uncertainty. These forecasts will go to at least 2080 and 
possibly to 2100. The estimation of uncertainty in the population series must be comprehensive. For 
example, it is not useful to restrict our analysis of uncertainty to only those components of change, or 
those population groups for which it can be readily estimated. Uncertainty in the resulting population 
will be interpreted as though it were fully measured, even if it is not. On the other hand, wide ranges 
for the long-run forecasts may cast doubt on the utility of the projections in the short-run. 

User demand tends to be shaped by past practice. Many of our users in other state and federal 
agencies, for example, employ U.S. Census Bureau projections of the national population to project 
related social and economic series. Their methodology is driven by past practice. This requires 
that all of the elements of our "preferred" middle series that were available with past deterministic 
projections be present, irrespective of our methodology. 

Population forecasts must be comprehensible to a wide variety of user interests, hence there 
tends to be resistance to expanding the complexity of the product in ways that are not supported 
by mandate. There is complexity in the production of stochastic forecasts but the results can be 
presented relatively simply to an audience that is already accustomed to sample survey variance. 
The problem may in fact be that users will too easily make the analogy with survey variance and put 
more trust in the variance estimates than they deserve at this level of development. 

5 Conclusions 

Despite all these cautions, now would seem to be the time to try to produce a set of official 
stochastic population forecasts for the United States. The needed data sets are fairly complete and 
accurate; the major components do not seem to be undergoing substantial structural changes; and 
the methods and computer capability can handle the extensive calculations required. It must be done 
with caution and there must be alternative plans to modify results if the time series approach leads 
to unreasonable median forecasts. In fact, a fully deterministic fall-back position is required if the 
methodological development fails to be completed in time to produce the required set of projections 
by the end of 2003. Nonetheless, unlike the early 1980's, the Census Bureau is now attempting to 
produce official stochastic population forecasts. 
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Resume 

Le Bureau du Census aux Etats-Unis se prepare a une decision critique concemant un aspect primordial de sa methodologie 
pour projeter la population du pays. Dans le passe, celle-ci s'est appuyee sur des scenarios alternatifs, inferieur, moyen et 
superieur, pour refleter Jes interpretations variables des tendances courantes de fecondite, de mortalite et des migrations 
intemationales afin de projeter la population. Cette approche a des limites qui ont ete soulignees dans Ia litterature recente sur 
Jes projections de population. Les chercheurs du Bureau du Census se lancent dans une tentative d'incorporer le raisonnement 
probabiliste pour projeter des intervalles de prediction autour de valeurs prevues a des dates futures. La litterature courante 
offre un choix d' approches ace probleme. Nous faisons I' option d'employer la modelisation formelle de series temporelles de 
parametres de fecondite, de mortalite et de migration internationale avec des processus de renouvellement stochastiques. Le 
travail est complique par la necessite administrative de produire un grand nombre de details sur I' origine raciale et hispanique 
de la population, ainsi que la repartition traditionnelle par age et sexe. Les projections de population officielle devant repondre 
a la demande des utilisateurs, nous sommes confrontes au defi supplementaire de presenter et d'appuyer les resultats d'une 
maniere comprehensible pour Jes utilisateurs; beaucoup d'entre eux en effet ont une faible comprehension de la litterature 
technique de projection et sont habitues a des reponses simples et deterministes. II se peut que nous soyons amenes a modifier 
notre strategie en fonction des realites qui peuvent ressortir des Iimites des donnees, des exigences administratives du produit 
et des besoins divers de notre communaute d'utilisateurs. 
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