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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

II. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population fore-
casting;

III. the analysis and design of migration and settle-

ment Eolicz;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the thirteenth in the dynamics series, is a
summary review of IIASA's work on model migration schedules.
It combines the major findings of two earlier publications
(RM-75-57 and RR-76-09) with more recent, as yet, unpublished
work.

Related papers in the dynamics series, and other publica-
tions of the migration and settlement study, are listed on the
back page of this report.

Andrei Rogers
Chairman

Human Settlements
and Services Area.

November 1977
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Abstract

This paper considers and contrasts two alternative approaches
for capturing the regularities exhibited by age patterns in ob-
served migration rates. The mortality approach is considered
first and it is shown how such an approach may be used to infer
migration flows from two consecutive place-of-residence-by-place-
of-birth census age distributions. The fertility approach is
considered next, and techniques for graduating migration age
profiles are described. The advantages and disadvantages of both
approaches are then briefly assessed.
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Model Migration Schedules and their Applications

1. INTRODUCTION

The evolution of a human population undisturbed by emigra-
tion or immigration is determined by the fertility and mortality
schedules it has been subject to. If such a "closed" population
system is disaggregated by region of residence, then its spatial
evolution is largely determined by the prevailing schedules of

internal migration.

The age-specific fertility, mortality, and migration
schedules of most human multiregional populations exhibit re-
markably persistent regularities. The age profiles of these
schedules seem to be repeated, with only minor differences, in
virtually all developed and developing nations of the globe.
Consequently, demographers have found it possible to summarize
and codify such regularities by means of hypothetical schedules
called model schedules.

Model schedules have two important applications: 1) they
may be used to infer (or "smooth") empirical schedules of popu-
lations for which the requisite data are lacking {(or inaccurate),
and 2) they can be applied in analytical mathematical examina-

tions of population dynamics.

The development of model fertility and model mortality
schedules and their use in studies of the evolution of human
populations have received considerable attention (Arriaga, 1968;
Coale and Demeny, 1966; Coale, 1972; Coale and Trussell, 1974;
Rele, 1967); however, the construction of model migration schedules
and their application to studies of the spatiZal evolution of
human populations disaggregated by region of residence, have not.
This paper addresses the latter problem and shows how techniques
that have been successfully applied to treat the former problem

can readily be extended to deal with the latter. We begin, in




Section 2, by considering the regularities exhibited by'observed
migration schedules. We then follow this description of observed
regularities with an examination, in Sections3 and 4, respectively,
of two alternative approaches for summarizing such regularities:
the mortality approach and the fertility approach. Section 5
offers concluding remarks and points to future directions for

research.



2. REGULARITIES IN OBSERVED MIGRATION SCHEDULES

Demographers have long recognized that persisting regulari-
ties appear in empirical age-specific migration schedules (e.g.,
Lowry, 1966; Long, 1973). Migration viewed as an event, is highly
selective with regard to age, with young adults generally being
the most mobile group in any population. Levels of migrationl
are also high among children, varying from a peak during the
first year of age (the initial peak) to a low point around age
16. The migration age profile then turns sharply upward until
it reaches a second peak (the high peak) in the neighborhood of
22 years, after which it declines regularly with age, except for

a slight hump (the retirement peak) around ages 62 through 65.

The regularities in observed migration schedules are not

surprising:

Young adults exhibit the highest migration
rates because they are less constrained by ties to
their community. Their children generally are not
in school, they are more likely to be renters rather
than home owners, and job seniority is not yet an
important consideration. Since children move only
as members of a family, theif migration pattern
mirrors that of their parents. Consequently, be-
cause younger children generally have younger parents,
the geographical mcbility of infants is higher than
that of adolescents. Finally, the small hump in the
age profile between ages 62 to 65 describes migration

after retirement... (Rogers, 1975, pp. 146-147)



2.1 Migration Profiles

The shape, or profile, of an age-specific schedule of mi-
gration rates is a feature that may be usefully studied inde-
pendently of its intensity, or level. This is because there is
considerable empirical evidence that although the latter tends
to vary significantly from place to place, the former is remark-
ably similar in various localities. Illustrations of this property
appear in Figures 1A and 1B, which set out migration rates for

the U.S.A. and Sweden, respectively.

Figures 1A and 1B repeat the fundamental age pattern of mi-
gration described above, with peaks occuring at infancy, during
the young adult ages and, in one instance, at retirement. Var-
iations in the location of the high peak and in the levels of
migration at retirement ages indicate that as, in the case of
mortality, age profiles of migration may be usefully disaggregated
into families that are distinguished by the location and relative
height of their peaks. Alternatively, such a disaggregation may
be carried out, in the manner of fertility schedules, by means

of the mean age of the migration schedule M(x),

Zz Z
n= ) (x+ 2.5) M(x) ToM(x)
x=0 x=0

which readily may be used to classify migration schedules into
"young" and "old" categories, perhaps with suitable gradations
in between.

Figure 1A indicates that the age profile of migration tends
to be remarkably similar for residential movers, intra- and
inter- county migrants, and migrants between states. What does
vary is the level of migration, the level being higher for smaller

territorial units.

Figure 1B shows that important age-specific variations exist
between the migration rates of males and females. The high peak
for males follows that of the female schedule by a few years,
and in the Swedish case it is also lower in height.
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Figure 1.A: Age-Specific Annual Migration Rates of the Total United States
Population by Category of Move: Average of 1966-1971.

Source: Long (1973), p. 38.




Rate

150
c— MALE
=== FEMALE
125
100
75 -
50
25_.
0 1 | T T l 1 ] ! I ] T 1
0 S 10 15 20 25 30 35 40 4 S0 S5 60 65 70
AGE

Figure 1.B: Age-Specific Annual Migration Rates of the Swedish Population
by Sex: Average of 1968-1973.

Source: Internal Migration in Sweden 1968-1973, 1974, p. 10.




2.2 Migration Levels

The level of migration, like that of mortality, can be
measured in terms of an expected duration time, for example,
the fraction of a lifetime that is expected to be lived at a
particular location. HoWever,‘like fertility, migration is a
potentially repetitive event, and its level therefore can be
expressed in terms of an expected number of moves per person.
Summarizing observed regularities within the context of the
former perspective leads to the development of a regression
approach similar to the one used by Coale and Demeny (1966) to
summarize regularities in mortality schedules; the latter per-
spective suggests én alternative procedure--one analogous to
that used by Coale and Trussell (1974) to summarize fertility

schedules.

The most common demographic measure of level is the notion
of expectancy. Demographers often refer to life expectancies,
for example, when speaking about mortality, and to reproduction
expectancies when discussing fertility. They have calculated
for instance that 73 is the average number of years a female
could expect to live under the mortality schedule of the U.S.
in 1958, and 1.71 is the average number of baby girls she could
expect to bear during her lifetime under the then prevailing
fertility schedule. The former measure is known as the expecta- .
tion of life at birth, e(0); the latter index 1is called the net

reproducetion rate, NRR.

A related index is the gross reproduction rate, GRR. This
measure totally ignores the effects of mortality on reproduction
and may be viewed as the net reproduction rate that would arise
among a cohort if all of them survived to the end of their child-
bearing ages. For this reason, the GRR of a population is, of

course, always larger than the corresponding NRR.

Expectancies also have been used in migration studies by
Wilber, (1963) and Long (1973). However, their definitions are

nonspatial inasmuch as they view migration as an event in a




national population rather than as a flow between regional popu-
lations. The study of spatZal population dynamics can be con-
siderably enriched by explicitly identifying the locations of
events and flows. This permits one to define spatial expectancies
such as the expectation of life at birth or the net reproduction
rate of individuals born in region i (respectively, ie(O) and
iNRR, say), and the expected allocation of this lifetime or rate
among the various constituent regions of a multiregional popula-
tion system (iej(O) and iNRR'j, respectively, j = 1,2,...,m).

For example, it has been estimated (Rogers, 1975) that the ex-
pectation of life at birth of a California-born woman exposed

to the 1958 U.S. schedules of mortality and migration would be
73.86 years, out of which 24.90 years would be lived outside of
California. The net reproduction rate of such a woman, on 1958
fertility rates, would be 1.69, with 0.50 of that total being
born outside of California.

Adopting the second perspective, Wilber developed a set of
migration expectancies describing the average number of moves
experienced by an individual during his remaining lifetime.

The application of his formula for calculating migration expect-
ancies for individuals just born produces the direct analog of
the conventional formula for the net reproduction rate. The
formula, with x set equal to zero, may be expressed as

Z

Y OL(x)M(x) |, (1)

x=0

where L(x) is the stationary life table population aged x to

X + 5 years at last birthday, M(x) is the annual rate of migration
among individuals in that age group, and z is the starting age of
the last interval of life. The corresponding formula for the net

reproduction rate is
z
NRR = )} L(x)F(x) , (2)
x=0

where F (x) is the age-specific fertility rate. The similarity

between (1) and (2) suggests the designation of (1) as the net



migraproduction rate, a quantity we shall denote by NMR. Thus

NRR denotes the average number of babies per person, and NMR
denotes the average number of moves per person, both taken over
that person's entire lifetime. Observe that both measures de-
pict the average number of occurrencesof a recurrent event over

an individual's lifetime. Only the létter, however, is influenced

by the spatial extent of the territorial unit.

Earlier we proposed a spatial migration expectancy based
on duration times, specifically, the expected number of years
lived in region j by individuals born in region i. The corre-
spondence between the net migraproduction and net reproduction
rates suggests an alternative definition of spatial migration
expectancy--one reflecting a view of migration as a recurrent
event. Just as NRR was apportioned among the constituent re-
gions of a multiregional system, so too can NMR be similarly
disaggregated by place of birth and residence. Thus the for-

mula for the spatial net reproduction rate:

z
iNRRj = Xzo iLj(x)Fj(x) ’ (3)

suggests the following definition for the spatial net migrapro-
duction rate:
z

1 NMRy = Z iLj(x)Mj(x) , (4)
where iLj(x) denotes the stationary life table population of
region j aged x to x + 5 years at last birthday and born in re-
gion i, and Mj(x) is the age-specific outmigration rate in re-
gion j.

The spatial net migraproduction rate ;NMR, describes the
average lifetime number of moves made out of region j by an in-
dividual born in region i. The summation of iNMR. over all re-
gions of destination (j # i) gives ; NMR, the net migraproduction
rate of individuals born in region i, i.e., the average number

of moves an i-born person is expected to make during his (or her)

lifetime.
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Associated with the concept of the net reproduction rate
(NRR) in fertility analysis is the notion of the gross repro-
duction rate

Z
5 z F((x) .
x=0

GRR

I

The notion of a gross migraproduction rate

GMR

z
5 Y M(x)

x=0
has a similarly useful interpretation in migration analysis.
It measures the intensity of migration between two regions at
a particular point in time. The measure, therefore, has basi-
cally a cross-sectional character, in contrast to the NMR which
measures the intensity of migration over a lifetime. Consequently,
the gross migraproduction rate often may prove to be a more use-
ful measure than the net rate in that it is a "purer" indicator
of migration, in the same sense as the gross reproduction rate.
However, the gross rate measures the intensity of migration at
a given moment and not over a lifetime. Hence, in instances where
return migration is an important factor, the gross rate and the

net rate may give differing indications of geographical mobility.

Table 1 presents net and gross migraproduction rates for the
total U.S. population in 1958, disaggregated into four regions.
The corresponding mean ages of migration are set out in parentheses.
Figure 2 plots the gross migraproduction rate against the mean
age for the migration schedules of the four-region U.S. popula-
tion system in 1958 and in 1968, respectively. We find evidence

of a division into four groups:

high GMR - high n;
high GMR - low n;



Table 1. Net and gross migraproduction rates and mean ages of

migration:

total United Stated population, 1958.

A. Net migraproduction rates: iNMRj
Region of Region of Residence Total
Birth 1 2 3 4
Northeast 0.4122 0.0366 0.0589 0.0331 0.5408
North Central 0.0204 0.4923 0.0604 0.0600 0.6331
South 0.0300 0.0629 0.4397 0.0479 0.5805
West 0.0203 0.0540 0.0602 0.4181 0.5526
B. Gross migraproduction rates and mean ages of migration: GMRij and Eij
Region of Region of Destination Total
Origin 1 2 3 4
Northeast - 0.1202 0.3168 0.1532 0.5902
(26.99) (33.46) (29.43)
North Central 0.0891 - 0.3201 0.3289 0.7381
(28.15) (32.16) (30.54)
South 0.1504 0.2511 - 0.2299 0.6314
(28.59) (27.77) (27.27)
West 0.0887 0.2167 0.2819 - 0.5873
(27.73) (30.03) (27.61) ’
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schedule: total U.S. populations, 1958 and 1968.

low GMR - high n;

low GMR - low n.

Migration flows from the North Central Region to the South, for
example, exhibit an "old" profile and a mean age of about 32.5
years. The reverse migration flows, on the other hand, take on
the shape of a "young" profile and show a mean age that is about
five years younger. This suggests that it may be useful to
develop a family of basic model migration schedules so that the
various age profiles exhibited by empirical migration schedules

can be more accurately captured and summarized.



3. MODEL MIGRATION SCHEDULES: THE MORTALITY APPROACH

Regularitiés in the age patterns of observed death rates
have fascinated demographers almost since published records of
mortality first became generally available. The search for uni-
versal "laws of mortality" gave birth to the well known- Gompertz-
curve graduation of the mortality schedule and, more recently,
to two sets of "model" life tables published by the United Nations
(United Nations, 1955 and 1967).

The model life table, or mortality, approach for capturing
regularities in observed rates may be applied in the study of
migration regularities. Such an application, however, first

requires the concept of the multiregizonal 1life table.

3.1 The Multiregional Life Table

Conventional life tables describe the evolution of-a hypo-
thetical cohort of babies born at a given moment and'exposed to
an unchanging age-specific schedule of mortality. For this co-
hort of babies, they exhibit a number of probabilities of dying
and surviving and develop the corresponding expectations of

life at various ages.

Life table calculations normally are initiated by estimating
a set of age-specific probabilities of dying within each inter-
val of age, g(x) say, from observed data on age-specific death
rates, M(x) say. The conventional calculation that is made for

an age interval five years wide is (Rogers, 1975, p.12)

5M (x)

q(x) = ’
1+ 2 M(x)
or alternatively,
P() = 1-q(x) =1 +3M®1 11 -3Mx)] ,  (5)

where p(x) is the age-specific probability of surviving from




erxact age x to exact age  + 5. The latter probabilities, in
turn, may be used to define the corresponding probabilities of
survival from one age group to the next (Rogers, 1975, pp.16 and
85): '

s(x) = [1 +p(x+ 5)1px) (1 +p)1"" . (6)

To avoid any possible confusion between the two sets of probabi-
lities, we shall hereafter refer to s(x) as a survivorship pro-
portion, i.e., the proportion of individuals surviving from age

group x to x + & to age group x + & to x + 10.

One of the most useful statistics provided by a life table
is the average expectation of life at age x, e(x) say, calculated
by applying the probabilities of survival p(x) to a hypothetical
cohort of babies and then observing their average length of life
beyond each age. Expectations of life at birth [e(0)] are par-
ticularly useful as indicators of the level of mortality in various
regions and countries of the world.

Conventional life tables deal with mortality, focus on a
single regional population, and ignore the effects of migration.
To incorporate the latter, and at the same time to extend the
life table concept to a spatial population comprised of several
regions, requires the notion of a multiregional life table
(Rogers, 1973). Such life tables describe the evolution of sev-
eral regional cohorts of babies, all born at a given moment and
exposed to an unchanging multiregional age-specific schedule
of mortality and migration. For each regional birth cohort,
they provide various probabilities of dying, surviving, and
migrating, while simultaneously deriving regional expectations
of life at variousvages. These expectations of life are disag-
gregated both by place of birth and by place of residence; they
will be denoted by iej(x), where i is the region of birth and

j is the region of residence.

Multiregional life table calculations are greatly facilitated



by the adoption of matrix algebra. This leads to a compact noté-
tion and an efficient computational procedure; it also very clearly
demonstrates a simple correspondence between the single region and
the multiregional formulas. For example, equations 5 and 6 may

be shown to have the following multiregional counterparts (Rogers
and Ledent, 1976; Rogers, 1975,p.85):

P(x) = [I+2 M1 I~ 3M6)] (7)

~

and

[I+P(x+ 5] P(x) [I+Px)] (8)

S (x)

The diagonal elements of E(x) and §(x) are probabilities of sur-
vival and survivorship proportions, respectively; the off-diagonal
elements will be called probabilities of migrating and migration
proportions, respectively.

Expectations of life in the multiregional life table reflect
the influences of mortality and migration. Thus they may be used
as indicators of levels of internal migration, in addition to
carrying out their traditional function as indicators of levels of
mortality. For example, consider the regional expectations of
life at birth that are set out in Table 2 for the U.S. 'population
with both sexes combined. A baby born in the West, and exposed
to the multiregional schedule of mortality and migration that
prevailed in 1958, could expect to live an average of 69.94 years,
out of which total an average of 8.95 years would be lived in
the South. Taking the latter as a fraction of the former, we
have in 0.1279 a useful indicator of the (lifetime) migration
level from the West to the South that is implied by the 1958
multiregional schedule. <(Compare these migration levels with those
set out earlier in Table 1).



Table 2. Expectations of life at birth and migration levels by region of
residence and region of birth: total United States population,

1958.
Region of Region of Residence Total
Birth 1 2 : 3 4
1. Northeast 50.90 4.49 8.88 5.50 69.76
(0.7295) (0.0643) (0.1273) (0.0788) (1.00)
2. North Central 3.18 - 48.45 9.10 9.60 70.32
(0.0452) (0.6889) (0.1294) (0.1365) (1.00)
3. South 4.58 7.52 49.21 7.67 68.98
(0.0664) (0.1091) (0.7134) (0.1111) (1.00)
4. West 3.18 6.60 8.95 51.22 69.94
(0.0454) (0.0944) (0.1279) (0.7322) (1.00) !
|

Age-specific probabilities of migrating, pij(x), in empirical
multiregional life tables mirror the fundamental regularities
exhibited by observed migration rates. Some of these regularities
are illustrated in Figures 3,4, and 5, respectively. (We focus
only on the total population but consider data for all four Census
Regions and for two points in time: 1958 and 1968.) Figure 3
shows that a strong and positive association exists between the
height of the initial peak, pij(O), and the level of migration
as measured by, for example, iej, the fraction of the expected
lifetime of an individual born in region i that is expected to
be lived in region j. Figure 4 indicates that a similarly strong
and positive relationship exists between the height of the low
point and the height of the initial peak. Finally, Figure 5
describes the positive association between the heights of the high
peak and the low point. Thus a direct line of correlation appears
to connect the general migration level between two regions to the
values assumed by the corresponding age-specific probabilities of
migrating. This suggests that a simple linear regression .equation
may be used to associate a set of probabilities of migration at
each age x, pij(x), with a single indicator of migration level,
say iej. We explore: this possibility next.
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3.2 Summarizing the Regularities: Regression.

The migration risks experienced by different age and sex
groups of a given population are strongly interrelated, and
higher (or lower) than average migration rates among one segment
of a particular population normally impiy higher (or lower) than
average migration rates for other segments of the same population.
This association stems in part from the fact that if socioeconomic
conditions at a location are good or poor for one group in the
population, they are also likely to be good or poor for other
groups in the same population. Since migration is widely held
to be a response to spatial variations in socioeconomic conditions,
these high intercorrelations between age-specific migration risks

are not surprising.

Figures 3,4, and 5 support the above conjecture and, more-

over suggest a way of summarizing the observed regularities in
migration probabilities. They indicate that a relatively accurate
accounting of the variation in the height of the initial peak (and
through it in the height of the rest of the migration schedule)
may be obtained bY»means of a straight line fitted to the scatter

of points in Figure 3. Thus a linear regression of the form

Pi5(0) =y + 8 ;0.
would seem to be appropriate.1 But pij(O) cannot take on nega-
tive values; a convenient way of ensuring that this possibility
never arises is to force the line through the origin by adopting

the zero-intercept simple linear regression model

pij(O) =R .0. . (9)

1SinCe changes. in fertility also affect the height of the initial

peak, a possible further refinement of the model would be to

include a variable describing the level of fertility, for example,

the reproduction rate.
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The least-squares fit of such an equation to the data illustrated

in Figure 3 gives

py5(0) = 0.17392 ;0.

for the 1958 observations, and

pij(O) = 0.22002 iej
for the 1968 data points. The fit in each instance is quite
satisfactory, yielding coefficients of determination (r2) of

0.94 and 0.84, respectively.

Given estimates of B and iej we can obtain an estimate of
pij(O). Figures 4 and 5 suggest that with the value of pij(O)
fixed, we can find the corresponding value of the low point and
use that, in turn, to estimate the value of the high point.
Generalizing this argument to all age groups beyond the first,

we may adopt the simple model

pij(x,+ 5) = yv(x) pij(x) ' (10)

where pij(O) is estimated by equation 9. Thus

Pi5(10) = ¥(5) p;.(5) = y(5)8(5);0, = B(10);0,

and in general,

pijx) = B(x) 0, (11)

in which the B in(9) now is designated by B(0). Note that as a

consequence of our definitions

- Bx + 5) ,
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and

_ B (x) B(x + 5)

pl] (x + 5) = Y(X) W plj (0) = ——B'(T)— plj (0) , (12)

Equation 11 may be treated as a simple (zero-intercept)
linear regression equation, and its coefficient B(x) may be est-
imated using the conventional least-sguares procedure. Table 3
presents two sets of such coefficients for the U.S. total popula-
tion. The first set was obtained using 1958 data, the second set
was estimated on the basis of 1968 data. In both instances the
observed migration flows were those between the four U.S. Census

Regions.

The regression coefficients in Table 3 may be used in the
following way. First, starting with a complete set of multi-
regional migration levels iej one calculates the matrig‘of mi-
gration probabilities P(x) for every age, using equation 11 and
one of the two sets of regression coefficients in Table 3. (Figure
6 illustrates a range of such probabilities by way of example.)
With P(x) established, one then may compute the usual life table
statistics, such as the survivorship proportions defined in equa-
tion 8 and the various region-specific expectations of life at
each age. The collective results of these computations constitute

a model multiregional life table.

3.3 Families of Model Migration Schedules

In this section we consider the effects on the migration age
profile of various disaggregations of our data on the U.S. pop-
ulation system. Specifically, we examine how the regression
coefficients set out earlier in Table 3, and illustrated below
in Figure 7, respond to various disaggregations of the empirical
population on the basis of which they were estimated. First, we
disaggregate the total population by sex. Next, we introduce
a disaggregation according to mean age. Then we consider a

spatial disaggregation of the four Census Regions into their
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Table 3. Regression coefficients for obtaining
model probabilities of migration.

Age Total (1958) Total (1968)
B £ B r?
6] 0.17392 0.94 0.22002 0.84
5 0.13460 . 0.95 0.15553 0.89
10 0.15736 0.86 0.15040 0.94
15 0.30757 0.93 0.29195 0.85
20 0.32271 0.72 0.26370 0.72
25 0.23251 0.96 0.20037 0.90
30 0.17897 0.95 0.17907 0.94
35 0.12912 0.95 0.14392 0.96
40 0.09790 0.93 0.10397 0.95
45 0.07522 0.86 0.07378 0.91
50 0.06838 0.73 0.06352 0.76
55 0.07347 0.63 0.07362 0.54
60 0.08254 0.47 0.08320 0.43
65 0.06086 0.50 0.06425 0.47
70 0.04488 0.58 0.04919 0.64
75 0.03019 0.67 0.03951 - 0.64
80 0.01342 0.18 0.02058 0.63
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constituent nine Census Divisions. Finally, we explore the im-

pact of an even finer deconsolidation by mean age.

The two regression coefficient profiles in Figure 7 mirror
the fundamental age profile of migrants that was analyzed earlier
in. this paper. The principal differences between the two co-
efficient profiles are the higher and older high peak in the
1958 migration schedule, and the higher and older low point of
the corresponding 1968 schedule. Beyond the mid-thirties the
two profiles are quite similar, with both showing a retirement

peak in the 60-6#4 year-old age group.

Profile Differences by Sex

A disaggregation of the 1968 negression coefficient profile
introduces important variations by sex, according to Figure 8.
The male coefficients are higher from the very early teens to
the mid-forties and are lower at all other ages. The locations
of the high peak and the retfirement peak are the same in both
profiles, but the low point among males comes at a younger age
than in females. Also, the retirement peak among females is

broader and starts at an earlier age.

Profile Differences by Mean Age

Figure 9 indicates that a division of migration schedules
into "young" and "o0ld" categories might be a useful way of dis-
aggregating the regression coefficients illustrated in Figures
7 and 8. It shows two basic age profiles which are distinguish-
able by the presence of a high retirement peak in one profile
and its virtual absence in the other. We designate the former
profile as a retirement profile and the latter as a labor force
profile. An alternative designation is old and young profile,
respectively.

Profile Differences by Size of Areal Unit

Because migration normally is defined as a crossing of a

regional boundary, it is clear that reducing the size of a spatial



unit should increase the level of outmigration from that unit,
since some of the moves that previously did not cross over the
old borders now will be recorded as migrations over the new
borders. But what of the age profile in each case? Should not
this feature of the observed migration flows remain essentially
unchanged, at least for the relatively large areal units? Figure
10 (like Figure 1A before it) gives some evidence that this con-
jecture is valid. The two regression coefficient profiles that
it illustrates were estimated on the basis of the same data set,
using first a nine and then a four-region spatial delineation
of the total 1958 U.S. population. The fact that the former is
always higher than the latter is perhaps a consequence of some

confounding of profile and level introduced by aggregation bias.

Profile Differences by Several Mean Age Classes

The spatial disaggregation of our data from four té nine
areal units increases the number of observations from 12 to 72
and thereby affords us an opportunity to examine the impact of
a finer classification by mean age. Specifically, we now consider
the disaggregation of the 1958 regression coefficient profile
into four instead of two mean age categories: "very young"

(ﬁij < 26); "young" (26 < ﬁij < 28); "old" (28 < ﬁij < 30);
and "very old" (Eij > 30).

Except for variations with respect to the retirement peak,
the principal impact of the finer disaggregation by mean age
appears not so much in the age profile as in the relative height
of that profile for a given value of the migration level iej.
Thus, for example, the age curve of the "very old" profile in
Figure 11 is almost everywhere higher than the corresponding
curve of the "very young" profile, for the same level of migration.
The reason for this is not immediately apparent and merits fur-
ther study. A possible explanation may lie in the fact that iej
is an index which combines an age-specific migration pattern
with a specific (life-table) age composition. This particular
confounding of schedule and composition could perhaps generate

the variations in profile heights that appear in Figure 11,
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although the underlying dynamics of this are by no means self--
evident. Consequently, it may well be the case that the "fert-
ility approach" with its focus on the GMR as an index of migra-
tion level has a built-in advantage over the "mortality approach"
that we have been following in this section. This possibility

is considered later in this paper.

The regression coefficients illustrated above in Figures 7
through 11, may be said to form families of model migration
probabilities or schedules. Those associated with different
categories of mean age give "young" and "old" profiles; those
that do not consider mean age as an index give "average" profiles.
We next illustrate an application of the female "average" pro-

file by constructing a specimen model multiregional life table.

3.4 BApplication: Inference

We have noted earlier that single-region life tabléé nor-
mally are computed using observed data on age-specific death
rates. In countries lacking reliable data on death rates, how-
ever, recourse is often made to inferential metheds that rely
on model life tebles such as those published by the United
Nations (United Nations, 1967). These tables are entered with
empirically determined survivorship proportions to obtain the
particul ar expectation of life at birth (and corresponding life
table) that best matches the levels of mortality implied by the

observed proportions.

The inferential procedures of the single-region model (the
U.N. method, say) maybe extended to the multiregional case (Rogers,
1975, Ch.6). Such an extension begins with the notion of model
multiregional life tables and uses a set of initial estimates of
survivorship and migration proportions to identify the particular
combination of regional expectations of life, disaggregated by
region of birth and region of residence, that best matches the
levels of mortality and migration implied by these observed

proportions.
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Model Multiregional Life Tables

Model multiregional life tables approximate the mortality
and migration schedules of a multiregional population system by
drawing on the regularities observed in the mortality and migra-
tion experiences of comparable populations. That is, regularities
exhibited by mortality and migration data collected in regions
where these data are available and accurate are used to systemat-
ically approximate the mortality and migration patterns of pop-
ulations lacking such data. Table 4 gives the four regional
expectations of life at birth and the dozen migration levels that
together characterize the patterns of regional mortality and inter-
regional mobility of U.S. females in 1968. Interpolating in the
"WEST" family of model life tables developed by Coale and Demeny
(1966), we first obtain the appropriate set of model probabilities
of dying at each age for each of our four Census Regions. Insert-
ing, in turn, each of the dozen values of iej into equation 11,
with B(x) taking on the column of "average" values illustrated
for females in Figure 8, we may derive initial approximations
for pij(x). These probabilities of migration may then be used
in conjunction with the associated interpolated model probabilities
of dying to obtain the matrix of survivorship proportions defined
in equation 8. By appropriately manipulating equation 7, we
also can find the associated model migration rates. And then,
following the normal computational procedures of multiregional
life table construction (Rogers, 1975, Ch.3), we may derive,
for example, the corresponding matrix of expectations of life
at birth, appropriately disaggregated by region of birth and
region of residence. Unfortunately the latter matrix usually

will not yield the same migration levels that were used to gen-
erate the P(x) matrix. Such inconsistencies occur in the

model life tables of Coale and Demeny (1966). To eliminate



them one must resort to iteration. Only in this way can one
obtain a model multiregional life table whose statistics and

parameters are internally consistent.

Figure 12 illustrates four sets of model migration ‘rates
that were generated in the course of constructing our specimen
model multiregional life table for U.S. females. Adjoining the
four model schedules are the corresponding empirical schedules
observed in 1965-1970. A comparison of the two sets of schedules
suggests that, although the degree of correspondence is fairly

close, further improvement would be highly desirable.

The U.N. Method Generalized

The U.N. method of obtaining initial age-specific estimates
of 10-year survivorship proportions from two consecutive. decen-
nial census-enumerated age distributions may be generalized to
multiregional population systems if age-specific place of
residence by place of birth (PRPB) data are available for both
census years. This easily may be demonstrated by expressing
the single region procedure in algebraic form and reverting to

matrix algebra to define the corresponding multiregional method.

" First, we observe that the single-region procedure for estimating

s (x) may be expressed as follows:

107 _ K1) (x4 10

s (x) ) =kt (x 1 10)xk () (p”t (13
K (x)
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Table 4. Expectations of life at birth and migration levels by region of
residence and region of birth: female United States population,

1968. -

Region of Region of Residence Total

Birth 1 2 ’ 3 4
1. Northeast 54.13 5.08 10.11 5.25 74.56
(0.7260) (0.0681) (0.1356) (0.0704) (1.00)
2. North Central 3.76 52.14 10.48 8.05 74.44
: (0.0506) (0.7005) (0.1408) (0.1081) (1.00)
3. South 5.06 7.88 54.53 6.93 74.40
(0.0680) (0.1060) (0.7328) (0.0931) (1.00)
4. West 3.90 7.94 11.32 52.41 75.57
(0.0516) (0.1051) (0.1497) (0.6936) (1.00)

where K(t)(x) denotes the number of persons aged x to = + 9
years at time t. Next we recall the multiregional.deﬁographic'
model that projects populations disaggregated by place of resid-
ence and place of birth (Rogers, 1975, p.172):

K(x + 5) = §(x)0§(x) . (14)

Normally our interest in this model centers on the determina-
tion of 0I~<(x + 5), given particular numerical values for S(x) and
0I~<(x). Now, however, we consider the application of (14) to derive

§(x) given numerical values for 0I~<(x) and 0I~<(x + 5). Clearly,

S(x) = (K(x + 5) K(0) !

and for a 10-year age and time interval

102

S(x) = 1

Og(t+1)(x + 10)0§(t)(x)' ) (15)

Note that (15) is the matrix expression of (13):




Having found crude initial estimates of the various regional
survivorship and outmigration proportions by means of the PRPB
method, we may construct the associated life table to obtain the
regional expectations of life at birth that are implied by these
proportions (Rogers, 1975, pp. 85-88.) Then, as in the single-
of outmigration and death by interpolating in an appropriate set
of model multiregional life tables (Rogers, 1975, pp. 185-189).



4. MODEL MIGRATION SCHEDULES: THE FERTILITY APPROACH

Fertility schedules have long been recognized as exhibiting
a fundamental pattern that persists over a wide range of human
populations. This recognition has fostered two related research
efforts: 1) one concerned with the analytic graduation of
fertility curves (Keyfitz, 1968, Chap. 6; Hoem and Berge, 1975)
and 2) the other focused on the construction of modei fertility
schedules (Coale and Demeny, 1966, p. 30).

In a recent paper, Coale and Trussell (1974) combine these
two lines of research to provide an analytic graduation of a
standard fertility schedule from which a wide variety of fertility
patterns can be derived by a simple transformation involving four
parameters. Observed fertility patterns are defined with respect
to the natural fertility of married women. Fertility is held to
be a function of nuptiality patterns (characterized by two para-
meters), contraception (characterized by one parameter), and a
fertility level (characterized by one parameter). Such a model
seems to provide a good fit, and readily leads to methods for
obtaining an appropriate fertility schedule on the basis of in-
adequate irnformation regarding the fertility regime of an observed

population.

In this section of our paper, we explore the potential utility
of the Coale-Trussell fertility approach for constructing model

migration schedules.

4.1 The Fundamental Components of Migration Schedules

Reqularities in observed age-specific schedules of migration
may be examined in a number of interesting ways. A particularly
useful approach is to decompose the migration schedule into three
parts, separating the migration rates of persons in the labor force age
groups from those of individuals in the pre- and post-labor force
ages, respectively. Such a decomposition gives rise to the three

fundamental curves illustrated in Figure 13A:

1) the single negative exponential curve of the pre-labor

force ages with its rate of descent, Oq i
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2) the left-skewed unimodal curve of the labor force ageé
with its rates of ascent and descent, Az and Gy 4

respectively; and

3) the almost bell-shaped curve of the post-labor force
ages with its rates of ascent and descent, A3 and
Az s respectively. (When no retirement peak is exhib-

ited by the data, this last curve is suppressed.)

For future reference, Figure 132 also includes the constant
curve c; to which we shall refer later in the paper. Its inclus-
ion improves the quality of fit provided by the mathemetical
model schedule.

Figure 13B illustrates several important points along
the age profile of a migration schedule: its low point, Xy its
high peak, xp, and its retirement peak, X, Associated with
the first two points is the labor force shift, X, which'is
defined as the difference in years between the ages of the low
point and the high peak, i.e. X = xp - X;. Associated with this
shift is the jump, the increase in the migration rate of indivi-

duals aged xp over those aged Xq-

Another important shift in observed migration schedules
arises out of the close correspondence between the migration
rates of children and those of their parents. 1If, for each
point x on the pre-labor force part of the migration curve,
we obtain by interpolation the point, x + A,, say, on the
labor force curve that yields the identical rate of migration,
then the average of the valuesof Ax, calculated for the first
14 years of age,

1 13
A=1-—ux£0 A, (16)
will be defined to be the observed parental shift.

Table 5 presents numerical approximations of the observed
parental shift for eight Swedish regions (viksomrgden), with

single year age-specific migration and population data for 1974
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(Stochastic variations in the rates were first smoothed out by
Michael Stoto using a method described in Tukey (1977) called
"non-linear smoothing"). The results indicate that the observed
parental shift was roughly 26 to 28 years for females with about
an additional two years for males. The last row in the table
suggests that the parental shift may be closely approximated

by the mean age of childbearing, (Stoto, 1977).

4.2 Summarizing the Regularities: Curve-Fitting

Our examination of the regularities in observed migration
schedules suggested a decomposition into three curves: a single
negative exponential and two skewed unimodal bell-shaped functions.
The olwvious mathematical expression for the first is ae—ax; to
represent the other two, we have adopted the "double exponential"

developed by Coale and McNeil (1972):

_om A (x-u)
ae a(x-up)-e

And, because observed migration rates do not drop to zero within

the range of post-labor force ages normally recorded, an additional

constant term (the c¢ in Figure 13A) needs to be included. We

have then a model migration schedule that is the simple sum of

four curves, namely:

M(x) = a1e—a1x
- _ " Ay (x-1,)
+ a,e az‘x u2) e 2 2
2 (17)
~a. (x-u )_e—A3(x—u3)
+ a3e 3 3
+ c ' , x =0,1,2,...

The "full" model schedule in (17) has 11 parameters: aqs Qqr a5,
Hor Ogr Ay, ag, Mgy @3, Ay, and c. Migration schedules without a
retirement peak may be represented by a "reduced" model with 7
parameters, because in such instances the third component of (17)
is omitted. TIllustrative values for the model schedule's paramet-

ers are set out in Table 6.
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Having chosen the particular function in (17) to represent
age-specific migration schedules, one then is faced with the
problem of selecting a method for fitting the function to observed
migration data. Previous research in the analytic graduation of
fertility schedules has shown that moment type estimators may
be inconsistent and do not compare favorably with functional
minimization methods such as minimum chi-square or least squares

estimation procedures (Hoem, 1972,and Hoem and Berge, 1975).

Least squares parameter estimates are presented in Table 6.
Minimum chi-square estimates are also included for the U.S. data,
for purposes of comparison. The differences between the two sets
of parametric estimates tend to be small, and because the latter
give more weight to age groups with smaller rates of migration,

we use minimum chi-square estimators in the remainder of the paper.

To assess the quality of fit that the model schedule provides
when it is applied to observed data, two indices of goodness-of-
fit have been included in Table 6: the chi-square statistic,
x2, and the"mean absolute error as a percentage of the observed

mean",

1?'1(X) - M(x)

.
1
n X

MAE/M = 100

1y M((x)
n x

Both measures indicate that the fit of the model to the data

is remarkably good.

The numerical values in Table 6 suggest possible simplifi-

cations of the model:

1) To the extent that the migration rates of children
mirror those of their parents, the parameter oy should

5e Table 6 indicates that

this is indeed the case for the migration schedules

be approximately equal to a

of the U.S., Poland and Sweden. Thus a reasonable




simplification of the model is to assume that a, = u2;

2) Experiments with a wide range of empirical migration
schedules suggest that the ratio of the rate of descent,
a, to that of the rate of ascent, X, does not vary
greatly, particularly for the retirement peak. We
assume, therefore, that
%3
63 = 7; = a constant = 5, say.
The above two simplifications reduce the number of parameters
in the full model to 9 and in the reduced model to 6. Table 7
compares the fits of the original model with those of the sim-
plified model for data on the U.S., Sweden, and eight Swedish
regions defined by Arne Arvidsson c¢f the Swedish Central Bureau
of Statistics (who also kindly provided that data). Figures 14
and 15 illustrate graphically the closeness of the fit of the
simplified model migration schedule to the Swedish regional data.
It appears that little information is lost by simplifying the
model, and we therefore adopt the simplified full and reduced

models for all analyses described in the rest of this paper.

4.3 Families of Model Migration Schedules

Model migration schedules of the original form specified
in (17), or of the simplified form described above, may be
classified into families according to the values taken on by
their principal parameters. For example, we may distinguish
those schedules with a retirement peak from those without; or
we may refer to schedules with relatively low or high values
for the rate of ascent d,. In many applications, it is also
meaningful and convenient to characterize the model schedules
in terms of several of the fundamental measures illustrated in
Figure 13, such as the low point X1 the high peak xp, the labor

force shift X, the parental shift A, and the jump B.

The simplified model migration schedule has a built-in
parental shift which can be defined analytically. Shortly after
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Table 7. The original and the simplified model migration

Schedulesa: goodness-of-fits and rates of descent

Region Original Modelh

MAE/M oy

Simplified model€
MAE/M . a, =a,

%

United States, 1966-71

Males 3.41 0.11481 0.0999 3.60 0.1038
Females 3.96 0.1177 0.1216 3.95 0.1203
Sweden, 1968-73
Males 3.83 0.1169 0.1019 4.39 0.1076
Females 3.08 0.1251 0.1170 3.13 0.1195
Swedish Regions, 1974
1. Stockholm
- Males 6.93 0.0971 0.0776 7.48 0.0856
Females 7.29 0.0905 0.0919 7.32 0.0903
2. Upper East _
Males 6.42 0.0811 0.0858 6.46 0.0846
Females - 7.37 0.1000 0.1030 7.23 0.1042
3. Lower East
Males 12.23 0.0984 0.1046 12.45 0.1033
Females 10.82 0.1086 0.1284 11.26 0.1243
4. South _
Males 11.13 0.1170 0.1143 11.07 0.1153
Females 8.77 0.1043 0.1290 9.34 0.1216
5. West '
Males 9.40 0.0895 0.0914 9.39 0.0909
Females 9.31 0.1056 0.1140 9.28 0.1110
6. Lower North
Males 10.84 0.1037 0.1032 10.83 0.1033
Females 11.66 0.0995 0.1364 12.14 0.1289
7. Middle North
Males 11.78 0.1228 0.1178 11.72 0.1189
Females 11.40 0.1185 0.1480 11.94 0.1424
8. Upper North
Males 14.88 0.1356 0.1140 14.85 0.1177
Females 13.28 0.1261 0.1417 13.13 0.1398

Minimum chi-square estimates

11 parameter full model for Stockholm and Upper East only;
in all other cases the 7 parameter reduced model was used.

9 parameter (63 = 5) simplified full model for Stockholm and

Upper East only; in all other cases the 6 parameter simplified
model was used.




the high peak, the labor force curve can be closely approximated
by the function aze_a2(x2'“2) . Recalling that the pre-labor
force curve is given by a1e_a2x1 when a, = a,, we may equate the

two functions and solve for the difference in ages, x, - X4, to find
1 42
= - = - -_— 8
A Xy X4 Hy + 1ln ' (18)

our new analytical definition of the parental shift.

Table 8 compares the values of this analytically defined
parental shift with the corresponding observed parental shifts
set out earlier in Table 5. The two definitions appear to
produce similar numerical values, but the analytical definition
has the advantage of being simpler to compute, and it is a more

rigorous definition.

In addition to the parental shift, three other measures are
sufficient to characterize the profile of a simplified model
migration schedule without a retirement peak. They are: the low

point, the high peak, and the rate of descent. Taken together

the four measures vary in a regular manner, and by using an ap-
propriate chain of inferences, it is possible to identify the

particular age profile that they specify.

Figure 16 shows that for a given value of the parental shift,
the labor force shift, X, varies as a function only of the rate
of descent a and the rate of ascent A. For a given set of values
for x;. X a and A, it is therefore possible to infer the values
of A and yu. Entering Figure 16 with xp = Xys O and A, we obtain
A. With values for A, o, and A it is possible to enter Figure 17 to

2No direct analytical expression seems to exist for computing

the low point and the high peak. However, their values may be
calculated by means of an iterative numerical procedure that
seeks the age at which the sum of two derivatives along the mig-

ration age profile is zero.
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obtain the wvalues of xp - 4, and therefore of u. With values
for a, A, # we have defined the profile (but not the level) of
a model migration schedule. To obtain the level we also need

values for aqr ass and c.

Preliminary empirical explorations indicate that profile
indices such as the low point, the high peak, and the two shifts
are somewhat more "robust" descriptive measures of regularities
in empirical migration schedules than are level-related indices,
such as the fundamental model parameters a and X. Perhaps, this
is because the former are "purer" indicators of profile: they
do not confound measures reflecting levels (such as, for example,
the GMR and the jump) with measures indicating locations along
the age axis. This attribute of such profile indices is sﬁggested
in Table 9, in which both sets of indicators are presented for
inter-regional migration alone and for inter- plus intra-regional
(intercommunal) migration taken together. The results are by
no means clear-cut, but they do suggest a possibly fruitful dir-
ection for further study.

4.4 Application: Graduation and Interpolation

Among the various analytical and practical applications of
the model migration schedule concept described above, the most
immediately obvious one is the estimation of single-year mig-
ration rates from data reported only by five-year age intervals.
As a by-product of this operation one also obtains the various

fundamental parameters and profile indices described earlier.

Migration rates for five-year age intervals are weighted
linear combinations of the corresponding single—year rates, where
each particular weight is the proportion of the population in
the five-year age interval that falls within a particular single
year of age inside of the interval. For purposes of interpolation,
these weights may be derived from an observed age composition,
or their values may be assumed to follow those of some "standard"

population composition, e.g., a stable population.

Given a range of population weights by single years of age
and a set of observed migration rates by five-year age intervals,

we may search for the model migration schedule that reproduces




PEAK TO MEAN DISTANCE

PARENTAL SHIFT A=23
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THE RATE OF ASCENT

FIGURE 17. GRAPH OF THE PEAK TO MEAN DISTANCE AGAINST THE RATE
OF ASCENT FOR TWO VALUES OF THE PARENTAL SHIFT
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best (in the least squares or minimum chi-square sense) the
set of observed migration rates. Formally, the estimation
algorithm is precisely the same as before; only the criterion

function to be minimized is slightly altered.

Table 10 presents the results of four such graduation-
interpolation experiments using the regional data for Sweden.
In it are contrasted the goodness-of-fit statistics, parameter
estimates, and level and profile indices produced in the course
of fitting the model schedule to migration data by single-year
and five-year intervals of age. The results show that to a
remarkable extent, five-year age interval data may be used in
place of the generally scarcer migration data by single years
of age. Information contained in 85 one-year age group rates
may be inferred quite accurately from 17 five-year age group

rates.

Figure 18 illustrates graphically the quality of the fit
provided by the graduation-interpolation procedure to data on
the migration of males out of Stockholm and includes, for purposes
of contrast, the fit provided to the same input data of a cubic
spline (McNeil, Trussell, and Turner, -1977).3 Note that the
spline interpolation is less accurate in identifying the retire-
ment peak, and it introduces a break in the curve (an inflection

point) at age 35.

3As an additional indicator of the quality of the fit, we include
a plot of the residuals at the bottom of the graph. These may
be reduced to zero by further interpolation, but the model schedule

then loses its smooth regularities.
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5. CONCLUSION

This paper has examined two alternative approaches for
summarizing and exploiting the regularities exhibited by empirical
migration schedules: the mortality approach and the fertility
approach. 1In developing both we have elected to generalize and
extend the standard paradigms put forward by Ansley Coale and
his associates, specifically his early work on model mortality
schedules (Coale and Demeny, 1966) and his subsequent work on
model nuptiality and fertility schedules (Coale, 1971, Coale
and McNeil, 1972, and Coale and Trussell, 1974). Our initial
exploratory efforts are not yet complete, but they do suggest

several observations that will guide our future efforts.

Both approaches have their strengths and weaknesses. The
strength of the mortality approach lies in its ability to infer
migration flows from two consecutive censuses that contain pop-
ulation data disaggregated by age, region of residence, and
region of birth. 1Its weakness is that it leads to a classification
of families of schedules that may have little analytical validity.

The strength of the fertility approach lies in its ability
to represent the migration schedule in terms of dimensions that
are intuitively appealing and analytically robust. The approach
may be used to study the fundamental properties of migration
schedules, to identify and smooth-out errors in observed data,
and to interpolate within observed migration rates. Its weak-
ness is that it does not suggest a ready method for inferring
migration measures on the basis of distributional data alone.

The method requires at least some crude estimates of age-specific
interregional flows, and these are hard to come by in most dev-

eloping and several developed countries.

It may well be that a combination of the two approaches
will produce the most useful perspective. Such a perspective
will demand the integration of concepts associated with model
multiregional life tables with those defining model migration

schedules. Fractions of a lifetime lived in a particular region




will need to be expressed in terms of shifts, jumps, and migra-

production rates, and vice versa.

Finally, arguing by analogy, it seems probable that Coale's
model of nuptiality and fertility can be transformed into one

of labor force participation.énd migration by reinterpreting

1) entry into the marriage market as entry into the

job market,
2) marital searcﬁ as- job search,
3) ‘first marriage frequency as first job frequency, and
4) propprtion ever married as proportion ever active.

The menu for future research is a rich one.
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