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The paper describes the slow evolution of two adaptive traits that regulate the interactions
between two mutualistic populations (e.g. a flowering plant and its insect pollinator). For frozen
values of the traits, the two populations can either coexist or go extinct. The values of the traits
for which populations extinction is guaranteed are therefore of no interest from an evolutionary
point of view. In other words, the evolutionary dynamics must be studied only in a viable
subset of trait space, which is bounded due to the physiological cost of extreme trait values.
Thus, evolutionary dynamics experience so-called border collision bifurcations, when a system
invariant in trait space hits the border of the viable subset. The unfolding of standard and
border collision bifurcations with respect to two parameters of biological interest is presented.
The algebraic and boundary-value problems characterizing the border collision bifurcations are
described together with some details concerning their computation.
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1. Introduction

Border collision bifurcations have been originally
defined for n-dimensional continuous piecewise
smooth maps depending on parameters [Feigin,
1970, 1974, 1978; Nusse & Yorke, 1992, 1995; Nusse
et al., 1994]. In the simplest case, there is a (n−1)-
dimensional manifold on which the map is not
differentiable. Such a manifold is the boundary
(border) of two open nonoverlapping regions of state
space in which the map is smooth. When a param-
eter is varied, a border collision bifurcation occurs
if a fixed (or periodic) point hits the border.

Border collision bifurcations also arise in dis-
continuous piecewise smooth vector fields, called
Filippov systems [Filippov, 1964, 1988], where rela-
tionships among state variables are smooth but can
be of different nature in different regions of state
space. In fact, in such systems the flow is contin-
uous and a periodic orbit may graze the border
separating two regions for critical values of the

parameters. Under suitable conditions, such a bifur-
cation corresponds to a border collision bifurcation
in the Poincaré map associated with the periodic
orbit [Bernardo di et al., 1999].

More abstractly, border collision bifurcations
can be seen in any n-dimensional dynamical system
characterized by some sort of irregularity when the
system state reaches a (n−1)-dimensional manifold,
namely the border. According to this definition, the
collision of a system invariant with the border, when
a parameter is varied, is called a border collision
bifurcation.

Thus, border collision bifurcations occur also in
switched systems (which include continuous piece-
wise smooth maps, see e.g. [Liberzon, 2003]), and in
impact systems (see e.g. [Brogliato, 1999, Chap. 7]),
described by smooth vector fields whose orbits und-
ergo abrupt jumps in state space when the border
is reached. Finally, there are smooth dynamical
systems in which orbits are only defined in a
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bounded subset of state space, because the system
is destroyed when the border is reached. In order to
guarantee the sustainability of such systems, it is
therefore necessary that no attractor hits the bor-
der when parameters are varied.

Obviously, the consequences of a border colli-
sion bifurcation on the system behavior strongly
depend on the considered class of systems. However,
the detection and continuation of the bifurcation in
parameter space poses the same problems.

Though many recent theoretical results on bor-
der collision bifurcations are available for piece-
wise smooth systems (see e.g. [Feigin, 1994, 1995;
Bernardo di et al., 1999, 2001, 2002; Kuznetsov
et al., 2003]) and impact systems (see, e.g.
[Nordmark, 1991; Chin et al., 1994; Foale, 1994;
Foale & Bishop, 1994]), and many applications in
several areas of engineering and applied sciences
(ranging from power electronics, vibro-impacting
mechanics and automatic control to earthquake
engineering, natural resources management and
ecology) have been developed (resp. [Bernardo di
et al., 1998; Mc Geer, 1990; Utkin, 1977; Hogan,
1989; Dercole et al., 2003; Křivan & Sikder, 1999],
just to mention a few), less attention has been
paid to systems defined in bounded subsets of state
space.

The aim of this paper is to present the unfold-
ing of standard and border collision bifurcations in
a second-order continuous-time system defined in a
bounded subset of state space. The system describes
the slow evolution by natural selection of the adap-
tive traits of two interacting populations.

Evolutionary change of an adaptive trait is
brought about when a slightly different mutant
conspecific (with a slightly different trait) appears
in a resident population, invades (i.e. gives rise
to a growing population), and wins the competi-
tion against the resident population, thus replac-
ing the former resident trait. Repeated invasions
and replacements result in the evolutionary dynam-
ics of the trait [Darwin, 1859]. Thus, evolution-
ary dynamics occur on a much longer timescale
than that of individuals’ births, interactions, and
deaths, which determine the dynamics of popula-
tion abundances. Therefore, by a timescale separa-
tion argument, on a short timescale, adaptive traits
can be seen as frozen parameters of the ecologi-
cal model which describes the dynamics of popula-
tion abundances. For frozen values of the traits, the
populations can either coexist on a strictly positive
attractor of the ecological model or some of them

can go extinct. Thus, only trait values for which the
ecological model has a strictly positive attractor are
of interest, since otherwise populations extinction
is guaranteed in the short-term. In other words, the
evolutionary dynamics are defined in a viable subset
of trait space, which is bounded due to the physi-
ological cost of extreme trait values. This is why
natural evolution is “at risk”: if the evolutionary
orbit reaches the border of the viable subset, some
of the coevolving populations disappear (evolution-
ary extinction or suicide [Matsuda & Abrams, 1994;
Ferrière, 2000]).

The specific application considered in this
paper addresses the evolution of mutually ben-
eficial interactions between two different species
(e.g. a flowering plant and its insect pollinator) as
described in [Ferrière et al., 2002], where a partial
bifurcation analysis has been carried out without,
however, taking border collision bifurcations into
account. The evolution of two adaptive traits reg-
ulating the rates of commodities provision (e.g. a
reward like nectar or a service like pollination) is
given by two smooth ODEs defined on a bounded
viable subset of the two-dimensional trait space.
The border of the viable subset corresponds to the
evolutionary suicide of both populations.

The paper is organized as follows. In Sec. 2
the ecological model and the evolutionary model
are developed and a brief biological background is
given. Section 3 presents the unfolding of standard
and border collision bifurcations with respect to two
parameters of biological interest, together with the
algebraic and boundary-value problems character-
izing the border collision bifurcations, while some
computational details are reported in Appendix.
The biological implications of the obtained bifur-
cation scenario and a comment on the relevance of
border collision bifurcations close the paper.

As for the style of the paper, I have taken the
liberty of being somehow näıve in the presentation
of the model and in the biological interpretation
of the results, as well as in the description of the
mathematical technicalities. I hope that this will
make the paper accessible to a broader class of read-
ers, ranging from theoretical biologists to applied
mathematicians.

2. The Ecological and Evolutionary
Models

A longstanding puzzle posed by mutually ben-
eficial interactions between two different species
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(interspecific mutualism) is their persistence in spite
of apparent evolutionary nonsustainability. Inter-
specific mutualism inherently exhibits conflicts of
interest between the interacting species in that
selection should favor “cheating” individuals that
reap mutualistic benefits while providing fewer
commodities to the partner species [Axelrod &
Hamilton, 1981; Soberon Mainero & Martinez del
Rio, 1985; Bull & Rice, 1991; Addicott, 1996].
Thus, cheating should gradually erode the mutu-
alistic interaction, leading to dissolution or recipro-
cal extinction [Roberts & Sherratt, 1998; Doebeli
& Knowlton, 1998]. However, recent empirical find-
ings indicate that associations of mutualists and
cheaters have existed over long evolutionary peri-
ods [Machado et al., 1996; Pellmyr et al., 1996;
Pellmyr & Leebens-Mack, 1999; Després & Jaeger,
1999; Bronstein, 2001].

Despite the widespread occurrence and obvious
importance of mutualistic interactions, the theory
of mutualistic coevolution is virtually nonexistent
(but see [Kiester et al., 1984; Law, 1985; Frank,
1994, 1996; Law & Dieckmann, 1997; Doebeli &
Dieckmann, 2000] and, in particular [Ferrière et al.,
2002]).

Ferrière et al. [2002] offered a general expla-
nation for the evolutionary origin of cheaters and
the surprising sustainability of mutualistic asso-
ciations by assuming a competitive premium for
“good mutualists” that provide large amounts of
commodities. Provided commodities represent a
limited resource for the partner species, therefore
there is intraspecific competition for commodities
[Addicott, 1985; Iwasa et al., 1995; Bultman et al.,
2000], and competition in nature is, as a rule,
asymmetrical [Brooks & Dodson, 1965; Lawton &
Hassell, 1981; Karban, 1986; Callaway & Walker,
1997] (i.e. cheaters or good mutualists are better
competitors). Clearly, if any competitive asymme-
try were to give advantage to cheaters, there would
be no way to sustain the mutualistic interactions.
However, individuals often discriminate among
partners according to the quantity of rewards they
provide and associate differentially with higher
reward producers [Bull & Rice, 1991; Christensen
et al., 1991; Mitchell, 1994; Anstett et al., 1998].
Thus, a competitive advantage to good mutual-
ists may explain a richer range of evolutionary
outcomes.

Ferrière et al. [2002] analyzed the case of a two-
species obligate mutualism (i.e. both species cannot
survive without the partner’s support; see [Doebeli

& Dieckmann, 2000] for the nonobligate case) and
assumed that each species has a continuous adap-
tive trait that measures the rate at which commodi-
ties are provided to the partner. Thus, low (high)
trait values correspond to cheaters (good mutual-
ists). Provision of commodities is costly in terms
of reproduction or survival, and cheaters incur a
reduced cost [Boucher et al., 1992; Maynard Smith
& Szathmary, 1995; Herre et al., 1999; Bronstein,
2001].

The evolutionary model describing the dynam-
ics of the two traits is developed following the
approach of adaptive dynamics theory [Dieckmann
& Law, 1996; Metz et al., 1996; Geritz et al., 1997,
1998]. This approach is based on the assumption
that small and rare random mutations are followed
by natural selection, so that the dynamics of the
traits can be described in a purely deterministic
way, through a system of ODEs. The derivation of
the evolutionary model requires the knowledge of
the short-term ecological interactions between resi-
dent and mutant populations (with frozen values of
the traits) and the statistics of the mutation pro-
cess. All this is specified in the next two subsec-
tions (see [Ferrière et al., 2002], for a more detailed
description).

2.1. Ecological dynamics

The ecological interaction between species X (den-
sity x) and species Y (density y) is described by the
following two ODEs:

ẋ = x(−r(u) − cx + vy(1 − αx)), (1a)

ẏ = y(−s(v) − dy + ux(1 − βy)). (1b)

The mutualistic traits u and v are measured as
per capita rates of commodities trading; thus, ux
and vy represent the probabilities per unit time
that one partner individual receives benefit from the
mutualistic interaction. Intraspecific competition
for commodities provided by the partner species is
expressed by the linear density-dependent factors
(1−αx) and (1−βy) [Wolin, 1985]. The terms −cx
and −dy measure the detrimental effect of intraspe-
cific competition for other resources. The mutual-
ism being obligate, the intrinsic rates of increase,
−r(u) and −s(v), are negative, and r(u) and s(v)
increase with u and v respectively, to reflect the
direct cost of producing commodities. The func-
tions r(u) = r1(u + u2) and s(v) = s1(v + v2) have
been used to perform the numerical analysis, where
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r1 and s1, as well as c, d, α, and β, are positive
parameters.

The analysis of model (1) carried out in
[Ferrière et al., 2002] shows that the extinction equi-
librium (x, y) = (0, 0) is always locally stable (with
respect to the positive orthant of the (x, y) plane)
and that, depending on the trait values u and v,
there may also exist two positive equilibria, one
stable (a node, denoted by (x, y) in the following)
and one unstable (saddle). The transition between
the two cases (none or two positive equilibria) is a
saddle-node bifurcation. Straightforward computa-
tions (see [Ferrière et al., 2002, Appendix A]) give
the condition satisfied by the model parameters at
this bifurcation, as well as explicit formulas for x
and y. Specifically, if the stable equilibrium (x, y)
exists, it is the larger real solution of

Ay2 + By + C = 0, (2)

where

A = uvβ + vαd,

B = −uv − ur(u)β + vαs(v) + cd,

C = ur(u) + cs(v),

i.e. [see Eq. (1b)]

x(u, v) =
s(v) + dy(u, v)
u (1 − βy(u, v))

, (3a)

y(u, v) =
−B +

√
B2 − 4AC

2A
, (3b)

and the bifurcation condition is the annihilation of
the discriminant B2 − 4AC of Eq. (2). The corre-
sponding bifurcation curve in the (u, v) trait space
is the closed ovoid curve depicted in Fig. 1 (main
panel), which defines the domain D of ecological
viability of the mutualistic association. If (u, v) lies
outside D, model (1) has no positive equilibria and
the mutualistic association go extinct in the short-
term, leaving no room for evolution (see Fig. 1,
bottom-right panel). By contrast, if (u, v) ∈ D, then
the two mutualistic partners can coexist at (x, y)
(see Fig. 1, central panel), so that the mutation-
selection processes can drive the evolution of the
adaptive traits. Thus, the evolutionary dynamics of
the traits u and v are only defined in the viable
domain D.

2.2. Evolutionary dynamics

To construct a mathematical model for the
joint evolution of u and v, it is assumed that

Fig. 1. The domain D of ecological viability of the mutu-
alistic association in the trait space (u, v) (main panel) for
the following parameter values: c = 1, d = 2, α = 2, β = 4,
r1 = s1 = 10−3. For (u, v) �∈ D the two populations go
extinct, as shown in the bottom-right state portrait (obtained
for u = v = 1). For (u, v) ∈ D steady coexistence of the two
populations is possible, as shown in the central state por-
trait (obtained for u = v = 1.8). When the border of D is
approached from inside, the stable equilibrium (x, y) (green
circle) and the saddle (blue circle) become closer and closer
until they collide (saddle-node bifurcation).

individuals’ births, interactions, and deaths
described by the ecological model (1) occur on a
short, ecological, timescale over which the species
abundances x and y quickly equilibrate at (x, y).
Rare and small mutations in the traits arise on
a long, evolutionary timescale. The evolutionary
process comprises a sequence of trait substitutions
caused by selection of successful mutants that win
the competition against residents on the ecological
timescale.

In order to derive the dynamics of the traits,
one has to extend the ecological model (1) by con-
sidering the presence of a mutant population, i.e.

ẋ = x(−r(u) − c(x + xmut) + vy(1 − a(0)x

− a(u − umut)xmut)), (4a)

ẋmut = xmut(−r(umut) − c(x + xmut)

+ vy(1 − a(umut − u)x − a(0)xmut)), (4b)

ẏ = y(−s(v) − dy + (ux + umutxmut)

× (1 − b(0)y)), (4c)
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for the case of a mutant trait umut with population
density xmut, and

ẋ = x(−r(u) − cx + (vy + vmutymut)

× (1 − a(0)x)), (5a)

ẏ = y(−s(v) − d(y + ymut) + ux(1 − b(0)y

− b(v − vmut)ymut)), (5b)

ẏmut = ymut(−s(vmut) − d(y + ymut)

+ ux(1 − b(vmut − v)y − b(0)ymut)), (5c)

for the case of a mutant trait vmut with popula-
tion density ymut. Equations (4) and (5) assume
that intraspecific competition for commodities pro-
vided by the partner species is trait dependent
and described by the functions a and b. In par-
ticular, a(0) = α and b(0) = β, so that Eqs. (4)
and (5) degenerate into the ecological model (1) if
the mutant is absent. Denoting by −α′ and −β′
the slopes of a and b when umut = u and vmut =
v respectively, parameters α′ and β′ measure the
degrees of competitive asymmetry for commodities
provided by the partner in species X and Y . Posi-
tive values of α′ [β′] reflect a competitive advantage
for slightly better mutualistic mutants in species X
[Y ], i.e. a premium for providing more commodi-
ties; conversely, negative values of α′ [β′] reflect a
competitive advantage for slightly less mutualistic
mutants (cheaters); if α′ = 0 [β′ = 0] competition
is symmetric.

By assuming the timescale separation of eco-
logical and evolutionary processes, and in the limit
of infinitesimally small mutations, the approach of
adaptive dynamics theory [Dieckmann & Law, 1996;
Metz et al., 1996; Geritz et al., 1997, 1998] provides
a deterministic approximation of the underlaying
stochastic processes of mutation and selection. The
final result is that the traits u and v vary in accor-
dance with the following two ODEs:

u̇ = kux(u, v)
∂WX

∂umut
(umut, u, v)

∣∣∣∣
umut=u

, (6a)

v̇ = kvy(u, v)
∂WY

∂vmut
(vmut, u, v)

∣∣∣∣
vmut=v

, (6b)

where x(u, v) and y(u, v) are given by Eq. (3),
parameters ku and kv are proportional to the fre-
quency and variance of small mutations in species
X and Y , and WX and WY are the so-called inva-
sion fitnesses, defined as per capita rates of increase

from initial scarcity of the mutant populations xmut

and ymut in a resident association (u, v) settled at
(x, y) [Metz et al., 1992].

In formulas:

WX(umut, u, v) =
ẋmut

xmut

∣∣∣∣∣
xmut=0
x=x(u,v)
y=y(u,v)

= −r(umut) − cx(u, v) + vy(u, v)

×(1 − a(umut − u)x(u, v)),

WY (vmut, u, v) =
ẏmut

ymut

∣∣∣∣∣
ymut=0
x=x(u,v)
y=y(u,v)

= −s(vmut) − dy(u, v) + ux(u, v)

× (1 − b(vmut − v)y(u, v)),

so that the evolutionary model (6) becomes:

u̇ = kux(u, v)
(
− dr

du
(u) + α′vx(u, v)y(u, v)

)
, (7a)

v̇ = kvy(u, v)
(
−ds

dv
(v) + β′ux(u, v)y(u, v)

)
, (7b)

for (u, v) in the domain D (see Sec. 2.1). Along an
evolutionary orbit (u(t), v(t)) of model (7) the pop-
ulation densities x and y track the equilibrium den-
sities (3) corresponding to the current trait values,
i.e. (x(u(t), v(t)), y(u(t), v(t))). If the evolutionary
orbit reaches the border of D both coevolving pop-
ulations undergo an evolutionary suicide.

3. Bifurcation Analysis of the
Evolutionary Model

Now the unfolding of standard and border collision
bifurcations of the evolutionary model (7) is pre-
sented with respect to the degrees of competitive
asymmetry for commodities α′ and β′. (The other
parameters are kept constant at the values reported
in the caption of Fig. 1.)

In biological terms, the existence of an attrac-
tor of model (7) for positive values of α′ and β′
is consistent with the conjecture that a competitive
premium for good mutualists is the key for the long-
term persistence of interspecific mutualism. In fact,
for nonpositive α′ and β′, the rates of change u̇ and
v̇ of the traits u and v given by Eqs. (7) are negative
for all (u, v) in the domain D of ecological viability,
and evolutionary suicide is the inevitable outcome
(see Fig. 2).
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Fig. 2. Evolutionary dynamics in the plane of the adaptive
traits (u, v) under symmetric competition for commodities
provided by the partner species (α′ = β′ = 0, other parame-
ter values as in Fig. 1). Yellow area: set of ancestral conditions
leading to evolutionary suicide. Coevolution is characterized
by mutualism disinvestment (u̇ < 0, v̇ < 0 for all (u, v) in the
domain D of ecological viability). Evolutionary suicide is the
final outcome irrespective to ancestral conditions.

Figure 3 shows the bifurcation diagram and
unravels seven qualitatively different evolutionary
state portraits depicted in Fig. 4. Notice that the
border of the domain D of ecological viability is
independent of α′ and β′, and that the state por-
traits corresponding to regions 4′©– 6′© are not shown
(they are almost symmetric copies of those corre-
sponding to regions 4©– 6© with respect to the diag-
onal u = v; the symmetry, however, is not exact
since α �= β and c �= d, see caption of Fig. 1). Curves
and points in Fig. 3 correspond to codimension-1
and -2 standard or border collision bifurcations. The
type of bifurcation is indicated in the caption (see
e.g. [Kuznetsov, 1998] for standard codimension-1
and -2 bifurcations). The two thin gray areas in the
main panel hide more complex bifurcation struc-
tures than a single bifurcation curve. Such struc-
tures are not visible at the scale of the main panel
and are unraveled by four magnified views in suit-
able neighborhoods of the codimension-2 bifurca-
tion points BT1, A1, A2, BT2 (right panels).

Figures 3 and 4 are self-explaining and show
that asymmetric competition for commodities pro-
vided by the partner species, with a competitive

premium for good mutualists, can indeed explain
the evolutionary persistence of interspecific mutu-
alism. The region of the (α′, β′) plane in which this
is possible is the union of regions 1©, 5©– 7©, 5′©, 6′©,
the long-term evolutionary regime being stationary
in regions 1©, 5©, and 5′©, cyclic in region 7©, and
stationary or cyclic in regions 6© and 6′©. However,
evolutionary suicide is always possible for suitable
ancestral conditions (see yellow areas in Fig. 4),
and this may turn the empirical test of theoretical
results problematic.

All bifurcation curves shown in Fig. 3 have
been numerically produced by standard continua-
tion techniques [Doedel et al., 1991a, 1991b] using
the software package Auto97 [Doedel et al., 1997].

Producing a bifurcation curve requires two
steps. First the bifurcation needs to be detected, by
continuing an invariant with respect to one param-
eter. The detection is performed by monitoring a
suitable test function which is null when the invari-
ant undergoes the bifurcation. Then, the bifurcation
curve needs to be traced in a parameter plane, by
continuing (with respect to two parameters) a set of
equations, called defining system of the bifurcation,
which identifies the bifurcation. Test functions and
defining systems are implemented in Auto97 for
standard bifurcations, but not for border collision
bifurcations.

Two types of border collision bifurcations are
present in Fig. 3, namely the collision of an equi-
librium or that of a limit cycle of model (7) with
the border of the domain D. Using the terminology
introduced for Filippov systems (see e.g. [Bernardo
di et al., 2001; Kuznetsov et al., 2003]), such bifurca-
tions are here called boundary equilibrium and graz-
ing respectively.

A boundary equilibrium bifurcation can be
detected by finding a zero of the discriminant ∆ =
B2 − 4AC of Eq. (2), since ∆ = 0 when (u, v)
reaches the border of D. However, model (7) is
not defined for ∆ < 0 (see Eq. (3b)), so that
a zero of ∆ can hardly be detected, in prac-
tice. In fact, numerical continuation proceeds in a
prediction-correction fashion, where predictions are
made along the tangent direction to the solution
branch, according to a (possibly adaptive) step-
size, and corrections are based on Newton’s method
[Doedel et al., 1991a, 1991b]. Thus, in order to find
the zero of a test function, a change of sign of such
a function from one step to the next needs first
to be detected; then, subsequent refinements locate
the zero within the desired accuracy. A boundary
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Fig. 3. Bifurcation diagram of the evolutionary model (7) in the (α′, β′) plane: Main panel (left) plus four magnified views in
suitable neighborhoods of points BT1, A1, A2, BT2 (right panels, arrows indicate terminal points of bifurcation curves lying
outside the panel), illustrating the bifurcation structures covered by the two thin gray areas in the main panel. Other parameter
values are as in Fig. 1. Bifurcation curves: A1–B1, A2–B2, grazing (of stable cycle); A1–BH1, A2–BH2, grazing (of unstable
cycle); A1–GH , A2–ZS, tangent of cycles (stretched for purpose of illustration); B1–BT1, B2–ZS, homoclinic (negative saddle
quantity); BF1–BF2, boundary saddle; BF1–BH1,2–BF2, boundary node/focus; BF1–BT1,2–BF2, saddle-node; BH1–GH ,
BH2–BT2, subcritical Hopf; BT1–GH , supercritical Hopf; BT2–ZS, homoclinic (positive saddle quantity). Codimension-2
bifurcation points: A1, A2, tangent of grazing cycles; B1, B2, grazing homoclinic; BF1, BF2, boundary saddle-node; BH1,
BH2, boundary Hopf; BT1, BT2, Bogdanov–Takens; GH , generalized Hopf; ZS, zero saddle quantity.

Fig. 4. Evolutionary dynamics in the plane of the adaptive traits (u, v) for different degrees of competitive asymmetry for
commodities (same scale in all panels). Yellow areas: set of ancestral conditions leading to evolutionary suicide. Numbering
refers to the corresponding regions of Fig. 3: 1© α′ = 0.04, β′ = 0.04; 2© α′ = 0.4, β′ = 0.4; 3© α′ = 4, β′ = 4; 4© α′ = 0.015,
β′ = 0.4; 5© α′ = 0.015, β′ = 0.17; 6© α′ = 0.007484, β′ = 0.3406; 7© α′ = 0.007464, β′ = 0.3470. Some evolutionary orbits
are stretched for purpose of illustration. Other parameter values are as in Fig. 1.
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equilibrium bifurcation of model (7) can therefore
be detected approximately by substituting the test
function ∆ with ∆−δ, with a small δ > 0 and using
a sufficiently small continuation step-size.

As for the continuation of a boundary equilib-
rium bifurcation, if model (7) is written in the form

u̇ = fu(u, v, α′, β′),

v̇ = fv(u, v, α′, β′),

then the defining system is:

fu(u, v, α′, β′) = 0, (8a)

fv(u, v, α′, β′) = 0, (8b)

∆(u, v, α′, β′) = 0. (8c)

Equations (8a) and (8b) say that (u, v) is an equilib-
rium of model (7), while Eq. (8c) requires that (u, v)
lies on the border of D. Unfortunately, the contin-
uation of Eq. (8) with respect to (α′, β′) inevitably
crashes as soon as a prediction of the continuation
algorithm involves a slightly negative value of ∆.
But when ∆ = 0, the ecological equilibrium (x, y)
is simply given by (see Eqs. (3))

x̂(u, v) =
s(v) + dŷ(u, v)
u(1 − βŷ(u, v))

, ŷ(u, v) = − B

2A
,

so that the defining system becomes:

− dr

du
(u) + α′vx̂(u, v)ŷ(u, v) = 0, (9a)

−ds

dv
(v) + β′ux̂(u, v)ŷ(u, v) = 0, (9b)

∆(u, v, α′, β′) = 0, (9c)

which is well defined even for ∆ < 0. The algebraic
system (9) is composed of three scalar equations and
defined in the four-dimensional space (u, v, α′, β′).
Thus, it generically admits one-dimensional solu-
tion branches which, projected in the (α′, β′) plane,
give boundary equilibrium bifurcation curves.

The analysis of grazing bifurcations is slightly
more complex. If (u(t;α′, β′), v(t;α′, β′)), t ∈ [0,
T (α′, β′)], is a T -periodic parametric solution fam-
ily of model (7), then

min
t∈[0,T (α′,β′)]

{∆(u(t;α′, β′), v(t;α′, β′), α′, β′)} (10)

is a test function that can be used for detecting
a grazing bifurcation, during the continuation of a

limit cycle of model (7). However, since model (7) is
not defined for ∆ < 0, a zero of function (10) cannot
be detected, in practice. As in the case of bound-
ary equilibrium bifurcations, a grazing bifurcation
of model (7) could be approximately detected by
finding a zero of the following function:

min
t∈[0,T (α′,β′)]

{∆(u(t;α′, β′), v(t;α′, β′), α′, β′)} − δ,

with a small δ > 0. However, only a finite number
N of points, (uk, vk), k = 1, . . . , N , of a limit cycle
are continued, i.e. those corresponding to a finite
mesh, 0 = t0 < t1 < · · · < tN = T , defined on the
time interval [0, T ] [Doedel et al., 1991b]. A suitable
test function is therefore:

min
k=1,...,N

{∆(uk, vk, α
′, β′)} − δ.

As for the continuation of a grazing bifurcation,
the defining system is:

ṗ − Tfu(p, q, α′, β′) = 0, (11a)

q̇ − Tfv(p, q, α′, β′) = 0, (11b)

p(0) − p(1) = 0, (11c)

q(0) − q(1) = 0, (11d)

∆(p(0), q(0), α′ , β′) = 0, (11e)

∂∆
∂u

(p(0), q(0), α′ , β′)fu(p(0), q(0), α′ , β′)

+
∂∆
∂v

(p(0), q(0), α′ , β′)fv(p(0), q(0), α′ , β′) = 0.

(11f)

Equations (11a) and (11b) are a time-scaled ver-
sion of model (7) (T is the period of the solu-
tion (u(t) = p(t/T ), v(t) = q(t/T ))). Periodicity is
ensured by Eqs. (11c) and (11d), while Eqs. (11e)
and (11f) require that the solution starts tangen-
tially to the border of D at time t = 0. Unfortu-
nately, analogously to Eq. (8), Eq. (11) cannot be
used, in practice, and the grazing bifurcations of
model (7) can only by approximated by substitut-
ing Eq. (11e) with

∆(p(0), q(0), α′, β′) − δ = 0 (12)

with a small δ > 0. Equations (12) and (11f) say
that the solution starts, at time t = 0, tangentially
to the curve defined by ∆ = δ, which bounds a
domain contained in D and as close to D as δ is
small. The defining system [(11a)–(11d), (11f), (12)]
is a boundary-value continuation problem in the
[0, 1] time interval, composed of 2 ODEs and four
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scalar boundary conditions, and defined in the
seven-dimensional space (p(0), q(0), p(1), q(1), T, α′ ,
β′). Thus, it generically admits one-dimensional
solution branches which, projected in the (α′, β′)
plane, give approximated grazing bifurcation curves
(see Appendix for the validity of such an approxi-
mation in Fig. 3).

The defining systems (9) and [(11a)–(11d),
(11f), (12)] can be easily implemented in Auto97.
However, generic n-dimensional versions have been
recently implemented in SlideCont [Dercole &
Kuznetsov, 2005], a software package for numerical
bifurcation analysis of Filippov systems.

4. Discussion and Conclusions

The theoretical analysis presented in [Ferrière et al.,
2002] and complemented in this paper shows that
asymmetrical intraspecific competition for the com-
modities offered by mutualistic partners provides
a simple and testable ecological mechanism that
can account for the long-term persistence of mutu-
alisms. Cheating, in effect, establishes a background
against which better mutualists can display any
competitive superiority. This can lead to the evolu-
tionary coexistence of mutualist and cheater traits,
even though natural selection can drive certain
ancestral evolutionary states to the evolutionary
suicide of the mutualistic partners. These results
are in agreement with empirical findings indicat-
ing that associations of mutualists and cheaters
have existed over long spans of evolutionary time
[Machado et al., 1996; Pellmyr et al., 1996; Pellmyr
& Leebens-Mack, 1999; Després & Jaeger, 1999;
Bronstein, 2001], and that intraspecific competi-
tion for commodities is indeed asymmetrical and
in favor of good mutualists [Addicott, 1985; Bull &
Rice, 1991; Christensen et al., 1991; Mitchell, 1994;
Iwasa et al., 1995; Anstett et al., 1998; Bultman
et al., 2000].

The mathematical description consists of two
models: the ecological model (1), accounting for
the short-term dynamics of the abundances of two
mutualistic populations for frozen values of the
adaptive traits (rates of commodity provision), and
the evolutionary model (7), governing the long-term
dynamics of the traits.

The analysis of the ecological model shows that
steady coexistence of the mutualistic pair is possible
as long as the traits are neither extremely low nor
too high. At the boundary of the domain D of trait
space where ecological persistence is possible (i.e.

on the ovoid curve in Fig. 1), the system undergoes
a catastrophic bifurcation (saddle-node) and col-
lapses abruptly. In the short-term, within the persis-
tence region, mutualistic populations reach a stable
ecological equilibrium. However, ecological coexis-
tence alone by no means provides a sufficient con-
dition for the long-term persistence of a mutualism:
an evolutionary perspective is mandatory.

The analysis of the evolutionary model shows
that if individuals compete with equal success
for the commodity provided by the other species,
regardless of how much those individuals invest in
mutualism (symmetrical competition), or if asym-
metrical competition favoring good mutualists is
too weak (bottom-left part of region 3© in Fig. 3) the
mutualism erodes because cheating mutants that
invest less in mutualism will be under no com-
petitive disadvantage and thus will always be able
to invade, ultimately driving the partner species
toward the bottom-left part of the boundary of the
coexistence region D, irrespectively to the ancestral
state (see Fig. 2). If the asymmetry is very strong
at least in one species (top or right part of region 3©
in Fig. 3), the selective pressure favoring the pro-
vision of more commodities will predominate, caus-
ing runaway selection until the costs incurred are
so large that the mutualistic association becomes
nonviable and extinction is again the inexorable
outcome (see Fig. 4 panel 3©). By contrast, at
intermediate degrees of competitive asymmetry, the
association can evolve toward viable stationary or
cyclic long-term evolutionary regimes (see regions
1©, 5©– 7©, 5′©, 6′© in Fig. 3 and corresponding pan-
els in Fig. 4).

Since evolutionary dynamics are confined in the
domain of ecological viability, both standard and
border collision bifurcations will generically occur.
Notice that a border collision bifurcation involv-
ing an evolutionary attractor implies an abrupt
rise of the risk of evolutionary extinction. In fact,
through such a bifurcation, the basin of attraction
of the bifurcating attractor becomes part of the set
of ancestral conditions leading to evolutionary sui-
cide (see the boundary equilibrium bifurcation from
region 1© to region 2© and the grazing bifurcation
from region 6© to region 5© in Fig. 3, and cor-
responding evolutionary state portraits in Fig. 4,
where the yellow area rises abruptly through the
bifurcations).

This paper has shown how boundary equi-
librium and grazing bifurcations can be detec-
ted and continued in parameter space, in generic
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n-dimensional vector fields. The biological mes-
sage of this study is that the systematic detection
and continuation of border collision bifurcations in
parameter space is of crucial importance for the full
understanding of the links between ecology and evo-
lution. Though linking ecology and evolution is per-
haps one of the challenges of the 21st century in
biology, I believe that the value of the numerical
techniques presented in this paper is even wider.
In fact, border collision bifurcations are common
to several classes of dynamical systems, which have
been used in a variety of applications in very differ-
ent areas of engineering and applied sciences.
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Appendix

Two indicators of the degree of approximation of a grazing bifurcation curve of model (7) computed by
means of Eqs. [(11a)–(11d), (11f), (12)] are

max
i




min
s∈R
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i, β

′
i) − uD(s;α′
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and
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where (α′
i, β

′
i) is the ith point of the computed

solution branch (say for δ = δ), (uD(s; α′
i, β′

i),
vD(s; α′

i, β′
i)) is a parametrization of the border of

D, (α′(s), β′(s)) is a parametrization of the (not

known) grazing bifurcation curve, and ‖ · ‖ is the
Euclidean norm in R2.

Indicators (A.1) and (A.2) respectively mea-
sure the maximum (relative) distance, along the
solution branch, in trait space between the contin-
ued cycle and the border of D, and in parameter
space between the approximated and the real graz-
ing bifurcation curves. When small, they are well
approximated by

max
i
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and
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, (A.4)

where (α′
j , β

′
j) is the jth point of a solution

branch of Eqs. [(11a)–(11d), (11f), (12)] computed
for δ = δ + ε.

The grazing bifurcation curves shown in Fig. 3
have been computed for δ = 1 and ε = 1, and
the obtained indicators (A.3) and (A.4) are smaller
than 10−5.
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