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Abstract

The behavior of the simplest forest fire model is studied in this paper through bifur-

cation analysis. The model is a second-order continuous-time impact model where veg-

etational growth is described as a continuous and slow dynamic process, while fires are

modeled as instantaneous and disruptive events. The transition fromMediterranean for-

ests (characterized by wild chaotic fire regimes) to savannas and boreal forests (where

fires are almost periodic) is recognized to be a catastrophic transition known as border

collision bifurcation in the context of discrete-tine systems. In the present case such a

bifurcation can be easily detected numerically and then continued by solving a standard

boundary-value problem. The result of the analysis complements previous simulation

studies and are consistent with biological intuition.
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1. Introduction

Border collision bifurcations have been defined for continuous piecewise

smooth maps depending on parameters [1–6]. In the simplest case of one-

dimensional maps, border collision bifurcations occur, as a parameter is varied,

when a fixed or periodic point of the map collides with the set of points (called
border) where the map is not differentiable.

Bifurcations similar to border collision bifurcations also arise in discontin-

uous piecewise smooth vector fields, called Filippov systems [7,8], in switched

systems (which include continuous piecewise smooth maps, see e.g. [9]), in evo-

lutionary systems [10], and, as shown in this paper, in impact systems (see e.g.

[11, Chapter 7]), described by smooth vector fields whose orbits undergo

abrupt jumps in state space.

Obviously, the consequences of a border collision bifurcation on the system
behavior strongly depend on the considered class of systems. However, the

detection and continuation of the bifurcation in parameter space pose the same

problems. The aim of this paper is to show, through the analysis of a second-

order continuous-time impact model, how the continuation of border collision

bifurcations can be performed by solving standard boundary-value problems.

The model considered in the following describes the dynamics of forest fires

and its bifurcation analysis complements the simulation study carried out in

[12]. As we will see, the key for understanding the transition from chaos to cy-
cles is, indeed, a border collision bifurcation.
2. An impact model for forest fire prediction

While it is true that natural forest fires originate from random events

(mostly lightning) and can easily develop under specific meteorological condi-

tions [13], it is also true that relevant fires can occur only if there is enough fuel,
i.e. only if at least one of the various vegetational layers of the forest is suffi-

ciently rich. This suggests the idea that long-term predictions of forest fires

can be performed with deterministic models describing the growth processes,

while more precise short-term predictions can only be performed through sto-

chastic models for weather forecast.

The best known deterministic model for long-term fire prediction is a

fourth-order continuous-time model characterized by standard bifurcations

[14]. Very recently, a simpler second-order impact model for the long-term pre-
diction of forest fires has been proposed [12]. In this model, the vegetational

growth is described by two standard ordinary differential equations (one for

the surface layer (bush) and one for the upper layer (trees)), while fire episodes

are modeled as instantaneous events. The fire occurs when the biomasses of the

two layers reach pre-specified values. The consequence of a fire is therefore an
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instantaneous reduction of the biomasses which is described, quite empirically,

by a simple map in state space. Models with discontinuities of this kind have

been used almost exclusively to analyze mechanical systems with impacts

(e.g. the motion of the ping-pong ball) and are called, for this reason, impact

models.

A continuous-time model is, in general, described by a set of n ordinary dif-
ferential equations

_x ¼ f ðxÞ; ð1Þ
where x is the n-dimensional state vector (x1,x2, . . . ,xn). In standard models Eq.

(1) holds at any point in state space. By contrast, in impact models Eq. (1)

holds in all points except on a (n�1)-dimensional manifold X�, where the im-

pact occurs. When the state x reaches the manifold X� at point x�, an instan-
taneous transition described by a map

xþ ¼ uðx�Þ; x� 2 X�; ð2Þ
occurs. The set

Xþ ¼ uðX�Þ
is the set of the states of the system immediately after the impact. For this rea-
son, the sets X� and Xþ are called pre- and post-impact manifolds. In our case

they simply represent the pre- and post-fire conditions of the forest.

In the model considered in this paper, the forest has two layers: a lower veg-

etational layer that, depending on the forest, is composed of bryophytes, herbs,

shrubs, or any mix of these plants, and an upper vegetational layer, in general

composed of trees of various species. The corresponding biomasses are denoted

by B (bush) and T (tree). The equations of growth (1) characterizing the model

are

_B ¼ rBB 1� B
KB

� �
� aBT ;

_T ¼ rT T 1� T
KT

� �
:

ð3Þ

This means that, in the absence of fire, trees grow logistically toward the car-

rying capacity KT, while plants of the lower layer do not tend toward their car-
rying capacity KB because tree canopy reduces light availability. A detailed

discussion of the validity of Eq. (3) can be found in [14], where realistic values

for the five vegetational parameters (rB, rT,KB,KT,a) are also suggested.

The pre- and, twice post-impact manifoldsX� andXþ (i.e. the pre-and post-

fire conditions) characterizing map (2) are described in Fig. 1(a).

Let us first focus on the pre-fire conditions by noticing that the function

T(B) identifying the manifold X� is non-increasing and that the set below

the manifold X� is convex. The first property is needed because less trees
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Fig. 1. Model behavior. (a) The pre- and post-fire manifolds X� and Xþ; the dotted lines with

double arrows are the instantaneous transitions from X� to Xþ due to a fire (see Eq. (2));

horizontal [vertical] lines correspond to surface [crown] fires in which trees [bush] are not involved;

oblique lines starting from the segment C�S� of X� correspond to mixed fires. (b) State portrait of

the model; continuous lines with a single arrow represent the growing phase of the forest and are

described by Eq. (3).
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axe necessary for fire ignition if more biomass is available in the lower layer of

the forest. The second property simply says that if x 0 = (B 0,T 0) and x00 = (B00,T00)
are two states of the forest at which fire ignition is not possible (i.e. two points

below the manifold X�) no mix of these two states (i.e. no points of the seg-

ment connecting x 0 with x00) can give rise to fire ignition. A formal support

of these two properties is given in [12], where it is also shown that X� should

be a smooth manifold, while in Fig. 1 it is a piecewise linear manifold. The rea-

son for this choice of X�, geometrically identified by 4 parameters

(qB,qT,rB,rT), allows one to identify surface fires (vertical segment of X�),

crown fires (horizontal segment of X�) and mixed fires (central segment of
X�). By definition, surface fires do not involve trees, so that the post-fire con-

ditions are on the vertical segment characterized by B+ = kBqBKB = kBB
�. In

other words, kB is the proportion of surface biomass that survives to fire. Sim-

ilarly, crown fires are characterized by a vertical instantaneous transition from

T� = qTKT to T+ = kTT
�. The surface fire with the highest tree density is rep-

resented (see Fig. 1(a)) by the transition S� ! S+, while the crown fire with the

highest bush density is represented by the transition C� ! C+. The assumption

that mixed fires initiate on the segment C�S� implies, by continuity, that post-
fire conditions are on a curve connecting points C+ and S+. Of course, mixed

fires initiating close to point C�[S�] should end up close to point C+[S+]. For

simplicity, it is assumed that mixed-fires initiating on the segment C�S� at rel-

ative distances (1�g) and g from the two extreme points C� and S� terminate

on the segment C+S+ and preserve the relative distances from the two corre-
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sponding extreme points C+ and S+. In formulas, the extreme points of the pre-

fire segment C�S� are

C� ¼ ðrBKB;qTKT Þ; S� ¼ ðqBKB; rTKT Þ; ð4Þ
and each mixed fire starts from a point (B�,T�) belonging to the segment
C�S�, i.e.

B� ¼ grBKB þ ð1� gÞqBKB; T� ¼ gqTKT þ ð1� gÞrTKT ; ð5Þ
where 0 6 g 6 1 (g = 0 and g = 1 correspond to points S� and C�, respec-

tively). The extreme points of the post-fire segment C+S+ are

Cþ ¼ ðrBKB; kTqTKT Þ; Sþ ¼ ðkBqBKB; rTKT Þ; ð6Þ
and the post-fire conditions are

Bþ ¼ grBKB þ ð1� gÞkBqBKB; Tþ ¼ gkTqTKT þ ð1� gÞrTKT : ð7Þ
Thus, the map x+ = u(x�) for mixed fires is nothing but the transformation of

point (B�,T�) into point (B+,T+).

The evolution of the forest and, in particular, the sequence of the fires can be
easily obtained from the model, as shown in Fig. 1(b). Starting from a given

initial condition, say point 0 in Fig. 1(b), one integrates the differential equa-

tions (3) until the solution hits the pre-fire manifold X� at point (B�,T�)

(see point 1� in Fig. 1(b)). From anyone of the two equations (5) one can derive

the value of g associated with point 1� and then use Eq. (7) for computing

point 1+. Then, the procedure is iterated and a series of fires 2� ! 2+,

3� ! 3+ . . . is obtained.
As pointed out in Fig. 1(b), the trajectory of the system is the concatenation

of slow transitions (continuous lines) corresponding to growing phases, and

fast (actually instantaneous) transitions (dotted lines) corresponding to fires.

While slow transitions cannot intersect one each other, fast transitions can

intersect with slow and fast transitions, as shown in Fig. 1(b). This is why

the model can be chaotic even if it is only a second-order model.

The analysis carried out in [12] has shown, through simulation, that the sec-

ond-order impact model can mimic very well the qualitative features of the

periodic fire regimes of savannas and boreal forests, as well as the chaotic fire
regimes of Mediterranean forests. However, much more can be understood

through the bifurcation analysis of the model. As we will see in the next sec-

tions, questions like ‘‘why a chaotic fire regime can become periodic by varying

a parameter?’’ can be easily answered provided a special bifurcation can be de-

tected and continued.
3. Characteristic bifurcations of the impact model

We now study the bifurcations of the model described in the previous section.
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If we consider the extreme case of not inflammable forests, i.e. the case in

which the pre-fire manifold X� (see Fig. 1) is at infinity, the model is simply

described by Eq. (3). Such a model has four equilibria

(i) B = 0, T = 0, absence of vegetation;

(ii) B = KB, T = 0, bush without trees;
(iii) B = 0, T = KT, trees without bush;

(iv) B ¼ 1� aKT
rB

� �
KB, T = KT, bush and trees.

The analysis of the Jacobian matrix at these equilibria allows one to con-

clude that

(i) is always an unstable node;

(ii) is always a saddle;
(iii) is a saddle if a < (rB /KT) and a stable node otherwise;

(iv) is positive if and only if a < (rB /KT).

Moreover, (iv) is a stable node when it is positive i.e. when a < (rB /KT). The

results of this preliminary analysis are summarized in Fig. 2 where the two pos-

sible state portraits are shown: for a < (rB /KT), i.e. for low shading effect, bush

and trees coexist, while for a > (rB /KT), i.e. when the shading effect is high, only

trees can persist. The connections between the equilibria prove that limit cycles
cannot exist. Thus, if bush and trees are not inflammable, there is only one pos-

sible bifurcation, namely a transcritical bifurcation of equilibria, which indeed

separates the two cases depicted in Fig. 2. At this bifurcation a = (rB /KB), and

the equilibria (iii) and (iv) collide and exchange their stability.

If vegetation is inflammable, the pre-fire manifold X� becomes important

and is, indeed, involved in all bifurcations of the impact model. The most obvi-

ous bifurcation occurs when the positive equilibrium (iv) touches the pre-fire

manifoldX�. If, increasing a parameter p, the equilibrium (iv) tends toX� from
below and crosses X� at p�, then for p > p� the forest will undergo recurrent

fires. This is the case in which we are interested, since our aim is the description

of the fire regimes of savannas, boreal forests and Mediterranean forests.

When p > p�, namely when the equilibrium (iv) is above the manifold X�,

the attractor of the impact model can be a cycle. The simplest case is that of

a period-1 cycle touching the pre-fire manifold X� at a single fire point, as

shown in the first row of Fig. 3. If the fire point of the cycle is on the lower

[upper] part of the central segment of X�, as in Fig. 3(a) and (b), the fire occurs
at high bush [tree] density as in savannas [boreal forests]. But periodic fire re-

gimes can also be period-k cycles with kP 2.

For p > p� the attractor can also be a strange attractor characterized by an

infinity of fire points on X�, as shown in the second row of Fig. 3. The tran-
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Fig. 2. State portraits in the case of not inflammable forests. (a) Low shading effect; (b) high

shading effect. Parameter values: (a) rB = 0.3, rT = 0.2, KB = 1, KT = 1, a = 0.4; (b) as in (a) except

a = 1.1.
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sition from a cycle to a strange attractor and the reverse one must a priori be a

bifurcation or a sequence of bifurcations. In standard systems a sequence of

flip bifurcations (Feigenbaum cascade) is the most common route to chaos

[15,16], but this is not so in the present case. This is easy to confirm by produc-

ing (through simulation) simple bifurcation diagrams of the kind shown in Fig.

4(a), where pre-fire tree densities T� of the fires characterizing a cycle or a
strange attractor are plotted as a function of a single parameter p (p = kB in

Fig. 4(a)). The figure shows that the strange attractor is initially a single-band

strange attractor (as in Fig. 3(c)) in which fires alternate in an apparently ran-

dom fashion with a continuum of bush and tree mix. Increasing the parameter,

the attractor becomes a two-bands attractor (as in Fig. 3(d)) in which fires with

high tree density alternate randomly with fires with low tree density. Then, the

two-bands shrink until for p = p** they become two points, i.e. the strange

attractor becomes more and more similar to a period-2 cycle and finally degen-
erates exactly into a period-2 cycle for p = p**. However, for p > p** the

attractor is unique and is a period-1 cycle. This means that the transition from

chaos to cycles obtained by increasing p through p** is catastrophic.

As for the period-1 cycle, Fig. 4(a) shows that it remains stable not only for

p > p** but also in the range (p*,p**) with p* smaller than p**. At p* there is a

subcritical flip bifurcation, so that a drop of p below p* triggers a catastrophic

transition from a period-1 cycle to a strange attractor. Actually, the subcritical

flip bifurcation at p* is essential for explaining the bifurcation of the strange
attractor at p**. In fact, it is the unstable period-2 cycle created by the flip
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Fig. 3. Attractors of the forest fire model for different parameter settings (see [12]). (a) Period-1

cycle mimicking periodic fire regimes in savannas. (b) Period-1 cycle mimicking periodic fire

regimes in boreal forests. (c) Single-band strange attractor mimicking chaotic fire regimes in

Mediterranean forests. (d) Two-bands strange attractor mimicking chaotic fire regimes in

Mediterranean forests.
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bifurcation at p* that for increasing values of p approaches the strange attractor

and finally collides with it at p**. Notice that the dashed line tracing the pre-fire

tree densities T� of the unstable period-2 cycle (see Fig. 4(a)) cannot be obtained
by backward simulation, since the model is not reversible. Such a curve has been

obtained by numerical continuation [17,18], as explained in the next section.

As a last remark, critically important for the next section, we like to point

out that the bifurcation p** is characterized by the following very peculiar

property clearly indicated in Fig. 4(b): one of the two fire points of the peri-

od-2 cycle at p** is one of the two points C� and S� (see Fig. 1), where the

pre-fire manifold X� is not differentiable. Since the one-dimensional map
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Fig. 4. (a) Bifurcation diagram of the impact model with respect to kB pointing out a subcritical flip

bifurcation at p* and a border collision bifurcation and p**. (b) Period-2 cycle passing through

point S� for kB = p**. Parameter values are rB = 0.375, rT = 0.0625, KB = 1, KT = 1, a = 0.43, qB =

0.85, qT = 0.93, rB = 0.61, rT = 0.3, p* = 0.0716 . . . , p** = 0.0916 . . . , kT = 10�5.
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defined on the pre-fire manifoldX� by our impact model is not differentiable at
points C� and S�, one can conclude that the transition from the strange attrac-

tor to the period-1 cycle occurring at p** is, indeed, a border collision bifurca-

tion in the sense of Feigin, Nusse and Yorke.
4. Continuation of characteristic bifurcations

This section shows how the flip and border collision bifurcations which oc-
cur (see Fig. 4(a)) at p* and p**, respectively, can be continued in the plane of

two parameters, say (kB,kT).
As shown in Fig. 4(b), the border collision bifurcation is characterized by a

critical period-2 cycle having one of the two fire points at S�. With reference to

Eqs. (1), (2), (4) and (6), such a cycle is a solution of the following boundary-

value problem in the [0,1] time interval:

_u� t1f ðuÞ ¼ 0; ð8aÞ

_v� t2f ðvÞ ¼ 0; ð8bÞ

u2ð0Þ þ
Sþ
2 � Cþ

2

Cþ
1 � Sþ

1

ðu1ð0Þ � Sþ
1 Þ � Sþ

2 ¼ 0; ð8cÞ

v2ð0Þ þ
Sþ
2 � Cþ

2

Cþ
1 � Sþ

1

ðv1ð0Þ � Sþ
1 Þ � Sþ

2 ¼ 0; ð8dÞ

u2ð1Þ þ
C�

2 � S�
2

S�
1 � C�

1

ðu1ð1Þ � C�
1 Þ � C�

2 ¼ 0; ð8eÞ
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v2ð1Þ þ
C�

2 � S�
2

S�
1 � C�

1

ðv1ð1Þ � C�
1 Þ � C�

2 ¼ 0; ð8fÞ

u1ðuð1ÞÞ � v1ð0Þ ¼ 0; ð8gÞ

u1ðvð1ÞÞ � u1ð0Þ ¼ 0; ð8hÞ

u1ð1Þ � S�
1 ¼ 0: ð8iÞ

Eqs. (8a) and (8b), which are time-scaled versions of Eq. (3), describe the two
growing phases, of duration t1 and t2, respectively, while u and v are two-

dimensional vectors, whose first and second components represent bush and

tree densities. Eqs. (8c)–(8f) say that the two growing phases start and termi-

nate on the straight lines spanned by the central segments C+S+ and C�S�

of Xþ and X�, respectively. Periodicity is guaranteed by Eqs. (8g) and (8h),

which require that pre-fire conditions u(1) [v(1)] of one phase are mapped by

Eq. (2) into post-fire conditions corresponding to the start point v(0) [u(0)]

of the other phase. Notice that Eqs. (8g) and (8h) impose this requirement only
on the bush variable (first component u), since start and end points of both

growing phases are already constrained by Eqs. (8c)–(8f). Finally, Eq. (8i) im-

poses that the first growing phase terminates at the critical point S�. The whole

periodic solution is then given by:

ðBðtÞ; T ðtÞÞ ¼
u

t
t1

� �
; t 2 ½0; t1�;

v
t � t1
t2

� �
; t 2 ½t1; t1 þ t2�

8>><
>>:

and corresponds to the border collision bifurcation as long as v(1) lies on the

central segment of X�, i.e. as long as 0 6 g 6 1 in Eq. (5).
The boundary-value problem (8) is composed of four ordinary differential

equations and 7 scalar boundary conditions. Thus, the continuation of a

one-dimensional solution family of Eq. (8) generically requires 4 + 7 + 1 = 12

scalar continuation variables, i.e. (u(0),v(0),u(1),v(1), t1, t2) plus two model

parameters, e.g. (kB,kT), which trace the border collision bifurcation curve.

Starting from the initial solution shown in Fig. 4(b) the corresponding bifurca-

tion curve has been numerically produced by standard continuation techniques

[17,18] using the software package AUTO97 [19] and is shown in Fig. 5. It sep-
arates region 1 of the (kB,kT) plane, where the fire regime is a stable period-1

cycle, from region 2, where a stable chaotic regime is also possible.

As already pointed out in Section 2, the basins of attraction of the period-1

cycle and of the strange attractor are separated by an unstable period-2 cycle

involving mixed fires, which is also present in region 2 of Fig. 5. Such a cycle

is a solution of the boundary-value problem (8a)–(8h), composed of 4 ordinary

differential equations and 6 scalar boundary conditions, and can therefore be
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Fig. 5. Bifurcation diagram of the impact model in the (kB,kT) plane. Other parameter values are as

in Fig. 4. Fire regimes are periodic in region 1 and chaotic in region 3, while in region 2 there are

two alternative attractors, namely a period-1 cycle and a strange attractor. Bifurcation curves: BC,

border collision; F, subcritical flip bifurcation.
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continued with respect to a single model parameter (provided 0 6 g 6 1 for both

growing phases along the continuation, see Eq. (5)). Starting again from the ini-

tial solution of Fig. 4(b), the unstable period-2 cycle has been continued for

decreasing values of kB (actually producing the dashed line tracing pre-fire tree

densities T� in Fig. 4(b)), until a so-called branch point is detected at p*. At a

branch point there are two solution families of Eqs. (8a)–(8h) intersecting each
other, i.e. the period-2 cycle collides with a period-1 cycle traced twice. The

branch point thus detects the subcritical flip bifurcation of the period-1 cycle.

The two parameter continuation of the flip bifurcation has been performed

by continuing a family of period-2 cycles with a constant and small distance

(� = 10�4) between the end points u(1) and v(1), namely by continuing a solu-

tion family of Eqs. (8a)–(8h) plus the following boundary condition

ðu1ð1Þ � v1ð1ÞÞ2 þ ðu2ð1Þ � v2ð1ÞÞ2 � �2 ¼ 0: ð9Þ
The corresponding bifurcation curve in the (kB,kT) plane is shown in Fig. 5 and

separates region 2 from region 3, where the chaotic regime is obligate.

The bifurcation diagram of Fig. 5 can be qualitatively interpreted by saying
that forest fires can be chaotic only if kB and kT are remarkably small. Since

these two parameters identify the residual bush and tree biomasses after a fire,

we know from the morphology of the various types of forests that they are

both particularly small only in Mediterranean forests. Thus, the conclusion

one can draw from the bifurcation diagram of Fig. 5 is that fire regimes of

Mediterranean forests should be chaotic, while savannas and boreal forests

should have periodic fires. This confirms the validity of the model as well as

that of the bifurcation analysis.

gruber
Text Box

gruber
Text Box



12 F. Dercole, S. Maggi / Appl. Math. Comput. xxx (2004) xxx–xxx

ARTICLE IN PRESS
5. Concluding remarks

In this paper we have studied the behavior of a continuous-time model for

forest fire prediction [12]. The model is a second-order impact model where the

growth of bush and trees is a continuous and slow dynamic process, while the

fire is a discontinuous event that occurs when the mix of bush and trees reach a
specified manifold, called pre-fire manifold. For suitable values of the param-

eters the model predicts periodic fires like those occurring in savannas and bor-

eal forests, while for other values it predicts chaotic fire regimes of the kind

observed in most Mediterranean forests. Mathematically speaking, the transi-

tion from chaotic to periodic fire regimes is due to a border collision bifurca-

tion [1–6], which can be easily detected and then continued by solving a

standard boundary-value problem.

The result of our bifurcation analysis are interesting because they comple-
ment the simulation study carried out in [12]. The bifurcation diagrams re-

ported in the paper point out only two bifurcations, namely a subcritical flip

bifurcation and a border collision bifurcation. Since the model is an impact sys-

tem, bifurcation of periodic orbits grazing the pre-fire manifold are also possi-

ble [20]. However, they have been intentionally excluded since our aim was to

discuss only the simplest mechanism responsible of the transition from chaotic

fire regimes of Mediterranean forest to cyclic regimes of savannas and boreal

forests.
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[10] F. Dercole, Border collision bifurcations in the evolution of mutualistic interactions, Int. J.

Bifurcat. Chaos, in press.

gruber
Text Box

gruber
Text Box



F. Dercole, S. Maggi / Appl. Math. Comput. xxx (2004) xxx–xxx 13

ARTICLE IN PRESS
[11] B. Brogliato, Nonsmooth Mechanics, Springer Verlag, New York, 1999.

[12] S. Maggi, S. Rinaldi, A second-order impact model for forest fire regimes, Ecol. Lett.,

submitted for publication.

[13] W.C. Bessie, E.A. Johnson, The relative importance of fuels and weather on fire behavior on

subalpine forests, Ecology 76 (1995) 747–762.

[14] R. Casagrandi, S. Rinaldi, A minimal model for forest fire regimes, Am. Nat. 153 (1999) 527–

539.

[15] S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesely, 1994.

[16] Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, second ed., Springer Verlag,

Berlin, 1998.
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