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Multi-type Branching Processes and Adaptive

Dynamics of Structured Populations

M. Durinx and J.A.J. Metz

This article appears as Section 7.8 in P. Haccou, P. Jagers, V. Vatutin:
Branching Processes in Biology: Variation, Growth and Extinction
Cambridge Studies in Adaptive Dynamics 5, Cambridge UP (2004).

1 Introduction

Adaptive dynamics deals with the consequences of the repeated establishment of
rare mutants in environments set by large equilibrium populations of residents.
It studies which mutants can potentially invade, which successful invasions lead
to the demise of the original residents, and what the evolutionary outcome can
be of a prolonged series of such substitution events (Metz et al. 1996). The main
assumptions are

rare mutations: the community dynamics has settled on an attractor between
mutation events, hence the ecological and evolutionary time scales are
separated.

initially rare mutants: the well-mixed resident populations have a large size,
while the mutant’s population starts up from a single mutant.
The assumed magnitude of the resident population makes its dynamics
deterministic, whereas the rarity of the invading mutant induces a strong
stochastic effect.

small mutational steps: mutants must be similar to one of the residents, to
allow sensible topological and geometrical inferences.

We restrict in this section the postulate of deterministic resident dynamics even
further, to the case where its attractors are fixed points. Combined with the
time scale supposition, this allows one to regard the residents as stationary on
the ecological time scale.

The main attraction of this restrictive set of assumptions is that it allows
the construction of a mathematically consistent framework for studying the
possible patterns of evolutionary outcomes, based on a precise if not always
equally realistic foundation of mechanistic biological reasoning.

The traits that we study as being under evolutionary control through muta-
tion and selection, must be thought of as parameters that govern the life history

1



of individuals. Each resident population consists of a large number of individu-
als sharing a characteristic trait. Several such populations, with different traits
or trait values, make up the community of residents. In this environment, a
single newborn individual may have an advantageous mutation, giving rise to
an initially small mutant population. In the long run, the presence of the new-
comers affects the fitness and thereby possibly the persistence of the resident
populations; this interplay lets evolution shape the species of the community.

The study of the evolutionary dynamics can be broadly divided in two cat-
egories. Firstly, away from special points called singularities (as defined in 2),
directional selection acts. Then the dictum “invasion implies fixation” holds,
which means that any persistent mutant will drive its ancestral resident to ex-
tinction. This property is proved in Geritz et al. (2002) on the assumption that
the population dynamical attractors are sufficiently well-behaved. Through this
mechanism, the standing diversity remains the same since the emergence of a
successful new type implies the disappearance of an older type.

One way of failing to be well-behaved is to have a qualitative change in
the pattern of the population dynamics (known in dynamical systems theory
as a bifurcation). The appearance of a mutant then may lead to the demise
of not only the resident that spawned it, but also other resident types, thereby
reducing the diversity present in the community. The more extreme cases involve
evolutionary suicide, where a sequence of substitution events can drive the entire
community to extinction (e.g. Gyllenberg and Parvinen 2001).

Secondly, at singularities, the attractiveness of adaptive dynamics as an
evolutionary framework is revealed. One of the categories a singularity can
belong to, is that of the classic-but-inappropriately-named evolutionary stable
strategy (ESS) known from evolutionary game theory (Maynard Smith 1982).
However, there are other naturally occurring types of singularities. Foremost,
the branching point, an attracting singularity in the proximity of which the
population dynamics exerts disruptive selection. This selection acts such that a
newly established mutant does not send its progenitor to kingdom come. Instead
the two coexisting types will diverge further and further, so that soon they will
sit on opposite sides of the singularity. When plotting the resident strategies
against evolutionary time, one sees the “branches” that gave the singularity its
name. This splitting of genetical lines has an obvious appeal as a model for (the
initiation of) speciation. For a deeper understanding we refer to the book on
adaptive speciation (Dieckmann et al. 2004) in this series.

In this section, we only consider evolution at a distance from singularities.
Under such a regime of directional selection, one can estimate the rate of trait
substitutions as Dieckmann and Law (1996) did, formulating the “canonical
equation of adaptive dynamics”. We will show how Durinx et al. (in prep.)
extend this equation to physiologically structured populations. In particular,
we sketch how the speed of evolution is assessed from the underlying branching
process of the invasion dynamics.
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2 The invasion fitness

The main tool of adaptive dynamics is the invasion fitness function. By defi-
nition this is the long-term average per capita growth rate of a rare type (the
invader) in an equilibrium community of a given set of types (the residents).
Thus it is the Malthusian parameter of the invader. One sees that any resident
type cast in the role of invader always has zero invasion fitness, since it will on
average neither grow nor diminish in abundance. An invader with a negative fit-
ness will never gain a foothold in the given community, whereas a positive fitness
implies a positive probability of establishment. As this concerns a stochastic
process with a very small amount of invaders, even a positive average growth
rate will not prevent extinction in a fair amount of cases: establishment must
be studied as the outcome of a branching process.

The assumption of small mutational steps lets the mutants differ but slightly
from one of the resident types. The tacit biological suggestion is that any muta-
tion with a large effect would be detrimental due to pleiotropy, thus guaranteeing
a truncation of the effective mutation distribution.

When a mutant has a positive invasion fitness, but due to stochasticity its
attempt at establishment fails, this is not the end. Evolution can bide its time
and a later occurring similar mutation may get established due to better luck. In
the simplest setting, the probability of success for single invasion attempts only
affects the speed of evolution rather than its endpoint. However, in polymorphic
populations or higher dimensional strategy spaces, the speed, direction and
outcome can all be affected.

The strategy, trait value or simply trait of an individual denotes its particular
set of values for the parameters that are under evolutionary control; this can be
a vector or just a single scalar value. A polymorphic community has individuals
with differing traits. We only consider cases where there is a finite number of
strategies present. If we lump together all individuals with an identical strategy,
they are collectively referred to as a type, population, or species. Clearly, this
last term is very loose at this point, not implying any well-defined biological
species concept. For simplicity, we will consider populations to be clonal. The
term community refers to the collection of all resident populations.

We will denote a resident’s strategy as X and an invader’s as Y . Hence a
community with N different strategies present, would consist of the types 1, 2, . . .
to N , distinguished by their stategies X1,X2, . . . to XN . The community as a
whole is indicated by X := {X1,X2, . . . ,XN}.

The invasion fitness function as defined above will be referred to as the s-
function; this choice of notation underlines its heritage as a conceptual extension
of the selection coefficient of population genetics. A monomorphic s-function
sX(Y ) describes the invasion fitness of a mutant with type Y in an environment
set by a population of X-type residents. In the case of a community of N
populations, we similarly speak of a polymorphic s-function and denote it by
sX1,X2,...,XN

(Y ) to show which N strategies are present.
A further set of functions of central concern are the invasion gradients. The

invasion gradient at a given strategy Xi is the derivative of s in the mutant
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direction at that trait value: ∂sX(Y )
∂Y Y =Xi

. Trait values where the invasion gra-
dient is zero, are called evolutionary singular strategies; they are particularly
interesting as they are possible evolutionary endpoints (attracting, noninvadable
points), or sources of diversity (branching points).

For mathematical reasons, the existence of a unique, fixed-point attractor
for the community as a whole is usually assumed. We restrict ourselves in
this section to attractors composed of positive equilibrium densities for the N
types that make up the community. The basic assumption of rare mutations
implies that between two mutation events the population dynamics has settled
at its attractor. So in an N -species community at equilibrium where there is a
mutation in the ith species, a mutant Y ≈ Xi will be introduced. After some
time, the community will again have reached an equilibrium state. Which N
stategies will make up this new attractor, depends on whether the mutant has
disappeared or driven its ancestor to extinction: we deal in this section only with
situations away from singularities, so that “invasion implies fixation” holds.

Time will always be scaled such that it reflects slow, evolutionary time and
not the much faster, ecological time scale. Then the population dynamics will
be so rapid that the community always seems to be at its attractor, at densities
determined by the unique equilibrium for the set of strategies present. This
way, the N strategies present will indeed fully describe the community at each
point in time.

3 The deterministic path

The canonical equation is a first-order prediction for the speed of trait evolution.
This estimate of the rate at which strategy substitutions happen is valid under
a regime of directional selection; that is to say, away from evolutionary singular
strategies, so that the fitness gradient ∂sX1,X2,...,XN

(Y )

∂Y is nonzero.
As put forward in the assumptions, the resident community is very large and

hence can be described by a deterministic model. Furthermore we can regard
the population dynamics as stationary, due to the assumption that it has a fixed-
point attractor. However, the appearance of mutants and their eventual success
or failure at establishment both are inherently stochastic processes. This makes
the trait values themselves stochastic and time-dependent. As we are dealing
with a Markov process, the community has a probability Π(X, t) of being in
state X at time t > 0. This probability can be calculated from the state at t = 0
together with all transition rates π(B,A) from state A into B.

Since we consider rare mutations, any transition must be a mutation affecting
a single strategy vector, simplifying π(A,B): all the action will come from terms
π0(X′

i,Xi, X), which are the rates at which the ith species (known by its strategy
Xi) in community X is replaced by one with strategy X′

i.
Application of the Kolmogorov backwards equations to the right hand side

of d
dtE [X] :=

∫
X

∂Π(X,t)
∂t dX will show after some algebra that the expected rate

of evolutionary change is
d
dtE[X] = E[J(X)] (1)
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where J(X) is an N -by-N matrix with ith column
∫

(X ′−Xi)π0(X ′,Xi, X) dX ′.
The unique solution satisfying a given initial condition is called the mean path
starting from that given state. If J happens to be a linear function of X, or if
the distribution of X is concentrated in a point, we would have the following,
self-contained equation:

d
dtE[X] = J(E[X]) (2)

The solution to this simplified problem is called the deterministic path. The
validity of this approximation has been argued, based on considerations in van
Kampen (1981) as well as simulations, in Dieckmann and Law (1996). It hinges
on whether the solution to Equation (1) is dominated by the first-order part
of the equation or not. One can intuitively expect this to happen, as the path
proceeds in time by very many very small steps. Then some effect similar to
the law-of-large-numbers leads to a concentrated distribution of X and hence
to the applicability of the approximation (2). This heuristic idea is explored
in a mathematically rigorous fashion in Champagnat et al. (2001), based on
convergence theorems in Ethier and Kurtz (1986).

We will follow the assumption that a deterministic approximation is valid,
and henceforward focus on the attendant path. To lighten the notation, we
write Xi instead of E[Xi] for each resident and similar for X as they will all be
expected values from here onwards (not so for invaders Y or mutants X′

i). Our
concrete aim is then to derive analytical expressions for the right hand side of

d
dt

Xi =
∫

(X ′ − Xi)π0(X ′,Xi, X) dX ′ (3)

for all species i in the community. The first step is to separate the factors that
make up the transition probability π0. Seeing that mutation and selection are
independent processes, it must be the product of the appearance rate of mutants
with their establishment probability:

π0(X′
i,Xi, X)
= (rate of mutations Xi → X′

i given X) (establishment chance)

=
︷ ︸︸ ︷
(birth rate of Xi types) (mutation chance Xi → X′

i)
︷ ︸︸ ︷
P (X′

i, X)

=
︷ ︸︸ ︷
λ(Xi, X) n̂i

︷ ︸︸ ︷
μ(Xi) M(X′

i − Xi,Xi) P (X′
i, X) (4)

At this point we stress that above we are treating expected values, but simplified
the notation; n̂i denotes the equilibrium density of the ith species.

The chance P of establishment warrants a separate computation, but the
other factors are intuitive. The verbal reasoning is that the production rate
of mutants descending from a Xi-type parent is just the total production of
Xi-type offspring, times the mutation chance. The production rate of Xi

strategists is the per capita birth rate λ times the equilibrium density n̂i ≡
n̂(Xi; X1,X2, . . . ,XN ) in the given community. Which and how many mutants
appear (as a fraction of the newborns), is the product of the mutation prob-
ability μ per birth event with the mutational distribution M(V ,Xi), i.e. the
probability that the mutation changes a trait value from Xi to Xi + V .
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Under very general conditions, the per capita birth rate in a closed, critical
system is the inverse of the expected lifespan. The argumentation has been
called the microcosm principle by Mollison (1995) and goes as follows: in a
large population ergodically fluctuating around its attracting density,

E[density] = E[influx of individuals per area] E[duration of stay]
= E[per capita birth rate] E[density] E[life span]

n̂i = λ(Xi, X) n̂i E[life span]

Hence the life expectancy

T ≡ T (Xi, X) = λ−1(Xi, X) (5)

for any resident. This assumes closed populations, so that influx is only caused
by reproduction, and an individual’s stay is only ended by death.

The chance of establishment P depends on the underlying population model.
As presented by Dieckmann and Law (1996), the canonical equation tradionally
considers unstructured populations in continuous time. In that case, a linear
birth-and-death process determines the fate of the mutants. We will however
allow populations structured e.g. by size, or by sexual differences. For that,
we introduce the concepts of structured population models as far as needed to
estimate P .

4 Physiologically structured population models

We want to consider as wide as possible a variety of models to which our cal-
culations apply. The two best-known classes of demographic models are prob-
ably Lotka-Volterra and stage- (or age-) structured matrix models. Both have
their shortcomings: matrix models can only deal with finite numbers of discrete
stages, and time must be discrete too. In Lotka-Volterra models all individuals
are born equal and their death rates are independent of age or reproductive
state. The whole population is essentially a soup of identical creatures.

We therefore consider the class of physiologically structured population mod-
els, which has both Lotka-Volterra and matrix models as subclasses. Section 4.3
gives a more detailed, mathematical description of this class, but the biological
considerations that shape the formalism are

size does matter A large fish may happily eat a smaller conspecific, but will
refrain from attacking a similar-sized, healthy individual; a nice fat insect
will lay more eggs, and a big baby has a head start in life.

Furthermore, reaching a given size may trigger a stage-transition. A look
at a life cycle diagram for any insect will convince you that these are im-
portant events. Thinking further along these lines, this life cycle may de-
pend equally drastic on the sex of the individual or similar characteristics.
Populations could also live on several patches where resource availability
differs.
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All these features together form the states an individual can be in, whether
they are described as continuous (like size or age), or discrete (like stage
or sex). We will try to convince you later on that we can focus on only
the birth states, those states that individuals possibly start their life in.
Examples could be the size of a plant seed, the mass of the yolk in an egg,
the gender or morph of an individual.

conditional linearity A key insight to disentangle the interactions between in-
dividuals in a community, is the separation of individual and environment.
One has to conceive of a formal environment that influences individuals
and vice versa through a feedback loop. The implicit definition is that
given an environment, all individuals are independent.

The environmental condition must contain all information to predict what
will happen the next moment to each individual. In other words: given
the environment, an individual’s fate is a Markov process (Section 2.5).
The feedback loop is closed by the simple fact, that each individual is
accounted for when calculating the condition of the environment. The
reader is referred to the discussion in Sections 2.9 and 5.10 to relate this
concept of environment to the view in branching processes.

For example, if gender matters and competition acts differently within age
classes than across, then the environment will have components showing
densities and sex ratios in each class separately. Furthermore, the envi-
ronment will logically also have components describing relevant external
parameters that may have their own dynamics, like temperature, influx of
resources, or harvesting.

The idea that such an environment can be constructed is justified in large
populations: any two individuals, being exceedingly rare as a proportion of the
total population, will experience the same world populated by the same types,
states and quantities of ‘others’ even if their expected reaction to it may differ,
depending on personal state and strategy. This decoupling of individual and
environment is a helpful step in the systematic understanding of structured
population models (see Metz and Diekmann 1986, Diekmann et al. 2003) and
linearizes the equations when the environment is given as a function of time.
Deriving the correct description of the environment may cost a lot of work in
specific situations, but most models are presented in a way that the derivation
is trivial.

At this point, it is important to distinguish strategies and birth states: both
are parameters an individual starts its life with, and some states like sex might
never change in one’s lifetime. One requires a priori that the life history of
all individuals with a given strategy can be sketched in one indecomposable
life cycle graph. If not, there would be isolated groups that can be separated
into species by adding a parameter to the strategy. This consideration provides
a strict distinction between traits and birth states in models where individu-
als with different strategies cannot reproduce together, which we have trivially
guaranteed by assuming clonal reproduction. An intuitive example of the dis-
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tinction between strategy and birth state is seed size in plants (Geritz et al.
1999). Part of a plant’s strategy may be the decision to allocate its energy
reserve into many small seeds with a low survival chance, few large seeds with
a good chance, or a given mixture of these; while a plant’s birth state can be
the size it has as a seed.

That birth states suffice to study invasion demographics follows from uncou-
pling the feedback loop. If one assumes that the environment is constant, one
can calculate for any given newborn the probability of being in each possible
state at each later moment. Similarly for an individual in a given state, the
chance of having any amount of newborns in any birth state can be computed
for any later point in time. By combining these, one finds for any given newborn
the environment-dependent probabilities of having any amount of offspring in
any birth state at any later moment. From this generational viewpoint, birth
states are the only thing to keep track of. This is an important observation
that forms the basis of multi-type branching processes. Furthermore, for a de-
terministic population being at equilibrium must mean that in each generation
there are born an exact quantity of young in each birth state, such that the indi-
viduals have on average precisely one offspring over their lifetime, and the new
generation has the same distribution of birth states as the former. Note that
this applies whether time is discrete or continuous in the underlying model. In
short, only lifetime offspring production from individuals starting in birth states
are what counts.

We will denote by I ≡ I(X1,X2, . . . ,XN ) the environment as set by the
resident community and consider a given invader with strategy Y . For any
structured population model, there must necessarily exist a reproduction kernel
which we formulate here as a matrix function with entries (Λ(Y , I, a))hj that
are the expected number of Y -type invaders born in state j to an invader newly
born in state h, before it reaches age a if the environment is in state I. Here we
remark that Λ(Y , I, da) corresponds to μ(r, ds × da) as introduced in Section
3.3, and that the connection to the mean matrix is seen from

E[ξhj ] = Λ(Y , I,∞)hj

where the strategy and environment must be the same on both sides of the
equality. We conform here to branching processes notation, insofar that Λ is
usually defined as its transpose in structured populations literature.

According to the definition we gave, the (generally unique) solution for ψ of
Lotka’s equation

Dominant Eigenvalue of
[∫ ∞

0

e−ψaΛ(Y , I, da)
]

= 1

is the invasion fitness sX1,X2,...,XN
(Y ). Alternatively, it is called the instanta-

neous growth rate r in life history theory, or the Malthusian parameter α in
branching processes.

If one fixes ψ = 0, the integral on the left hand side corresponds to the
mean matrix as used throughout this book, and its dominant eigenvalue is the
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lifetime reproductive output R0 which is denoted by ρ in branching processes.
The notation R0 is also the traditional notation in life history theory as well as
in epidemiology, where it is the expected number of secondary infections caused
by an infective individual (see the snappily titled thesis of Hans Heesterbeek
1992).

Durinx et al. (in prep.) show by a Taylor expansion of the left hand side
around ψ = 0 that for any mutant Y , we have the relationship

sX(Y ) =
lnR0

β(0)
+ o(lnR0) (6)

where the average age at giving birth β(0) is that of the mutant’s progenitor,
calculated from the reproduction kernel as

β(0) ≡ β(Xi, I) = u(0)T

[∫ ∞

0

aΛ(Xi, I, da)
]

v(0)

with u(0) the ‘stable type distribution’ of the resident, which in our context is
its stable birth state distribution, and v(0) its reproductive value.

5 The establishment probability

The first paragraph on invasion fitness verbally stated that under very general
conditions, a positive chance of establishment is equivalent to a positive s-value:

P (Y , X) > 0 ⇔ sX(Y ) > 0

We must now seek a more quantitative relationship between these terms.
Consider that we have been given an invader that differs but slightly from

one of the resident species; each of these types has zero growth rate in the
community as we assumed it to be stationary. Hence the d-type branching
process that describes the fate of this mutant is slightly supercritical: R0 = 1+ε
for a small ε > 0. As explained in Section 5.6, Athreya (1993) proved that under
very general conditions, the establishment probability of a single mutant with
birth state h can therefore be approximated by

Ph(X′
i, X) = 2

R0 − 1
B(ε)

v(ε)h + o(ε) = 2
lnR0

B(ε)
v(ε)h + o(ε)

where v(ε) denotes the mutant’s reproductive value. This complies with our
earlier notation as the ith resident naturally has ε = 0, and the same applies
to the parameters u(ε) and ξ(ε)hj . The factor B(ε) may be interpreted as a
variance (see Durinx et al. (in prep.)):

B(ε) =
∑

j

u(ε)jVar[
∑

l

v(ε)lξ(ε)lj ] + o(1)

The initial mutant has probability u(0)h of being born in state h, since u(0)
is the stationary offspring distribution of its parent. As the eigenvectors for
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residents and mutants differ at most by order ε, we can here approximate v(ε)h

by v(0)h and so forth, showing that

P (X′
i, X) =

∑
h

u(0)hPh(X′
i, X)

= 2
∑

h

u(0)hv(0)h
lnR0∑

j u(0)jVar[
∑

l v(0)lξ(0)lj ]
+ o(ε)

=
2 ln R0∑

j u(0)jVar[
∑

l v(0)lξ(0)lj ]
+ o(ε)

since the product of the eigenvectors sums to one (see Section 2.3).
This means we can wrap up the formulation of the establishment probability

by substituting the relation (6) we found between s and R0 and finally by linearly
approximating sX(X′

i) close to sX(Xi) = 0:

P (X′
i, X) =

2β(0) sX(X′
i)∑

j u(0)jVar[
∑

l v(0)lξ(0)lj ]
+ o(ε) (7)

=
2β(0)∑

j u(0)jVar[
∑

l v(0)lξ(0)lj ]
(X′

i − Xi)T
∂SX(Xi)

∂Y

T

+ o(ε) (8)

Note that we use values derived for Xi for all but the mutation step (X′
i −Xi).

More importantly, bear in mind that the above approximation only holds if
it returns a positive value, as we started by assuming ε > 0.

6 The canonical equation for structured popu-
lations

The calculated transition rates (4) combined with the microcosm principle (5)
and the estimated chance of establishment (8), show that the evolutionary move-
ment along deterministic path (3) is generated by

d
dt

Xi =
∫

(X′
i − Xi)

n̂iμ(Xi)
T

M(X′
i − Xi,Xi)P (X′

i, X) dX′
i

=
β n̂i μ(Xi)

T
∑

j ujVar[
∑

l vlξlj ]

∫
V M(V ,Xi)V T ∂SX(Xi)

∂Y

T

dV + o(ε)

=
β n̂i μ(Xi)

T
∑

j ujVar[
∑

l vlξlj ]
M(Xi)

∂SX(Xi)
∂Y

T

+ o(ε)

with M(Xi) :=
∫

V M(V ,Xi)V T dV the mutational covariance matrix at Xi.
The second remark after (8) explains the disappearance of the factor 2 in

the first equality above: for each strategy V that returns a positive value for
V T ∂SX(Xi)

∂Y

T

, the strategy −V returns a negative value, and vice versa since we
are away from singular strategies. Hence we have to replace exactly half of the
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estimates by zero. The value under the integral is not influenced by this, as V
and −V return the same value under the second integral if the distribution M
is symmetrical.

This lets us finalize the canonical equation for structured populations as the
first order prediction

d
dt

Xi ≈ β

T

n̂i μ(Xi)∑
j ujVar[

∑
l vlξlj ]

M(Xi)
∂SX(Xi)

∂Y

T

It should be kept in mind that these are all expected values for each of the
parameters and strategies, and that most parameters relating to a species i
depend on the other strategies in the community X as well.

7 Discussion

A fundamental open problem in evolutionary biology is the development of a
straightforward, systematic way to study long-term evolutionary trajectories.
Over the years, some of the issues have been adressed.

How selection can change morphological traits was first described by Lande
(1979) based on the breeder’s equation as found in animal sciences. In what has
become known in evolutionary biology as Lande’s equation, we see a formula
that is remarkably similar to the canonical equation. The major difference is
that the population density does not appear as a factor, the other differences
amount to a different interpretation of the parameters. What it essentially
describes is how a population changes through selection on standing genetic
variation. Such variation accumulates when a species’ strategy is close to evolu-
tionarily optimal in a stable environment, especially if the optimum is relatively
weak. Selection on the diversity then occurs when external environmental pa-
rameters change. A typical example of this is the introduction of a wild popu-
lation into a laboratory setup where directional selection is applied, accounting
for the good fit of Lande’s equation with lab data. After the initial relatively
rapid modification of the traits in reaction to external changes, further inno-
vations and long-term evolution must come from mutations. Haldane (1927)
was the first to realize this and to argue that mutation limited evolution will be
slower than one would initially suspect, since many advantageous mutants will
fail to get established. The canonical equation builds on those ideas to derive
a quantitative relation between the factors involved and in particular how the
ecology determines the selective pressures.

It is clear that the assumptions we have worked with amount to a crude
oversimplification, but the question is important: how can we link ecology with
paleontology? The Modern Synthesis went no further than showing that the
two are compatible. Lande’s equation and the canonical equation are the best
(being the only) tools we have so far for reasoning about the connection.

This section illustrates how branching processes underlie mutation limited
evolution and hence their fundamental importance to adaptive dynamics theory.
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The calculations were meant to be heuristic and biological, at a cost to math-
ematical precision and exhaustiveness. For a more mathematical treatment of
the canonical equation one can consult Champagnat et al. (2001). The restric-
tion to finitely many possible birth states means we can fall back on established
theory, but limits the applicability. To overcome this requires an extension of
the theorem of Section 5.6.2 (Athreya 1993) to branching processes with in-
finitely many types. If the resident attractor is not a fixed point but a limit
cycle, every individual can be assigned a birth state that depends on where in
the cycle the individual was born. In discrete time this allows the attractor to be
treated analogous to a fixed point, so that our analysis immediately applies. In
continuous time the suggested extension of Athreya’s proof would be similarly
applied.

Analytically there is no extension of the canonical equation to nonperiodic
attractors yet. The first heuristic explorations for ergodically fluctuating envi-
ronments with invader dynamics that follow a linear birth-and-death process,
suggest that the canonical equation is robust against such extension. Dieck-
mann (in prep.) shows by approximating the process as formulated in Kendall
(1948), that the establishment probability is approximately proportional to the
fitness (as in Equation 7), so that a similar result holds.

The analysis as presented applies to spatial models with finite numbers of
patches, if the residents are locally sufficiently numerous and well-mixed. The
patch an individual inhabits is then expressed in a component of its state. For
some more complicated spatial models an equation similar to the canonical
equation may well apply. The crucial part is that the chance of success at
invading must scale linearly with changes in strategy. This is an area where
more research is badly needed.

We did assume an unbiased mutation distribution. Mutation bias arises
from the nonlinearity of the genotype-phenotype mapping, and becomes promi-
nent when high mutational variance is combined with a highly curved mapping.
However, since we assume small mutational steps, we follow the biological liter-
ature in neglecting this effect. Champagnat et al. (2001) discusses the relevance
of bias in the context of the canonical equation.

A far more complicated issue is the one underlying time scale separation.
There are several latent limits: large resident populations (or the limit 1

Ω → 0
where Ω is the system size), small mutations (or ε → 0) and rare mutations (or
μ(Xi)Ω → 0). These limits are not a priori commutative, so depending on the
order in which the details of mechanistic, individual based parameters are scaled
away, a different limit process is obtained. An initial discussion of these issues,
in particular of the necessity to stay away from singularities, can be found in
Metz et al. (1996).
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