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Abstract: In this paper, using the 'bottom-up' energy-system optimisation 
ERIS model, we examine the effects of emission trading on technology 
deployment, emphasising the role of technology learning spillovers. That is, the 
possibility that the learning accumulated in a particular technology in a given 
region may spill to other regions as well, leading to cost reductions there also. 
The effects of different configurations of interregional spillovers of learning in 
ERIS and the impact of the emission trading mechanism under those different 
circumstances are analysed. Including spatial spillovers of learning allows 
capturing the possibility that the imposition of greenhouse gas emission 
constraints in a given region may induce technological change in other regions, 
such as developing countries, even if the latter regions do not face emission 
constraints. Our stylised results point out the potential benefits of sound 
international cooperation between industrialised and developing regions on 
research, development, demonstration and deployment (RD3) of clean energy 
technologies and on the implementation of emission trading schemes. 

Keywords: technology learning; emission trading; spillovers . 

Reference to this paper should be made as follows : Barreto, L. and 
Klaassen, G. (2004) 'Emissions trading and the role of learning-by-doing 
spillovers in the 'bottom-up' energy-systems ERIS model', Int. J Energy 
Technology and Policy, Vol. 2, Nos . 1/2, pp .70--95. 

Biographical notes: Leonardo Barreto holds degrees in Electrical Engineering 
(BSc, MSc) from the National University of Colombia and a PhD in 
Engineering from the Swiss Federal Institute of Technology Zurich (ETHZ). 
From 1994 to 1996 he worked for the Energy and Mines Planning Unit 
(UPME) of the Colombian Energy Ministry and the National University of 
Colombia. From 1997 to 2001 he was research assistant in the Energy 
Modelling Group at the Paul Scherrer Institute in Switzerland. He is currently a 
research scholar in the Environmentally Compatible Energy Strategies Project 
(ECS) at the International Institute for Applied Systems Analysis. He has been 
involved in development and application of energy-system models 
(e.g. MARKAL, ERIS) and participated in several projects, among others, on 
energy technology dynamics (TEEM and SAPIENT) funded by the 
European Commission, on carbon trading for CRIEPI (Japan), on analysing 
the 'hydrogen economy' for TEPCO (Japan) and examining the role of 
carbon capture and sequestration technologies funded by Carnegie Mellon 
University (US). 

Copyright © 2004 Inderscience Enterprises Ltd. 



Emissions trading and the role of learning-by-doing spillovers 

Ger Klaassen holds a PhD in Economics from the Free University Amsterdam. 
He is currently a research scholar in the Environmentally Compatible Energy 
Strategies Project (ECS) at the International Institute for Applied Systems 
Analysis (IIASA) conducting research on the development of energy 
infrastructures, endogenous technological progress, and economic instruments. 
Previously he worked at the Environment Directorate General of the European 
Commission, IIASA's Transboundary Air Pollution Project and the Free 
University in Amsterdam. He has also been Visiting Professor in 
Environmental Economics at Colorado College (USA). 

1 Introduction 
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Technological change is, in the long run, one of the main mechanisms to comply with 
environmental constraints. Development and diffusion of cleaner technologies increase 
the ability of the system to comply with tighter constraints in the future and may have 
positive ancillary economic effects [l]. Thus, fostering them is an important 
consideration when conceiving environmental policies. 

The climate change issue is no exception. Although many short-term aspects are of 
key importance in designing climate policy instruments, their ability to encourage 
technological pathways that drive to a low-carbon energy system in the long run 
constitutes an essential aspect. The choice and design of such instruments must, 
therefore, take into account the influence of energy technology dynamics mechanisms. 

Emission trading has been proposed as one of the flexibility mechanisms to comply 
with greenhouse gas (GHG) emission reductions . It gives parties with expensive 
in-house mitigation options the possibility of profiting from cheaper alternatives available 
somewhere else by buying emission permits. The implementation of a market of emission 
permits would exert an influence in the technological trajectory of the global energy 
system. Thus, it becomes important to examine the effects of trade on the stimulation of 
the development and introduction of low-carbon and more efficient energy technologies. 

One of the factors likely to have an influence on the action of emission trading is 
technology spillover. Technology spillovers across countries and world regions constitute 
an important mechanism for diffusion of technologies in the global markets. These 
spillovers occur through different channels such as foreign direct investment, 
international flows of goods, knowledge and people, international cooperation on R&D 
and technology transfer, among others. 

Although a number of studies have examined knowledge spillovers or 
learning-by-doing effects, empirical studies treating learning-by-doing spillovers are rare. 
An exception is the work of {2), who examined learning-by-doing spillovers in the 
semiconductor industry. Their findings support the existence of spillovers between firms 
in that industry. Those spillovers appear to be international in scope, with learning 
spilling both between firms in different countries as well as in a given country. Firms also 
appear to learn more from their own cumulative production than from that of other firms 
but the cumulative production of rest-of-the-world firms is much larger than that of a 
single firm. This kind of empirical analysis, however, is still to be conducted for energy 
technologies. 

Thus, although their role in the adoption of technologies has been recognised, the 
magnitude and geographical scope of spillovers for different technologies and regions are 
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difficult to quantify [3] and their incorporation in energy-systems models is still 
rudimentary [ 4,5]. 

Here, we examine the effects of emission trading on technology deployment, 
emphasising the role of spillovers of technology learning. That is, the possibility that the 
learning accumulated in a particular technology in a given region may spill to other 
regions as well, leading to cost reductions also there. The analysis is carried out using a 
multi-regional version of the 'bottom-up' energy-system optimisation ERIS model [6,7]. 
The effects of different configurations of interregional spillovers of learning in ERIS and 
the impact of the emission trading mechanism under those different circumstances are 
analysed. 

We highlight the role of spillovers of learning across regions as an important 
mechanism to be considered when modelling the interaction between climate policy 
instruments and technological change. Including spatial spillovers of learning allows 
capturing the possibility that the imposition of greenhouse gas emission constraints in a 
given region may induce technological change in other regions, such as developing 
countries, even if the latter regions do not face emission constraints. As a consequence, 
the impact of emission trading on technology diffusion is also influenced by the presence 
or absence of technology spillovers. 

In order to analyse the influence of learning-by-doing spillovers in energy 
technologies we consider different spatial scales of the learning process and compare the 
resulting technology mix and emission paths for different cases. The learning 
configurations examined here have only an illustrative purpose, since they assume that 
spillovers between two given regions are either full or nonexistent. Thus, they do not 
reflect the real, more complex 'topology' of the learning networks of the technologies, 
particularly in an increasingly globalised world where more multi-national energy 
technology suppliers operate at the international level. Still, examining such an 
hypothetical learning configurations enables us to gain insights into the consequences of 
emission trading under different assumptions on the spatial scale (global or regional) of 
the learning process. 

2 Technology learning and spillovers 

In this section, a brief description of the learning, or experience, curve concept is 
presented, which represents an empirical manifestation of learning processes within the 
technological context, central to the analyses performed in this work. 

Leaming, or experience, processes have been identified in many different social and 
economic activities, even driving to the conception of society as a learning system [8]. 
In line with this notion, technological change can be seen as a cumulative social learning 
process building upon accumulation of knowledge and experience [9]. Leaming is, 
indeed, one of the key drivers of technological change and diffusion of innovations. 

We consider here the typical formulation of learning, or experience curves, describing 
the specific investment cost of a given technology as a function of the cumulative 
capacity, a proxy for the accumulated experience [10]. The curve reflects the fact that 
some technologies experience declining costs as a result of their increasing adoption due 
to, among others, learning-by-doing (manufacture) and learning-by-using (use) effects. 
The specific investment cost (SC) is formulated as: 
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SC(CC) = a*CC-b 

where CC is Cumulative capacity, b is Leaming index and a is Specific cost at unit 
cumulative capacity. 

Usually, instead of the learning index b, the learning rate (LR), i.e. the rate at which 
the cost declines each time the cumulative production doubles, is specified as: 

LR= I -Tb 

For instance, an LR of 10% means that the costs are reduced in 10% for each cumulative 
capacity doubling. 

The experience curve represents the aggregate effects of many different incremental 
changes, which, when compounded, are important drivers of technological progress. 
Change of this nature takes place as an evolutionary process involving significant 
experimental effort that proceeds in a cumulative way as the stock of practical experience 
grows [11]. 

The learning curve has, however, a phenomenological nature, in the sense that the 
experience effect can, but not necessarily will, become manifest. Thus, learning curves do 
not exist for all the technologies. A number of forces must intervene to make the learning 
effect operational. In particular, it is clear that deliberate and continuous efforts are 
fundamental. Without them, the learning potential of a given activity (or technology) 
would not be 'tapped', knowledge will not be accumulated and the curve may not 
materialise. 

Technology learning has an important spatial dimension reflected by the action of 
spillovers. As stated in [12], "technological change is fundamentally a form of learning, 
and learning is a network phenomenon". Networks of social actors at the national or 
international level allow exchanging information about, and continuous experimentation 
with, technologies and constitute an essential element for the diffusion of innovations. At 
the collective level, learning proceeds through network feedbacks between co-operative 
and competitive agents [13]. Hence, networks encourage learning from others, stimulate 
compatibility and mutual dependence between actors and help, through sharing of 
experiences, to reduce the risk and fears of adoption of the new technology [14]. 
Technology spillovers occur between nodes of these networks of social actors. 

Leaming spillovers have received some attention in the literature, in particular at the 
firm level. In such a context, the presence of learning spillovers appears to produce 
conflicting effects [ 15]. On the one hand, spillovers have an efficiency effect, increasing 
the pace of the cost reduction, since firms benefit from their rivals' learning processes. 
On the other hand, spillovers provide a disincentive for firms to expand their output and 
reduce costs, since they cannot capture all the benefits of their learning-by-doing efforts. 
Analyses carried out in [15] concluded that the efficiency effect appears to dominate 
given that firms are not likely to reduce their output, because output generates revenues. 

On the basis of these arguments, Duke and Kammen [16] analyse the learning process 
of emerging, currently expensive but promising, energy technologies. According to their 
analysis, the disincentive effect mentioned above, together with the so-called market 
power effect, where imperfect spillovers confer firms cost advantages over potential 
entrants, causes firms' output to fall below the social optimum, thus providing a rationale 
for government intervention, for instance through market transformation programmes, 
'buydown' programmes, the removal of market barriers, or a combination of them [17] , 
in order to stimulate the successful diffusion of clean energy technologies . 
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To the extent that such a strategic behaviour occurs also between different world 
regions, there could be a lack of incentives for countries to pay for the 'learning 
investments' [18] of cleaner energy technologies that are currently expensive but have a 
promising learning potential in the long run, because other countries could be 
'free-riding' on their efforts. In this sense, spillovers appear to have two different 
connotations. In making learning a public good, they produce a positive effect as 
technological progress spreads to regions beyond the one that has created it. For the same 
reason, however, they may threaten proprietary knowledge and hinder the opportunities 
for the knowledge creators to fully profit from their learning processes. Thus, their 
presence raises, among others, concerns about intellectual property, strategic 'know-how' 
and associated competitive advantages, etc. 

It becomes important to conceive policy instruments that can deal with both positive 
and negative aspects of technology spillovers. If one translates the above-described 
arguments to the international context, they could provide a rationale for forging sound 
international cooperation on research, development, demonstration and deployment 
activities (summarised as RD3, following [19]) for those technologies that could 
contribute to mitigate greenhouse gas emissions. This can also provide an argument to 
create international partnerships for tapping 'win-win' opportunities, where one party 
gains access to a broader market for its products, thus being able to benefit from a larger 
potential for learning-by-doing effects, while the other party gains access to less polluting 
and more efficient technologies [ 19]. 

This brings about the issue of technology transfer, which, as mentioned above, is one 
of the factors having influence on the magnitude of technology spillovers. In its broader 
sense, technology transfer encompasses the "diffusion of technologies and technology 
cooperation across and within countries" [20] and can also be seen as a learning 
process [21]. Technology transfer, better understood as technology cooperation, could 
play an important role in stimulating the technological change necessary to achieve a 
sustainable global energy system in the long term, and specifically, in relation to climate 
change, an energy system with low release of greenhouse gas emissions to the 
atmosphere [20,22]. In this context, a particularly important dimension is that of 
technology cooperation between industrialised and developing countries. 

3 The ERIS model 

ERJS is a simplified multi-regional energy-system 'bottom-up' optimisation model 
that endogenises learning curves [6,7]. The current version includes an electric and a 
non-electric sector. In the electric sector, electricity generation technologies compete to 
supply an exogenously given electricity demand. In the non-electric sector, fuel 
production technologies compete to supply an equally exogenously given non-electric 
demand, which corresponds to the aggregation of the demand for final-energy fuels other 
than electricity. Technology representation is relatively detailed. In each region, thirteen 
electricity generation technologies and twelve non-electric production technologies are 
considered. 

The ERJS model used for this analysis includes eleven world regions. Five regions 
portray the so-called Annex B group of the Kyoto Protocol: North America, Western 
Europe, Pacific OECD (including Japan), the former Soviet Union and Eastern Europe. 
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Six additional regions represent the non-Annex B group: centrally planned Asia, South 
East Asia, Other Pacific Asia, Latin America, South-Saharan Africa and the Middle East. 

In ERIS, for some technologies in the electric sector, the investment costs follow 
learning curves (see Figure 1 for the curves assumed in this exercise). For the other 
technologies, it is assumed that learning rates are zero. That is, their costs remain 
constant. The learning curves considered here are standard single-factor learning curves, 
where cumulative installed capacity is used as a proxy for accumulated knowledge 
and experience. These curves allow capturing the effects of market experience 
(learning-by-doing) in the progress of specific technologies. The effects of R&D 
activities (learning-by-searching), another important channel of technological learning, 
are not considered. 

Figure 1 Learning curves assumed in this analysis. The learning rate (LR) for each technology is 
indicated in the diagram 
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When the original formulation of the learning curves is included in standard linear 
programming models, the result is a non-linear and non-convex optimisation problem. 
Such a i<.ind of problems possesses several local optima, and a global optimal solution 
cannot be guaranteed with standard non-linear optimisation solvers. Thus, here, following 
the work of [23-25], we resort to a linearisation of the problem applying a 
piece-wise approximation of the curves through mixed integer programming (MIP) 
techniques. The MIP approach allows identifying an optimum for the approximated 
problem, although at a higher computational cost. For a description of the MIP approach 
used in ERIS see [ 6]. 

When models with perfect foresight, such as ERIS, endogenise technological 
learning, it is cost-effective for the m;)del to make higher, early investments in initially 
expensive technologies if they exhibit sufficient cost reduction potential along the time 
horizon. The cost reduction potential depends, among others, on the parameters assigned 
to the learning curve, the maximum growth rates allowed, the maximum potential for 
capacity or activity of the different technologies and the spatial scale of the learning 
process. 

This modelling result highlights the fact that, from a long-term perspective, it could 
be sensible to invest today on the learning process of promising technologies that could 
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become competitive in the long run. However, although some learning technologies may 
appear attractive in a model with perfect foresight, some of them are unlikely to be 
chosen in a natural way in short-term profit oriented markets, also because of market 
imperfections. Therefore, policy measures might be needed to support their learning 
processes, i.e. to cover the 'learning investments' . In this way, the technological learning 
concept conveys an important policy message regarding energy technology dynamics: 
sustained efforts in RD3 activities are required in order to stimulate the cumulative and 
self-reinforcing processes that drive to progress and diffusion of emerging cleaner energy 
technologies. 

The spatial scale of the learning process has a significant influence on the model 
outcome. Customarily, models endogenising learning curves assume that the learning 
process takes place at the global scale (see e.g. [7,26,27)). This assumption appears 
consistent with current globalisation trends and globally active energy-technology 
manufacturers and energy-services companies, factors that could make a global learning 
process likely for many technologies. Still, it should not be taken for granted for all 
technologies. In many cases, a truly global learning process will require substantial and 
conscious international cooperation efforts in energy-related RD3 activities and sound 
technology transfer strategies emphasising, among others, local science and technology 
capacity building that could allow countries to assimilate and · adapt experience 
accumulated somewhere else. In addition, it is possible that a technology could benefit 
more from learning processes in other technologies or industries, rather than from 
installations in other regions of the world. 

These arguments highlight two important points. First, from the modelling point of 
view, it appears reasonable to study regional, i.e. sub-global, as well as global learning. 
Second, from a policy-making point of view, it is important to notice that, in order to 
achieve a higher degree of technology spillovers in the real world, policy actions may be 
required. 

In the ERIS model, the notion of geographical 'learning domain' is used to define the 
scale of the learning process. Using this notion, the scale of the learning process can be 
modified, associating different regions to different learning domains. For a given learning 
technology, capacities deployed across regions belonging to a given geographical 
'learning domain' are added up to obtain an aggregate cumulative capacity, which is used 
for the computation of the corresponding investment costs. The resulting specific 
investment cost is common to all the regions associated with a given domain. Thus, 
deploying the technology in one of these regions results in a cost reduction in all regions 
belonging to the same 'learning domain' . For example, ifthe learning is global, capacities 
across all regions are added up to obtain a global cumulative capacity and a 
corresponding specific investment cost at the global level is computed. 

The scale of the learning process depends on the degree of spillover between different 
regions, i.e. the degree to which the development and deployment of a particular 
technology in a given region may influence its cost effectiveness in other regions. For 
instance, assuming a global scale of learning implies full spillover across all world 
regions. Therefore, changing the scale of learning implies changing the configuration of 
spillovers across regions. It must be noticed that the approach outlined here is limited in 
the possible configurations that can be represented, since it implicitly assumes that 
between the regions within a given domain, learning spillover is full while between 
regions belonging to different domains it is zero. 
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Thus, it is implicitly assumed that the regions belonging to a given 'learning domain' 
are able to benefit fully from the learning spillovers. However, as discussed in [3], 
different countries and regions may have different assimilation capacities, i.e. different 
abilities to use technology spillovers for their own benefit. 

The reader should bear in mind how the learning mechanism operates in the model. 
Due to the underlying increasing returns (i.e. the more capacity is accumulated the 
smaller the investment costs become), the model tends to act in an 'all-or-nothing' 
fashion. If there is enough 'learning potential' for a given technology, it is likely that it 
will enter at the maximum growth rate allowed. If, on the contrary, the 'learning 
potential' is not attractive enough, the technology is likely to be 'locked-out' of the 
system or left only with a marginal contribution. 

It should also be clarified how the emission trading mechanism operates in this 
'bottom-up' context. Emission trading basically allows the reallocation of the carbon 
reduction targets and, therefore, of the incentives to deploy low-carbon technologies 
among the regions participating in the trade system. Also, since expenses and revenues of 
emission permits are not endogenous to the model but can only be computed ex-post, 
our cost-minimisation approach cannot directly measure the benefits of trading. 

4 Description of the cases in this analysis 

As illustration of the model dynamics, we consider a baseline scenario without 
constraints in carbon emissions (referred to as REF case) and a carbon-constrained 
scenario. The constrained scenario portrays a situation where the Annex B regions must 
fulfil a 'Kyoto-for-ever' C02 reduction target. In this illustrative scenario, we assume that 
the US remains outside the Kyoto Protocol. In the regionalisation of our model, the North 
America (NAM) region comprises both the US and Canada. Therefore, the NAM region 
faces a target that is equivalent only to Canada's Kyoto commitment. 

Under this carbon-constrained scenario, we distinguish three different cases 
corresponding to three (emission trade regimes). In the first regime, no emission trading 
across regions is allowed (this case is labelled as KNT). In the second regime, the Annex 
B regions are allowed to trade emissions among them but not with non-Annex B regions 
(this case is labelled as KBT). In the third regime, non-Annex B regions join the permits 
market from 2010 (case labelled as KFT). Non-Annex B regions are not subject to 
emissions reductions but they cannot exceed their emissions in the unconstrained case. 
Table I summarises the four cases compared here. 

Table 1 Summary of the cases examined in this analysis 

Abbreviation 

REF 

KNT 

:Q3T 

KFT 

Case 

Reference unconstrained case 

Kyoto-for-ever case without emission trading 

Kyoto-for-ever case with trade between Annex B regions 

Kyoto-for-ever case with global trade beginning in 2010 
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For this exercise, both electric and non-electric demands in each world region have been 
taken from the SRES-B2 scenario developed with the MESSAGE model (28], which is a 
scenario of gradual developments in population, economic growth and energy 
requirements. It must be noticed, however, that no attempt is made here to reproduce or 
emulate the B2 developments reported in (28]. 

For the sake of clarity, results are reported at an aggregate level for two main groups, 
namely Annex B and non-Annex B and, where appropriate, at the global level. The time 
horizon considered for this analysis is 2000-2100 with 10-year time steps. A 5% discount 
rate is applied for all calculations. 

We illustrate the response of the model under two different spatial scales of learning. 
The first case is a situation where learning occurs at the global scale. In the second case, 
a geographical fragmentation of the learning process is assumed, i.e. the spatial learning 
domain of the technologies is subdivided into Annex B and non-Annex B groups, which 
learn separately. That is, technologies in the Annex B group cannot benefit from capacity 
accumulation in the non-annex B group and vice versa. 

It is assumed that all technologies exhibit the same spatial scale of learning and that 
such scale remains unchanged along the time horizon. As an additional simplification, 
the learning rates remain the same under the different cases. That is, the main effect of 
moving from a global learning curve to a regional one is that of reducing the learning 
potential of the technologies, but no changes in the learning rate were considered here. 
The caveat must be made that the effects of considering regional learning rates could be 
significant. 

Learning spillovers and emissions trading are the two mechanisms that allow 
interactions between regions in the model. Table 2 summarises which of them provides 
an interaction between the Annex B and non-Annex B groups in each of the cases 
examined here. 

Table 2 Summary of interactions between the Annex B and non-Annex B groups in the cases 
examined here 

Emissions trade regimes 

Learning process REF KNT KET KFT 

Global Only spillover Only spillover Only spillover Trade and spillover 

Annex B/non-Annex B No interaction No interaction No interaction Only trade 

5 Illustrative results 

In this section, we will discuss some selected results that illustrate the dynamics of the 
model. When discussing the technology mix, we will mainly concentrate on the 
electricity generation sector, where learning technologies have been considered. Carbon 
dioxide emissions, however, are reported for the whole energy system. The reader should 
bear in mind that these results are only illustrative and they do not intend to provide 
insights about the role of particular technologies but mainly to highlight the combined 
effects of emission trading and spillovers in our model. 
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In order to provide an adequate context for our discussion below, we first illustrate 
the global development for one of the reference cases, namely the case where the 
technologies are learnt at a global scale. Figure 2 presents the evolution of the global 
electricity generation for the reference (REF) case, when the scale of learning is global. 
As can be seen, in this scenario, a substantial transformation of the global generation mix 
takes place. The role of traditional fossil-fired power plants is substantially reduced, as 
more advanced technologies such as gas fuel cells, advanced nuclear power plants and a 
cluster of renewable-based technologies develop and diffuse. Combined-cycle gas 
turbines play an important bridging role in this transition. In the long term, the market 
share of renewable sources, fuel cells and nuclear technologies increases. 

Figure 2 World electricity generation in the reference case with a global learning scale. The 
abbreviations for the technologies are as follows: HCC: Conventional Coal, HCA: 
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Figure 3 presents the global carbon dioxide emissions for this reference case. Global 
emissions rise steadily for the most part of our time horizon, reaching a peak of about 
18.8 Gtons of carbon around 2070 and beginning to decrease afterwards. Emissions from 
the Annex B group rise in the medium term but begin to decline in the second half of the 
21st century. Emissions from the non-Annex B regions experience a substantial 
increment making this group the main contributor to global emissions in the long term. 
A decline becomes evident only in the last few decades of the 21st century. 
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Figure 3 World carbon dioxide emissions in the reference case when the scale oflearning is 
global. Emissions from the Annex B and non-annex B groups are distinguished 
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Changing the scale of the learning process alters the ranking of the different technologies 
in the individual regions and, therefore, the resulting technology mix in the model. As an 
illustration of this effect, Figure 4 presents the electricity generation mix in the years 
2050 and 2100 for the Annex Band the non-Annex B groups in the reference case for 
both the global and Annex B/non-Annex B scales ofleaming. 

Figure 4 shows that with global learning, technologies like solar photovoltaics and 
advanced coal plants are introduced in the Annex B regions, while with Annex Bl 
non-Annex B learning they remain 'locked-out'. Some, less pronounced differences in 
the generation mix of the non-annex B group are also observed. 

The magnitude of the changes depends on a number of factors . However, when 
comparing both groups of regions, it becomes evident that changes are more significant 
in the Annex B group. This is due to the fact that some of the learning technologies have 
a larger learning potential in non-Annex B regions than those in Annex B regions. 
Among others, potential for some renewable resources is higher in non-Annex B regions 
and electricity demand grows at a much faster pace there. Therefore, when the learning 
process takes place in two separated domains, namely the Annex B and non-Annex B 
groups, in the Annex B group these technologies cannot achieve enough cost reductions 
as to become cost effective and their market share decreases as compared to the global 
learning case. On the other hand, the learning potential available within the non-Annex B 
group is still sufficient for some of those technologies such as advanced coal power 
plants and solar PV to become cost effective and be introduced into the solution. Thus, 
the variations in their market share in the non-Annex B group in comparison to the global 
learning case are smaller. 
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Figure 4 Comparison of the electricity generation in Annex Band non-annex B groups in the 
years 2050 and 2100 for the reference case with two scales of the learning process: 
global and separate Annex B/non-Annex B. The abbreviations for the technologies are 
as follows: HCC: Conventional Coal, HCA: Advanced Coal, OLC: Oil Conventional, 
GCC: Gas Combined-Cycle, GSC: Gas Steam Cycle, GTR: Gas Turbine, GFC: Gas 
Fuel Cell, BIP: Biomass Power Plant, NUC: Nuclear Conventional, NNU: New 
Nuclear, HYD: Hydro, STH: Solar Thermal, SPY: Solar PV, WND: Wind Turbine 
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For instance, for a technology like solar photovoltaic cells, initially expensive but with a 
promising learning rate, not having the possibility of benefiting from the learning 
potential in non-Annex B regions, means that it remains 'locked-out' of the electricity 
generation mix of the Annex B group. However, its output barely changes in the 
non-Annex B group. This example will be examined in more detail below. 

One should question, however, how this process could evolve in reality. Although 
in the model this particular technology still remains attractive in non-Annex B regions, in 
practice, however, the lack of spillovers could hinder the diffusion of a given technology 
also there, particularly if these regions depend on foreign direct investment or technology 
transfer from the Annex B countries to gain access to technologies and associated 
knowledge. Given the fact that the Annex B countries or companies possess a 
considerable amount of technology know-how, without the possibility of spillovers, some 
of the emerging, cleaner technologies would probably not be able to successfully diffuse 
in the developing regions, which would then continue to use more polluting and less 
efficient alternatives. 
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5.1 Emission paths in Annex B and non-Annex B groups 

When the Kyoto-for-ever target is imposed on the Annex B regions, the changes in 
technology mix and emission patterns of the different regions will depend on the 
possibility of having emission trading, its geographical scope and timing and the 
possibility of benefiting from spillovers of learning. Figure 5 presents the electricity 
generation mix in Annex Band Non-annex B groups for the year 2100 in the Kyoto-like 
constrained cases. As can be seen, with an Annex B/non-Annex B scale of learning, the 
technology mix in the non-annex B countries does not differ from the baseline unless 
trading of emission permits with the Annex B group is possible. 

Figure S Electricity generation in Annex B and non-Annex B groups in the year 2100 for the 
Kyoto-for-ever cases considered here (KNT, KBT, KFT) with two scales of the learning 
process: global and separate Annex B/non-Annex B. The abbreviations for the 
technologies are as follows: HCC: Conventional Coal, HCA: Advanced Coal, OLC: Oil 
Conventional, GCC: Gas Combined-Cycle, GSC: Gas Steam Cycle, GTR: Gas Turbine, 
GFC: Gas Fuel Cell, BIP: Biomass Power Plant, NUC: Nuclear Conventional, NNU: 
New Nuclear, HYD: Hydro, STH: Solar Thermal, SPY: Solar PY, WND: Wind Turbine 
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Figures 6 and 7 present the emission paths for the Annex B and the non-Annex B groups, 
respectively, for the different cases considered here under both global and Annex Bl 
non-Annex B scales of the learning process. 

The emission paths of the Annex B group when the carbon constraint is imposed 
(Figure 6) are similar for both scales of learning. The lowest Annex B emissions 
correspond to the situation where there is no possibility for trading emission rights 
neither between Annex B regions nor with non-Annex B regions (KNT case). The reason 
is that in the KNT case, the Annex B regions are forced to achieve the emission reduction 
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by themselves and have no access to cheaper mitigation options somewhere else or to 
'hot air'. Allowing emissions trading within Annex B regions (KBT case) relieves to 
some extent the pressure on these regions to undertake intra-region abatement, in 
particular, because Annex B regions have access to 'hot air' from the former Soviet 
Union. Consequently, C02 emissions are higher in the Annex B regions than those in the 
KNT case. Finally, when global trade of emission permits is possible (KFT case), the 
Annex B group has access to cheaper mitigation options in the non-Annex B group and, 
consequently, its emissions become higher. 

Figure 6 Emission paths in the Annex B group for the different cases under consideration here 
(REF, KNT, KBT and KFT) and the two scales of the learning process (global and 
Annex B/non-Annex B). Notice that the scale on the vertical axis does not start in zero 
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Figure 7 C02 emissions in the non-Annex B group for the different cases under consideration 
here (REF, KNT, KBT and KFT) and the two scales of the learning process (global and 
Annex B/non-Annex B). Notice that the scale on the vertical axis does not start in zero 
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On the other hand, emission paths in the non-Annex B group (Figure 7 above) differ for 
both scales of learning. When the learning takes place at the Annex B/non-Annex B 
scale, non-Annex B emissions in the KNT and KBT cases remain the same as in the 
reference (REF) case. Clearly, without interaction between the two groups of regions, 
actions in the Annex B group have no effect on the technology deployment of non-Annex 
B regions. Once global emission trading becomes possible (KFT case), emissions in the 
non-Annex B group fall below the baseline, as these regions sell emission permits to the 
Annex B regions. 

If the learning takes place at the global scale, however, the behaviour is different. 
In this situation, learning spillovers provide a mechanism of interaction between the two 
groups. Therefore, even without the possibility of trading emission rights, mitigation 
actions in the Annex B group will affect the technology mix of the non-Annex B group. 

In particular, non-Annex B emissions are significantly reduced from the baseline in 
the KNT case. As a consequence of significant abatement actions in the Annex B group, 
the learning process of low-carbon technologies is stimulated (through deployment). 
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With global spillovers, these technologies become more attractive in non-Annex B 
regions as well. Consequently, carbon emissions in non-Annex B decrease. This situation 
will be analysed in some more detail below. 

With trade in Annex B (KBT case), the pressure on Annex B regions to reduce 
emissions decreases, in particular, in the first periods when they have access to the 
'hot air' bubble. Thus, the incentive to stimulate the installation of learning, low-carbon 
technologies is reduced in the Annex B group. This is reflected, through spillovers, in the 
non-Annex B group. As a consequence, carbon emissions in the non-Annex B group 
increase in comparison to the KNT case and reach almost the levels of the REF case. 

In the KFT case, emissions in the non-Annex B group are reduced below those in the 
REF and KBT cases, but are still above those in the KNT case. Since the non-Annex B 
regions can participate in the trade, they have an incentive to reduce emissions below 
their baseline, in order to sell emission rights. Thus, they have an incentive to stimulate 
the learning process of low-carbon technologies. However, at the same time, 
permit-buying regions in the Annex B group experience the contrary situation. With the 
possibility of buying permits from the non-Annex B group, their incentive to deploy 
low-carbon technologies reduces . 

The final outcome depends, among other things, on the relative weight of these two 
effects and on the emission target. In this particular case, where the Kyoto-for-ever target 
is relatively weak in relation to the global emissions in the baseline, the incentives to 
deploy expensive very low or zero-carbon technologies in the non-Annex B are not high, 
since the target can be fulfilled with less expensive, medium-carbon technologies such as 
gas-fired combined-cycle turbines. Therefore, although emissions are reduced compared 
to the baseline, they do not reach the levels of the KNT case, where the pressure on 
Annex B regions to reduce emissions through intra-region mitigation measures was much 
harder. 

A closer look at the emission profiles of Annex B and non-Annex B regions in the 
KNT case for both the global and the Annex B/non-Annex B learning scales is instructive 
(see Figure 7 above) . As mentioned before, in both cases Annex B regions are forced to 
fulfil the emission reduction target through 'in-house ' measures and the emission paths of 
the Annex B group under both learning scales do not differ much from each other. 
However, the emission profiles of the non-Annex B group are very different. 

In the global learning case, the non-Annex B group reduces emissions as compared to 
the baseline, despite the fact that these regions are neither facing an emission reduction 
target, nor have the possibility of participating in the emission trading system. The effect, 
thus, is due to the presence of global spillover of learning. Annex B regions have to 
deploy low-carbon technologies in order to curb their carbon emissions, and such 
deployment actions drive to cost reductions, which, through spillovers, are shared by the 
non-Annex B regions. As those technologies become more attractive also in non-Annex 
B regions and are deployed, non-Annex B emissions are reduced. This is an example of 
how the model with learning spillovers can capture the possible effects that climate 
policies in a given region may have in the technologies deployed in others. 

On the contrary, when spillover of learning is not possible between the Annex B and 
non-Annex B groups (Annex B/non-Annex B learning case), the emissions of the 
non-Annex B group barely differ from the baseline. In this condition, those regions 
cannot profit from the cost reductions oflow-carbon technologies triggered by abatement 
actions of the Annex B group. In addition, under a no-trade situation, they have no 
incentive to reduce emissions in order to sell emission rights . The KNT case with 
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Annex B/non-Annex B learning scale represents a situation where the actions between 
the two groups of countries are fully 'decoupled'. 

Clearly, in a real, more and more interconnected world, it is not possible to have a 
direct parallel to the hypothetical Annex B/non-Annex B learning case described here. 
Climate and/or technology policy actions in Annex B regions are bound to have some 
effects on technologies deployed in non-Annex B regions. However, this modelling result 
is still insightful, as it illustrates the possible effects of non-cooperative strategies both in 
climate change and technology policies at the international level. 

To summarise, Figure 8 presents the global energy-related carbon dioxide emissions 
for the different cases and the two learning scales examined here. As explained above, 
under a global scale of learning the highest emission reduction is achieved in the K.NT 
case, mainly due to the effects of learning spillovers towards the non-Annex B regions, 
triggered by the significant abatement actions in individual Annex B regions, which are 
not allowed to trade permits between them or with the Annex B regions. With an 
Annex B/non-Annex B scale of learning, and therefore no possibility for learning 
spillovers between Annex B and non-Annex B, the most significant emission reduction 
occurs in the KFT case, where the scope of emissions trading is global and non-annex B 
regions reduce emissions below their baselines in order to sell permits to the Annex B 
regions. 

Figure 8 Global C02 emissions for the different cases (REF, KNT, KBT and KFT) and the two 
scales of the learning process (global and Annex B/non-Annex B) under consideration 
here 
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As for the effects of the learning scale on the global emissions in the different cases, 
emissions in the global learning cases are somewhat below those in the Annex Bl 
non-Annex B cases, thus pointing out to a positive effect of global spillovers. However, 
with a weak Kyoto-for-ever target, the differences are not substantial, with the exception 
of the KNT case as described above. 

Finally, Figure 9 presents the mitigation costs for the different cases. They are 
computed as the difference between the total discounted system costs of the reference 
case and those of the carbon-constrained cases with different modalities of emission 
trading. The benefits of allowing emission trading and of extending its scope to the 
non-Annex B regions are evident. Also, mitigation costs are somewhat lower for the 
global learning spillovers case compared to those in the Annex B/non-Annex B case. 

Figure 9 Mitigation costs for the different modalities of emissions trading (KNT: No Trade, 
KBT: Trade in Annex B, KFT: Full Trade) and the two learning scales, i.e. global and 
Annex B/non-Annex B 
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5.2 Deployment of solar photovoltaics 

We will illustrate how the variation of the scale of learning affects the deployment of 
technologies using the case of solar photovoltaic (PV) cells as an example. We have 
chosen solar PV for the sole reason that it represents an adequate illustrative case, but the 
considerations exposed here also apply to other learning technologies . 

Solar PV has undergone significant improvements, constituting already a sound 
option for off-grid remote and special applications [29). However, it still has a long way 
to go to become a widespread energy technology and many hurdles have to be 
curmounted. Although appreciable cost reductions have occurred in the last few decades, 
the technology is still in the early part of its learning curve and it is currently too 
expensive for utility grid applications. Nonetheless, there appears to be ample room for 
efficiency and cost improvements [30]. 

In order to ensure a sustained growth of current markets and the entrance to broader 
ones, a number of factors must be addressed. Of course, major cost cuts and efficiency 
improvements are still necessary to enable competitiveness. Thus, development of 
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materials, which allow lower cost manufacturing with higher conversion efficiency, is a 
critical success factor [31]. Also, as availability ofraw materials may become an issue for 
large-scale production, PV technologies using lower amounts of cheaper materials may 
be favoured. In addition, reductions must be achieved not only in the module costs but 
also in the Balance of Plant, particularly in area-related costs. In such a perspective, 
although the current market is still dominated by the standard crystalline silicon cells, 
thin-film cells, enabling to reduce material costs and collecting area, provide an attractive 
alternative and are expected to play an increasing role in the future PV market [32). 

Besides technical aspects, other issues are also relevant for its future competitiveness. 
Among them, the standardisation of components, materials and designs should be 
addressed [31 ]. Also, new business strategies, emphasising the sales of complete service 
solutions, instead of a technology, and alliances between manufacturers must be explored 
and an adequate infrastructure for finance, distribution, installation and support 
developed. 

The importance of developing new strategies to stimulate the interest of potential 
adopters in solar PV is well recognised. Kaplan [33], for instance, has stressed the need to 
consider specific schemes for groups beyond the so-called early adopters, arguing that the 
decision-making process of early and later potential adopters is different and thus 
requires different stimuli. While early adopters, being more risk-taking, may rely on 
available technical and economical information to make a decision, for other groups of 
adopters the sole availability of such technical knowledge may not be sufficient to make a 
favourable decision. Thus, an approach based on allowing them to become 'familiar' with 
the technology by promoting trial and error and learning through experience, for instance 
with small experimental projects, could be more effective than a conventional 
commercialisation process. 

Figure 10 presents the electricity produced by this technology under the different 
cases and scales of learning in the years 2050 and 2100 for both the Annex B and 
non-Annex B groups. The discussion here will be made with reference to the mentioned 
figure. Notice that under the particular assumptions made here regarding learning 
parameters, maximum growth rates, potential etc, solar PV already penetrates to a 
significant extent in the reference case. 

We do not intend to argue that this constitutes a 'realistic' case, but this is one that 
reflects well the typical behaviour of model that endogenises technological learning. That 
is, and as mentioned above, under the action of the self-reinforcing learning mechanism, 
the model tends to act in an 'all-or-nothing' fashion. Thus, when solar PV becomes 
attractive in the reference case, the model tends to install it to the maximum extent 
possible. Although other factors also intervene, in the results presented here, the 
'all-or-nothing' characteristic drives to comparable penetration of this learning 
technology across the different cases where it becomes attractive. 

We will first discuss the deployment of the technology in the Annex B group 
(left side of Figure 10). As mentioned above, under the reference scenario solar PV 
penetrates in the Annex B group only ifthe learning takes place at the global scale. When 
the scale of learning is reduced to the Annex B domain, the technology remains 
'locked out' there. In the carbon-constrained scenario, and still under the global scale of 
learning, the technology continues to play an important role. Variations between the cases 
with and without emission trading exist but they are small. 
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Figure 10 Electricity output of solar photovoltaics in the Annex B and non-annex B groups in the 
different cases (REF, KNT, KBT and KFT) and scales of learning (global, Annex 
B/non-Annex B) for the years 2050 and 2100 
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If the learning takes place at the Annex B/non-Annex B level, however, the emission 
trading scheme affects solar PV's deployment in the Annex B group significantly. When 
no trade is possible across regions (KNT case), Annex B regions are forced to meet their 
respective targets with domestic measures. In these conditions, they necessarily introduce 
low-carbon technologies. Solar PV is one of them and becomes cost effective under these 
circumstances, despite the fact that learning takes place at a more reduced scale. 

This is still the case when trade of emission rights within the Annex B group is 
allowed (KBT case). Annex B regions have access to 'hot air' from the former Soviet 
Union in the short term but, in the long run, permit-selling regions within the Annex B 
group still have to stimulate the penetration of low-carbon technologies, although to a 
much lower extent than those in the KNT case. Solar PV is one of them and continues to 
grow at the maximum possible rate. However, with the allowance of trade across all 
world regions (KFT case), cheaper mitigation options from the non-Annex B regions 
become available and the technology is 'locked-out' from the Annex B group. 

We now tum to the penetration of this technology in the non-Annex B group (right 
side of Figure 10). Under a global scale of learning, the technology is cost-effective 
already in the reference scenario. It remains attractive under the different cases of the 
carbon-constrained one, although some fluctuations in its output are observed. 

Under the Annex B/non-Annex B scale of learning, the technology is, as mentioned 
above, also introduced already in the reference scenario. When the carbon constraint is 
imposed on Annex B regions, the output of solar PV remains unchanged for all three 
cases. In the KNT and KBT cases, given that no emission trading between Annex B and 
non-Annex B regions is allowed and without spillovers of learning between the two 
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groups, there is no possibility for interaction. Thus, actions in the Annex B group do not 
affect the technology mix in the non-Annex B group. In the KFT case, the non-Annex B 
regions have an incentive to deploy low-carbon technologies in order to sell emission 
rights to the Annex B group. Solar PV remains cost effective and its output does not 
change as compared with the other cases. Without spillovers of learning, however, these 
installations cannot affect the cost effectiveness of the technology in the Annex B group, 
where as discussed above, the technology is 'locked out'. 

The solar PV's case illustrates how, in this perfect-foresight model, the presence or 
absence of learning spillovers, the scope of the emission trading mechanism and the 
strictness of the carbon constraint are determining factors in the successful penetration of 
a given technology. 

In reality, however, markets or policy makers most likely would not behave as 
suggested by the model and completely 'lock out' these technologies. However, the risks 
that the lack of technology cooperation between Annex B and non-Annex B regions, 
represented here by the absence of learning spillovers, may imply for the diffusion of 
clean energy technologies at the global level can still be significant. 

But, since the 'all-or-nothing' behaviour of the model does not adequately reflect real 
situations, efforts should be devoted to improve the model representation. An important 
aspect is dealing with the effects of uncertainty. Huge uncertainties exist in economic, 
technological, social and natural systems, and decision makers need to make technology 
choices that help them to increase their flexibility to deal with changing market, 
environmental, regulatory, political, etc. conditions. 

Uncertainty is, together with learning, one of the core mechanisms of technological 
change [26,34]. Technological change can be seen as an evolutionary cumulative learning 
process building upon accumulation of knowledge and experience. Deliberate and 
sustained efforts are required in order to stimulate the acquisition of relevant experience 
and the preservation of the knowledge associated with a given technology, which allow 
achieving cost and performance improvements, vital factors for its survival in the 
marketplace. 

The learning, or experience, curve appears as a useful model to represent the 
aggregate effects of such an evolutionary progress. However, many technical, economic, 
environmental and social factors influence the magnitude of learning rates. Moreover, 
even if accurate estimates of historical learning curves are available, they cannot be 
extrapolated into the future. Thus, the future evolution of technology learning processes 
is uncertain. Therefore, conceiving methodologies to deal with uncertainty, both in 
learning parameters and in other factors, is an important future task [26,34] . 

6 Conclusions 

In this paper, some illustrative analyses have been conducted regarding the effect of 
emission trading on technology diffusion. Specifically, the role of learning-by-doing 
spillovers is highlighted as one of the factors likely to have an influence on the action 
of emission trading. The analysis has been carried out with ERIS, a 'bottom-up' 
energy-system optimisation model. We examine the effects of different configurations of 
interregional spillovers of learning in ERIS and the impact of the emission trading 
mechanism under those different circumstances. 
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The representation of multi-regional learning spillovers in the ERIS model helps in 
capturing the effects that the deployment of technologies in a given region has for the 
technology choice in other regions of the world. Particularly interesting is the possibility 
that climate change policies in a region can induce technological progress (here 
represented as cost reductions) and the diffusion of low-carbon technologies in other 
regions of the world. 

Learning spillovers and emission trading are two mechanisms that allow interaction 
between different regions in the model. Their presence or absence and their geographical 
scope and timing will determine whether actions in a given region have an influence in 
the technology deployment in others or not. 

Our major finding is that assumptions on the spatial scale of technology spillovers 
can have significant implications for the resulting technology mix of different regions and 
the associated emission profiles and, therefore, for the possible impact of carbon trading 
on the diffusion of specific technologies. This is especially the case for high-cost carbon 
free technologies. 

The treatment of both technology spillovers and emission trading in this context is 
stylised. We did not attempt a comprehensive modelling of all the very complex aspects 
of technological change that may be relevant when conducting an evaluation of the 
effects of climate policy mechanisms on the energy system. Moreover, endogenised 
learning curves are considered only for one specific performance indicator of energy 
technologies, namely their investment costs. Neither did we provide a sophisticated 
treatment of emissions trading, quantify the potential benefits of the scheme or examine 
its effects outside the energy-system context. While we recognise that those aspects are 
necessary to fully evaluate the interaction between emission trading and technological 
change, their treatment lies outside of our scope. Thus, the results only illustrate the 
dynamics of the intervening mechanisms in the context of the ERIS model. 

While the typical learning curves applied here use costs as performance indicator, 
learning effects can also be observed in many other characteristics of energy 
technologies, conversion efficiency among others. While we recognise that their 
inclusion in the models could be important for a more accurate representation, we do not 
expect that it would alter the basic conclusions arrived at here. Moreover, it must be 
noticed that empirical estimates of learning rates for conversion efficiency are normally 
not available in the literature, thus making additional assumptions necessary. Also, 
handling learning curves for additional indicators would lead to an increased 
computational burden. 

The role of technology spillovers depends on the framework where they are applied. 
In the 'bottom-up' context used here, where individual technologies are explicitly 
included in the model, the presence or absence of spillovers alters the possibilities of a 
given technology for tapping its learning potential and, therefore, modifies the ranking of 
the different technologies in a specific region. Consequently, changes in the technology 
mix and associated emission profiles may be observed. 

Other approaches to represent the effects of technology spillovers have been reported 
in the literature. Grubb et al. [5], for instance, treat international spillovers as an 
aggregate coefficient that directly affects the emission intensity of the different regions. 
When examining the role of technology spillovers in relation to climate policies, and the 
insights provided by different models, it is important to compare the differences in their 
representation. 
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Including learning-by-doing spillovers has also implications for the concept of 
'leakage', commonly discussed in climate policy analyses [4,5]. The traditional notion is 
that leakage is negative, referring to the situation where emission mitigation policies in a 
given region result in higher emissions in other regions due to, for instance, the relocation 
of carbon-intensive industries. Typically energy-economic models represent this kind of 
effects. When learning spillovers are present, the possibility of a 'positive' leakage effect 
can be considered, where non-committed regions benefit from the adoption of cleaner 
technologies in regions with emission reduction targets. Some have even suggested that 
such positive effects could offset the negative effects [5]. We are not confirming or 
rejecting such proposition here. Our model, limited to a simplified representation of the 
energy system, does not allow considering negative leakage. However, it seems worth 
quantifying both effects in a common context to evaluate their relative weight. 

In the analysis undertaken here, it was assumed that spillovers across different world 
regions are either full or non-existent. In reality, spillovers would most likely lie 
somewhere in between these two extreme values. Their quantification, however, may be 
difficult. Given the uncertainties regarding the magnitude and nature of international 
technology spillovers, it is important, on the one hand, to conduct modelling exercises 
with different sets of spillover coefficients and to develop criteria for their choice in the 
models. On the other hand, work must be devoted to their estimation out of empirical 
data for energy technologies. 

An additional aspect is of interest here. A 'monolithic-actor' type of optimisation is 
performed in ERJS, which finds the least-cost energy-system configuration for the whole 
set of regions. That is, no strategic interactions between regions are modelled here. Under 
such conditions, higher levels of learning spillovers across regions may be desirable, 
because a given region can benefit from the cost reductions caused by accumulation of 
capacity (experience) in other region. Thus, in this kind of model, the presence of spatial 
spillovers will not imply a disincentive for a given region to undertake the 'up-front' 
investments that will make a technology competitive, despite the fact that other regions 
will benefit from those efforts. 

In practice, however, this can be an issue of concern. Spillovers appear to have two 
different connotations. In making learning a public good, they produce a positive effect 
as technological progress spreads to regions beyond the one that has created it. For the 
same reason, however, they threaten proprietary knowledge and hinder the opportunities 
for the knowledge creators to fully profit from their learning processes. Thus, the 
development of policy instruments capable of stimulating the positive aspects of learning 
spillovers while reducing the impact of the negative ones is necessary. 

The modelling exercise also provides some valuable policy insights. In particular, 
it highlights the opportunities that international partnerships may create for the diffusion 
of emerging technologies. Cooperation among industrialised countries and between these 
and developing countries in research, development, demonstration and deployment 
(RD3) of more efficient and cleaner energy technologies may foster international learning 
processes that will contribute to boost their competitiveness in the global energy markets, 
thus accelerating their penetration and offering long-term environmental and economic 
benefits [ 19]. Stimulation of international learning, however, must be balanced against, 
and made compatible to local requirements for a diversified technological choice 
according to specific needs and available natural, technological, economic and human 
resources. Also, as part of the efforts, and in particular to what concerns developing 
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countries, sound technology transfer strategies with emphasis in building local 
capabilities must be outlined [21]. 

In a world with global energy markets and global environmental concerns, fostering 
multi-regional technological learning partnerships arises as an important policy 
intervention mechanism whose effects on the evolution of the energy systems should be 
investigated. These and other issues related to the effects of learning spillovers and their 
policy implications should be analysed further. 
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