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Abstract 

Although floods are not the strongest or the most sudden physical phenomena in the 

world, they appear to be the one of the most disastrous events. During the last few 

decades we have observed an unusual frequency of flood events. Examples of enormous 

flood damages in Poland in 1997, in Germany, the Czech Republic and Slovakia in 

2002, and also in China, the United States, Southern Africa and many other countries 

are well known. It could be said that floods have become one of the main development 

barriers for countries which are unable to cope with this problem. 

In the presence of extreme floods proper water management strategies have become 

dramatically important. Flood protection in the catchment scale requires application of 

efficient decision support system. However, the uncertainty linked to the unknown 

inflows scenarios makes this problem extremely difficult. In the report the possible 

structure of a decision support tool is presented. The elements of the system are 

discussed and some examples from the Nysa Klodzka reservoirs system are given 
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Control of the reservoirs system during flood; 

Concept of learning in multi-stage decision process 
Tomasz Dysarz, dysarz@au.poznan.pl 

1. Introduction 

 During last decades we have observed an unusual increase of losses caused by 

extreme rainfalls and floods. Ashton et al. (2003) reported that flood damages in the 

period 1989-98 were ten times greater than losses caused by the high water level in the 

decade between 1960-69. According to the mentioned report flood losses increase from 

decade to decade. The indicated explanations are twofold. The increase of human 

population and economic growth cause increase of investments density in economically 

attractive but flood prone areas. Economic growth and development of industry lead to 

local and global climate changes resulting in an increased frequency of extreme 

meteorological and hydrological events such as floods and droughts. These kinds of 

phenomena were observed in Europe during the last decade. In 1997 many cities in 

Poland, Czech Republic and Slovakia were struck by intensive rainfalls and river 

flooding. A few years later the horror came back. In 2002 extreme floods occurred in 

Germany and once again in the Czech Republic and Slovakia. Not only European cities 

suffer from floods. The problem occurs also in other parts of the world, for example in 

China, United States, Southern Africa and many others.  

 As a response to the increasing danger caused by weakly controllable and 

unpredictable hydrological events, serious economic and political organizations founded 

scientific projects to deal with these problems. The European Commission started to 

support scientific projects aimed at flood risk mitigation or early flood warning systems. 

In the Fifth Framework Programme there were 100 projects dealing with meteo- and 

hydrology topics focused on flood hazards (Ashton et al., 2003). The considered 

analysis led to management strategies classified familiarly as “hard” and “soft” (Menzel 

and Kundzewicz, 2003). The first group contains development of flood protection 

infrastructure as dams, reservoirs, dikes and polders. In the second group there are the 

management strategies made on the basis of existing infrastructure. This means actions 

taken in operational conditions in order to decrease flood risk and losses. These methods 

include forecasting, warning and control of dams and polders. 
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 This report presents the problem of reservoir system control in flood conditions 

which should be classified as “soft” strategies. The controllable structures deal with 

middle and short term strategies drawn on the basis of the current state of the system. 

Various operational decision rules were analyzed recently, i.e., by Agthe et al. (2000), 

Takeuchi (2002), Shim et al. (2002), Islam and Sado (2002) and many others. However, 

the main problem with the implementation of such strategies is still linked with 

computational time requirements (Valdes and Marco, 1995). The designed algorithms 

are very time consuming which makes them useless in operational conditions. 

 The main purpose of establishing artificial reservoirs and dams is to control the 

water discharge variability and uncertainty. The storage of reservoirs should 

significantly affect flow conditions in the streams located down the reservoirs releases. 

Such engineering structures are built to supply water, produce hydropower or prevent 

from floods . Other reservoirs purposes are the inland navigation and tourism. Although 

the influence of the reservoirs on the water use conditions improvement is beyond any 

doubt, some new problems linked with reservoir performance arise. For long term use 

of the reservoir the most important processes are linked with the break in transport 

processes continuity. The sediment and pollutants transported with the water 

accumulate in the reservoir. In effect the effective reservoir’s capacity is decreased. 

What is worse, water intake facilities may be destroyed. Water quality in the reservoir 

becomes worse from year to year. On the other hand the water released from the 

reservoir is free of dissolved pollutants and sediment materials. In addition the water 

stream has huge mechanic energy. This energy is used to fill the stream with sediment 

up to the previous river sediment load. The material is taken from the river bed down 

the dam what causes sequential erosion of the ground and may in turn cause the collapse 

of the dam. 

 Although the long term problems linked to reservoir performance are very 

significant there are many ways to prevent unwanted events. The risk is larger in 

operational conditions especially during high water levels and floods. The flow 

conditions below the dam are more predictable and stable than before the reservoir was 

built. Hence, the decision maker problem is to select such releases from the reservoir or 

reservoirs that the flood losses below the system are minimized. In many cases the 
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mitigation of flood losses may be considered as minimization of water level in chosen 

points of the river system. So, for these points the control criterion may be specified as 

 
[ ]0 0,

min max
H

r
t t t T

H
∈ +

, (1) 

where Hr is the water level, t0 is the decision time and TH is the control horizon. 

Although the relationship between discharge and water level in unsteady flow is not 

unique, for the sake of simplicity in many cases the above criterion is replaced by the 

minimization of peak water discharges Qr  

 
[ ]0 0,

min max
H

r
t t t T

Q
∈ +

. (2) 

The decision maker has to select proper releases from the reservoirs matching criterion 

(1) or (2). It is not an easy task in big catchments where the river lateral inflows play a 

significant role in forming the flow conditions. In some cases, for example in the Nysa 

Klodzka catchment, there are at least two flow peaks running different channels in the 

system (Dysarz, 2003). Only one of them may be controlled. The problem is to control 

the reservoir located in one tributary in such a way that flow peaks in the junction of 

two rivers are shifted. Then the flow peak below the junction is decreased. In this way 

the flood losses are  minimized. 

 The optimal decision should reduce flow peak and store the flood wave by 

proper use of the reservoir capacity. In the case of a big flood the use of the whole 

admissible capacity is necessary. At the end of a flood the reservoirs should be full of 

water. This would be the ideal situation. In reality the conditions above the reservoir are 

uncertain. The future inflows to the reservoir are not known and the whole risk is put 

into decision maker consideration. The inflows may be predicted but up to now the 

accuracy of such predictions is low. This uncertainty causes new danger. If the releases 

from the reservoir are too low, the maximum admissible capacity may be exceeded and  

the dam may be broken by overtopping. Such events cause much higher losses than 

floods themselves. Hence, wrong decisions may lead to bigger damages than no 

prevention from floods. Due to the forecasting errors the danger of dams overtopping is 

really serious. The information about the state of the reservoir collected in the dam is 

much more certain. This is the reason why in many cases the decision-makers relay on 

rule curves during extreme events (Valdes and Marco, 1995). Hence, no future forecasts 
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are used. It means that the reservoir protects itself only in the current moment without 

any link to large scale situation in present and future. 

 This seems not to be good practice. Experiences of historical floods show that 

such strategy may lead to flood wave interaction and huge flood damages. The example 

from the Nysa Klodzka catchment in southern part of Poland was given by Dysarz 

(2003). The goal of this paper is to present the concept of flood damages reduction in 

real-time conditions on the basis of middle- and short-term forecasts even if the 

predictions are not perfect. The key problem is adaptation of the system to changing 

inflows conditions in presence of new available information about the future. The real 

decisions should be made on the basis of short-term (24 – 48 h) forecasts which are 

more accurate. However, some options should be open due to the middle-term (up to 10 

days) considerations. As the results of the last European Commission projects show, 

such information may be provided in operational conditions. 

 The main goal of the presented report is to introduce the concept of uncertainty 

decreasing in flood protecting reservoirs management. The main basis of the concept is 

separation of long-term (or rather middle-term) analysis and short-term implementation 

of particular decisions. Such an approach was chosen to guarantee decisions flexibility 

in the presence of changing flow conditions and new available observations. The 

considerations and conclusions in this report are presented in the following chapters. 

First the equations describing the dynamic of reservoirs system are shown. In the next 

chapter the problem of inflow forecast is discussed. The main idea of the proposed 

procedure is shortly introduced in the fourth chapter. The fifth chapter consists of 

detailed problem formulation. Then the complexity of the problem is discussed and 

some detailed solutions are proposed including: design of the proper control rules, 

decomposition of the problem and selected approaches to minimax optimization. The 

concluding remarks are presented in the last chapter. 

2. Reservoirs system 

 In general the reservoirs system may be modeled as a network of storages, 

channels and inflow points. The main focus is the safety or water demand in some 

points or some areas of the system. The basic types of the system are reservoirs in series 

and reservoirs in parallel shown in fig. 1 and 2. Although the mixed systems, as for 
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example shown in fig. 3, are very common, the main considerations may be limited to 

the basic cases. Extending the main ideas for the mixed systems should be easy.  

 

 

Fig. 1. The system of reservoirs in series – schematic view 

 

 

Fig. 2. The system consisting of reservoirs in parallel – schematic view 
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Fig. 3 Example of mixed system 

 

 Assuming that the channels connecting reservoirs in the system are short enough 

to neglect the transformation of flow, the system of reservoirs in series or in parallel 

may be described by the linear ordinary differential equations of the form 

 
d

dt
= +V

EI Bu , (3) 

where V = [V1, V2, …, VN]T are the reservoirs storages (N – number of reservoirs in the 

system), I = [I1, I2, …, IN]T are the inflows to the reservoirs, u = [u1, u2, …, uN]T are the 

controlled reservoirs outflows. E is the unit-matrix and B is the matrix of coefficients of 

the size N × N. For the system of reservoirs in series B has the following form 

 

1

1 1

1 1

1 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

B
O O

O O

 (4) 

In the system of the reservoirs in parallel B = − E. The set of differential equations is 

completed with the initial condition V(t = 0) = V0. The constraints describing the 

admissible releases and storages are imposed on the performance of the system 

 Umin ≤ u ≤ Umax  Vmin ≤ V ≤ Vmax (5) 
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 The outflow from the system Qr is formed by the reservoirs releases u and 

spatially distributed inflow q which may be only measured or predicted. The model of 

the system outflow may be shown as  

 ( ),rQ qψ= u , (6) 

assuming that system boundary is properly defined. The later statement means that the 

flow conditions in the outlet of the system do not influence the flow conditions in the 

system. If the criterion (1) is taken into account the model of (6) is replaced by 

equivalent one 

 ( ),rH q= Ψ u  (7) 

expressing the relationship between reservoir outflows u, uncontrollable inflows q and 

water levels Hr in the outlet of the system. 

 The water levels h = [h1, h2, …, hN]T in the reservoir may be measured almost 

continuously. The area covered by water Fi(hi) (i = 1, 2, …, N) for the certain water 

level hi is one of the reservoir geometrical characteristics. For engineering purposes it is 

considered as a curve expressing the relationship between Fi and hi. The change of 

reservoir storage dVi may be written as 

 dVi = Fi(hi) dhi. (8) 

Hence, the linear system of ordinary differential equations (3) may be presented in 

nonlinear form 

 ( ) ( )Td

dt
= +h

f h EI Bu , (9) 

where f(h) is a vector of the form 1 1 1 T
1 1 2 2[ ( ), ( ),..., ( )]N NF h F h F h− − − . The formulae (9) is 

useful if the attention is mainly focused on handling of release facilities. The outflow 

from the reservoir depends on the water level in the reservoir and the set of parameters 

zi = [zi1, zi2, …] (i = 1, 2, …, N) describing the outflow gates opening 

 ( ),i i iu hϕ= z . (10) 

In such case also the upper constraints on the reservoir outflows should be considered as 

dependent on water levels in the reservoir 

 Umin ≤ u ≤ Umax(h). (11) 

 The future inflows to the system I(t) and q(x, t) are not known and may be only 

predicted with some finite accuracy. However, the statistics of inflow prediction validity 
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may be defined on the basis of historical flood events. Hence, the behavior of the 

system is considered stochastic.  

3. Admissible inflows forecasts 

 To achieve the above specified goals decision support systems including 

monitoring, predicting, modeling and control procedures should be used. The elements 

of the decision support system may be classified in two groups: forecasting and 

optimization techniques. Both of them include several modeling techniques enabling 

determination of a system response as discharges and/or water levels in specified points 

of the considered area. The problem of inflow forecasting is not the area of the 

presented research but a short overview would be useful for clear understanding of the 

discussed problem of the control of reservoirs in uncertain inflow conditions. The 

inflow prediction module consists of two main parts: precipitation forecast and rainfall –

 runoff transformation model. These parts form meteorological and hydrological 

forecasts. 

 The precipitation forecast is based on the so called global circulation models 

(GCM) and downscaling techniques. GCMs are well known models describing the 

evolution of global weather variables as temperature, pressure and moisture, wind 

strength and wind direction. The governing equations are mass, momentum and energy 

balance equations. Since the GCMs operate with small resolution, they are not used to 

describe local weather changes. For this purpose downscaling techniques are used. It is 

possible to indicate three main approaches to the problem: dynamical downscaling, 

stochastic downscaling and stochastic weather generators (Prudhomme et al., 2002, 

Prudhomme et al., 2003). The methods from the first group were recently investigated 

by many researchers, for example by Jones et al., (1995), Murphy (1999), Bates et al. 

(1998). The dynamic downscaling is based on the same kind of physical laws as global 

circulation models but resolution is much finer. In statistical downscaling relationships 

between large scale climate features and regional characteristics are used to produce 

local weather characteristics. The examples of such approach may be found in Burger 

(1996), Conway and Jones (1998), Sailor et al. (2000), Stehlik and Bardossy (2002), 

Wilby et al. (2002). A range of summary statistics that could be provided by GCM 

output is used to create sub – daily weather series in the third approach, stochastic 



 9

weather generators. Some results were provided by Semenov and Barrow (1997), 

Schnur and Lettenmaier (1998), Wilks (1999), Goodsell and Lamb (1999) and others.  

 The second stage model of inflow forecast is rainfall – runoff transformation. 

According to the classification proposed by Beven (1985) there are two basic types of 

rainfall – runoff models: kinematic wave approach and conceptual storage approach. 

The first is physically based on mass and momentum balance principles. It was studied 

by Eagelson (1972), Jønch-Clausen (1979), Abbott et al. (1986), Morris (1980), Edward 

et al. (1977), Ross et al. (1979), Jayawardena and White (1977, 1978) and others. In the 

second group of runoff – rainfall models the real system is replaced by an approximate 

one. Some examples may be found in Laurenson (1964), Ibbitt and O’Donnell (1971), 

Ciriani et al. (1977), Diskin and Simpson (1978), Diskin et al. (1984), Knudsen et al. 

(1986). 

 As discussed by Dysarz (2003) inflow forecasting is very inaccurate. The main 

value of forecasting in the described way should be considered statistically. This means 

that the decision-maker obtains the information as something happened in shorter or 

longer future, the maximum flow during flooding may exceed specified value with 

given probability, and so on. Only short-term inflow predictions, 0-3 days, were 

seriously taken into account in reservoir management. This period is to short to control 

huge spatially spread reservoirs systems. 

 A significant step forward was done in some scientific projects sponsored in the 

European Fifth Framework Programme. Some results will be discussed here to illustrate 

the background for the operational control of reservoirs during flood. Very interesting 

example is the EFFS project aiming at developing the European Flood Forecasting 

System. The useful results obtained in this research include data on control of reservoirs 

during flood. The results were presented in project reports and some publications. The 

short discussion presented below is based on a project final report (An European Flood 

Forecasting System EFFS, 2003) and summary of this project given by De Roo et al. 

(2003).  

 The main project goal was to develop a European-scale flood early warning 

system. The main system part is forecasts module for 4-10 days in advance. Several 

numerical models were used in the EFFS project. The precipitation forecasts are 
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calculated by means of global and local Numerical Weather Prediction models. Water 

balance models were used for the catchment hydrology modeling. The LISFLOOD 

model was implemented as the flood simulation model. High-resolution flood 

inundation models enable the identification of flooded areas. The modeling framework 

was applied in five study areas located in Europe. These are Meuse (France, Belgium, 

the Netherlands), Odra (Czech Republic, Poland, Germany), Po (Italy), Mures 

(Romania), Sava (Danube, Slovenia). For each study area the forecasts were formulated 

by simulation of historical disastrous flood events. As an example the results for the 

Odra catchment are presented below (fig. 4). The flood event in 1997 was simulated. In 

the figures there are several flow forecasts scenarios (black, green and red lines) 

specified in subsequent days for the Miedonia gauge station. The scenarios are 

compared with the real flows (blue line). The accuracy of the flow peak forecasting 

increases if the time between the forecast specification and peak occurrence is shorter. 

However, even the very early predictions may be useful. The forecasts indicate that 

“something happens”. Such warnings should be the beginning of the prevention actions. 

 

 

 
Fig. 4 Flow forecast scenarios formulated for the Miedonia gauge station in Odra catchment for the 

flood event simulation in 1997; The results are from the EFFS project final report “An European 
Flood Forecasting System EFFS” (2003) 
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 It seems to be possible to specify a number of inflow scenarios before the flood 

is coming as well as to monitor and predict the future changes during the event. The 

next problem is what the decision-makers may do with such information. The inflow 

scenarios should be used with different decisions selected from the admissible set. In the 

presented case the decisions mean different reservoirs releases scenarios. The behavior 

of the system influenced by inflow conditions and taken decisions may be simulated and 

the results may be assessed. This evaluation should lead to which decision is the best in 

the statistical sense. However, the decisions may be changed during the flood event 

according to the changes of our expectations about the future inflow conditions. Hence, 

the parameters of system performance should be selected in such a way that the 

flexibility of the system is still preserved. Due to the high complexity of the problem the 

decomposition schemes and optimization methods are very useful. The algorithm which 

should satisfy the described requirements is presented in the next section. 

4. Main idea of adaptive multi-stage algorithm 

 As it was mentioned in the previous section the reservoir control problem should 

be considered as a stochastic optimization task due to the inflow uncertainty. In general 

such a problem is formulated as follows (Ermoliev & Wets, 1988b): find set of control 

variables u ∈ U ⊂ Rm such that the constraints 

  ( ), 0ig ≤u ω  for i = 1, 2, … n (12) 

are satisfied and the objective function 

  ( )0 ,z f= u ω   (13) 

is minimized in some sense for each ω ∈ Ω ⊂ Rq assuming ω is known. In the above 

formulae u is vector of control variables and ω is unknown vector of random variables. 

In the considered reservoir control problem the inflows to the system are random 

variables. Set Ω consists of probable ω elements. This set with its elements are the parts 

of the probabilistic space (ω, Ω, P) where P(dω) is the probability of event ω 

determined in domain Ω.  
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 The minimax dynamic optimization problem may be written in the same 

manner: find control functions u(t) ∈ U ⊂ Rm such that the state equations 

 ( ), , ,
d

t
dt

=x
f x u ω  x(t0) = x0 (14) 

and constraints 

  ( ), , , 0ig t ≤u x ω  for i = 1, 2, … n (15) 

are satisfied and the objective function 

  ( ) ( )
[ ]

( )
,

, max , , ,
k k H

H
t t t T

z h J t
∈ +

= +u ω x u x ω  (16) 

is minimized in some sense for each ω ∈ Ω ⊂ Rq. In the above formulae [tk, tk + TH] is 

control horizon, x(t) ∈ X ⊂ Rp is state vector, h(xH) is a function determined for the final 

system state xH = x(t0 + TH) and J(u, x, ω, t) is the control criterion element for which 

the maximum value is to be minimized. Such problem arises when the decision u 

forming future states of the system x has to be made on the basis of imperfect forecasts 

of ω values. Constraints (12) and (15), state equations (14) as well as the objective 

function (13) or (16) depend on random ω variables. Hence, constraints may not be 

satisfied for some ω in the set Ω. The same is with an objective function which cannot 

be minimized for all ω, therefore, proper probabilistic definition of (12)-(16) is needed. 

 For the next considerations the attention is focused on the dynamic case. To 

formulate the problem precisely (14) – (16) one has to consider a wide range of exact 

statements of the above problem according to specifying in which sense function (16) is 

minimized and constraints (15) with state variables (14) are satisfied. On this basis 

appropriate criterion and constraints should be formulated. The approaches to the 

problem may be classified in several groups. The most common are (Ermoliev & Wets, 

1988b): 

• scenario approach; 

• reliability approach; 

• averaging of objective function, constraints and state equations;  
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However, in each of the above approaches the constraints may be violated. This 

problem is of the great concern in reservoir management. Violation of constraints means 

dam overtopping resulting in dam break. As it was indicated in the introduction this is 

the main risk with using reservoirs and dams as flood protecting structures. Hence, 

straightforward strategic planning approach as mentioned above should be replaced by 

the procedure based on sequential monitoring and control. An important element is also 

incorporating long- or rather middle-term information into operational management 

during flood. Due to these requirements the application of two approaches may be 

considered: 

• adaptive two- or multi-stage approach or 

• adaptive trajectory planning. 

They both are similar. Their main features are considerable flexibility and adaptation in 

changing environment conditions. These overcome the problem of constraints violation. 

The first approach is the stochastic optimization model with ex-ante (forward looking) 

optimization and adaptive recourse actions (see Ermoliev and Wets (1988b)). The main 

assumption is that the control variables u are replaced by control actions taken in 

advance u′ and adaptive recourse actions u″ as  

  u = ρ(u′, u″). (17) 

The first control rules are determined before observation of random variables ω from Ω. 

They are selected at the beginning of the decision process, where the information about 

the environment is limited. The later controls are selected for the specified u′ and 

particular observed or better predicted environment conditions ω. These actions are 

determined during the control process when the decision-maker has some information 

(measurements) describing ω at his/her disposal. 

 For the system which dynamic is described by state equations of the form (14) 

the problem may be formulated in a similar way. Assuming that control variables u are 

represented by relationship (17) in the first level the decision-maker has to find such 

u′ ∈ U′ that the objective function  

  ( ) ( ) ( ){ }1 0 , ,z E g q′ ′ ′= +ωu u ω u ω  (18) 
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is minimized. The averaging operator Eω is defined for any random function ϕ( . , ω) as 

  ( )[ ] ( ) ( )dωωωω PE
Ω
∫= , . , . ϕϕ . (19) 

In this case g0(u′, ω) is the optimal solution of the problem: for given u′ and particular 

sample ω ∈ Ω ⊂ Rq find u″ ∈ U″ such that state equations 

 ( )( ), , , ,
d

t
dt

ρ ′ ′′=x
f x u u ω  x(t0) = x0 (20) 

with constraints 

  ( )( ), , , , 0ig tρ ′ ′′ ≤u u x ω  for i = 1, 2, … n (21) 

are satisfied and the objective function 

  ( )( ) ( )
[ ]

( )( )2
,

, , max , , , ,
k k H

H
t t t T

z h J tρ ρ
∈ +

′ ′′ ′ ′′= +u u ω x u u x ω  (22) 

is minimized. So g0(u′, ω) is  

 ( ) ( )( )0 2, min , ,g z ρ
′′

′ ′ ′′=
u

u ω u u ω  (23) 

In (18) function q(u′, ω) describes the aggregated cost of recourse action. 

 The second approach namely adaptive trajectory planning may be presented as 

follows: find such state trajectory x(t) ∈ X ⊂ Rp that objective function  

  ( )
[ ]

( ){ },
max , , ,

k k H
H

t t t T
E h J t

∈ +
+ω x u x ω  (24) 

is minimized and the constraints (15) are satisfied. In (24) control variables u are 

determined as the solution of state equations (14) for particular ω and selected state 

trajectory x. 

 Both approaches may be used as a preliminary control in selecting the desired 

behavior of the system in long- or middle-term horizon. The information obtained as the 

solution of the presented problems should be incorporated into operational research and 

sequentially updated as soon as new information about ω is available. This concept is 

described in the next section for the particular problem namely control of reservoir 

systems during flood. 
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5. Problem formulation 

 As it was discussed in the previous section the inflow forecasts may be 

appropriately accurate only in a short time horizon, about TF = 48 – 72 hours. At any 

decision making moment tk, the proper outflow from the reservoirs should be selected 

for the nearest period of time [tk, tk + TF]. In this case “outflow” means the vector valued 

function of one real argument u(t) or rather the set of parameters α1, α2, … describing 

this function. The important thing is that the decision-maker has to select real “values” 

fitting uncertain future conditions. For a short time horizon TF the danger of uncertainty 

may not be dramatic. However, floods are the phenomena of longer duration. What a 

decision-maker should avoid is filling up reservoirs before the flow peak comes or 

releasing water from reservoirs in such a moment that flood waves interact in channels. 

The flood wave movement and reservoir performance should be analyzed in longer time 

horizon [tk, tk + TH], where TH may be up to 10 – 11 days. Hence, the operational 

reservoir management should take into account possible long term conditions in the 

system.  

 Considering the current inflow forecasting opportunities the use of adaptive and 

flexible monitoring-and-control algorithms seems to be the proper choice. In this section 

the attention will be focused on the control part of such a procedure. The decision-

making process is divided into two main parts: upper and lower. In the upper part all 

possible inflow scenarios for the period [tk, tk + TH] are analyzed and then proper 

reservoir storages VF in the end of forecasting time horizon tk + TF are determined. To 

do this the simplified behavior of the decision-maker in real time conditions should be 

simulated. Such an approach is consistent with the Bellman optimality principle which 

states that from any point on an optimal trajectory, the remaining trajectory is optimal 

for the corresponding problem initiated at that point. At the upper level of the algorithm 

such a point of trajectory (t0 + TF, VF) should be selected that in time t0 + TF the 

decision-maker is not limited by the earlier decisions. The options are still open at the 

time t0 + TF and may be selected depending on the changing inflow conditions. 

 At the lower level the attention is focused on the short time horizon [tk, tk + TF]. 

The reservoirs storages VF are the necessary boundary for the selected decisions. The 

maximum outflow from the system Qr has to be minimized in this period of time but the 

storages of the reservoirs at the end tk + TF have to be kept in the level VF determined 
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previously. For this purpose some assumptions about the future inflows (I, q) have to be 

taken namely one inflows scenario should be selected. However, these assumptions may 

be wrong and should be checked during the period [tk, tk + TF]. Hence, the forecasting 

horizon may be divided into smaller periods of time ∆τ such that M = TF / ∆τ. During 

each period of time t = tk +i ∆τ (i = 1, 2, …, M – 1) the decision-maker checks the 

reservoirs storages and water levels in the channels. The real inflows to the system in 

the past period ∆τ may be determined on this basis. Then the assumptions about inflows 

are verified and the controls for [tk +i ∆τ, TF] are updated. 

 Due to the inflows uncertainty and danger of dam break by overtopping some 

additional restrictions on the selection of reservoirs outflows u have to be imposed. The 

selected controls should not allow overtopping before the next checking time even if the 

assumptions about inflows are wrong. If the number of scenarios was taken into account 

in the upper level control, the storages probability distributions may be determined for 

each control selected in the period [tk +i ∆τ, TF] and for the nearest checking time 

tk + (i + 1) ∆τ. If the real storages of the reservoir differ from decision-maker 

expectations significantly, it means that improper scenarios were analyzed in the upper 

level. The requirement for running once again the upper level procedure should be sent. 

 In the below subsections the upper and lower control models are formulated. The 

problem of information exchange between these models is also shortly discussed. 

5.1 Upper level control: design of bounds for operational control  

 In time tk the reservoirs storages Vk are known and the desired storages VH in 

time tk + TH related to other reservoirs purposes may be determined. It is also assumed 

that in time tk the set of future inflows scenarios (I, q)(l) (l = 1, 2, …) for the next period 

of duration TH is defined. The inflows forecasts are formulated on the basis of the 

current hydro-meteorological situation in the basin. The information obtained from 

historical data records may also be incorporated in the formulation of inflows scenarios. 

The forecast may be updated in time tk + TF. The control problem formulated in time tk 

is as follows: for a given Vk, VH and a set of possible inflows scenarios (I, q)(l), 

l = 1, 2, … find such VF that the constraints  

 Vmin ≤ VF ≤Vmax (25) 

are satisfied and objective function 
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 ( ) ( ) ( ){ }10 11, , , ,F Fqz E z q= IV V I u  (26) 

is minimized. The outflows from the reservoirs u and function z11 are determined as the 

solution of the problem: for a given Vk, VH and VF and particular inflows scenario (I, q) 

find such outflows u that the state equations  

 
d

dt
= +V

EI Bu , (27) 

 ( ),rQ qψ= u , (28) 

with initial condition V(tk) = Vk, and constraints 

 Umin ≤ u ≤ Umax,  Vmin ≤ V ≤ Vmax, (29) 

 V(tk + TF) = VF,  V(tk + TH) = VH, (30) 

are satisfied and the objective function  

 ( )
[ ]11

,
, , , max

k k H
F r

t t t T
z q Q

∈ +
=V I u  (31) 

is minimized. 

 At time tk + 1 = tk + TF the procedure is run once again and the storages of the 

reservoirs VF next in time tk + 1 + TF are determined. 

 It would be good if the previous results may be used in the next step in order to 

accelerate the search. At time tk several controls u are selected for several inflows 

scenarios (I, q) determined in period [tk, tk + TH]. On this basis the expected storage 

Vk + 1 at time tk + 1 may be evaluated in time tk and then used as the first approximation 

for the search performed in time tk + 1. If the difference between sequentially formulated 

inflow forecasts is not huge the computations might be faster in this way. 

5.2 Real-time selection of optimal reservoir outflows 

 At this level checking times ti = tk + i ∆τ (i = 1, 2, …, M – 1; M = TF / ∆τ) are 

defined in the forecasting horizon [tk, tk + TF]. At any time ti available information is as 

follows: the inflows (Ii – 1, qi – 1) and storages Vi – 1 at time ti – 1, past inflows (I, q) which 

occur in the system until time ti – 1, the reservoir storages Vi at time ti and the storage VF 

at time tk + TF. 

 If ti = tk the decision-maker may rely on the inflows forecast specified for the 

upper long-term algorithm. At any other time ti the inflows forecast is updated. To 

update the short-term inflows forecast the number of inverse problems has to be solved. 
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The periods ∆τ is short enough to make an assumption about linear changes of inflows. 

The reservoirs outflows ui – 1 in period ∆τ may be constant. Hence, the determination of 

inflows I in period ∆τ may relay on integration of reservoirs mass balance equations 

 
d

dt
= +V

EI Bu  (32) 

with substitutions  

 V(ti – 1) = Vi – 1, V(ti) = Vi, and I(ti – 1) = Ii – 1, ui – 1 = ui (33) 

The results of such a procedure are the real inflows Ii in time ti. The formulation of the 

inverse problem for the determination of inflows q to the uncontrollable part of the 

system depends on the structure of the model used as the description of this system. 

However, it may be done explicitly as the procedure for reservoirs inflows described 

above or implicitly by use of optimization methods for the identification of model 

boundary conditions. Finally the decision-maker should obtain the inflows to the system 

in time ti, that means (Ii, qi). Comparing this information with previous assumptions 

enables him to update the inflows forecast for the next period [ti, tk + TF].  

 After necessary updates the operational decision problem is as follows: for a 

given storages Vi and VF and assumed inflow scenario (I, q) for [ti, tk + TF] find 

reservoir releases u in the period [ti, tk + TF] such that state equations with constraints 

 
d

dt
= +V

EI Bu , (34) 

 V(ti) = Vi,  V(tk + TF) = VF, (35) 

 Umin ≤ u ≤ Umax,  Vmin ≤ V ≤ Vmax, (36) 

 ( ),rQ qψ= u , (37) 

are satisfied and the objective function  

 ( )
[ ]2

,
, , max

i k F
F r

t t t T
z q Q

∈ +
=V I  (38) 

is minimized.  

 The assumptions about the inflows (I, q) in period [ti, tk + TF] may be wrong. 

The decision-maker is able to correct them after the next period ∆τ. So, to prevent from 

dangerous overtopping additional constraint should be added 

 P(Vmin ≤ V ≤ Vmax) = 1 for t ∈ [ti, ti + ∆τ]. (39) 
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This reliability constraint incorporates global information in the operational control 

level. P(A) is the probability of the event A determined for all possible inflows scenarios 

in period [ti, ti + ∆τ]. Formulae (39) means that the decision-maker has to be sure that 

overtopping will not occur until the next system check. 

 Due to the inflow uncertainty the global information used to determine storage 

VF at time tk + TF may also be wrong. At the operational level the validity of long-term 

forecasts may be also checked. At time ti – 1 the controls u for t ∈ [ti – 1, tk + TF] are 

specified. At the same moment the several inflow scenarios are available from the upper 

long-term control. The application of controls u selected in time ti – 1 may result in 

different storages Vi depending on real inflows in period [ti – 1, ti]. Hence, a probability 

distribution describing possible storages of the reservoir Vi at time ti may be 

determined. The acceptable difference between expected and real storages at time ti 

related to this distribution may be specified. If the difference between decision-maker 

expectations and real situation is too large the operation control sequence should be 

interrupted. Instead of the described above procedure the request for new forecast and 

storage VF should be sent from the lower to upper level control center. 

5.3 Real-time information exchange between models 

 The described algorithm is schematically presented in fig. 5 and 6. The upper 

part of the algorithm is run in any time tk. In the fig. 5 the current situation in the 

catchment is represented by the storages Vk but it also includes the reservoirs outflows 

uk and water levels observed in the selected points of the system in time tk. The set of 

inflows forecasts for the horizon [tk, tk + TH] is provided at time tk. On this basis the 

desired storages VF for time tk + 1 are determined. Such information is sent to the lower 

level algorithm for which the main goal is to determine the reservoir outflows in short 

horizon [tk, tk + 1]. 

 The lower level algorithm is run several times until next start of upper level 

procedure. At any time tk + i ∆τ for i = 0, 1, ... the situation in the system is checked and 

the past inflow forecast is verified according to the procedure described in the previous 

section. After verification the controls for the time horizon [tk + i ∆τ, TF] are updated. 

On the basis of the inflow forecast provided by the upper level algorithm the acceptable 

deviation from the assumed system state in time tk + (i + 1) ∆τ is determined. If the 
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difference between expected storages in time tk + (i + 1) ∆τ and real storages is too 

large, the message is sent to upper part of the algorithm and a new inflow forecast is 

verified.  

 The computations are implemented and verified in any time tk + i ∆τ. The 

decision-maker has the opportunity to change his/her mind and apply other controls 

according to the changing situation in the basin. This strategy should guarantee the 

flexibility which is necessary in uncertain inflow conditions. 

 

 



 21

Fig. 5 The idea of long-term control algorithm performance 
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Fig. 6 The idea of short-term control algorithm performance  
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be fast also. It is useless to solve big equations and construct big and time consuming 

algorithms. The analyzed problem formulated as stochastic minimax optimization at 

each level is very serious. The solution of the upper or lower level control problem may 

require application of non-convex nonlinear optimization methods the main 

characteristic of which is long computational time. Hence, some further simplifications 

and/or modifications have to be implemented. Fortunately the analysis of the described 

problem enables such actions resulting with computational time reduction.  

 First of all, the selected functions u, which are continuous in time, may be 

replaced by the set of parameters describing their changes in the control horizon. The 

set of parameters may be easily constructed on the basis of engineering reservoir control 

rules. This problem is described in the next section. 

 

 

Fig. 7 Basic concept of search procedure organization 
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initial condition V0 known in time t0. The same feature has the nonlinear formulation (9)

. If u, I and h0  = h(t0) the reservoir water levels h at time t may be determined uniquely. 

These features enable the organization of the search as it is shown in fig. 7. The chosen 

search method has to select a set of parameters describing releases u and some possible 

inflow scenario (I, q) in each step of the algorithm. In the next step the reservoir 

releases u are computed from the provided parameters. Then the state trajectories are 

computed using reservoir (3) (or (9)) and catchment models (6) (or (7)). At the last step 

the objective function value is determined and constraints satisfaction is analyzed. The 

later information is sent to the optimization method to analyze the fitness of the 

previously selected parameters. 

 The next problem are the constraints (5) imposed on the controls u and state 

variables V. The proposed ways to deal with constraints are twofold. The set of 

parameters describing controls u is constructed in such a way that constraints imposed 

on u are satisfied by definition. The constraints imposed on V are treated in another 

way. The penalty functions are constructed. The functions are formulated in minimax 

terms 

 
[ ]

( ){ }min min
,

max max 0,
l l

j V j j
t t t T

f V V tκλ
∈ +

= − , (40) 

 
[ ]

( ){ }max max
,

max max 0,
l l

j V j j
t t t T

f V t Vκλ
∈ +

= − , (41) 

where j is the number of reservoir, tl is the decision-making time, tl + T is control 

horizon, κ is the unit penalty and λV is the scaling factor. The penalty functions are 

added to the main objective function.  

 There are some more opportunities which help in overcoming the complexity of 

the presented problem. The computations have to be organized in a sequential manner, 

from step to step. It was mentioned in previous section that the results of the previous 

step may be incorporated at the upper level control as the initial approximation for the 

next step. The lower operational part of the algorithm should use the previous step 

results, too. The special structure of the reservoirs system model enables effective 

decomposition of the problem. This issue is described in one of the next sections. 
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7. Design of proper control rules 

 The key issues in the computational effectiveness considerations is proper 

description of decisions by a relatively small number of parameters. Hence, the choice 

of reservoir outflow representation may be crucial. The selected structure of function 

describing the reservoir releases 

 ul(t) = fl(t, α1, α2, …) for l = 1, 2, …, N (42) 

should fit the purposes of the system performance. It should also relay on the 

performance conditions. The most useful observation is that the reservoir operators 

prefer to work with constant outflows predetermined for some period of time. The 

simplest way to satisfy this requirement is to divide the control horizon into constant 

subintervals, then select constant outflow from the reservoir in each support. However, 

to obtain flexible control rules fitted any probable situation relatively large number of 

supports is needed. If the supports are of the different lengths selected also during the 

search, the procedure becomes more complex but the number of necessary parameters 

decreases significantly. Hence, the number of search method iterations is small, too. 

 Below two flexible and effective reservoir outflows representations are 

presented. For the sake of the simplicity it is assumed that control rules are determined 

on the interval [0, TH]. 

7.1 Time Dependent Rectangular Pulses 

 This technique was tested on the deterministic examples by Dysarz and 

Napiórkowski (2002a). The release function (42) is described by the set of 2 NRP – 1 

parameters, where NRP is a number of supports with constant outflow discharge. The 

function argument is also time t. The function values are evaluated according to 

following algorithm 

 T1 = α1 TH, (43) 

 Ti = (1 – αi) Ti – 1 + αi TH for i = 2, 3, …, NRP – 1, (44) 

 ui = Umin + αNRP + i – 1(Umax – Umin) for i = 1, 2, …, NRP, (45) 

and finally the function value is 

 u(t) = ui if and only if t ∈ [Ti – 1, Ti] (46) 

Ti (for i = 1, 2, … NRP – 1) are the ends of time subintervals. It is assumed TNRP = TH 

and T0 = 0. The discharge ui (for i = 1, 2, … NRP) is constant in each [Ti – 1, Ti]. The 
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formula (45) describes simple selection of value which meets parameter αNRP + i – 1 in the 

interval [Umin, Umax]. In formulae (43) and (44) the interval from which value is taken 

varies with i. For the first interval the time moment T1 may be selected from the whole 

control horizon TH. Next point Ti may be located only in the interval [Ti – 1, TH]. Such 

structure is used to prevent from exceeding the constraints 

 Ti – 1 ≤ Ti for i = 2, 3, …, NRP – 1 (47) 

The parameters α1, α2, …, α2 NRP – 1 may have real values from 0 to 1. In the presented 

illustration (fig. 8) the vector of parameters is organized as follows: the first NRP – 1 

parameters describes the time moments Ti, the parameters with indexes from NRP to 

2 NRP – 1 are used to determine the outflow values. The vector of parameters may also 

be organized in different manner. It should not affect the optimization search. 

 

 

Fig. 8. Simplest control rules illustration – time dependent rectangular pulses 
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the solved problem. Additional elements preventing from such processes during search 

should be incorporated into optimization method. 

7.2 Semi-Fixed Rectangular Pulses 

 The shrinking process may be prevented by one mechanism incorporated 

directly in the description of the control rules. In this approach the function (42) consists 

of two sets of parameters describing time moments Ti: fixed and selected during the 

optimization. In the preliminary computation, before optimization search the fixed time 

moments are calculated as follows 

 TFi = i ∆T for i = 1, 2, …, NRP – 1, (48) 

where ∆T = TH / NRP. Then, during the optimization time moments are determined as 

follows 

 Ti = TFi + αi β ∆T for i = 1, 2, …, NRP – 1, (49) 

where β ∈ [0, ½] is shrinking coefficient describing the allowed deviation of Ti from 

TFi. In this case parameters αi are the real values varying between -1 and 1.The values 

of discharges ui in any time subinterval [Ti – 1, Ti] and values of discharges at any time t 

are computed according to the previous formulae (45) and (46), respectively. The rule is 

illustrated in fig. 9. If β ≤ 0.5 then the constraint (47) is satisfied. 

 

 

Fig. 9. Control rule of type semi-fixed rectangular pulses – main idea 
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8. Sequential storage balance technique 

 The presented control problem is quite complex. In almost each level of the 

presented procedure optimal search is needed. Even if effective control rules described 

in above chapter are implemented the dimensionality of the task is still large. The 

sufficient decomposition technique based on the specific features of the system can 

decrease the number of necessary computation. The main idea of the technique 

presented here is based on the sequential changes of only one reservoir storage in the 

system. The rest of system parameters may be evaluated from linear state equations (3). 

 There are two preliminary assumptions posed in the beginning of the single 

search with index p. The first states that the admissible control rules defined in certain 

period of time [0, TH] are known. The second is related to the inflow scenarios. The 

single search is preformed for the one selected inflow scenario. In next algorithm step 

p + 1 should improve the performance of the system by changing only one reservoir 

storage. Lets denote this reservoir index by j. Hence, it may be written 

 ( ) ( 1)p p
l lV V +=  for all l ≠ j (50) 

and ( ) ( 1)p p
j jV V +≠ . (51) 

If the initial state of the system V(t = 0) = V0 is known, the above formulas may be 

replaced by formulae relaying on derivatives  

 
( ) ( 1)p p

l ldV dV

dt dt

+

=  for all l ≠ j (52) 

and 
( ) ( 1)p p
j jdV dV

dt dt

+

≠ . (53) 

For further considerations the difference between reservoirs in parallel an reservoirs in 

series is important. The description of the one reservoir in parallel system has following 

form 

 j
j j

dV
I u

dt
= −  for any j = 1, 2, …, N. (54) 

For the known deterministic inflow Ij the storage Vj is modified only by changing the 

reservoir outflow uj. Hence, if the Vj is changed, it cannot affect any other reservoir in 

the system. The described observation is graphically presented in fig. 10. 
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Fig. 10 Reduction of the problem during single algorithm step 
for the system of reservoirs in parallel 

 

 The equations for the reservoirs in series may be written as 

 1
1 1

dV
I u

dt
= − , (55) 

 1
j

j j j

dV
u I u

dt −= + −  for j = 2, 3, …, N. (56) 

So, in deterministic case with fixed inflow Ij the change of j-th reservoir storage 

imposes the change of control either uj – 1 or uj. To satisfy the constraint (50) or (52) 

only uj may be changed. Such modification does not affect the reservoirs located in the 

system above j-th. It means reservoirs with numbers l = 1, 2, …, j – 1. However, the 

summarized inflows to reservoirs located below ul – 1 + Il (for l = j + 1, j + 2, …, N) are 

influenced by any change in uj. If the constraint (50) (and (52)) is satisfied outflow ul 

(l = j + 1, j + 2, …, N) from each reservoir located below has to be modified, too. 

 The necessary modification of outflows from the downstream reservoirs ul may 

be derived from the mass balance equations of reservoirs with numbers 

I1 

I2 

u1 

u2 

Qr 

protected area 

u3 u5 

I3 I5 

u4 

I4 

u1 

u2 

Qr 

protected area 

u3 u5 

I3 

u4 

modified 
storage 

constant controls
in current step 

selected 
control 



 30

l = j + 1, j + 2, …, N. Lets denote the new outflow from reservoirs j-th in iteration p + 1 

as follows 

 ( 1) ( ) ( 1)p p p
j j ju u u+ += + ∆ , (57) 

where ( 1)p
ju +∆  is the difference between outflows from reservoir j-th in iterations p and 

p + 1. Because the outflows from the upstream reservoirs (l = 1, 2, …, j – 1) are not 

changed, the mass balance equation for the j-th reservoir in iteration p + 1 is written as  

 
( 1) ( )

( 1)
p p

j j p
j

dV dV
u

dt dt

+
+= − ∆ . (58) 

For the reservoir j + 1 one may write similarly 

 
( 1) ( 1)

1 1 ( 1) ( 1)
1

p p
j j p p

j j

dV dV
u u

dt dt

+ +
+ + + +

+= + ∆ −∆  (59) 

Taking into account (52) leads to 

 ( 1) ( 1)
1

p p
j ju u+ +

+∆ = ∆  (60) 

Repeating these derivations for all downstream reservoirs l = j + 1, j + 2, …, N gives 

 ( 1) ( 1)p p
l ju u+ +∆ = ∆  (61) 

 As it is well visible the problem defined for the system of reservoirs reduces to 

the control of single reservoir in subsequent iterations. The formulation of the problem 

is considered for one inflow scenario (I, q). Assuming that the outflows 

T( ) ( ) ( ) ( )
1 2, , ,p p p p

Nu u u⎡ ⎤= ⎣ ⎦u K  in iteration p are known, the first step is to select the 

reservoirs j-th. Then in iteration (p + 1) state equations and the constraints written for 

the system of reservoirs in parallel are reduced to the following 

 
( 1) ( )

( 1)
p p

j j p
j

dV dV
u

dt dt

+
+= − ∆  (62) 

 ( )( )1( 1) ,pp
rQ qψ ++ = u , (63) 

 Umin j – ( )p
ju  ≤ ( 1)p

ju +∆  ≤ Umax j – ( )p
ju , (64) 

 Vmin j ≤ ( 1)p
jV +  ≤ Vmax j, (65) 

where 
T( 1) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

1 2 1 1, , , , , ,p p p p p p p p
j j j j Nu u u u u u u+ +
− +⎡ ⎤= + ∆⎣ ⎦u K K . In the case of reservoirs in 

series it looks similarly 
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( 1) ( )

( 1)
p p

j j p
j

dV dV
u

dt dt

+
+= − ∆  (66) 

 ( )( )1( 1) ,pp
rQ qψ ++ = u , (67) 

 Umin j – ( )p
ju  ≤ ( 1)p

ju +∆  ≤ Umax j – ( )p
ju , (68) 

 Umin l – ( )p
lu  ≤ ( 1)p

ju +∆  ≤ Umax l – ( )p
lu  for l = j + 1, j + 2, ..., N, (69) 

 Vmin j ≤ ( 1)p
jV +  ≤ Vmax j, (70) 

The situation in the single step (p + 1) is presented schematically in fig. 11. 

 In both cases the forms of objective function and additional constraints depend 

on the algorithm level as it was described in previous section. In iteration (p + 1) the 

differences ( 1)p
ju +∆  between outflow from reservoir j-th in iteration p and (p + 1) have to 

be determined. After this step the outflows from the system of reservoirs are 

recalculated according to following rules 

• in the system of reservoirs in parallel 

 
( )

( 1)
( ) ( 1)

p
lp

l p p
l j

u l j
u

u u l j
+

+

⎧ ≠⎪= ⎨ + ∆ =⎪⎩
 (71) 

• in the system of reservoirs in series 
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l p p
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u l j
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+

⎧ ≤ −⎪= ⎨ + ∆ ≥⎪⎩
 (72) 
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Fig. 11 Reduction of the problem during single algorithm step 
for the system of reservoirs in series 

 

 It was mentioned that the outflows variability in time has special form. The 

functions representing releases are constant in specified time periods. Due to that fact 

the differences ( 1)p
ju +∆  are constant in some time periods. They are selected according 

to the rules described in previous subsection. However, there might be two differences. 

The time intervals selected as a period of constant values of ( )p
ju  or ( 1)p

ju +∆  may not be 

the same. The coefficients describing the values of ( 1)p
ju +∆  magnitudes may be also 

negative. 

 In described above way the water storage of reservoirs is balanced sequentially 

from iteration to iteration. The outflows from reservoirs are improved according to the 

specified objective function in certain control horizon. The main idea of the procedure is 

presented in fig. 12. The data provided to the algorithm at the beginning are initial 

controls. Then the first reservoir is selected and the optimization search is started. After 
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search the controls are updated and next reservoir may be selected. The procedure is 

repeated until the performance of the whole system is accepted. 

 

 

Fig. 12 The concept of sequential storage balance technique 

 

9. Basic tests 

 The sequential water balance technique described above was tested on the 
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solver. The active reservoirs were chosen in order from lower to upper. The penalty 

functions of type (40) and (41) were used to deal with constraints. 

 

 

Fig. 13 Performance of the reservoir no. 1 

 

 
Fig. 14 Performance of the reservoir no. 2 
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Fig. 15 Performance of the reservoir no. 3 

 

 The obtained results were presented in fig. 13 – 17. The first four figures 

illustrates the performance of each reservoir. The black line is total reservoir inflow 

equal to inflow Ij and the outflow from upper reservoir uj – 1. The red line represents 

applied control rules uj. Blue line is the reservoir storage Vj. The gray lines represents 

the storage constraints, Vmin j and Vmax j. The last figure shows the flows in the protected 

area. Brown line is the fourth lowest reservoir outflow u4. This outflow was compared 

with the flow below the system if no control is applied (black line). Red and dark blue 

lines represents flow peaks of controlled and uncontrolled flows, respectively. 

 The figures show that the method performs quite well. The constraints are 

satisfied and the desirable storage at the end of control horizon is reached. The 

reduction of flow peak is significant as it was marked in fig. 17. 

 

Fig. 16 Performance of the reservoir no. 4 
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Fig. 17 Natural and controlled outflows from the system - comparison 

 

10. Selected approaches to minimax optimization 

 Each level of the presented algorithm requires minimax optimization. It is not a 

standard optimization problem. The objective function is nonlinear and non-convex. 

The classic optimization methods developed for convex problems may fail in general. A 

special approach to this task is needed. As it was shown in the one of previous sections 

the constraints may be easily replaced by the penalty functions of the type (40) – (41). 

The penalty functions are also formulated in terms of minimax performance index and 

they may be added to the main objective function. Then one can obtain the problem of 

the form 

 ( )
,

min max ,j
t j

f t
α

α , (73) 

where t represents time in considered control horizon, α is the vector of control 

parameters. 

 The basic approach to the described problem is the application of the global 

optimization method designed to solve deeply nonlinear and non-convex problems. 

There is many such methods described in the literature. The most simple is to search in 

the regular grid and sequential decreasing of the domain. This method is very slow and 

it should not be recommended as a solver for a real-time operational decision support 
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the search process. Some of the most interesting examples are the Monte Carlo 

methods, simulated annealing, Griewank method, controlled random search or genetic 

algorithms. One of these methods namely controlled random search developed by Price 

(1987) was shortly described in the previous report (Dysarz, 2003). This method was 

implemented as an element of the basic algorithm for the direct solution of (73) in 

deterministic case. The results were presented in Dysarz and Napiórkowski (2002b). 

Controlled random search applied directly to the problem (73) is able to provide good 

results in reasonable time. 

 The disadvantage of the direct approach to minimax problems by application of 

the random global optimization method is long computational time. In the mentioned 

example the controlled random search method performed quite well with exceptions of 

some runs where the methods jumped into deep local minimum. Global methods are 

able to overcome this problem, but there is no guarantee that the local minimum is left 

in any case. However, in general the very fast speed of the calculations should be 

guaranteed for the purpose of real-time operational management.  

 The described above method is not only an approach which helps us overcome 

the complexity of the presented optimization problem, there are also different methods 

based on the problem transformation. Their advantage is that they modify the problem 

in such a way that the considered optimization task is smooth and convex. Hence, the 

classic methods may be implemented. This means shorter computational time without 

loss of accuracy. Here some of them will be shortly presented.  

 The equivalent formulation of the problem (73) is as follows: find minimum 

p ∈ R and proper vector α such that the constraints  

 ( ), 0jf t p− ≤α  (74) 

are satisfied for each j at any moment t. The problem may be also written as single 

performance index (Polak et. al., 2003) 

 ( ){ }
,

min , 0j
p

p f t p− ≤
α

α . (75) 

The above formulation results in standard nonlinear programming problem. The task 

(75) was investigated by several authors, for example Charalambous and Conn (1978), 

Han (1981), Vardi (1992), Di Pillo et. al. (1993). 
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 There are also regularization approaches led to smooth approximations of (73). 

Some examples are presented by Zang (1980), Bertsekas (1982) or Mayne and Polak 

(1984). The main advantage of smoothing techniques is the transformation of minimax 

problem of type (73) into a smooth problem that can be solved by a classic optimization 

method. The disadvantage of such an approach may be possible ill-conditioning of the 

resulting smooth task (Polak et. al., 2003). The solver used in such a case should be 

specifically selected to overcome these difficulties. An interesting approach was 

described by Polak et al. (2003). Following the derivations described there the problem 

(73) should be replaced by  

 ( )1
min log exp ,j

j t

pf t dt
p

⎧ ⎫
⎡ ⎤⎨ ⎬⎣ ⎦

⎩ ⎭
∑∫α

α  (76) 

where p is smoothing parameter. When p → ∞ then problem (76) approximates (73). 

The algorithm prepared to solve (76) and several examples are given by Polak et. al. 

(2003). Implementation of this technique in the considered reservoir control problem 

seems to be possible. 

11. Concluding remarks 

 The main goal of this report is to present the concept of uncertainty reduction in 

operational reservoirs management in flood endangered conditions. The area of this 

research is very important for the national economy in many countries. Floods cause 

huge damages to the people and industry all around the world. Many researchers try to 

deal with different aspects of reservoir management. However, there is still a lack of 

coherent ideas enabling operational flood management and loses reduction. The main 

reason for this is the computational complexity of the problem. The control criterion is 

of the minimax form. The optimization methods used to solve the problem have to be 

designed in such a way that specific features of the task are taken into account. The 

most important are non-linearity and non-convexity of the objective function. 

 The useful description of large and spatially distributed reservoirs systems 

consists of differential equations and algebraic constraints in the form of inequalities. 

The reservoirs systems are divided into two basic tapes. These are reservoirs in parallels 

and in series. The slight difference in the mathematical description between these two 

groups causes some differences in proper treatment during operational management. An 
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example of different approaches for both systems is visible when the system is 

decomposed. The uncertainty of inflows to the system is the reason for stochastic 

treatment of reservoir performance. 

 Te problem of inflow uncertainty and reliable inflow forecasts is the key factor 

in the presented approach. The disastrous floods that occurred in the last years aroused 

interest in rainfall forecasting and rainfall-runoff modeling. Especially some results 

obtained in the EFFS projects sponsored by European Commission are promising and 

may be used in the future as the basis for control of reservoirs in uncertain inflow 

conditions. It is assumed such results are available for the presented procedure of the 

system control during floods. 

 The main idea of the algorithm enabling control of the reservoir system is based 

on the observations about present reservoir management and development of highly 

sophisticated optimization methods. This approach is extended and formulated in 

mathematical terms. It consists of two computational levels: upper and lower. In the 

upper part of the procedure the long-term flow conditions are analyzed. The necessary 

data includes 10-11 days inflows forecasts. The results of the analysis are desired 

storages which should be reached in the system in time for the next forecast update. 

These are the main constraints for the lower part of the procedure where only short-term 

strategies are selected. The complexity of the posed stochastic optimization problems is 

important. 

 Some simplifications are proposed. Proper representation of reservoir outflow 

and decomposition of the problem might be very useful for the purpose of 

dimensionality and complexity reduction. As it is presented the problem of reservoirs 

system control is reduced to the problem of single reservoir control in following 

iterations. The example with four reservoirs in a series is presented. The procedure 

converges step by step in reasonable time. The minimax criterion may also be 

simplified. Some concepts of the minimax problem reformulation are presented. Such 

procedures may reduce the complexity of the problem. The main idea of applied 

methods is the approximation of the not-convex optimization problem by a convex one. 

The convergence of such approaches was analyzed and proved by a few researchers. 

 As it is shown the decision-maker dealing with reservoirs management during a 

flood has a difficult task. The basis for the decision support system enabling control of 
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the system has been presented and tested on simplified examples. Although, the 

problem is complex some simplifications might be implemented. Finally the complexity 

of the problem may be overcome. The time of computations should be reduced and 

algorithms may be used in real-time operational conditions. 

 



 41

Bibliography 
[1] ABBOTT M.B., BATHURST J.C., CUNG J.A., O’CONNELL P.E., RASMUSSEN J. (1986): An 

introduction to the European Hydrological Syatem-Systeme Hydrologique European SHE 2: 
Structure of a physically-based, distributed modelling system, J. Hydrol. 87, pp. 61–77. 

[2] AGTHE D.E., BILLINDS R.B., INCE S. (2000): Integrating market solutions into government 
flood control policies, Water Resources Management, vol. 14, no. 4, p. 247−256 

[3] An European Flood Forecasting System EFFS (2003), EFFS Final Report, Project coordinator: 
WL | Delft Hydraulics, Internet site: http://effs.wldelft.nl 

[4] ANDERSON M.G., BURT T.P. (Eds.) (1985): Hydrological Forecasting, Chichester, Wiley 

[5] ASHTON V., AZIZ H., KEITH S., SMITH T. (2003): Review of EU Flood R&D Projects, Report 
prepared as a part of the Group Management Project on the M.Sc. Water Resources Technology 
and Management course, Department of Civil Engineering, University of Birmingham 

[6] BATES B.C., CHARLES S.P., HUGHES J.P. (1998): Stochastic downscaling of numerical climate 
model simulations, Environ. Model. Software 13 (3-4), pp. 325-331 

[7] BERTSEKAS D. P. (1982): Constrained Optimization and Lagrange Multiplier Methods, 
Academic Press, New York, NY 

[8] BEVEN K.J. (1985): Distributed Model, in: Anderson and Burt (eds.) (1985) 

[9] BURGER G. (1996): Expanded downscaling for generating local weather scenarios, Clim. Res. 7, 
pp. 111-128 

[10] CIRIANI, T. A., MAIONE, U. AND WALLIS, J. R. (1977): Mathematical Models for Surface 
Water Hydrology, Wiley, Chichester 

[11] CHARALAMBOUS C., CONN A. R. (1978): An Efficient Method to Solve the Minimax Problem 
Directly, SIAM Journal on Numerical Analysis, vol. 17, pp. 162–187 

[12] CONWAY D., JONES P.D. (1998): The use of weather types and air flow indices for GCM 
downscaling, J. Hydrol. 212-213 (1-4), pp. 348-361 

[13] DE ROO A.P.J., GOUWELEEUW B., THIELEN J. BARTHOLMES J., BONGIOANNINI-
CERLINI P., TODINI E., BATES P.D., HORRITT M., NEIL HUNTER N., BEVEN K., 
PAPPENBERGER F., HEISE E., RIVIN G., HILS M., HOLLINGSWORTH A., HOLST B., 
KWADIJK J., REGGIANI P., VAN DIJK M., SATTLER K., SPROKKEREEF E. (2003): 
Development of a European flood forecasting system, Intl. J. River Basin Management, Vol. 1, No. 
1, pp. 49–59 

[14] DIPILLO, G. GRIPPO L., LUCIDI S. (1993): A Smooth Method for the Finite Minimax Problem, 
Mathematical Programming, vol. 60, pp. 187–214 

[15] DISKIN M. H., SIMPSON E.S. (1978): A quasi-linear spatial distribution cell model for the 
surface runoff system, Water Resource Bull. 14, pp. 903–918 

[16] DISKIN M.H., WYSEURE G., FEYEN J. (1984): Application of a cell model to the Bellebeek 
watershed, Nordic Hydrol. 15, pp. 25–38 

[17] DYSARZ T. (2003): Control of flood defense reservoirs system under uncertain inflows, Nysa 
Reservoirs System case study, IIASA Interim Report IR-03-049/October 

[18] DYSARZ T., NAPIÓRKOWSKI J.J. (2002a): Determination Of Reservoir Decision Rules During 
Flood, Acta Geophysica Polonica,. 50(1), pp. 135-149. 

[19] DYSARZ T., NAPIORKOWSKI J.J. (2002b): Global Optimisation Method for Determination of 
Reservoir Decision Rules During Flood, Proceedings of the Fifth International Conference on 
Hydro-Science and Engineering, Warsaw 

[20] EAGELSON P. (1972): Dynamics of flood frequency, Water Resources Research 8 (4) 

[21] EDWARD W.R., WOOLHISER D.A., SMITH R.E. (1977): A distributed kinematic model of 
upland watershed, Hydrology Paper No. 93, Colorado State University. 

[22] ERMOLIEV Y., WETS R.J-B. (1988b): Stochastic Programming, An Introduction, in Ermoliev & 
Wets (1988a), pp.1-32 

[23] ERMOLIEV Y., WETS R.J-B. (Eds.) (1988a): Numerical Techniques for Stochastic Optimization, 



 42

Springer – Verlag, IIASA 

[24] GOODSELL G., LAMB R. (1999): Estimating long return period floods by continuous simulation 
using a stochastic rainfall generator, Report to MAFF FD-(0404), 31 

[25] HAN S. P. (1981): Variable Metric Methods for Minimizing a Class of Nondifferentiable 
Functions, Mathematical Programming, vol. 20, pp. 1–13 

[26] IBBITT, R. P. AND O’DONNELL, T. (1971): Fitting methods for conceptual catchment models, 
J. Hydraul. Div. ASCE (HY9), pp. 1331–1342 

[27] ISLAM M.M., SADO K. (2002): Development priority map remote sensing data with for flood 
countermeasures by geographic information system, Journal of Hydrologic Engineers, vol. 7, no. 5, 
p. 346−355 

[28] JAYAWARDENA A.W. ANDWHITE J.K. (1977): A finite element distributed catchment model 
(1):Analysis basis, J. Hydrol. 34, pp. 269–286. 

[29] JAYAWARDENA A.W., WHITE J.K. (1979): A finite element distributed catchment model (2): 
Application to real catchment, J. Hydrol. 42, pp. 231–249 

[30] JONES P.D., MURPHY J.M., NOGUER M. (1995): Simulation of climate change over Europe 
using a nested regional – climate model, I: Assessment of control climate, including sensitivity to 
location of lateral boundaries, Q.J.R. Meteorol. Soc. 121, pp. 1413-1449 

[31] JØNCH-CLAUSEN T. (1979): Systeme hydrological Europeen: A Short Description SHE, Report 
1,Danish Hydraulics Institute, Horsholm, Denmark 

[32] KNUDSEN J., THOMSEN A., REFSGAARD J.C. (1986): WATBAL: A semi-distributed 
physically based hydrological �odeling system, Nordic Hydrol. 17, pp. 347–362 

[33] LAURENSON E.M. (1964): A catchment storage model for runoff routing, J. Hydrol. 2, pp. 141–
163. 

[34] MAYNE D. Q., POLAK, E. (1984): Nondifferentiable Optimization via Adaptive Smoothing, 
Journal of Optimization Theory and Applications, vol. 43, pp. 601–614 

[35] MENZEL L., KUNDZEWICZ Z.W. (2003): Non-structural flood protection – a challenge; 
International conference “towards natural flood reduction strategies”; Warsaw 

[36] MORRIS E. M. (1980): Forecasting flood flows in grassy and forecasted catchments using a 
deterministic distributed mathematics model, IAHS Publ. No. 129, pp. 247–255. 

[37] MURPHY J. (1999): Evaluation of statistical and dynamical techniques for downscaling of local 
climate, J. Clim. 12 (I), pp. 2256-2284 

[38] POLAK E., ROYSET J.O., WOMERSLEY R.S. (2003): Algorithms with adaptive smoothing for 
finite minimax problems, Journal of Optimization Theory and Applications, vol. 119, no. 3, pp. 
459-484 

[39] PRICE W.L. (1987): Global optimization algorithms for CAD Workstation, Journal of 
Optimization Theory Applications, vol. 55, no. 1, pp. 133-146 

[40] PRUDHOMME C., JAKOB D., SVENSSON C. (2003): Uncertainty and climate change impact 
on the flood regime of small UK catchments, Journal of Hydrology 277, pp. 1-23 

[41] PRUDHOMME C., REYNARD N.S., CROOKS S. (2002): Downscaling of GCMs for flood 
frequency analysis: where are we now?, Hydrol. Proc. 16, pp. 1137-1150 

[42] ROSS B. B., CONTRACTOR D.N., SHANHOLTZ V.O. (1979): A finite element model of 
overland and channel flow for accessing the hydrologic impact of land use change, J. Hydrol. 41, 
pp. 11–30 

[43] SAILOR D.J., HU T., LI X., ROSEN J.N. (2000): Neural network approach to local downscaling 
of GCM output for assessing wind power implications of climate change, Renewable Energy 19 
(3), pp. 359-378 

[44] SEMENOV M.E., BARROW E.M. (1997): Use of a stochastic weather generator in the 
development of climate change scenarios, Clim. Change 35, pp. 397-414 

[45] SHIM K.C., FONTANE D.G., LABADIE J.W. (2002): Spatial decision support system for 
integrated river basin flood control, Journal of Water Resources Planning and Management – 
ASCE 2002, vol. 128, no. 3, p. 190−201 

[46] STEHLIK J., BARDOSSY A. (2002): Multivariate stochastic downscaling model for generating 



 43

daily precipitation series based on atmospheric circulation, J. Hydrol. 256 (1-2), pp. 120-141 

[47] TAKEUCHI K. (2001): Increasing vulnerability to extreme floods and societal needs of 
hydrological forecasting, Hydrological Sciences Journal, vol. 46, no. 6, p. 869−881. 

[48] VALDES J.B., MARCO J.B. (1995): Managing reservoirs for flood control, U.S. – Italy Research 
Workshop on the “Hydrometeorology, Impacts and Management of Extreme Floods”, Perugia, 
Italy 

[49] VARDI A. (1992): New Minimax Algorithm, Journal of Optimization Theory and Applications, 
vol. 75, pp. 613–634 

[50] WILBY R.L., DAWSON C.W., BARROW E.M. (2002): A decision support tool for the 
assessment of regional climate change impacts, Environ. Model. Software 17 (2), pp. 145-157 

[51] WILKS D.S. (1999): Simultaneous stochastic simulation of daily precipitation, temperature and 
solar radiation at multiple sites in complex terrain, Agric. For. Meteorol. 96, pp. 85-101 

[52] ZANG I. A (1980): Smoothing Technique for Min-Max Optimization, Mathematical Programming, 
vol. 19, pp. 61–77 

 

 


