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Summary

A problem in understanding sympatric speciation is establishing how
reproductive isolation can arise when there is disruptive selection on an
ecological trait. One of the solutions that has been proposed is that a
habitat preference evolves, and that mates are chosen within the preferred
habitat. We present a model where the habitat preference can evolve
either by means of a genetic mechanism or by means of learning.
Employing an adaptive-dynamical analysis, we show that evolution
proceeds either to a single population of specialists with a genetic
preference for their optimal habitat, or to a population of generalists
without a habitat preference. The generalist population subsequently
experiences disruptive selection. Learning promotes speciation because it
increases the intensity of disruptive selection. An individual-based version
of the model shows that, when loci are completely unlinked and learning
confers little cost, the presence of disruptive selection most likely leads to
speciation via the simultaneous evolution of a learned habitat preference.
For high costs of learning, speciation is most likely to occur via the
evolution of a genetic habitat preference. However, the latter only happens
when the effect of mutations is large, or when there is linkage between
genes coding for the different traits. Keywords: speciation; habitat
preference; learning; disruptive selection; adaptive dynamics



Introduction

Unravelling the processes that underly the evolution of new species is one
of the major themes of evolutionary biology. Research has especially been
focussed on the role of geographical separation in speciation. However,
despite decades of empirical and theoretical research, consensus on the
likelihood of speciation in the face of geneflow has not been reached
(Turelli et al. 2001; Via 2001; Kirkpatrick & Ravigné 2002; Coyne & Orr
2004; Gavrilets 2004). When a population experiences disruptive selection
on an ecological trait, random mating will normally prevent the population
from splitting into two species. Hence, a problem in understanding of
sympatric speciation is establishing how assortative mating can evolve
under such a regime of disruptive selection. One of the possible solutions
that has been put forward is related to the availability of two different
habitats or hosts. When disruptive selection favors ecological specialization
on two different habitats, the evolution of habitat choice may aid
sympatric speciation if prezygotic isolation is a by-product of divergent
habitat selection. Several theoretical studies have demonstrated that this
is a plausible speciation mechanism (Rice 1984; Diehl & Bush 1989;
Johnson et al. 1996; Kawecki 1996, 1997; Fry 2003; Gavrilets 2004).

In these speciation models incorporating habitat choice, it is generally
assumed that the preference for one of the habitats is a genetically
determined trait. Typically, each preference allele shifts the preference in
the direction of one of the habitats. We refer to this mechanism as a
“genetic habitat preference”, although there are other ways to model a
genetically based preference (see e.g. Kawecki 1996, 1997). A possibility
that has received less attention is that individuals may develop a preference
for the habitat they have experienced at a young age. Such a learned
preference for habitat or host features is known to occur in several groups
of animal species, including birds, fish, and insects. Several examples are
mentioned in West-Eberhard (2003); Beltman et al. (2004), but the most
extensive review to date is provided by Davis & Stamps (2004), who refer
to this phenomenon as “natal habitat preference induction”. They suggest
that it has been understudied, in part because scientists working with
different taxa have used different terms to describe it (e.g., Hopkins’ host
selection principle, habitat imprinting, or habitat conditioning). We will
refer to it as a “learned habitat preference”, to highlight the resemblance
as well as the difference with a genetic habitat preference.

Several authors have discussed the possible importance of a learned
habitat preference in speciation (e.g., Thorpe 1945; Maynard Smith 1966;
Rice 1984; Kondrashov & Mina 1986; West-Eberhard 2003): Just as in the



case of a genetic preference, the learned habitat preference may (i) cause
assortative mating between individuals that prefer the same habitat, and
(ii) cause individuals to produce their young in the habitat type they
experienced themselves at a young age. As a result, a learned habitat
preference may assist speciation because individuals exploiting a new,
previously unused habitat, may very quickly be reproductively isolated
from the original population. However, it has also been stated that this
effect is not large enough to play a significant role (Mayr 1947).

Recently, theoretical studies have shown that speciation through a learned
habitat preference is extremely effective (Beltman et al. 2004;

Beltman & Haccou 2005). In these previous theoretical analyses it was
assumed that the learning of habitat features was already present from the
onset of speciation. Thus, the question whether the learning of habitat
features can evolve from scratch as a consequence of disruptive selection on
an ecological trait could not be answered. Still, this seems likely, because it
was found that as soon as there is divergence in an ecological trait, there is
selection on reinforcement of the effect that learning has on assortative
mating and on the location where young are produced (Beltman & Haccou
2005). Hence, these effects of learning are expected to become stronger
and stronger, which goes against the prediction of Mayr (1947) that a
learned habitat preference is unimportant.

Speciation through the evolution of a learned habitat preference is an
effective mechanism because it is a one-allele mechanism (Felsenstein
1981). That is, alleles that strengthen (the effects of) learning necessarily
have the same effect in both habitats. In contrast, speciation through the
evolution of a genetic habitat preference is a two-allele mechanism (at
least, in our definition of a genetic preference). Hence, alleles that modify
the genetic habitat preference always shift the preference in the same
direction. Interestingly, the way we model the evolution of a learned
habitat preference can alternatively be interpreted as a model of migration
modification. It has been shown that modifiers of migration are expected
to reduce migration between two populations to zero (Balkau & Feldman
1973; Karlin & McGregor 1974; Gillespie 1981; Wiener & Feldman 1991,
1993), which is in essence the same as the strengthening of a learned
habitat preference. (Note, however, that this effect can be modified by kin
competition and environmental stochasticity (Kisdi 2002;

Leturque & Rousset 2002; S. & Lenormand 2005).)

In summary, when studied in separate models, both a genetic and a
learned habitat preference have appeared quite likely to evolve. It is
interesting to consider what would happen when both possibilities evolve
at the same time. Clearly, the evolution of a learned habitat preference has



the advantage of being a one-allele mechanism. Hence, during its evolution
recombination does not destroy associations between alleles that strengthen
learning and ecological adaptation alleles, whereas this is a problem in the
case of a genetic preference. However, the intensity of selection on the
genetic habitat preference is expected to be stronger than selection on the
learned habitat preference. This can be understood by considering
offspring that are accidentally produced in the “wrong” habitat. When
their habitat preference is genetically determined, they are more likely to
produce their own young in the “correct” habitat, thus repairing their
parents’ mistakes, than when they learn their habitat preference.

In this paper, we construct a speciation model incorporating both a
genetic and a learned habitat preference. Our aims are to investigate
under which circumstances speciation occurs, and via which of the two
preference mechanisms this is most likely. First, using adaptive dynamics
(Metz et al. 1996; Dieckmann & Law 1996; Geritz et al. 1998; Leimar
2001, 2005), we study the simultaneous evolution of an ecological trait, and
of two traits determining respectively the genetic and learned habitat
preference of individuals. For simplicity, we assume that habitat choice
influences solely the location where young are produced, and do not take
into account the effect on assortative mating. This allows us to study when
evolution of the three traits leads to disruptive selection, which facilitates
speciation (e.g., Kawecki 1996, 1997; Dieckmann & Doebeli 1999). Our
results show that the presence of learning leads to a higher intensity of
disruptive selection, thus promoting speciation. To examine whether
speciation indeed follows the presence of disruptive selection, we extend
the analysis employing an individual-based model where it is in addition
assumed that mate choice occurs in the preferred habitat. It appears that
speciation more readily occurs through a learned than through a genetic
habitat preference when there is free recombination and when the cost of
learning is low. In that case speciation through a genetic preference is only
possible when the traits are coded by a few, and therefore major, loci.
When there is linkage between genes that code for specialization and those
that code for a genetic habitat preference, speciation through a genetic
preference becomes more likely than for free recombination.

Model description

We consider a population of individuals that exploit two habitats, A and
B. This could for example represent a population of phytophagous insects
feeding on two different host plant species. Two variants of the model are



examined: one uses the framework of adaptive dynamics (Metz et al. 1996;
Dieckmann & Law 1996; Geritz et al. 1998; Leimar 2001, 2005) to predict
the course of evolution; the other is an individual-based model. In both
cases individuals have three traits, two of which affect their
habitat-selection behavior (referred to as genetic habitat preference, and
learning ability), and one that determines the viability of individuals when
born in either of the two habitats (referred to as specialization coefficient).

Habitat preference

The genetic habitat preference, g, is a baseline preference that individuals
would express when experience does not affect habitat choice. Biologically
relevant values of g can range from 0 (absolute preference for habitat A)
through 0.5 (no preference) to 1 (absolute preference for habitat B). The
habitat preference resulting from g can be modified by the learning of
features of the habitat that is experienced early in life. The learning ability
is the extent to which the genetic habitat preference is modified by
experience. An individual with [ = 0 does not learn and hence its habitat
preference exactly equals its genetic habitat preference. For 0 <[ <1 the
habitat preference shifts toward the habitat that was experienced early in
life. For [ =1 the genetic habitat preference is completely overruled by
learning. Note that the extent of preference modification is genetically
determined, but the direction of preference change depends on early
experience and can thus be either in the same or in the opposite direction
as the genetic preference.

We assume that the resulting habitat preference—an interplay between the
genetic habitat preference and learning ability—determines the habitat
that is chosen for reproduction. Specifically, an individual that is born in
habitat = chooses habitat y for reproduction with probability f,,, where
fzy is a function of g, [ and the location of birth as in Table 1.

In our adaptive-dynamical analysis (see below), the habitat preference is
assumed to influence the location where young are produced: females born
in habitat x produce their young with probability f,, in habitat y. In the
individual-based version of the model, habitat preference in addition
affects mate choice in the sense that individuals with a preference for the
same habitat are most likely to mate with each other because the
probability that they encounter each other at the time of reproduction is
large. Matings between individuals that prefer different habitats occur as
long as the habitat preference of all individuals is not absolute.



Habitat-dependent viability

Apart from the genetic habitat preference g and the learning ability [,
there is a third trait, the specialization coefficient, a (from adaptedness),
that determines the viability when born in the different habitats
(rendering a similar underlying ecological framework as in Geritz et al.
1998; Geritz & Kisdi 2000). Individuals with @ = a4 are most viable when
born in habitat A (specialists on A), and those with a = ap are most
viable when born in habitat B (specialists on B). Individuals with

a = (asq + ap)/2 are equally well adapted to both habitats (generalists).
The viability changes according to a Gaussian function with scale
parameter o2 when the specialization coefficient is away from the
optimum. The parameter o2 determines the trade-off between viabilities in
habitat A and B. This is in part caused by how much the habitats differ
from each other, and in part by the genetic architecture of the species.
Specifically, the viability of an individual with specialization coefficient a
that is born in habitat = equals

wm(a) = 6_(a_ax)2/(20—2) . (1)

Recurrence equations

To derive the recurrence equations, we need to keep track of two types of
individuals, namely those born in habitat A and those born in habitat B.
The density of these types is denoted by N4 and Npg respectively. To
derive equations for these densities at the next timestep (denoted by N/,
and N7j), we need to know the density of young produced in each habitat,
and the fraction of these young that survive viability selection and
competition for resources. Each individual produces on average E young.
These young are produced partly in habitat A and partly in habitat B,
depending on the individual’s habitat preference (see Table 1). A certain
fraction of these young survives viability selection according to Equation
(1). Additionally, we assume that there is a cost of learning, ¢, for instance
because brain nuclei involved in the learning process need to develop.
Higher learning abilities therefore imply that that the viability is decreased
by a factor (1 — ¢l). The density of young after viability selection in
habitat x, Y., is then given by:

Yo(g,l,a) = we(a)E(l —cl)(faz(9,1)Na(g,l,a) + fB2(9,1)NB(g,l,a)f2)

Finally, after viability selection these individuals compete with others that
are born in the same habitat. We model this process using Beverton-Holt



type density dependence, where K is a parameter determining the
population densities at equilibrium. Both habitats are assumed to be able
to sustain an equal population density at equilibrium. These assumptions
yield the following recurrence equations for the density of individuals in
the next generation:

Ny(g,l,a) = Ya(g,l,a)/(1+ Ya(g,l,a)/K) . (3)

Adaptive-dynamical analysis

For the first stage of the analysis we use the framework of adaptive
dynamics (Metz et al. 1996; Dieckmann & Law 1996; Geritz et al. 1998;
Leimar 2001, 2005). In this framework, it is assumed that mutations occur
rarely and that they lead to small changes in the phenotypic values of
individuals. For simplicity, the initial population is assumed to be
monomorphic (i.e., consist of identical individuals). This allows one to
predict the direction of evolution by calculating the intensity of selection
on the evolving traits. As long as the intensity of selection on the traits is
nonzero, this will result in directional evolution (Dieckmann & Law 1996).
Such evolution comes to a halt in so-called evolutionarily singular points,
in which the intensity of directional selection is zero. To calculate the
selection gradient, which is a vector containing the intensities of selection
on each of the evolving traits, mutants are assumed to appear after the
residents have attained population dynamical equilibrium. The residents
present at equilibrium and their densities influence the selection gradient,
because the residents constitute the ecological environment of mutants.
The detailed adaptive-dynamical analysis is given in the Electronic
Appendix.

Individual-based simulations

In our adaptive-dynamical analysis the effect of habitat preference on mate
choice is not taken into account. For directional evolution this does not
influence the course of evolution when there is no heterozygote advantage
(e.g., Kisdi & Geritz 1999; Geritz & Kisdi 2000; van Dooren 2005; Metz
2005). However, as soon as the population becomes polymorphic as a
result of disruptive selection, mate choice should be taken into account to
study further evolutionary changes. Therefore, we follow the evolutionary
dynamics of g, [, and a employing individual-based simulations (C program
available on request). Speciation occurs when the population comes to



consist of two types of specialists that have an “absolute” preference
(genetically determined or learned) for the habitat in which they are born.

The specialization coefficient, the genetic habitat preference and the
learning ability are encoded by kg, k, and k; diploid loci respectively.
Alleles are either @ or &, and they act additively to determine the trait
values of an individual. When an individual has ¢ & alleles at the loci
coding for that trait, it has a trait value of (k; + (i — k¢)$)/(2k), where k;
is the number of loci coding for the trait, and ¢ determines how large the
effect of a mutation is. Hence, for individuals with only © alleles the trait
value reaches its minimal value, and increasing the number of @ alleles
raises the trait value in a linear fashion to its maximum value. When the
resulting trait value exceeds the range of biologically realistic values (as
can be the case for g and [ which can vary from 0 to 1), it is rounded of to
its nearest extreme. Hence, although it is possible that individuals possess
an excess habitat preference, this is not expressed.

In the simulations we assume that the viability optima in habitat A and B
are 0 and 1 respectively (i.e., a4 = 0 and ag = 1). The initial population
consists of males and females with a = 0, g = 0.5, and [ = 0, that is, all
individuals are specialized on habitat A but have no habitat preference. To
avoid the artificial incorporation of unrealistic amounts of initial variation,
at the start of the simulations all individuals are exact copies of one
another. For example, half of the g loci are initially fixed for the @ allele,
and the other half for the © allele (note that we use an even number of loci
to achieve this).

Only newborns that survive viability selection and density regulation have
a chance to reproduce. To establish mate choice, all individuals are first
distributed across the habitats according to their habitat preference.
Subsequently, each female randomly chooses a mate from the population of
males present in her habitat, and produces young in one of the habitats,
again chosen according to her habitat preference.

At each locus, newborns inherit one allele from their mother, and one from
their father. We use three different schemes for the physical linkage
between loci. In the first scheme (“no linkage”) we assume that there is
free recombination. In the other two schemes some loci are physically
linked, and we assume that this prevents recombination between them
completely. Hence, the recombination rate between loci is assumed to be
either 0 or 0.5: for simplicity we do not incorporate crossing over, and only
take into account recombination that is due to the random distribution of
male and female alleles that are on different chromosomes. To determine
which loci are linked, individuals are assumed to contain k. chromosomes,



and each locus is assigned one of the chromosomes. During one simulation
the distribution of the loci over the chromosomes remains the same; in a
subsequent simulation the distribution is chosen anew. In the second
scheme the loci are evenly distributed over the chromosomes, which
procedure is performed separately for each of the three traits
(“predetermined linkage”). In the third scheme (“random linkage”), the
distribution of all loci over the chromosomes is random. In both
“predetermined linkage” and “random linkage” a value of k. = 1 represents
maximal linkage, because all loci are on the same chromosome. The degree
of linkage decreases as k. becomes larger. At very large k., all loci are on
different chromosomes, which is represented by the “no linkage” scheme.
The three linkage schemes thus are a simple way to implement different
degrees of linkage, ranging from maximal linkage to completely unlinked.

Newborns can have mutations at the loci that code for g, [, and a. Each
allele has a mutation probability of 0.0001. A mutation means that the
particular allele is modified from a @ allele into a & allele, or vice versa.

Results

The main aim of our adaptive-dynamical analysis is to study at which
points there is no longer directional evolution of g, [, and a. Such
evolutionarily singular points have two properties that determine how
evolution will proceed (Metz et al. 1996; Geritz et al. 1998). First, the
convergence stability property determines whether the singular point will
be approached or not (Eshel 1983; Eshel & Motro 1981; Christiansen
1991). Second, the evolutionary stability property determines whether
nearby mutants can invade or not when the singular point has been
attained (Maynard Smith 1982). In the following we summarize the results
of our analysis (details are provided in the Electronic Appendix).

The following potentially attracting singular points were found: (i) points
where the population consists of a single specialist species with a genetic
preference for its optimal habitat (i.e., either a = a4, g =0 and [ =0, or
a=ap,g=1andl=0), and (ii) the point where the population consists
of generalists without habitat preference (i.e., a = (aa +ap)/2, g =0.5
and [ = 0). The convergence stability of these points, and hence the
evolutionary dynamics, depend in large part on 2. For low o2, evolution
always proceeds to a single population of specialists with a genetic
preference for their optimal habitat (figure 1a). For high o2, directional
evolution leads to a population of generalists without (genetic) habitat
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preference (figure 1c). When o2 is intermediate, both types of singular

points are convergence stable. Directional evolution then leads to one of
them, but which one is attained depends on the initial trait values and the
details of the mutation process (figure 1b).

There is one other possible end point of evolution, namely when the
learning ability evolves to a value of one (trajectories leading to | = 1 are
omitted from figure 1). In that case, the population splits immediately into
two separate subpopulations that no longer interact (each exploiting a
different habitat), after which in each of the subpopulations evolution
proceeds to local specialists. Hence, this is a third possible outcome of
evolution. However, a closer look at the intensity of selection on the
evolving traits reveals that the intensity of selection on [ is much lower
than on g and a, even when there is no cost of learning. This can be
understood by considering for instance individuals that are better adapted
to habitat A than to habitat B. Clearly, they will have most surviving
offspring if they have a preference for habitat A. However, a part of the
offspring will still end up in habitat B, to which they are poorly adapted.
When these young survive despite their poor adaptedness, they would do
best by producing their offspring in habitat A, the habitat they did nét
grow up in. This is achieved only when they have a genetic habitat
preference; in case of a learned habitat preference most young would be
produced in the “wrong” habitat. When only directional evolution is
considered, a habitat preference is thus more likely to evolve through a
genetic mechanism than through learning. This is confirmed by numerical
calculations of trajectories that follow the selection gradient (not shown)
and by the individual-based simulations (see below). Hence, unless (i) the
learning ability is initially already high, (ii) mutations in [ are much more
likely than mutations in the other traits, or (iii) there exist strong genetic
correlations between [ and one of the other traits, it seems unlikely that
directional evolution will lead to [ = 1.

We cannot exclude that, apart from the discussed evolutionarily singular
points, there exist others that are under some circumstances attractors of
directional evolution. However, numerical calculations of trajectories
through trait space, and the individual-based simulations did not reveal the
existence of additional attracting singular points. Hence, we conclude that
directional evolution will normally lead either to a population of specialists
with a genetic preference for their optimal habitat, or to a population of
generalists without habitat preference. Such attractors of directional
evolution are not necessarily the final endpoints of evolution, because when
a singular point is not evolutionarily stable, the population will experience
disruptive selection. In that case, speciation may occur when additionally
assortative mating evolves; this is one possible way to escape from the
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fitness minimum that keeps the population trapped at an evolutionarily
unstable singular point. The singular point that represents a population of
specialists is always evolutionarily stable. In contrast, the generalist
population will under all circumstances experience disruptive selection.
The intensity of this disruptive selection becomes higher as o2 decreases,
and as the learning ability increases. Hence, learning promotes speciation.

Whether selection that favors the evolution of two extreme types will
indeed lead to speciation depends on the one hand on the intensity of the
disruptive force, and on the other hand on processes that oppose
speciation such as random mate choice and recombination. Therefore, to
study whether speciation can take place as soon as there is disruptive
selection, mate choice should be taken into account. Our particular
interest here is whether, given the availability of both options, this is more
likely to occur via the evolution of a learned or genetic habitat preference.
Using individual-based simulations, we examined the course of evolution of
the specialization coefficient, genetic habitat preference and learning
ability, starting from a population where all individuals specialize on
habitat A (a = 0) but have no preference for either of the habitats (¢ = 0.5
and [ = 0). As predicted by the adaptive-dynamical analysis, evolution
first proceeded to either a population of specialists with a genetic habitat
preference for their optimal habitat (figure 2a), or to a population of
generalists without habitat preference (figure 2b-f). Both situations can be
the end point of evolution (figure 2a-b), which means that in the latter
case the forces that oppose speciation are stronger than the intensity of
disruptive selection. Alternatively, disruptive selection experienced by the
generalist population can lead to speciation (figure 2c-e). In that case the
population splits in two groups specialized on and preferring either habitat
A or habitat B. This habitat preference can be genetically determined in
both groups (figure 2¢), learned in both groups (figure 2d), or genetically
determined in one group and learned in the other group (figure 2e).
Another possible simulation outcome is that a clear polymorphism in g
and a evolves, but speciation is not completed or not “stable” (e.g.,

figure 2f). ( A similar result was found by (Matessi et al. 2002) for a
generic one-allele mechanism.) In the following we investigate the
circumstances for which each of the evolutionary end results is most likely.

As predicted by the adaptive-dynamical analysis, when ¢? is low, evolution
led to a population of specialists on habitat A that prefer that habitat
(figure 3). For high values of o2, evolution proceeded to a population of
generalists (figure 3). At intermediate values of o2, both the generalist and
the specialist singular points are convergence stable. Hence, only in that
case the initial conditions are expected to influence the results (e.g.,
starting closer to the generalist point will increase the likelihood of

12



evolving to that point). We also know from the adaptive-dynamical
analysis that the generalist population experiences disruptive selection, the
intensity of which decreases as 02 becomes higher. For free recombination
and low costs of learning, disruptive selection indeed usually led to
speciation. In that case speciation always occurred through a learned
habitat preference (figure 3a). For high costs of learning, the selective force
acting against the evolution of learning is too strong; speciation then is
possible only through a genetic habitat preference. This happened when
few loci coded for each trait (figure 3a). Otherwise, speciation through a
genetic habitat preference did not take place, but the end result was a
generalist species. This is because recombination is constantly destroying
associations between alleles for specialization on one of the habitats and
alleles that confer a genetic preference for that same habitat. This can
only be overcome when the number of loci coding for the different traits is
small. Mutations are then of large effect, thus increasing the fitness of
more extreme individuals in comparison with the case where many loci
code for the traits.

To see whether it was indeed recombination that obstructs speciation for
intermediate values of 02, we performed additional simulations using the
linkage schemes in which some loci are physically linked. Because in these
schemes loci are assumed to reside on a limited number of chromosomes
(kc), recombination occurs less often. As expected, increasing the physical
linkage between loci made it more likely that speciation occurred through
a genetic habitat preference or through a combination of genetic and
learned habitat preference instead of through a learned habitat preference

(figure 3b).

The results shown in figure 3 are based on a single run per parameter
combination. We preferred to take small steps in parameter space and
performing single runs, over taking large steps which would allow us to
perform several runs per parameter combination. Our approach allows a
good estimate of the resulting patterns, which are indeed very clear. In
addition, we have investigated the robustness of the results by changing the
values of F/, the number of young produced per female, of K, which affects
the size of the population at equilibrium, and of ¢, which influences how
large the effect of a mutation is, as well as the usage of “random linkage”
instead of “predetermined linkage”. All these modifications did not render
qualitatively different results with respect to whether speciation was more
likely to occur through a genetic or through a learned habitat preference.
However, some of these changes affected the likelihood of speciation, e.g.,
at large E speciation occurred more often than at low E. This can be
explained with the aid of the adaptive-dynamical analysis: when F is high,
the singular point consisting of generalists becomes attracting already at
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lower 02 than when F is low (see the Electronic Appendix). Because at
low o2 the intensity of disruptive selection is higher than at high o2,
speciation is indeed expected more often at high F than at low FE.

Discussion

We examined the process of speciation by means of specialization on two
different habitats under the assumption that both mating and the
production of young occur in the preferred habitat. Our analysis shows
that the outcome of evolution depends for a large part on the parameter
o2, which determines the trade-off between viabilities in the two habitats.
A variety of related models have predicted that weak trade-offs (high o2)
favor the evolution of generalists, while strong trade-offs (low o?) lead
more easily to the evolution of specialists (e.g., Egas et al. 2004a;

Rueffler et al. 2004). Our results are in line with this: Evolution proceeds
either to a population where individuals specialize on one of the habitats
and have a genetic preference for that habitat (for low o2), or to a
population of generalists that have no genetic habitat preference (for high
02). The generalist population subsequently experiences disruptive
selection, which can lead to speciation. We found that the intensity of
disruptive selection is higher at high learning abilities than at low learning
abilities, which means that learning promotes speciation.

Employing an individual-based version of the model, it was shown that,
when loci are completely unlinked and learning confers only little cost, the
presence of disruptive selection often leads to speciation through a learned
habitat preference. As expected, high costs of learning prevent the
evolution of a learned habitat preference. Instead, speciation then occurs
through a genetic habitat preference, but only when the number of loci
coding for the traits is small. Mutations are in that case of large effect. As
a result, recombination between loci coding for adaptation to the habitats
and loci coding for a genetic habitat preference, which counteracts
speciation, can be overcome. For large numbers of loci this is not true: a
generalist is then the end result of evolution because the force of
recombination is too strong for speciation to take place. This is confirmed
by simulations in which we incorporated physical linkage between loci,
thus decreasing the amount of recombination counteracting speciation. In
that case speciation through a genetic habitat preference more readily
occurs than in the case of completely unlinked loci.

Speciation through a learned habitat preference is not hindered by
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recombination, because it represents a one-allele mechanism in the sense of
(Felsenstein 1981). Our results demonstrate that this advantage of a
learned habitat preference is decisive when it competes with a genetic
habitat preference, even though the intensity of selection on the learning
ability is lower than that on the genetic habitat preference (figure 1). One
can imagine other mechanisms of genetically determined habitat preference
that represent a one-allele mechanism (see e.g., Kawecki 1996, 1997). An
example of this are alleles that reduce migration between two populations
(as in Balkau & Feldman 1973; Karlin & McGregor 1974). In fact, the way
we modelled the learning ability can alternatively be interpreted as such a
model of migration modification. The two particular mechanisms of
development of habitat preference of this paper were chosen because these
had already been studied in separation, but had not been incorporated in a
single model. It would be interesting to extend the analysis by looking at
refinements, and possible alternative implementations, of these habitat
choice mechanisms.

Similar models studying the possibility of speciation through the evolution
of a genetic habitat preference have concluded that such speciation
occurred easily (e.g., Rice 1984; Diehl & Bush 1989; Johnson et al. 1996;
Kawecki 1996, 1997; Fry 2003; Gavrilets 2004). This was found even when
multiple, completely unlinked, loci code for the evolving traits. How do
these results relate to our finding that recombination is a large obstacle to
speciation, apparently preventing speciation more often than in the other
models? Probably the most important reason for this is that the other
studies went for very strong diversifying selection. For instance, one of
these models was used to specifically search the intensity of diversifying
selection on the ecological trait needed to overcome the recombination
barrier (Fry 2003). In our model, the intensity of disruptive selection is
higher when o2 is small than when o2 is large. However, small o2 also
favors the evolution of a single specialist on one of the habitats. This
happens because in our model the disruptive selection emerges at the level
of the total population as a result of a heterogeneity in the selection in
different subpopulations. In contrast, in other models that incorporate
habitat preference the diversifying selection pressure is assumed a priori.
Therefore, the option of evolving a single specialist is excluded by these
models, which probably explains the difference in results.

We assumed that the learning of habitat features is costly, for example
because brain structures that enable learning need to develop, giving those
individuals with a high learning ability a competitive disadvantage in
comparison with individuals with a low learning ability (e.g., see Johnston
1982; Dukas 1999). To estimate such a cost of learning is a difficult task
(for an attempt see Mery & Kawecki 2003). By incorporating learning
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costs we studied a kind of worst-case scenario for the evolution of a learned
habitat preference. First, it could be argued just as well that exhibiting a
genetic habitat preference is costly. Second, apart from being costly,
learning could also confer an additional selective advantage: Here, we
assumed that the only advantage of habitat choice is that it may give a
large survival probability to the offspring of an individual with high
learning ability. However, adaptive learning of habitat choice is often also
advantageous in an individual’s own lifetime (Johnston 1982;

Papaj & Prokopy 1989; Bernays 1998; Egas & Sabelis 2001). Such learning
is thought to evolve easiest in environments that are unpredictable in
space and time (Stephens 1991, 1993). It might then be employed in the
manner envisaged in our model, thus not only increasing the survival
probability of the individual itself, but also of its offspring.

Our results suggest that when speciation occurs via the simultaneous
evolution of a habitat preference, it is likely that this happens either
through a learned habitat preference, or that genes coding for ecological
adaptation and those coding for genetic habitat preference are tightly
linked. Interestingly, in a case where early experience is known not to
influence habitat preference (Via 1991), genes for habitat choice and
ecological adaptation indeed appeared to reside close together on the same
chromosome (Hawthorne & Via 2001) or possibly even are one and the
same gene (Coyne & Orr 2004). This calls for more studies examining on
the one hand the presence of such physical linkage, and on the other hand
in what manner experience influences habitat choice.

Several researchers have mentioned the possible importance of a learned
habitat preference in speciation (e.g., Thorpe 1945; Maynard Smith 1966;
Rice 1984; Kondrashov & Mina 1986; West-Eberhard 2003). In contrast,
Mayr (1947) stated that it would not be strong enough to play a
significant role. However, our analysis shows that a learned habitat
preference is likely to evolve when there is disruptive selection (even when
a genetic preference could evolve as an alternative). In addition, we found
that such learning promotes speciation because it increases the intensity of
disruptive selection (see also Egas et al. 2004b). Taken together, this could
result in a cascade of speciation events: once the learning of habitat
features starts to evolve, this not only represents progress toward
speciation, but it also promotes additional speciation events by new
habitat shifts. It is thus expected that in clades where the learning of
habitat features occurs, the learning is not restricted to one particular
species, but is widespread among closely related species. Whether habitats
are evenly distributed over space, or are more or less separated areas does
not matter for this expectation, because our model for learning ability can
also be interpreted as a model for migartion modification. In conclusion,
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the learning of habitat preferences is likely to play a crucial role in the
evolution of new species more often than realized so far.
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Table and Figure Legends

Table 1. The probability that a habitat is chosen for reproduction as a
function of the genetic habitat preference (g), the learning ability (1), and
the birthplace of an individual. Figure 1. Examples of trajectories of
evolution of the specialization coefficient (a), the genetic habitat preference
(g9), and the learning ability (I). Notice that although the trait space is
drawn as a cube, in reality the biologically meaningful trait space is only
limited in the g and [ directions, but not in the a direction. The outcome
of directional evolution depends on 2, which determines the trade-off
between viabilities in the two habitats: (a) at low o2, evolution leads to a
population of specialists with a genetic preference for their optimal habitat;
(b) at intermediate o2, it depends on the initial conditions whether
evolution proceeds to specialists with a genetic preference for their optimal
habitat, or to generalists without habitat preference; (c) at high o2,
evolution ends with a population of generalists without habitat preference.
Parameters: £ =10, K = 10000, ¢ = 0.10, a4 =0, ap = 1. The elements
on the main diagonal of the mutational matrix used for the calculation of
the trajectories are 4x(1 — z)—where x represents the traits a, g, and
[—while the off-diagonal elements are all zero. Figure 2. Examples of the
possible end results of the individual-based simulations of evolution of the
specialization coefficient (a), the genetic habitat preference (g), and the
learning ability (I). The darkness of the squares indicates the number of
individuals with different values of a, g and [ at a particular time (a white
square means that no individuals of that type are present). (a) Evolution
to specialists preferring habitat A (k. = 10, 02 = 0.20, ¢ = 0.04); (b)
evolution to generalists without habitat preference (k. = 10, 02 = 0.25,

¢ = 0.08); (c) speciation through a genetic habitat preference (k. =5,

02 =0.18, ¢ = 0.05); (d) speciation through a learned habitat preference
(k. =10, 02 = 0.18, ¢ = 0); (e) speciation through a combination of genetic
and learned habitat preference (k. = 10, 02 = 0.21, ¢ = 0.04); (f)
polymorphism in @ and g (k. = 10, 0? = 0.21, ¢ = 0.07). Other parameters:
K =400, E=10, ¢ =1, ks =16, k4 = 16, k; = 16. The linkage scheme
used in these examples was “predetermined linkage” (explanation in model
description). Figure 3. The outcome of individual-based simulations of
evolution of the specialization coefficient (a), the genetic habitat preference
(g9), and the learning ability (I) for free recombination (a), and when all
loci are distributed over k. chromosomes (b). The evolutionary end result
depends on o2, which determines the trade-off between viabilities in the
two habitats, and on ¢, the cost of learning. The evolutionary outcome for
each parameter combination is based on a single run. Parameters:

K =400, E =10, ¢ =1 and in (b) ks = 16, ky = 16, k; = 16.

22



Table 1

born in A born in B

reproduction in A faa =1-g(1-1) fBa=(1-9)(1-1)
reproduction in B fap=9g(1-=1) fep=1—(1—-9)(1-=1)
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Figure 1
(a) 02=0.10 (b) 62=0.15 (c) 02=0.25
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Figure 2
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Figure 3

(a) no linkage (b) predetermined linkage
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Electronic Appendix

The selection gradient

In the following we provide the details of the adaptive-dynamical analysis. The course
of evolution of the specialization coefficient (a), the genetic habitat preference (g),
and the learning ability (/) depends in part on the intensity of selection on these
traits, and in part on the mutation process. To calculate the intensity of selection on
each of the traits, we need to take into account that a mutant in one of the traits g, [,
or a can produce offspring in both habitats. Therefore it is necessary to calculate the
expected density of offspring in both habitats in the next generation for a mutant.
This is represented in the “reproduction matrix” R, which has elements r;;

(1,7 € {A, B}) denoting the expected density of offspring in habitat i produced by an
individual born itself in habitat j. For example, a mutant that is born in habitat A
will produce the following density of young in habitat A (after viability selection but
before density regulation):

wA(am)E(l —C lm)fAA(gmu lm) s (4)

where a,, gm and [, denote the trait values of the mutant. Competition with young
produced by residents results in a per capita reproduction of

wA(am)E(l —C lm)fAA(gma lm)
1+ KU}A(CLT>E(1 —C lr)(fAA(gra ZT)NA(QM lra ar) + fBA(gr, lr)NB(gr, lra ar))

, (9)

where a,, g, and [, denote the trait values of residents, and N 4 and N B denote the
population densities at equilibrium. The remaining elements of the reproduction
matrix are derived analogously:

1+ K YA(gralhar) 1+K Y/A(gmlmar)
wB(am)E(l_AC lm) fAB(gmalm) wB(am)E(l_AC lm) fBB(ngm)
1+K YB(gr,lr,ar) 1+K YB(grlr,ar)

( wA(am)E(l—c l'm) fAA(g7n7l7n) wA(am)E(l_C lm) fBA(gmalnL) )

where Y, denotes the density of young produced in habitat x by residents at
population dynamical equilibrium. When the dominant eigenvalue of the



reproduction matrix is larger than unity, a mutant in one of the traits has a nonzero
probability to invade the population of residents. The dominant eigenvalue A of our
reproduction matrix equals

wafaaKp +wpfepKa+ /(wafaaKp —wpfepKa)? + 4wawpfpafapKaKp
2K A Kp

, (7)

where for brevity in the notation it is omitted that w4, wg, faa, fap, fBa and fgg
are here functions of the mutant traits, and that K4 and Kpg are functions of the
resident traits:

(1+ Kwg(a,)EQ1 — clp)(Nalar, gr, 1) faz + N(ar, gr, 1) fB2))
(E(1—cl))

The partial derivatives of the dominant eigenvalue O\/day,, ON/Ogp,, and N/, give
the three components of the selection gradient. The sign and magnitude of these
components result in directional evolution until each of the components become zero
(Dieckmann & Law 1996). The trait values at which the selection gradients become
zero are the equilibria of directional evolution, the so-called evolutionarily singular
points. Although we could not solve the equilibrium equation in full generality, for
some special points it can be shown that they are (under some circumstances)
evolutionary singularities. In particular this is true when (i) the population consists of
generalists without a habitat preference (a = (aa +ap)/2, g = 0.5 and | = 0), or
when (ii) the population consists of specialists with a genetic preference for the
habitat they are specialized on (either a = a4, g=0and [ =0, 0or a = ap, g =1 and
[ = 0). Evolutionarily singular points have two properties that determine how
evolution will proceed (Geritz et al. 1998, Metz et al. 1996). First, the convergence
stability property determines whether the singular point will be approached or not.
Second, the evolutionary stability property determines whether nearby mutants can
invade or not when the singular point has been attained. In the following we study
these two types of stability for the special points mentioned above.

Specialists with a genetic preference for their optimal
habitat

At the point where the population consists of specialists with a genetic preference for
the habitat they are specialized on (due to the symmetry this means either a = a4,



g=0andl=0ora=ap, g=1and !l =0), the three components of the selection
gradient are O\/Oa,, = 0, ON/Ogm = —1 + E exp((—(aa — ap)?)/(20?)), and

OA/0l,, = —c. Hence, the component of the selection gradient in the direction of a is
zero. Although the g and | components of the selection gradient are not zero, the
point can still be an evolutionary singularity. This is because for g and [ we are at the
border of the biologically meaningful trait space (both should be between 0 and 1).
This means that when the selection gradient points away from the biologically
relevant part of the trait space, evolution of these traits will come to a halt. This is
always true for [, and for g when

—(aa —ap)?
= 2(1;1(1/15)) )

In conclusion, the points a = a4, g =0,l=0and a=ap,g=1,1=0 are
evolutionarily singular points when inequality (9) holds. To determine the
convergence and evolutionary stability of these two singular points, we need to study
the components along and perpendicular to the border of the biologically relevant
trait space separately. The border is formed by either the g = 0 and [ = 0 or the

g =1 and I = 0 planes. To assure convergence toward the border, the selection
gradient in the singular point should be exactly perpendicular to the border. A slight
deviation from this direction would, for certain mutational processes, allow an
evolutionary escape away from the border and thus away from the singular point (see
below for a further explanation of the influence of the mutational process on the
course of evolution). Here, the two planes that form the border are perpendicular to
each other, and the selection gradient is indeed exactly perpendicular to the border
(the a component of the selection gradient is zero). Hence, when in addition the
selection gradient points toward the singular point, which is true when condition (9)
is fulfilled, convergence toward the border is guaranteed. We also need to study the
convergence and evolutionary stability along the border (the a direction). These can
be determined from the partial second derivatives with respect to the mutant and
resident. These derivatives are:

FPA PN 1

a2, = 9 o? (10)

Hence, because 0%)\/da? > 0%)\/0a2, the singular points are convergence stable, and
because §°)\/da2, < 0 they are also evolutionarily stable (for these conditions see e.g.
Geritz et al. 1998).



Generalists without a habitat preference

When the population consists of generalists without a genetic habitat preference, that
is, at a = (a4 + ap)/2, g = 0.5, the three components of the selection gradient are
ON/Oam, =0, ON/0gm = 0, and ON/0l,, = —c/(1 — cl,). Hence, when in addition [ = 0
there is an evolutionarily singular point because the g and a components of the
selection gradient are zero, and because the component in the [ direction of the
selection gradient points away from the biologically relevant trait space.
Alternatively, when there is no cost of learning (¢ = 0), there exists a whole line of
singular points for all values of [ (selection is then neutral in the [ direction). The
analysis of both cases is similar but slightly different. For the singular point at [ = 0
(with ¢ > 0), we again need to consider separately the components along and
perpendicular to the border, which is formed by the [ = 0 plane. Convergence toward
the border is guaranteed because the selection gradient in the singular point is exactly
perpendicular to the border (the a and g components of the gradient are zero), and
points toward the singularity. Determining the convergence stability in the g and a
direction (as well as the [ direction when ¢ = 0) is more complicated than in the case
of evolution of a single trait, because in multidimensional trait spaces not only the
selection gradient but also the mutation process can influence convergence stability of
a singular point (Leimar 2001, 2005, Matessi & Di Pasquale 1996). In
multidimensional adaptive dynamics, the mutation process is modelled by means of a
mutational variance-covariance matrix, which contains information about genetic
correlations between traits and about mutation probabilities of genes that underly the
traits. We study when the singular point is strongly convergence stable (Leimar 2001,
2005), i.e., for all mutational matrices convergence is guaranteed for all solutions of
the canonical equation of adaptive dynamics (Dieckmann & Law 1996,

Durinx & Metz 2004) that start sufficiently near to the singular point. A singular
point is strongly convergence stable if and only if the matrix

132D 32D
ox2, + OxmOz, (11)

where z,. and x,, are the resident and mutant components respectively, is negative
definite in the singular point (Leimar 2001, 2005). This matrix is called the Jacobian
of the selection gradient (Leimar 2005). When [ = 0, it is a two-dimensional matrix
(for the [ direction the convergence stability follows from the ! component of the
selection gradient):



(aq—ap)? (ag—ap)?

(aa—ap)?e 802 —40°E (ap—ap)e 802
404E o’E
(ap—ap)? (ap—ap)? ’ (12)
(ap—ap)e 802 4(e 802 —E)
o2E E

This matrix is negative definite when

@a—ap)?® (s —ap)?
E>e w2 (AZIBL 4 gy (13)
4o

From condition (13) it can be seen that the singular point is strongly convergent stable
when 0?2 is above a certain threshold. At high E the threshold is lower than at low E.
The Jacobian of the selection gradient could not be determined analytically for the
case that [ > 0 and ¢ = 0. Therefore, we determined when the conditions for strong
convergence stability are fulfilled numerically. Again, this occurs when o2 is above a
certain threshold. The position of the threshold is higher at high [ than at low .

Although strong convergence stability is biologically the most relevant characteristic
determining whether an evolutionary singularity will be approached, sometimes such
a point has the even stronger property of absolute convergence stability. When a
singular point is absolutely convergence stable, this guarantees that in a certain area
around the point no evolutionary escape is possible from evolution toward the
singularity, independent of whatever mutations are produced, even when these are
produced by a ”Darwinian demon” keen on tipping the balance toward escaping
(Leimar 2001). A singular point is absolutely convergence stable when condition (11)
is fulfilled, and when in addition the Jacobian of the selection gradient is symmetric
(Leimar 2001, 2005). In the case we study, this is always true when a = (a4 + aB)/2,
g =0.5 and [ = 0 (see matrix (12)). Hence, strong convergence stability then implies
absolute convergence stability. In contrast, numerical analysis showed that the
Jacobian of the selection gradient is not symmetric in the singular points with [ > 0
and ¢ = 0. Hence, these singular points are only strongly convergence stable, but not
absolutely convergence stable.

For multidimensional adaptive dynamics, the evolutionary stability of a singular point
(whether mutants can invade the resident population when the system has attained
the point) is determined by the matrix 9?\/9x2, at the singular point. When this
matrix, which in our case is

(aa—ap)?—40% ag—agu 0
2

404 o
ap o4 0 o . (14)
0 0 0



is negative definite, the singular point is evolutionarily stable. Because the dominant
eigenvalue of this matrix,

(1+10)(as—ap)? —40*(1 = 1)+ /(1 +D)(aa —ap)? —402(1 = 1))2+ (8(1 = )(aa — ap)o?)?)
8a4(1—1) ’

is always positive, the singular point is always evolutionarily unstable. There is thus
disruptive selection at this singular point, with intensity approaching infinity when
2 — o0. Disruptive selection is present in both ¢ and a
direction (the exact direction depends on 02, a4 and ap as can be concluded from the
accompanying eigenvector). The learning ability may be larger than zero at the
singular point, because selection on [ is neutral at ¢ = 0, or because there may be
selection pressures in favor of learning for reasons other than studied in this model
(see discussion of main article). In that case, the intensity of disruptive selection is
higher at high learning abilities than at low learning abilities. Hence, because
speciation is more likely for strong disruptive selection than for weak disruptive
selection, the presence of learning promotes speciation.

0% — 0, and zero when o
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