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Abstract

The paper presents basic ideas of three of
the possible structures of hierarchical control
for a dynamic system. All these structures are
closed-loop, that is, they make use of feedback
in form of the state measured in the controlled
system. Local decision units and a supremaI
unit (coordinator) exist in each of the hier
archical structures, but they differ in the
tasks assigned to each level. The price co
ordination method allows for relative autonomy
of the local units, which are being asked to
solve appropriate short-horizon, dynamic prob
lems in a repetitive way. In the other two
structures the local problems are non-dynamical,
but would be much less natural for a human
decision maker.
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r1ultilevel Structures For On-Line Dynamic Control

W. Findeisen

1. Introduction

Structures of on-line dynamic control using decomposition

present difficulties unknown to static systems. The problem

lies in the use of feedback from the system in operation. In

steady-state control it could be enough to use feedback in

form of measured inputs or outputs of the system elements

and to provide for an extremum of a current or "instantaneous"

performance index (Ref. 2,S,6,17). The dynamic optimization

needs considering at time t the future behavior of the system,

that is to consider an "optimization horizon". Since the

future behavior depends on both control and the initial state,

we cannot determine optimal control input unless we know the

present state of the system. It means that if we wish to have

a control structure with feedback from the reality this feed

back must contain information on the state x(t}, (see Ref. 1,3,

7,13) .

We should not be misled by a possibility to obtain dynamic

optimization solution by iterations on the real system, for

example determining the best price trajectories p(t}, t L (O,T),

using a search procedure. Iterations could apply only to con

secutive runs of a batch process (Ref. 9,1S). A certain class

of processes only would allow such an optimization and even in

that case we would still be interested in having a feedback

control structure in the course of a single run of the process.

As opposed to on-line control problems as they are con

sidered in this paper, there exists an excellent coverage of

dynamic optimization methods using decomposition (see Ref. 8,

10,12,14,16). The two things should not be confused.
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2. Dynamic price coordination

In this section one of possible structures for dynamic

optimal control using both decomposition and feedback is pre

sented (Ref. 7). Its distinctive feature is the use of

prices on inputs and on outputs of the system elements with

the aim to achieve coordination of the local decisions.

(i) The gLobal problem

Assume the optimal control problem of interconnected

system to be as follows

sUbject to

.
X. = f. (x. ,m. ,u.), i = 1, ••• ,N (state equations)

l. l. l. l. l.

y. = g. (x. ,m. ,u.), i = 1, .•. ,N (output equations)
l. l. l. l. l.

u = Hy (interconnections)

with x(O) given, x(tf ) free or specified.

(ii) Decomposition

Consider that in solving the problem we incorporate the

interaction equation into the following Lagrangian:

L
N

= I
i=1

t
f

f . (x. ,m. ,u.)dt + f
ol. l. l. l.

o
< p,U - By > dt

where
dim u

< p, U - Hy > means I
j=1

p. (u-Hy) .
J J
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Assume the solution to the global problem using this

Lagrangian has been found and it has provided for

x. , i = 1 , ••• , N optimal state trajectories
J.

A

i optimal controlsm. , = 1 , ••• , N
J.

U. , i = 1 , ••• , N optimal inputs
J.

A

i 1 , ••• , N optimal outputsy. , =J.

P solving value of Lagrangian multipliers.

[f .(x.,m.,u.) + <p.,u. > - <q.,y.>]dtoJ. J. J. J. J. J. J. J.Q. =
J.minimize

Note that now our Lagrangian can be split into additive

parts, thus allowing to form a kind of local problems:

If
o

(2)

where

y. = g. (x. , m. , u. )
J. J. J. J. J.

and optimization is subject to

x. = f.(x.,m.,u.)J. J. J. J. J.

xi(o) given, xi(t f ) free or specified, as in the original problem.

T "
H .. p.

J J. J.q. =J.

In the local problem the price vector p. is an appropriateJ.
part of p and qi is also given by p as

N

l.
i=1

Notice that we have put optimal value of price vector p

into the local problems, which means we have solved the global

problem before. Thanks to it the solutions of local problems

will be strictly optimal. There is little sense, however, in

solving the local problems if the global was solved before,
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because the global solution would provide not only p but also

x,m for the whole system.

To make the thing practical let us try to shorten the

local horizons and to use feedback there.

(iii) Sho~t ho~izon fo~ local p~oblems

Let us shorten the horizon from t f to ti' so that

(2) becomes

(3 )

t'
= Jf A Aminimize Q. [f . (x. ,m. ,u.) + < p. ,u. > - < q. ,y. > ]dt

J. oJ. J. J. J. J. J. J. J.

o

with x. (0) given as before, but the target state taken from
> J.

the global long-horizon solution, xi(tf ) = xi(ti).

For the local problem (3) we must of course supply the

price vectors p.,q .. It may be reasonable to use also ~. from
J. J. J.

the global solution, that is the "predicted" input value.

(iv) The use of feedback at local level

The short horizon formulation (3) will payoff if we

will have to repeat the solving of (3) many times as opposed

to solving the global problem once only. Consult now Figure 1,

where the principle of the proposed control structure is

presented.

Feedback at the local level consists in solving the

short-horizon local problems at some intervals T 1 < t f and

using the actual value of measured state x*i(kT 1 ) as new

initial value for each repetition of the optimization problem.

This brings a new quality; we now have a truly on-line

control structure and can expect, in appropriate cases, to

get results better than those dependent on the models only.
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Xh-.-·~

x.,

tlf

LOCAL LEVEL
(SHORT HORIZON)

H

Fig. , Structure of on-line dynamic
price coordination ..

max Q.
J.

system

xi (T, )

system

What we do is more exactly as follows: at t= 0 solve
A

for [O,t f' ] with x. (O), apply control m. to the real
J. J.

for [O,T,], at t = T, solve max Qi fo: [T"ti] with

= x*i (T,) as measured, apply control mi to the real

for [T" 2T, J, etc. etc.

Note that we now have a gain from both decomposition and

shortening the horizon. The often repeated local problems

are low-dimension and short-horizon.

The feedback algorithm just indicated would be referred

to as repetitive optimization scheme.
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We should mention disturbances which act on the real

system and were not yet shown explicitly in the formulations.

Disturbance prediction would be used while solving (1) and

(3), that is the global and the local problems. And it is

indeed because of the disturbances which in reality will

differ from their prediction that we are inclined to use

feedback structure of Figure 1.

(v) The use of feedback in coordination

The feedback introduced so far cannot compensate for the

errors done by the coordination level in setting the prices p.

Another repetitive feedback can be introduced to overcome this

shortage, for example bringing to the coordinator actual

values x*i at time ti, 2ti, ••• and asking the global problem

to be resolved for each new initial value. This structure of

control is presented in Figure 1.

We should very well note that feeding back the actual

values of state achieved makes sense if the models used in

computation differ from reality, for example because of
/

disturbances. Otherwise the actual state is exactly equal

to what the models have predicted and the feedback information

is irrelevant.

A doubt may exist whether the feedback to the coordinator

shown in Figure 1 makes sense, because the lower level problems

have to achieve xi(ti) = xi(ti) as their goal and already use

feedback to secure it. It should be remembered, however, that
~

the model-based target value xi(ti) is not optimal for the real

system and asking the local decision making to achieve exactly
~

x*i(ti) = xi(ti) may be not advisable or even not feasible.

The coincidence of feedback to coordination level with

times ti, 2ti is not essential. It might be advisable to

use this feedback and do the re-computation of the global prob

lem prior to time ti, that is more often.
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(vi) Static eZements in the ·system

The length of the global problem horizon t f has to be

matched to the slowest system element dynamics and the slowest

of the disturbances. The shortened horizon ti for the local

problems would in fact result from considering repetitive

optimization at the coordination level, for example as 1/10

of t f . It may then happen that the dynamics of a particular

system element are fast enough to be neglected in its local

optimization problem within the horizon ti. This means, in

other words, that if we would take m. ,u. from the global opti-
J. J.

A

mization solution, the optimal state solution x. follows these
J.

with negligible effect of element dynamics.

To make this assumption more formal let us consider that

the system element has been supplied with first-layer follow-up

controls of some appropriately chosen controlled va~iables c.
J.

(Ref. 4,6). We are then allowed to assume that c. determines
J.

both xi and mi of the original element and the optimization

problem becomes

(4 ) minimize Q.
J.

A A

[fa' . (c. , u.) + < p. , u. > - < q. , y. >] dt
J. J. J. J. J. . J. J.

where f Oi (·) is a reformulation of the function f oi due to

substituting c. in place of x.,m .•
J. J. J.

Note well that although (4) will not be a dynamic problem

its results will be time functions. In particular c. will be
J.

time-varying control. This is due to time-varying prices
A A

p. ,q .•
J. J.

Let us repeat the essential assumption under which the

dynamic local problem (3) reduces to the static problem (4):

the dynamic optimal solutions mi,ui,xi were assumed to be slow.
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(vii) The use of simpZified modeZs

In the described structure of on-line dynamic coordination

we have made no use till now of the possibility of having a

simplified model in the global problem which is being solved

at the coordination level at times 0, ti' 2 ti' etc.

The global problem may be simplified for at least two

reasons: the solution of the full problem may be too expensive

to be done, and the data on the real system, in particular

prediction of disturbances, may be too inaccurate to justify

a computation based on the exact model.

Simplification may concern dimension of state vector
c

(introduce aggregated x instead of x), dimension of control

vector (mc instead of m) and dimensions of inputs and outputs

(uc = HCyc instead of u = Hy).

The global problem Lagrangian will now be

i

N
=, 1 ft f foci c c c I tf

c c c cL = L (x. ,m. ,u. )dt + < P ,u - H Y > dt .1. 1. 1.
o 0

The simplified solution will yield optimal state trajectory
AC = (A C A C A c) d . I . f . ACx x 1-, X2 ' ••• , ~ an opt1.ma pr1.ce unct1.on p. The

linking of those values to the local problems cannot be done

directly, because the local problems consider full vectors

x. ,u. and y ..
1. 1. 1.

We have to change the previous requirement xi (ti) = xi (ti)

into a new one

which incidentally is a more flexible constraint, and we also

have to generate a full price vector p:
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where R is an appropriate "price proportion matrix". The prices

composing the aggregated pc may be termed "group prices".

We should note that functions y. and matrix R have to be
1.

appropriately chosen. The choice may be made by model con-

siderations, but even with the best possible choice optimality

of overall solution will be affected, except for some special

cases.

(viii) System interaonneation through storage elements

The system interconnections in Figure 1 were stiff, that

is an output was assumed to be connected to an input in a

permanent way. The dynamic problem formulation gives an

opportunity to consider another type of interconnection, a

"soft" constraint of integral type:

(u .. - Y1 ) dt = 0
1.J r

which corresponds to taking input u .. from a store, with some
1.J

output Y1r connected to the same store and causing its filling.

Asking for integral over [kt
b

, (k+1)tb ] to be zero means that

supply and drain have to be in balance over each balancing

period t b .

A store may be supplied by several outputs and drained by

more than one subsystem input. There may also be many stores,

for example for different products. If we assume the same

balancing period for all of them the integral constraint

becomes

where u,y are parts of u, y connected to the stores (thew w
stiffly interconnected parts will be termed us'Ys).
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Matrices P,M show the way by which uw' Yw are connected to

various stores. The number of stores is of course

dim My = dim Pu. A state vector w of the inventories canw w
also be introduced

w{kt
b

+ t)

ktb + t

f (Pu - My ) dT
W w

ktb

With both stiff and soft interconnections present in the

system, the global problem Lagrangian becomes

N
L = L

i=1

t f
f . {x. ,m. ,u. )dt + f

o
oJ. J. J. ].

< p,u - Hy > dt +
x x

+

t fk=--1
\'tb k
l. < n ,

k=O
{Pu - My )dt >w w

and we of course continue to consider

x. = f. (x. , m. , u. ) ,
]. ].].].].

y. = g., (x., m. , u. )
]. ]. ].].].

i = 1, ••• ,N

i = 1, .•• ,N

In comparison with the previous Lagrangian a new term has

now appeared, reflecting the new constraint. Note that prices
k

n associated with the integral constraint are constant over

periods t
b

. Note also, that if t
b

will tend to zero, the

integral constraint gets similar to the stiff one and the

stepwise changing n will change continuously, like p does.

With two kinds of interconnections the local problems

also change correspondingly and they become
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[f .(x.,m.,u.) + < p.,u. >-<q.,y .]dt +
01 1 1 1 1 S1 1 S1

+

t
b

~k f< n ,
o

(P.u . - M.y .)dt >
1 W1 1 W1

where y . = g .(x.,m.,u.), y . = g . (x.,m.,u.) and optimization
S1 S1 1 1 1 W1 W1 1 1 1

is subject to'

.
x. = f.(x.,m.,u.)
11111

Xi (0) given, xi (t f ) free or specified.

A new quality has appeared in problem (5) in comparison

with (3): the inputs u . taken from the stores are now free
W1

control variables and can be shaped by the local decision

maker, who previously had only m. in his hand. The local

decisions will be under the infl~ence of prices p and n (nO ,n1, ••• ),
where both p and n have to be set by the solution of the global

problem.

The local problem (5) has no practical importance yet:

it will make sense when we introduce local feedback and shorten

the horizon, like it was in the previous stiff-interconnection

case.

We shall omit the details and show it only as a control

scheme (see Figure 2).

Thinking about how to improve action of the coordinator we

made previously a proposal to feed actual x.(ti) to his level.

We have now additional state variables, the inventories w. If

the price nk is wrong, the stores will not balance over

[ktb , (k+1)tb ]. It is almost obvious that we can catch-up by

influencing the price for the next period nk+1 and that we should

condition the change on the difference ~[(k+1)tb] - w.[(k+1)tb ],
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where w.(o) is a value measured in the real system. This kind

of feedback is also shown in Figure 2.

" " A (k I )p,n'X
N

tO f

LOCAL LEVEL
(SHORT HORIZON)

H

T 1

COORDINATION LEVEL'
(LONG HORIZON)

XNr:t~I-"'"
o T1

Iil. 1 'Uw1

I
I...

Fig. 2. On-liQ~ dynamic price coordination
in a system containing stores in
the interconnections.
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(ix) Conclusions on dynamic price coordination

Time-varying prices have been shown to be a possible

coordination instrument in a multilevel structure of on-line

control.

Although the local problems may be formulated as short

horizon and each of them has low dimension, the coordination

level must solve the global problem for full horizon in order

to generate optimal prices and the target states for the local

problems. Simplified global model may be used in appropriate

cases.

Price coordination structure applies to systems with stiff

interconnections and also to interconnections through storage

elements.

Analytical solutions of the dynamic problems involved are

not needed, therefore we are by no means restricted to linear

quadratic problems.

3. Multilevel control based upon state-feedback concept

The literature on optimal control has paid considerable

attention to the structure where the control at time t, that

is m(t), would be determined as a given function of current

state x(t). Comprehensive solutions exist in this area for

the linear system and quadratic performance case, where the

feedback function proved to be linear, that is

m(t) = R(t) x(t)

where R(t) is in general a time-varying matrix.

Trying to apply this approach to the complex system we

might implement for each local problem

(6) m. (t) + R.. (t) x. (t)
1. 1.1. 1.

where R.. is one of the diagonal blocks in the matrix R.
1.1.
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The result of such local controls, although all state of

the system is measured and used, is not optimal. Note that

for m. (t) we would rather have to use
1

m. (t) = R. (t) x (t)
1 1

that is we should make m. (t) dependent on the whole state x(t).
1

We can compensate for the error commited in (6) by adding

a computed correction signal

(7)
~

m. (t) = R. . (t) x. (t) + v. (t)
1 11 1 1

~

The exact way to get vi(t) would be to generate it con-

tinuously basing-upon the whole x(t). This would, however,

be equivalent to implementing state feedback for the whole

system directly, with no advantage in having separated the

local problems.

Exactness has to be sacrificed. With this in mind we

may propose various solutions, for example (see also Figure 3).

Xt~r---
o t'f

COORDINATION LEVEL
(FULL HORIZON, DYNAMIC)

LOCAL LEVEL
(FEEDBACK GAIN)

H

Fig. 3. Dynamic multilevel control based
on feedback gain concept.
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(i) v. will be generated at t = 0 for the whole optimization
1.

horizon t f (open-loop compensation);

(ii) v. will be generated at t = 0 as before but will be re
1.

computed at t=tf < t f , using actual x(ti), etc. (repetitive

compensation);

(iii) v. will not be generated at all, but we implement
1.

instead in the local problems

(8) '"m. (t) = R.. (t)x. (t)
1. 1.1. 1.

where R.. is adjusted so as to approach optimality. This
1.1.

structure may be referred to as decentralized control. We

could think of re-adjusting R.. at some time intervals, which
1.1.

could be looked upon as adaptation. This adaptation would

present a way of on-line coordination of the local decisions.

/
It may be worthwhile to mention that local decision

making based upon (6), (7) or (8) makes more sense for a

mechanistic implementation than for a hierarchy of human

operators, where the previous approach based on "maximization

of local performance subject to imposed prices" seems to be

more adequate, to what really happens in the system.

We should also remember that the feedback gain solutions

to optimization problems are available for a restricted class

of these problems only.

4. Structures using conjugate variables

It is conceivable to base on-line dynamic control upon

maximization of the current value of the Hamiltonian, thus

making a direct use of the Maximum Principle.

For the complex system described as (1) at the beginning

of this paper the Hamiltonian would be

N
L fO·(x.,m.,u.) + < lji,f(x,m,u) >
'11.1. 1. 1.
1.=
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The interconnection equation

u - Hy = u - Hg(x,m,u) ~ 0

provides for u to be a function of (x,m) in the interconnected

system

u = ~(x,m)

Therefore

N
~= - I

i~1

f .(x.,m.,~.(x,m) + < 1/J,f[x,m,~(x,m)]>
oJ. J. J. J.

Assume the global problem has been solved (model-based)

using the Hamiltonian and hence the optimal trajectories of
A

conjugate variables 1/J are known.

We are going to use the values of 1/J in local problems.

First let us note that having ~ we could re-determine

optimal control by performing at the current time t

(9)
N

maximize .f!t'= - I
i=1

f . (x. ,m.,~. [x. (x,m)] +
oJ. J. J. J. J.

"-

+ < 1/J,f[x,m,cjl(s,m)] >

where the problem is an "instantaneous maximization" and needs

no consideration of final state and future disturbances. This

information was of course used while solving the global problem

and determining ~.

For the (9) to be performed we need the actual value of

state x. We could obtain it by simulating system behavior

starting from the time t, when initial condition x(t 1) was

given, that is by using equation
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.
x = f[x,m,~(x,m)]

with x(t
1

) given and m=m known for [t1 ,t] from the previous

solutions of (9).

We could also know x(t) by measuring it, in the real

system (note that a discussion of model-reality differences

would be necessary).

Problem (9) is static optimization, not a dynamic one.

We would now like to divide it into subproblems. It can be

done if we come back to treating u - Hy = 0 as a side condi

tion and solve (9) by using the Lagrangian

(10) L =
N

I
i=1

f .(x.,m.,u.) + < 1/I,f(x,m,u) > + < p,u-Hy >
01. 1. 1. 1.

where y = g(x,m,u).

Before we get any further with this Lagrangian and its

decomposition let us note the difference with' respect to

dynamic price coordination presented so extensively before.

We have had there

t f N

L =f I f .(x.,m.,u.)dt
'-1 01. 1. 1. 1.. 0 1.-

subject to

< p,u.- Hy > dt

x. = f.(x.,m.,u.),
1. 1. 1. 1. 1.

i = 1, ••• ,N

It was a dynamic problem.

In the present case there are no integrals in L(·) and the

dynamics are taken care of by the values of conjugate variables 1/1.

The differential equations of the system are needed only to

compute the current value of x in our new, "instantaneous"
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Lagrangian. No future disturbances are to be known, no

optimization horizon considered - all these are imbedded in ~.

Assume we have solved problem (10), using system model

i.e., by computation and we have the current optimal value

of price p, that is p(t). We can then form the following

static local problems to be solved at time t

( 11 ) maximize L. = - f .(x.,m.,u.) + < ~.,f.(x.,m.,u.) >
1 01 1 1 1 1 1 1 1 1m.u.

1 1

+ < p. ,u. > - < q. ,y. >
1 1 1 1

These goals could be used in a structure of decentralized

control, see Figure 4. The local decision makers are asked

here to maximize Li (·) in a model-based fashion and apply

control mi to the system elements. Current value xi is

needed in performing the task. The coordination level would

supply $. and the prices p.,q. for the local problem. They
1 1 1

would be different for each t.

Note that there is no hill-climbing search on the system

itself.

Figure 4 would first imply that the local model-based

problems are solved immediately with no lag or delay. We

can therefore assume, conceptually, that the local decision

making is nothing else but implementation of a state feedback
A

loop, relating control mi (t) to the measured xi (t). In an

appropriate case we could think of solving problem (10) analyt

ically with ~., p as parameters and the result would exactly
1

be the feedback formula (the feedback decision rule) •

If analytical solution of (10) is not the case we have to

implement a numerical algorithm of optimization and some time

will be needed to perform it. A discrete version of our control

would have to be considered.
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COORDINATION LEVEL
(FULL HORIZON. DYNAMIC)

LOCAL LEVEL
max LN ( .) . (STATIC OPTIMIZATION)

H

Fig. 4.. Dynamic multilevel control using
conjugate variables

Now let us think about feedback to the coordinator. We

might decide to let him know the state of the system at some

time intervals ti, that is x(kt f ). On this he could base
~ . ~

his solution ~ for ail t ~ kti and also the prices p for the

next interval [kti, (k+1)tf l. This policy would be very

similar to what we have proposed in the "dynamic price

coordination".

It might be worthwhile to make again some comparisons

between dynamic price coordination and the structure using

both prices and conjugate variables.

In the "maximum principle" structure the local problems

are static. The local goals are slightly less natural, as
~ . .

they involve < 1jJ.,x. > that ~s the "worth of the trend".
~ ~

This would be difficult to explain economically and hence

difficult to implement in a human decision making hierarchy.

As the problem is static, no target state is prescribed.
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Note that both these cases avoid to prescribe a state

trajectory. It is felt that in the dynamic control this

kind of direct coordination would be difficult to perform

if model-reality differences are assumed.

5. Conclusions

There are several possibilities to structure a dynamic

multilevel control system, using feedback from the real

system elements in the course of system operation. It is

not possible at this,stage to evaluate advantages and draw

backs of the alternatives. It may be easily predicted that

if the mathematical models used do not differ from reality, all

structures would give the same result - fully optimal control.

The clue is what will happen if models are inadr.quate. Quanti

tative indications are essentially missing in this area.

Another feature of the structures would concern their

use in a human decision making hierarchy. In that case it is

quite essential what will be the local decision problem, con

fined to an individual decision maker. He may feel uncomfort

able for example, if asked to implement only a feedback decision

rule (as it happens in the "state feedback" structure), or to

account for the worth of the trend < ~.,x. > in his own calcu-
1 1

lations, as it is required in the structure using conjugate

variables. For the human decision maker, the structure with

price coordination seems to be most natural.

Table 1 shows a comparison of structures discussed in

this paper.



-21-

Table 1. Comparison of dynamic coordination structures.

SYSTEM COORDINATOR LOCAL LOCAL
ITYPE PROBLEMS GOALS

DYNAMIC solves global problem, dynamic maximize performance,
PRICE sets~rices p and tar- optimization achieve, target state
COORDINATION gets xi

STATE-FEEDBACK solves global problem, state feed- '
CONCEPT supplies compensation back decision no goal

sigrial ~i rule
, , ,

USING solves global problem, static maximize performance
CONJUGATE sets pric~s p andAcon- optimization inclusive of
VARIABLES

,
Jugate variables 'l/J • < ~. ,x. >

l. l. l.

-:J
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