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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

ITI. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population fore-
casting;

III. the analysis and design of migration and settle-
ment policy;

IV. a comparative study of national migration and
settlement patterns and policies.

As part of the comparative study of migration and settle-
ment, IIASA is developing a set of computer programs for spatial
demographic analysis. A first set of programs has already been
published (RM-76-58). This paper presents another set --- one
focusing on the analysis of stationary and stable multiregional
populations.

Related papers in the comparative studies series, and other
publications of the migration and settlement study, are listed
on the back page of this report.

Andrei Rogers

Chairman

Human Settlement § Services
Area

May '1977

iii






Abstract

This report presents the algorithms and lists the
FORTRAN IV codes of computer programs for the analysis
of multiregional population systems. It is a continuation
of the IIASA report RM-76-58. The following topics are in-
cluded: mobility and fertility analyses of life table
and stable populations; methodology and applications of
the spatial reproductive value; and the study of the
spatial demographic impacts of fertility reduced to re-
placement level. This report focuses on the interpretation
of the output of the computer programs.
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Willekens F., and Rogers A.,

Computer Programs for Spatial Demographic Analysis

p. 28, bottom:

p. 30, top:

57.145912 0.

7.702079 63.

RM-76-58, July 1976

10%2 (100 = 448,55 (5) + 44584, (5)

10%

et =200 [T @],

where 2(x) is the diagonal matrix with

elements {1}'%(x), or % ioSlj(x).
- -1, -1
e(10) = T(10) [2(10) o]
897136 55.264362 0.799076 0.96707
154427 7.448485 56.251442 0

where the matrix inverse is [E(10) 2—1(0)]_1.
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More Computer Programs for

Spatial Demographic Analysis

One of the objectives of the Migration and Settlement Study
at ITASA is to develop a package of computer programs for spatial
demographic analysis. The reasoning has been that a basic re-
guirement for an effective policy regarding the growth and the
distributioh of the population is a well-developed understanding
of spatial population dynamics. Such an understanding is enhanced
if the analyst and the policy-maker are provided with a ready tool
for analysis, one which encompasses both the existing methodolo-
gical knowledge and the computational procedures necessary to
implement the methodology. This tool is a set of computer pro-
grams.

A first set of programs for spatial demographic analysis
has already been published (Willekens and Rogers, 1976). They
include the computation of the multiregional life table and_the'
projection of_a multiregional population system forward in time
until it stabilizes. This paper focuses on the analysis of
stable populations.1 It consists of seven sections. The first
section focuses on the basic input for the analysis: the age
and regional distribution of the population. Demographers use
three types of population distributions: the observed population
distribution, the stationary population distribution, as expressed
by the life table, and the stable population distribution. For
each type of distribution fertility, mortality and mobility
analyses may be performed. This is the task of sections two to
five. Sections two and four deal with fertility analysis;
section three treats mobility; and section five derives inter-
esting stable population characteristics. The sixth section

studies the spatial consequences of a sudden drop of fertility

1A stable population is a population in steady-state equili-
brium. It is a zero-growth population only if the stable rate
of growth is zero.



to#replacement level. The characteristics of spatial zZPG-popu-
latiaons are derived numerically and analytically. The last
section of the paper presents a user-oriented description of
the computer programs. The actual listings of the programs

are contained in the Appendix.
This paper focuses on the interpretation of the output of

the computer programs. All numerical illustrations refer to
the same real two-region system: Slovenia and the Rest of
Yugoslavia. The demographic data on which the computations are
based refer to the year 1961 and are given in Rogers (1975a).
The same example has been used to illustrate the previous pro-
grams (Willekens and Rogers, 1976). The multiregional life
table and the stable population computed there are used as

input information in this paper.

1. THE POPULATION DISTRIBUTION BY AGE AND REGION

The dynamics of a multiregional population system are
governed by fertility, mortality and migration. Age-specific
rates of fertility, mortality and migration are the fundamental
components of demographic analysis (Rogers and Willekens, 1976c).
They determine not only the growth of the population, but also

(in the long run) its age composition, spatial distribution,

and crude rates.

The observation that a unique combination of age-specific
rates results in a particular age and regional composition
has induced demographers to read in each population distribution
a particular sequence of vital rates. "The demographic history
of a population is inscribed in its age distribution" (Keyfitz,
et al., 1967, p. 862; see also Namboodiri, 1969). For example,
an observed population distribution (population pyramid) re-
flects periods of high fertility (baby boom) and high mortality

(wars). A particularly useful way for understanding how the
age and regional structure of a population is determined, is to
imagine a particular distribution as describing a population
which has been subjected to constant fertility, mortality and

migration schedules for a prolonged period of time. The



population that develops under such circumstances is called

a stable multiregional population.

We may now reverse the procedure and derive the population
distribution that would evolve if the actual observed schedules
would remain unchanged for a prolonged period of time. This is

the stable population associated with the observed demographic

behavior. It is obvious that the age-specific rates do not
remain constant and therefore that a stable population will never
be realized. However, the stable population is a concept that
enables us to look behind observed rates to explore what is
hidden in the current fertility, mortality, and migration behav-
ior. It shows where the system is heading,.in the long run,
under the current demographic forces. Keyfitz (1972, p. 347)
compares stable population analyses with "microscopic examina-
tions" because they magnify the effects of differences in current
rates and therefore show more clearly their true meaning.

Rogers (1971, p. 426) and Coale (1972, p. 52) compare these to
”speedometer.readings" to emphasize their monitoring function and
hypothetical nature.

In addition to the observed population distribution and the

stable population distribution associated with the observed

fertility, mortality and migration schedules, demographers
usually consider a third population distribution, namely the

distribution of the life table population. The multiregional

life table is a device for exhibiting the mortality and mobil-
ity history of an arbitrary birth cohort or radix. The repre-
sentation and interpretation of 1life table and stable

populations will now be discussed in some more detail.

1.1 The Life Table Population

The population distribution that results from applying given
mortality and migration schedules to regional radices is repre-
sented by %(x) and L(x) of the life table (Rogers, 1975a). The
matrix %(x) represents the distribution of the population of
exact age x, whereas L(x) denotes the distribution of the popu-

lation in age group x to x + h, with h being 5 (age intervals



of 5 years). The matrix 2(x) will be used in the continuous

models, and L(x) for the discrete approximations of the con-

tinuous models. For example, for a two-region system,
1009 (%) 2087 (%)
L(x) = . (1.71)
1082 (%) 202 ()

For unit regional radices, an element iOLj(x) denotes

the number of people of region j in ace group x to x + 4, who
. . . . .. 2 .

were born in region i, per unit birth in 1. For arbitrary

radices

the number of people in region j between ages x and x + 5 and

iOLj(x) Q? , and in general L(x){Qa}. %(x) and
its elements are computed for unit radices. The absolute number

born in i is

ofbpeople in each age group and region is found by multiplying
L(x) by the given vector of radices {0%}.

Note that %(x) represents the reiative population distri-
bution by place of residence and place of birth. Instead of
being expressed in percentages (fractions of the total), or in
some other manner, the population is given in unit births.
This is a logical procedure in demography since it separates
the fertility component from the survivorship (mortality and

migration) component. It will become clear later that this is

2An equivalent interpretation, which is more suited for
life table construction is the "person-years lived" interpreta-
tion. 1In this sense iOLj(x) is the number of years expected

to be lived in region j between ages x to x + 5 by a person
born in region 1i.



also a very convenient way of "norming" in spatial population
analysis.

Table 1 gives the distribution of the observed, 1life table
and stable populations of the one-sex (female), two-region
system: Slovenia—Rest of Yugoslavia, 1961. The observed popu-
lation is given by place of residence. The life table population
is computed by applying the 1961 schedules of mortality and
migration to unit radices. The computation is part of the
construction of multiregional life tables. (Table 1b is
identical to Table 8 of Willekens and Rogers (1976, p. 25)3
To derive the population by place of residence, and the aggre-

gate population, one must introduce the radices (1.

Table 1. population distribution by age and region
RERRRER R AR ERRR XX R X RN LR R NI E R RRE R RN X

Table 1a, observed populatLon (by place of residence)

slovenia r.yugos.

0 67800. 847900.
5 7T4100. 905200.
10 70700. 808100.
15 60100. 617400.
20 62900. 725500.
25 66500. 774000.
30 67100. 728400.
35 62900. 633300.
) 39500, 392400.
45 47900. 437100.
50 51300. u53800.
55 46100. 389300.
60 39600. 325800.
65 29500. 230600.
70 21700. 180000.
75 14400, 1205600.
80 7100. £1200.
85 3800. 34300.
total 832800. £670200.

3The multiregional life table is computed using the Rogers-
Ledent Method (see Willekens and Rogers, 1976, pp. 33-36). As
a consequence, the numerical results shown in this paper deviate
slightly from those of Rogers (1975) and Rogers and Willekens
(1976b), which used the so-called Option 1 method.



Table 1b.

0

5
10
15
20
25
30
35
40
45
50
55
50
65
70
75
80
85

total

life table population

R ===

initial region of cohort

R e e e e T T N R el

tota.

4.,92296%
4, BU0654
4,831723
4,821670
4,805876
4,78728¢
4,765104
4.736290
4,696330
4,.63036-
h,52751x
4,37638%
4,14607%
3.76008¢
3.13922C
2.32763¢&
1.399027
0.962249

T2. 47647

initial

total

. 734203
LL60945
LLU8177
- 433303
. 410328
. 379682
.343516
. 302426
.249906
. 178973
. 073606
914396
667310
.285540
. T29682
LO3U6TT
.30 1538
296852

— = T NLILI e e o o

66.2U567Y

slcvenia

4.890209
4,748097
4.694913
4,.609031
4,L56621
4,303031
4.187569
4.107964
4,248200
3.278028
3.280381
3.743020
3.340382
3.203668
2.565276
1.964904
1.160924
0.720453

64.902672

region of cohort

slovenia

0.03152
0.C08093
0.C11574
0.020462
0.037170
0.051365
0.0590865
0.064056
0.067394
0.069071
0.069602
0.070336
0.070187
0.056386
0.056808
0.042728
0.026060
0.016784

£.8°0323

r.yugos.

0.032759
0.092557
0.136810
0.212639
0.349255
0.484256
0.577535
0.628327
0.648136
0.8652337
0.647134
0.633365
0.505693
0.556420
0.473945
0.362734
0.238103
0.241796

7.573801

r.yugos.

4.731051
4.452853
L,436604
L.412841
4.373158
4.328313
4.,284421
4,238370
4.182512
4.109902
4,004004
3.844660
3.597124
3.210163
2.672875
1.991944
1.275479
1.280068

65.435249

slovenia

r.yugos.



Table 1c. stable population (growth rate = 0.006099 )

initial region of cohort slovenia

- - G S e - e - e A e - = WS e =

total slovenia r.yugos.

0 U,848u649 4,.816206 0.032263
5 u,624202 4.53578Y 0.088418
10 4, 477031 4.350264 0.126767
15 4,333519 4.142u408 0.161111
20 4.189585 3.885117 0.304468
25 4,048025 3.638548 0.40G47¢6
30 3.908240 3.434558 0.473682
35 3.767926 3.268065 C.u499862
4g 3.62391¢8 3.123786 C.500133
45 3.465690 2.9774306 0.438255
50 3.286923 2.817112 0.409812
55 3.081772 2.635767 0.446004
60 2.531866 2.418189 0.413707
65 2.491113 2.122477 0.358636
70 2.017308 1.712745 0.30U564
75 1.450846 1.224749 0.226097
80 0.845538 0.701883 0.143955
85 0.564292 0.422495 0.141796
total 57.856602 52.227596 5.629005
initial region of cohort r.yugos.

total slovenia r.yugos.

O 4.662560 0.003104 4.659456
5 h,261472 0.007731 4.253742
10 b,121640 0.010724 4,110917
(K 3.98u44T1 0.018390 3.9¢6080
20 3.844761 0.032407% 3,.812357
25 3.703362 0.043433 3.659930
20 3.562U62 0.048469 3.513994
35 3.422768 0.05085¢ 3.271809
4o 3.279432 0.052004 3.227427
ys 3.127837 0.051698 3.076139
£0 2.957391 0.050530 2.906860
55 2.756870 0.049529 2.707340
60 2.50u4885 0.0L47940 2.456946
£5 2.176724 0.043982 2.132742
70 1.754133 0.C36506 1.717628
75 1.268236 0.026633 1.241604
80 0.786897 0.015756 0.771142
&5 0.760513 0.009843 0.750670
total 52.936424 0.599635 52.236788



1.2 The Stable Population

The stable population by place of residence and place of

birth, per unit radices, is given by

5 (x) = e 2 (x) (1.3a)
and
g(r)<x) —r (x+2.5) L(x) (1.3b)
or
( (r) (x+2.5) (x+2.5)
r) r -r(x+2. -r(x+2.
1007 &%) 2ot ) 1081 &) 20t (¥
(r) (r) -r(x+2.5) ~r(x+2.5)
10 X 2ol (X 1502 X) 0% %)

(1.4)

where r is the annual growth rate of the stable population, i.e.
the intrinsic growth rate. The rate r only depends on the
observed schedules and is independent of the observed population

distribution. It is computed as follows:

with h being the age interval (5 years), and A the eigenvalue

of the population growth matrix. The value of A is computed

by the subroutine PROJECT in Willekens and Rogers (1976 , p. 50).
The absolute number of people in each age group by place

of residence is

G} = e EHH23) g0y (1.5)

~

where {Q} is the stable distribution of births and will be

determined in section five of this report. Expression (1.5) 1is



the numeral evaluation of the continuous formula (Rogers and
Willekens, 1976b, p. 22).

{(k(x)} = e ¥* 2(x){Q} . (1.6)

At this point it is useful to stress that:

i. The life table population distribution is a special
case of (1.3) with r = 0.

ii. Any stationary population, i.e. stable population with
zero growth rate, is distributed according to a life table.
population., Its relative distribution (in terms of unit births)
is therefore independent of how fertility is reduced to replace-
ment level.

iii, The column totals in Table 1k are the number of people
in the life table population per baby born. Adopting the "person-
years lived" interpretation of %(x), the totals would be the

life expectancies at birth by place of birth and place of residence,

e(0) =) Lx) . (1.7)
< L=

For example, the total life expectancy of a baby girl born in

Slovenia is 72.48 years. A total of 64.90 years are expected

to be lived in Slovenia and 7.57 years in the Rest of Yugoslavia.
iv. The column totals in Table 1c are the number of people

in the stable population per baby born. If the growth rate r

is positive, then the stable population is growing and the share

of the births in the total population is greater than in the

stationary population. Therefore, for r > 0

2 e—r(X+2.5) ]::;(X) < z :E‘(X)
X

X

or

e (0) < e . (1.8)

~
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For example, for each baby born in Slovenia, there are 57.86
persons living in Yugoslavia who were born in Slovenia. Of
these 52.23 are living in Slovenia and 5.63 in the Rest of

Yugoslavia. Analogous to the expect?tion of life at birth-
Ty

interpretation of e(0), the matrix e 0) may be considered

as the discounted life expectancy matrix, with r being the rate

of discount (Willekens, 1977). The meaning and relevance of
this approach will be discussed in section four.
The three types of age distribution are the cornerstones
for further study. Fertility analysis is performed- by apply-
ing age-specific fertility rates to the age distributions. '~ In
mobility analysis, age-specific outmigration rates are used instead.

The next two sections deal with these topics in greater detail.

2. FERTILITY ANALYSIS

The fertility analysis proceeds by applying the
fertility schedule to the three types of age distributions.
Let the dieagonal matrix m(x) contain the annual regional
fertility rates of the women at exact age x, and let E(x) be
the diagonal matrix of annual regional fertility rates of age

group xXx to x + 4, e.q.

[F1(X) 0

F(x) =
[ 0 Fz(x)

The integration of the matrices of age-specific fertility

(2.1)

rates over all ages is the gross reproduction rate matrix,

i.e.

GRR = f* m(x)dx = 5 ] F(x)
b 0o - X

The GRR-matrix is a diagonal matrix with the regional gross

rates of reproduction as its elements. Age-specific fertility

rates for Slovenia and the Rest of Yugoslavia are given in

Table 2. The column totals denote the regional gross reproduction

rates.



Table 2.

age

10
15
20
25
30
35
40
45
50
55

65
70
75
80
85

grr

-11-

fertility analysis
B AR KRR E

observed rzates

slovernia

0.000C00
0.000000
0.000071
0.015&57
0.070¢52
0.063218
0.041103
0.022¢€62
0.007797
0.000710
0.0002G2
0.000C00
0.0000G00
0.0000C00
0.000000
0.000C00
0.000000
0.000000

1.112610

7.yugos.

Z.000000
$.000000
0.000067
0.026458
0.087978
0.074260
0.044290
0.023532
0.012051
0.002151
0.000714
(0.000000
0.000000
(0.000000
(.000000
¢.000000
0.000000
0.000000

1.357505
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The regional crude birth rates may be derived by multiply-
ing the age-specific fertility rates by the observed population
distribution, in fractions of the total, and summing over all
age groups. Denoting the regional distribution of the people
aged x to x + 4 by the diagonal matrix g(x), the regional
crude birth rates are given by the vector {90}:

0} = [Z F (x) g(x)][i If(x):l_1 1y . (2.2)
X

% ~

The product F(x) g(x) is of course thz observed regional number
of births to a mother aged x to x + 4.

The application of the age-specific fertility rates to the
life table population and to the stable population has received

much attention in the demographic literature.

2.1 The Generalized Net Maternity Function

The generalized net maternity {(GNM) function is defined as

the product (Rogers, 1975a, p. 93)

o(x) = m(x) 2(x) , (2.3)
where
C0q (%) 284 (%)
¢{x) =
m, (x) 10Sl.](x) m. (x) 2021(X)
Lmz(x) 1022(x) m2(x) ZOQZ(X)_
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An element i¢j(x) denotes the expected number of children to
be born during a unit time interval in region j to a woman
of exact age x, who was born in region i, and who is part
of a stationary (life table) population. The fertility rates
applied to this stationary population are the observed fertility
rates.

Since the actual population data are usually given for
five-year age groups, one normally evaluates (2.3) with the

numerical approximation

$(x) = F(x) L(x) (2.4)

~

5
in which the integral f M(x + t) 2(x + t) dt is replaced by
0 - 2

the product of g(x) and g(x). The numerical evaluations or

the integrals of the generalized net maternity function are
given in Table 3. They are obtained by multiplying the fertil-
ity rates of Table 2 by the age composition of the life table

population (Table 1b). For example, ?(20) is:
0.070652 0 W 4.456621 0.037170
$(20) =
0 0.087978 0.349255 4.373158

0.314869 0.002626

0.030727 0.384742

The GNM function gives the number of offspring by age of
a population which is distributed according to the life table
(stationary) population, and which is subjected to the observed
regional fertility schedules. The total number of offspring
per unit birth is

NRR = § ¢(x) . (2.5)
X

~

o1
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An element
iNRRj = g i¢j(x)

denotes the total number of children z=xpected to be born in
region j to a woman who was born in region i, and who
is a member of a life table population.u The matrix NRR is the
net reproduction rate matrix, and is *he multiregional general-
ization of the Net Reproduction Rate (NRR) (Rogers, 1975a, p. 106).
The elements of NRR are the totals in table 3.

The matrix N%R gives the regional distribution of the off-

spring per unit birth in each region. It has been computed using

unit radices. From the discussion of the life table in the
previous section it is clear that a birth cohort of {91} would

lead to a regional number of offspring, after a generation, of
{Q,} = NRR{Q,} . (2.6)
The GNM function contains additional useful information for

fertility analysis. Define the n-th moment of the GNM function
(2.3) as (Rogers, 1975a, p. 106)

B n
R(n) = J ™ 9 (x) dx (2.7)
Q

where o and B are the lowest and highest reproductive ages

respectively, and, for example,

uRecall that a life table population is a stationary
population that would result if the mortality and migration
schedules were applied to arbitrary regional radices.
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Table 3. 1integrals of generalized net maternity function
initial region of cohort slovenia

age slovenia r.yugos.

0 0.000000 0.000000

5 0.000000 0.000000
10 0.000333 0.000009
15 0.073085 0.005626
20 0.314869 0.030727
25 0.272029 0.0359¢61
30 0.172122 0.025579
35 0.093916 0.014786
4o 0.031564 0.007811
b5 0.002824 0.001403
50 0.001133 0.000462
55 0.000000 0.000000
60 0.000000 0.000000
65 0.000000 0.000000
70 0.000000 0.000000
75 0.000000 0.000000
50 0.000000 0.0000CO
&5 0.000000 0.000000
total 0.961876 0.122364

initial region of cohort r.yugos.

age slovenia r.yugos.

0 0.000000 0.000000

5 0.000000 0.000000
10 0.000001 0.000297
15 0.000324 0.116755
20 0.002626 0.384742
25 0.003247 0.321421
30 0.002429 0.189757
35 0.00146Y 0.099737
4o 0.000525 0.050403
45 0.000049 0.008840
50 0.000020 0.002859
55 C.000000 0.000000
£0 0.000000 0.000000
65 0.000000C 0.000000
70 0.000000 0.000000
75 0.000000 0.000000
80 0.000000 0.000000
85 0.000000 0.000000
total 0.010687 1.174812
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The numerical approximation of (2.7) is

_ B=5 -
R(n) = § (x + 2.5 §(x)
2 oLs ¢
B-5
= 7 (x+2.5" F(x) L(x) (2.8)
a-5 h ~

Observe that the 0-th moment, 8(0), is identical to NBR.

The 0-th, first and second moments of the GNM function
of the two-region system Slovenia-Rest of Yugoslavia are given
in Table 4. The column totals of R(0) represent the total

number of offspring per woman born in a certain region, e.qg.

R(0) = Z iRj(O) . (2.9)
J

The row totals of R(0) give the total number of children born

in a certain region during one generation per woman born in

that region. It is the number of daughters by which a girl
child in a region is replaced. Noting that R(0) = NRR, the
total number of children born in region j during one generation,
is

Qyy = g iRj(o) Q1i (2.10)

and the row total of the j-th region is

Q.. 0.,
R. =2 -y i g : ,
5(0) o) :ZLQ1j iR5 (0) (2.11)

The value of Rj(O) depends on the radix ratio Q1i / Q1j of the
life table population. Since we have assumed unit radices in
all regions, the row totals in Table 4, i.e. Rj(O), are the
sum of the elements in the row. Other radices would give Rj(O)

and the row totals of the subsequent moments other values.
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Table 4. moments of integral function

0 moment
total slovenia r.yugos.
slovenia 0.972563 0.961876 0.010687
r.yugos. 1.297176 0.122364 1.174812
total 1.084240 1.185499

1 moment
total slovenia r.yugos.
slovenia 26.813101 26.499439 0.313662
r.yugos. 35.749592 3.587494 32,1/2098
total 30.086933 32.475761

2 moment
total slovenia r.yugos.

slovenia 777.565430 767.940002 9.625456
r.yugos. 1044.,.039429 110.833084 933.206299

total 878.773071 942.831726
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Table 5 repeats R(g) or NBR and gives the dominant eigen-
value and associated eigenvectors of B(O). The eigenvalue of
B(O), A1(R(0)), gives an indication of the net reproduction rate
of the whole system or country (Rogers and Willekens, 1976c,
p.28 ). A life table radix ratio that yields a global NRR
equal to x1(5(0)) is given by the right eigenvector of B(O).

The global NRR resulting from a radix ratio as specified by
the user, 1:1 say, is also given in Table 5. It is equal to
1.224257. The net reproduction allocation ipj denotes the
fraction of the offspring of the i-born women, that are born

in region j (Rogers, 1975b, p. 2.).5 For example,

_ 1YRR2  0.122364 _ [ 115457
1°2 7 TNRR, = T:088260 . ’

i.e. 11.29% of the daughters of Slovenia-born women, are born
in the Rest of Yugoslavia.

The moments of the GNM function give rise to other demo-
graphically meaningful statistics: the mean and the variance of
the GNM function. In the single region case, the mean of the

net maternity function is defined as (Keyfitz, 1968, p. 102)
Yy (x + 2.5) F(x) L(x) _
R(1)

u == = = . (2.12)
} F(x) L(x) R(0)
X

It represents the mean age of childbearing of the life table

population (given the observed fertility schedule). The

variance of the net maternity function is

T (x + 2.5 - W2 F(x) L(x)
2 X _R(2) _ 2

0] = = H ’
z F(x) L{x) R(0)
X

(2.13)

5The arrangements of the elements in Table 5 is the
transpose of Table 2 in Rogers (1975b, p. 5).
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Table 5.. spatial fertility expectancies
I EEEEEX XSRS EESE RS EEEEE RS RY ]

net reproduction rate

total
slovenia 0.972563
r.yugos, 1.297176

total

eigenvalue 1.180786
eigenvector

- right

-~ left

slovenia r.yugos.

0.961876 0.010687
0.122364 1.174812

1.084240 1.185499

1.000000 20.483933
1.000000 1.789025

net reproduction allocations

total
slovenia 0.896158
r.yugos. 1.7103842

total

global nrr =

slovenia r.yugos.

0.887143 0.0090615
0.112857 0.990985

1.000000 1.000000

1.224257



-20-

and represents the variance of the mean age of childbearing.
Multiregional generalizations of (2.12) and (2.13) are

(Rogers, 1975a, p. 106) :

Y (x + 2.5) Fj(x) i L. (%)

073 R, (1)
Q== = 1) (2.14)
173 -
i F](x) iOL](x) iR](O)
and
b o(x + 2.5 - 02 Fa(x) . Lo(x) R, (2)
s 2 _-x . 1Uj j i0™j _ i3 —U-Z
. . - — l r
t [ Folx) oL (x) {R5 (0) ]
e 3 J
(2.15)
respectively.

The matrix of mean ages of childbearing of the life table popu-
lation is given in Table 6 as Alternative 1. For example, the

mean age of childbearing among Slovenia-born women who are

living in the Rest of Yugoslavia is 29.32 years. The mean
age of the women living in Slovenia is lower, namely 27.55
years. This is consistent with the observation that mothers
who have migrated are normally older.

The single-region measures (2.12) and (2.13) may be
generalized to a multiregional system in a different way, one which
is analogous to the extension of the single-region survivorship
proportion to the multiregional survivorship matrix in the life

table. The mean age of childbearing matrix in this case is

o
Il

u [Z(x-+2.m g(x)%(xq[i F (x) g(xq'1 (2.16)
X

[1}(1)][13(0)]"1

and the variance matrix is

o’ =[§(2q[§(m]‘1-32 : (2.17)
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These matrices are given in Table 6 as Alternative 2. The
average age at childbearing of a woman who conceived in
Slovenia is 27.795 years. Of this total 27.548 have been

lived in Slovenia and 0.247 in the Rest of Yugoslavia.
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Table 6. matrices of mean ages and variances

¥¥ glternative 1 ¥#
2 R R E R R X R R R E R EEE R XX ]

means

-— - ae -

total slovenia r.yugos.

slovenia 28.449963 27.549740 29.350185
r.yugos, 28.347355 29.318327 27.37€379

total 28.434034  23.,363283
variances
slovenia r.yugos.
slovenia 39.388977 29,246277
r.yugos. 4e.204773 44.879150
¥*¥ alternative 2 ¥¥
Y 22232222332 2212)
means
total slovenia r.yugos.

slovenia 27.564051 27.547653 0.016397
r.yugos. 27.621458 0.247328 27.374130

total 27.794981 27.390528

variances

total slovenia r.yugos.

slovenia 39.412544 39.381409 0.031137
r.yugos. U5, 476387 0.607306 44,869080

total 39.988716 L4,Q00215
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2.2 The Weighted Generalized Net Maternity Function

Thus far we limited ourselves to the fertility analysis
of a population, distributed as in the multiregional life
table. It is a stationary population that is generated by the
observed mortality and migration schedules. The life table
population was augmented by the observed fertility schedules
to give the GNM function and the derived statistics discussed
above. We now replace the life table population by the stable
population, given in Table 1c¢, and perform an analogous analysis.
The regional radices, used in the life table, are now replaced
by the regional births in the stable population. As before we
assume unit birth cohorts.

Computationally, the fertility analysis in the stable
population is completely analogous to the one described above.

The only difference is that %2(x) is replaced by

2 () (%) = e % (x) (1.3a)

-rX
and g(x) by
L) () = & T (X*F2.5) 1y . (1.3b)

Define the Weighted Generalized Net Maternity (VIGNM)

Function as the product

o) x) = m (x) 2 (%) = e mx) 2(x) . (2.18)

~ ~

The weight applied is e X

Since this may be considered as

a discounting to birth, with r being the rate of discount, we
may denote the WGNM function as a GNM function with discounting.
The usefulness of the notion of discounting for demographic
analysis becomes clear in the treatment of the reproductive
value (Rogers and Willekens, 1976b). An element idﬁj(r)(x)

denotes the expected number of children to be born in region j
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to an i-born woman of exact age x who is part of the stable popu-
lation. It may also be considered as the number of children
discounted back to the time of birth of the mother.

The numerical approximation of (2.18) is

3 x) = rx) L) (x) (2.19)

~ ~ ~

and the result is given in Table 7. Table 7 is obtained by
multiplying the fertility rates of Table 2 by the age composi-

tion of the stable population (Table 1c). For example,
0.070652 0 3.885117 0.032403
3% (20) =
i 0 0.087978 0.304468 3.812357

r0.274&91 0.002289

0.026786 0.335404
The WGNM function gives the number of offspring by age of

a unit birth in the stable population. Summing over all age

groups we get

vir) = 7 360 . (2.20)
X

The matrix Y(r) is the characteristic matrix of the multiregional

population system (Rogers, 1975a, p. 93). An element i‘Yj(r)
denotes the total number of children expected to be born in
region j to a woman who was born in region i, and who is

a member of the stable population. The characteristics matrix

is the stable analogue of the NRR matrix. It gives the regional
distribution of the offspring p;r unit birth in each region of
the stable population. For example, Table 7 shows that a woman
born in the stable population in Slovenia gives birth to a total
of 0.916100 children on the average. Of them, 0.813686 are born

in Slovenia and 0.102414 in the Rest of Yugoslavia.
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Table 7. integrals of weilghted egeneralized net maternity function
initial region of cohort slovenia

age slovenia r.yugos,
0 0.0000C0 0.000000

5 0.000000 0.000000
10 0.000309 0.000008
15 0.065686 0.005056
20 0.,274491 0.026786
25 0.2320022 0.030408
30 0.141171 6.020979
35 0.074715 0.011763
4o 0.024356 0.006027
45 0.002114 0.001050
50 0.000823 0.000335
55 0.000000 0.000000
50 0.000000 0.000000
65 0.000000 0.000000
7C 0.000000 €.000000
75 0.000000 0.000000
50 0.000000 0.000000
A5 0.000000 0.000000
total 0.813686 0,102414

initial region of cohort r.yugos,

arge slovenia r.yugos.
0 0.000000 0.000000

5 0.000000 0.000000
10 0.0C0001 0.000275
15 0.000292 0.104035
20 0.002289 0.335404
25 0.002746 0.271786
30 0.00189°2 0.155635
35 0.001165 0.079345
Lo 0.000405 0.0388494
45 0.000037 0.006617
50 0.000015 0.002075
55 0.000000C 0.000000
60 0.000000 0.000000
65 0.000000C 0.000000
70 0.0000600 £.000000
75 0.000000 0.000000
80 0.000000 0.000000
85 0.000000 0.000000
total 0,008g42 0.994966
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If the stable distribution of births is {0%}, then the
distribution of offspring is also {0Q°} (Rogers, 1975a, p. 93):

(0% = v (0} . (2.21)
Equation (2.21) is the multiregional characteristic equation.

It can be seen from (2.21) that the relative distribution of
births is given by the right eigenvector of ¥(r). In our

numerical example,

s
fo7} = , (2.22)
20.823662
where the subscript denotes "arbitrary norming." Since the

eigenvector of a matrix is fixed up to a scalar, we may choose
the norming of the eigenvector freely. The result (2.22) implies
that 4.58% of the births occur in Slovenia and 95.42% in the
Rest of Yugoslavia (in the observed population it was 6.91%
and 93.09%, respectively).

As with the GNM function, we define the n-th moment of the
WGNM function (2.18) as (Rogers, 1975a, p. 112)

B
E(r) (n) = J x® 6 (%) ax
N 9
B n -Irx
= J X e ?(X) dx , (2.23)
o

and evaluate it numerically as follows:

B=5 )
RO () = 7 x+ 2.5 5 (x)
- a=5 ~
B=5
- 25 (x + 2.5)" T ¥*F2:3) p(y) 1(x)
ok

(2.24)
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The moments are given in Table 8. Note that the 0-th
moment of the WGNM function coincides with ¥(r). The column
totals of ¥ (r) represent the total number of offspring in the

stable population per woman by her place of birth, e.g.

( V() = § i‘i‘j(r) A (2.25)

The row totals give the total number of daughters by which a

female baby is replaced in her region of birth in the stable

population. It depends of course on the stable ratio of births:
s
914
Y. (r) =) Y. (r) (2.26)
j ios, i3
13

where Q?i is an element of the right eigenvector of ¥(r).

Table 9 repeats the ¥(r) matrix. In addition, it shows
the net reproduction allocations ioér)’ with
Y. ()
(r) _ 13 2.27
i°5 T ¥ : ( )

For example,

(r)
12

Y. (r)
1 f _ 0.102414 _ 0.111793

1 (r) ~ 0.976100

i.e. 11.18% of the daughters born to Slovenia-born women, are
born in the Rest of Yugoslavia.

The mean and the variance of the WGNM function are given
in Table 10. Again, two alternative expressions are distin-

guished.
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Table 8. moments of integral function
0 moment
total slovenia r.yugos.
slovenia 0.822628 0.813686 0.0089u42
r.yuagos. 1.097380 0.102414 0.994966
total 0.916100 1.003908
1 moment
total slovenia r.yugos.
slovenia 22.483915 22.223598 0.260318
r.yugos. 29.944412 2.974082 26.970331
total 25.197681 27.230650
2 moment
total 3lovenia r.yugos.
slovenia  646.212097 638.288757 7.923365
r.yugos. 865.373718 90.987785 774.385925
total 729.276550 782.309265
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spatial fertility expectancies

L EXESXZERZEEXEREESRZE SRR SR L B

net reproduction rate

slovenia

0.813686
0.102414

0.916100

1.000000
1.000000

r.yi1gos.

0.008942
0.994966

1.003908

20.823662
1.818116

reproduction allocations

- e S e S e S A e G e L e S BA W e e W

Table 9.
total
slovenia 0.822628
r.yugoes. 1.097380
tetal
eigenvalue6 0.999884
eigenvector
- right
- left
net
total
slovenia 0.897113
r.yuagos. 1.102887
total
6

slovenia

0.888207
0.111793

1.000000

The eigenvalue should be equal to one.

r.yugos.

0.008907
0.991093

1.000000

Deviation

is due to rounding of the intrinsic growth rate r

to six decimal places.

The growth rate has been

computed by projecting the population growth
matrix until stability.
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Alternative 1 (Rogers, 1975a, p. 113):

The matrix of mean ages of childbearing in the stable

population, A, has elements:

- -r(x+2.5
J (x + 2.5) e T(x+2.5) Fi(x) joLy(x)  gr) (4
A, =X =2 % ) '
177 _ —(r
}j e r(x+2.5) F.(x) -OL'(X) iRj (0)
x J 10 (2.28)
and the variance 92 with elements
; E (x + 2.5 - iAj)Z e T (x+2.5) Fj(x) oLy (x)
O, =
1] —r (x+2.5)
z e Fj(X) ioby (%)
=(r)
_ if%r)<2) _ iAjZ _ (2.29)
iRj (0)
Alternative 2:
-1
o L z - L z -

|
—
2
—
]
R
——
S”
—
—
e
=
(]
Na®
—
—
o
w
Q
S”

G2 = [E<r)(2i][§(r)(0)]_1 _ a2 ) (2.31)
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Table 10. matrices of mean ages and variances

- - e MR mm e e mm e e G e M e an A A e mm v G S S e e e em o A

¥% slternative 1 #¥%
I E R E R E R E XX EXREXERE R

means
total slovenia r.yugos.
slovenia 28.212582 27.312254 29,.112906
r.yugos.,. 28.073296 29.039808 27.106783
total 28.176031 28.109844
variances
slovenia r.yagos.
slovenia 38.481873 38.555481
r.yuagos. 45,120789 43.526062
*¥ glternative 2 ##%
EREEELHNNREREENNNRE
means
total slovenia r.yuges.
slovenia 27.326414 27.310213 0.016201
r.yugos. 27.348167 0.243574 27.104593
total 27.553787 27.120794
variances
total slovenia r.yugos.
slovenia 38.507473 38.474243 0.033230
r.yugos. 44,138874 0.622760 43,516113
total 39.097004 43.,549343
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3. MOBILITY ANALYSIS

There are two alternative approaches to expressing the
level of migration in a multiregional system (Rogers, 1975b).
The first expresses the migration level in terms of expected
durations , i.e. the fraction of an individual's lifetime that
is spent in a particular region. The expectation of life at
birth by place of residence is computed in the multiregional life

table. The life expectancy matrix

e, (0) e, (0)
171 271 (3.1)

18, (0) €5 (0)

for the system Slovenia-- Rest of Yugoslavia is given in Table 11.
The total life expectancy of a girl born in Slovenia is 72.48 years,
of which 64.90 years are expected to be lived in Slovenia (1e1(0))
and 7.57 years in the Rest of Yugoslavia (1e2(0)).

Expressing these expectancies as fractions of the total life-

time yields the migration levels iej:

in = iej(O)/ie(O) (3.2)

The second approach adopts a fertility perspective to mi-

gration analysis. Unlike death, migration is a recurrent event,

analogous to birth. Like fertility, its level can be measured

by counting the events, i.e. the number of moves an average person
makes during his lifetime7. Such indices have been developed

by Wilber (1963) and Long (1973) for a population aggregated at the
national level. Rogers (1975b) combines Wilber's and Long's ideas
of "expected moves" with the approach generalizing the expected

number of children (NRR) to a multiregional system (NRR).

7The number of moves is defined here as the number of times a
person is in another region at the end of the unit time interval.
Back and forth moves during a unit interval are not counted (a similar
assumption has been adopted by Wilber (1963) and Long (1973)).
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Table 11. spatial migration expectancies
12222232 R R N Y Y Y Y SR 22 L.

expectations of life

total slovenid r.yugos.

slovenia 65.712997 64.902672 0.810323
r.yugos. 73.009148 7.573801 65.435349

total T2.476471 66.2450T74
eigenvalue 67.660629
eigenvector

- right 1.000000 2.403525
- left 1.000000 0.364144

migration levels
total slovenia . yugos.,

slovenia 0.807732 0.895500 56.012232
r.yugos. 1.092268 0.10450C 0.987768

total 1.000000 1.000000
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As before, let 2(x) be the distribution of the life table
population of exact age x, and let L(x) be the stationary life table

population aged x to x + 4, by place of birth and residence.

Define m°

as the diagonal matrix of annual regional outmigration
rates of people at exact age x, and M° (x) as the diagonal matrix

of outmigration rates of people in age group x to x + 4, e.qg.

,»M?(x) o |

MC (x) = (3.3)

N 0 Mg(x)J
with M?(x) = .2. Mij(x) , ij(x) being the age specific migration
rate from regizi i to region j. Integration of the matrices of

age -specific outmigration rates over all ages gives the gross

migra~production rate matrix:

w
GMR = f m®(x) dx = ¥ M%(x) .
! )= L

The origin-destination migration rates of the two-region system

Slovenia ~ Rest of Yugoslavia are given in Table 3 of Willekens

and Rogers (1976a, p. 9). Table 12 shows the age-specific re-

gional total outmigration rates. Since the system under con-

sideration contains only two regions,Mg(x) = Mij(x) for i # j.

The column totals denote the regional gross migra-production rates.
The application of the age-specific outmigration rates to

the life table and to the stable populations yields, respectively,

the generalized and the weighted generalized net mobility functions.
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Table 12. migrati

age

0

5
10
15
20
25
30
35
4o
45
50
55
60
65
70
75
80
85

gmr

* % K %% % %

observe

slovenia

.002832
.00229Y
001485
.005158
.007170
. 005534
003756
.001765
.001013
000543
.000663
.000629
.00088Y
.000949
.000876
001111
000704
.000000

oNeoNeolololololoNoloNoloReoloNoRol o]

o

. 186830

on analysis
ARXERERKERNN

d rates

3
<<
[t
a
]
0]

.000272
.000166
.000157
.000679
.000937
.000506
.000350
.000226
.000183
.00009Y
.000130
.000205
.000203
.000156
.000078
.000099
.000196
.0000600

elololoRolololololololoRoleoNoNeNe RG]

(@]

.023185

The Generalized Net Mobility Function

The generalized net mobility (GM) function

y(x) =

1Y1 (x)

TO(X)

2(x), or

2Y1q (x) [

X) 21(x)

10

my (%) 194, (%)

is the product

(3.4)

-

m3 (%) 558 (%)

my (%) 5 Ly (x)
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An element iYj(x) denotes the expected number of migrations
out of region j, made during a unit time interval following age
X, by a woman born in region i. Since the system only consists
of two regions, iYj(x) measures the return migration of the
X-year old.

The numerical evaluation of equation (3.4) is
Y(x) = M7(x) L(x) . (3.5)

The values of y(x) are given in Table 13. The computational
procedure is completely analogous to the one used in the fertility

analysis. The only difference is that F(x) of (2.4) is replaced

by go(x). For example, Yy (20) is
— <4 = ) .
0.007170 0 4.456621 0.037170
Y (20) =
0 0.000937 0.349255 4.373158
- 4 b _l

0.031954 0.000267-T

0.000327 0.0040098

The expected number of migrations an individual makes during
his lifetime is given by the summation of Y(x) over all x. The

result is the net migra-production matrix (Rogers, 1975b, p. 8):

NMR = } Y (%) (3.6)
. "
where
1NMR1 2NMR.l
NMR =
1NMR2 2NMR2
1NMR. 2NMR.
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Table 13. integrals of generalized net mobility function
initial region of cohort slovenia
age slovenia r.yugos.
0 0.013849 0.000009
5 ¢.010892 0.000015
0 0.006972 0.000021
15 0.023773 0.000144
20 0.031954 0.000327
25 0.023813 0.0002U5
30 0.015729 0.000202
35 0.007251 0.000142
4o 0.004101 0.000119
45 0.00216C 0.000061
50 0.002573 0.00008Y4
55 0.002354 0.000130
60 0.003130 0.0C00123
65 0.003040 0.000087
70 0.002335 0.000037
75 0.002187 0.000036
80 0.000817 0.000047
85 -0.000000 0.000000
total 0.156926 0.001830
initial region of cohort r.yugos.
aze slovenia r.yugos,
0 0.000009 0.001287
5 0.000019 0.000739
10 0.000017 0.000697
15 0.000106 0.002996
20 0.000267 0.004098
25 0.00028U 0.002190
30 ¢.000222 0.001500
35 0.000113 0.000958
4o 0.000068 0.000765
45 0.000038 0.000386
50 0.000046 0.000521
55 0.000044 0.000788
50 0.000062 0.000730
65 0.000063 0.000502
70 ¢.000050 0.000208
75 0.000047 0.000197
30 0.000018 0.000250
85 0.000000 0.000000
total 0.001472 0.018813
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The column sum iNMR denotes the total expected number of migrations
to be made by a person born in region i. Some of these, i.e.

iNMRj migrations are made out of region j. In other words, iNMRj

is the number of times a person born in region i is expected to
leave region j. The total number of migrations expected to be

made by the current birth cohorts out of region j is of course

Ej = giNMRjQ1i

or in matrix notation

{E} = N~NMR {Q,} (3.7)

The moments of the GM-function are completely analogous to
those of the GNM - function. The n-th moment of the GM-function

is defined as:

W
P(n) = J xn X(x) dx

(3.8)
0
where w is the highest age of the population. The numerical
approximation of (3.8) is:
_ z-5 n —
D(n) = )} (x + 2.5)" Y(x)
z %=0 o
z-5
= ¥ x4+ 2.5" M%) L (3.9)
x=0 - ~

with z being the highest age in the discrete case and 2z-5 the
starting age of the highest age group.
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The moments of the GM-function are contained in Table 14.
The zeroth moment, D(0), is identical to the migra-production
matrix, which is gi;en in Table 15 together with the migra-
production allocations. The row sums of D(0) represent the
elemerts of {g} for the case of unit regi;nal radices. The
net migra-production allocation iej denotes the fraction of
the migrations made by an i born individual, that are out

of regicn j (Rogers, 1975b, p. 8). For example,

1572 0.001830

NMR. 0.158755

= 0.011526.

The global NMR or the Wilber-index is computed as:

poM(x) L (x),

X

where Mn(x) are the average national age-specific migration rates
(see Table 4 in Willekens and Rogers, 1975, p. 11) and L™ (x) is
the aggregated life table population distribution:

L (x) = — JQ. [} .L.(x)!
Jo, 1 3t

The mean and the variance of the GM-function are given by
formulas (2.14) to (2.17) in which F. (x) is replaced by M?%(x)
and F(x) by M°(x). The global NMR ig given in Table 15. ?

Table 16 lists the means and variances of the generalized
mobility function.



Table 14.

slovenia
r.yugos.

total

slovenia
r.yugos.

total

slovenia
r.yugos.

total
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total

0.158398
0.020642

1 moment

total

4,184498
0.632692

2 moment

total

156.705719
26.584549

slovenia

0.156926
0.001830

0.158755

slovenia

4.130428
0.071622

4.,202050

slovenia

15L,.243912

2.429838

157.673752"

moments of intezral function

e e
B E EF E T T T T

r.yugos.

0.001473
0.018813

0.020285

r.yugos.

0.054071
0.561070

0.615141

r.yugos.

2.461800

23.154711
25.616510
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Table 15. spatial migration expectancies
EREERRERR R ERAEEXRR R RERRERE XX

net migraoroduction rate

total slovenia r.yugos.

slovenia 0.158398 0.156426 0.001473
r.yugos. 0.020642 0.001830 0.018813
total 0.158755 0.020285

eigenvalue 0.156945

eigenvector
- rignt 1.000000 0.013246
- left 1.000000 0.010662

net migraproduction allocations

total sloveria r.yugos.

slovenia 1.061078 D.988L7Y 0.072604
r.yugos. 0.938922 J.011526 0.627396
total 1.000C00 1.000000

global nmr = 0.032255 (wilber index)



-42-

Table 16. matrices of mean ages and variances

e e e ME e e e et et e a = A ae e em WA e MM wm R Mm MR MR W h em e w8 e W e
=g gipea i e e S e i g on i R

% alternative 1 ¥¥
96 3 3 3 I I I I I W AW NN NN

total slovenia r.yugos.

slovenia 31.516935 26.320940 36.712929
r.yugos. 34.483528 39.1L2857 29.824196

total 32.731899 33.268562

variances

slovenia r.yugos.

slovenia 290.119568 323.6772u6
r.yugos. 342.310913 341.327515

¥® alternative 2 *#%
[ XXX XXX EEREEEER X ]

total slovenia r.yugos.

slovenisa 27.125751 26.311443 0.814309
r.yugos. 29.924438 0.108755 29.815681

totak” 26.420198 30.629990

variances

total slovenia r.yugos.

slovenia 298.155457 289.901672 8.253784
r.yugos. 342.566650 1.407888 341.158752

total 291.309570 349.412537

-
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3.2 The Weighted Generalized Net Mobility Function

Mobility analysis of the stable population leads to the
concept of the weighted generalized net mobility (WGM) function.
The WGM-furn.tion is estimated by replacing the life table popu-
lation in (3.4) and (3.5) by the stable population.

y T x) = %0 eTFF u(x) (3.10)
and

T () = MPx) eTTXF25) 1) (3.11)
The weights are e T* and e-r(x+2.5) respectively. The numerical
values of 7(r)(x) are given in Table 17. Summation of g(r)(x)
over all x yields the characteristic mobility matrix TI'(r):

T(r) =] f(r) (x) . (3.12)

X

An element iFj(r) denotes the average number of migrations out
of region j in the stable population that an i born person is
expected to make during his lifetime. The right eigenvector
of Z(r) represents the regional distribution of births that
would result in an equal distribution of the outmigrants. In
other words, if the births are distributed according to the
right eigenvector of T(r), {g} say, then the relative regional

distribution of the migrants and the births are the same.

This can easily be seen by writing the characteristic equation

AMI(r) ] {2z} = T(r) {z} (3.13)
MI()] {2z} = (] v eTTHD) 1) ()
L z

(r)

Zb}o(x) L' (x) {z}



Table 17.

age

40

age

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

total

4L~

integrals of weighted generalized net mobility function

initial region of cohort

slovenia

slovenia
0.013639
0.010405
0.006460
0.021367
0.027856
0.020136
0.012900
0.005768
0.003164
0.001617
0.001865
0.001658
0.002138
0.002014
£.001500
0.,001361
0.000494
0.000000

0.134346

initial

slovenia
0.000009
0.000018
0.000016
0.000095
0.000232
0.000240
0.000182
0.000090
0.000053
0.000028
C.000034
0.000031
0.000042
0.000042
0.0000%2
0.000030
0.000011
0.000000

0.001184

r.yugos.
0.000009
0.000015
0.000020
0.000130
0.000285
0.000207
0.0001R6
0.0001153
0.000092
0.C00046
0.000061
0.000091
C.000084
0.000058
0.000024
0.000022
0.000028
0.000000

0.001450

region of cohort

- - . = e R D e S v

r.yugos,
0.001267
0.0007086
0.000645
0.002603
0.003572
0.001852
0.001230
0.000762
0.000591
0.000289
0.000378
0.00055%
0.000499
0.000333
0.000134
0.000123
0.000151
0.000000

0.015780

r.yugos.
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where L<r)(x) is the distribution of the age group x to x + 4 in

the stable population, by place of residenrce and by place of birth,
and A[T(r)] is the dominant eigenvalue of T(r). In our numerical

example, (3.13), is:

F.OOOOOJ [0.134346 0.001184 —1.000000

0.134360 . =

0.012229 0.0017450 7.015780] |0.012229

At stability, the migrants have not only the same relative
regional distribution as the births, but they also are propor-
tional to the number of births. If the vector of births is {gm},
with elements proportional to {g}, then the vector of migrants

{Z} is:

{z} = n(r){Q™ = A[T(x)]1{Q™

~

For the system Slovenia - Rest of Yugoslavia A[T(r)] = 0.134360,
i.e. the number of migrants is 13 percent of th; number of births.
In other words, if the births are distributed according to {gm}[
then the number of people leaving Slovenia during one generation
(independent on where they are born) is 13% of the births in
Slovenia in the beginning of this generation.

The moments of the WGM-function are defined analogously to
(2.23):

P(r) (n) X e vy (x) dx

0
‘ﬁ
e
>
<
o
L
o
»
[

fw n -rx

and

n e—r(x+2.5) —(x)

]

(n) = ) x ¥ (x) = ) x
0 0
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The moments are given in Table 18. The zeroth moment is of
course equal™to E(r), which is repeated in Table 19. The

mean and variance of the WGM-function are derived in an analo-
gous manner as equations (2.28) to (2.31) (Table 20). Finally,
the discounted life expectancy matrix is represented in Table
21.

Table 18. moments of integral function

e e e e e m e e e e = A = e S e e A=
Eep =il e

0 moment
total slovenia r.yugos.,
slovenia 0.135530 0.134346 0.00%1184
r.yugos. 0.017230 0.001450 0.015780
total 0.135796 0.016964

1 moment
total slovenia r.yugos.
slovenia 3.353349 3.312093 0.041256
r.yugos. 0.493278 0.053842 0.439436
total 3.365935 0.480692

2 moment
total slovenia r.yugos.,
slovenia 118.014839 116,233238 1.781602
r.yugos, 19,543728 2.459748 17.083981
total 118,692986 18.865582
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Table 19. spatial migratior expectancies
FERX RN RERRERRA R RERRA N RN
net migraproduction rate
total slovenia r.yugos.
slovenia 0.135530 0.134346 0.001184
r.yugos. 0.017230 0.001450 0.015780
total 0.135796 0.016964
elgenvalue 0.,134360
eigenvector
- right 1.000000 0.012229
- left 1.000000 0.009986
net migraproduction allocations
total slovenia r.yugos.
slovenia 1.059125 0.989321 0.069804
r.yugos. 0.940874 0.010679 0.930196
total 1.300000 1.000000
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Table 20. matrices of mean ages and variances

% alternative 1 %%
[ 2 XXX XXX EEX ST N

total slovenia r.yugos.

slovenia 29.746502 24,653543 34.839462
r.yugos. 32.488285 37.129063 27.847506

total 30.891304 31.343485

variances

slovenia r.yugos.

slovenia 257.384216 290.717163
r.yugos. 317.659180 307.145569

#% glternative 2 ##
RERBRBRABRRETREERREES

total slovenia r.yugos.

slovenia 25.410284 24,645287 0.764997
r.yuagos. 27.940247 0.100267 27.839979

total 24.74555Y4 28,.604977

varlances

total slovenia r.yugos.

slovenia 265.060608 257.195289 7.864311
r.yugos. 308.356445 1.366035 306.990417

total 258.562317 314.854736
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Table 21. spatial mirration expectancies
EEREXEXENNEEREXXRELXEREENEEEXEXX

expectations of life

total

slovenia 52.8272322
r.yugos. 57.9657¢4

total

eigenvalue 54,120216
eigenvector

- right

- left

siovenia

52.227596
5.629006

57.856602

1,000000
7.,000000

migration levels

total
slovenia 0.914035
r.yugos. 1.085965

total

slovenia

0.902708
.097292

1.000000

r.yugos.

0.599635
52.336788

52.936424

3.156286
0.336226

r.yugos.,

0.011327
0.988672

1.,000000
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4. FERTILITY ANALYSIS: CONTINUED

In this section we approach fertility analysis from a different
perspective. Although the starting poirt is the net reproduction
rate matrix (NBR) and the characteristic matrix (y(r) or B(r)(O)),
the interpretation is different. This allows us to derive
additioenal useful information on the fertility behavior of the
population.

Recall that both NRR and Y(r) represent the regional distribution
of the offspring by place of birth of the mother. The matrix NRR
refers to a life table population, and ?(r) to a stable population.
The intrinsic or stable growth rate is f. In equation (2.18), the
rate r may also be considered to be a rate of discount. Introducing
the notion of discounting, and hence a time preference to the fact
of having children, adds an interesting new dimension to fertility
analysis.

The central concept is the reproductive value. It has been
developed by Fisher (1929), and studied by Goodman (1967, 1971),
Keyfitz (1975) and others. For a reformulation of the concept and a
generalization to multiregional demographic systems, see Rogers
and Willekens (1976b) and Willekens (1977). In this paper we high-
light only a few important elements of the theory of spatial repro-
ductive value (section 1), and focus on the computational algorithms

(section 2).

4.1. The Theory of the Spatial Reproductive Value

Fisher (1929) looks at a life as a debt one has incurred at birth,
and at the offspring of a child as the repayment of this debt. Let
the debt or loan incurred at birth be equal to unity. At stability,

the present value of the subsequent repayment must equal the debt:
*® —-—
1 = J e T® m(a)s(a)da = ¥(r) (4.1)
0

where m(a) % (a)da is the expected number of children to be born
between ages a and a + da to a baby born in a life table popu-
lation and obeying the observed fertility schedule, and r is the
rate of discount. Equation (4.1) is of course identical to the

characteristic equation of a single-region population system.
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The multiregional counterpart of (4.1) is (Rogers, 1975a, p.93)

{9”} = %(r) {7+ (4.2)
WhAo e {QS; is the right eigenvector, associated with the dominant

eigenvalue of y(r). An alternative generalization of (4.1) is
[v(0) ' = {v(0}} ¥(r) (4.3)

where {v(O)}'is the corresponding left eigenvector of g(r) and the
prime d;notes the transpose.

Eoth formulations (4.2) and (4.3) have their demographic
significance. Equation (4.2) has already been considered in section
2 of this paper. The eigenvector (0%} gives the regional distribution
of births in the stable population.~ Following the investment approach
to life and caildbearing, {QS} denotes the spatial distribution of
the investments (or births) which makes the intrinsic rate of return
of each investment equal to r, the equilibrium rate of return.
Whereas {QS} denotes the number of births, the left eigenvector {y(O)}'
represents the marginal value of an additional unit birth, or in other

words, the reproductive value of a 0-year old girl. The value is mea-

sured in terms of contribution to the ul:imate population of the
demographic system. It reflects the capacity to produce new life.
Note that, since the model we consider is linear, the marginal value
of one birth is equal to its average value.

We explore now the investment approach to fertility analysis
a little further. 1If the regional distribution of births is {QS},
then the present value of the offspring must also equal iQS}
{equation (4.2)). This implies that i

LY.

S
3 l(r) Qj . (4.u)

KK
1}
e~

In each region, the discounted number of offsoring mﬁst be equal

to the current number of births. In other words, each region must
pay back the debt it has incurred by receiving Qi births. A part
of this debt is paid back by people born in another region. People

. . . . S
born in region j, for example, contribute a total of jNRRi Qj to
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region i, which has a discounted value of jWiQi. Recall that in

the numerical illustration of Slovenia - Rest of Yugoslavia,

0.961876 0.010687 |
NRR =
~ 0.122364 1.174812
Equation (4.2) 1is
. 1.000000 0.813686 0.008942 \ 1.0000061
| - |
I20.823662 0. 102414 0.994966‘ 20.82366%J

One baby born in Slovenia is replaced by an average of

0.961876 * 1.000000 + 0.010687 % 20.823662 =

0.961876 + 0.222542 = 1,184418

babies in the stable population. An average of 0.961876 babies will
be born to mothers who are born in Slovenia themselves, and 0.222542
will be born to mothers born in the Rest of Yugoslavia. The present
value of the 0.961876 babies is 0.813686, and of 0.222542 is
0.008942 % 20.823662 = 0.186205. Hence the average present value

of a baby born in Slovenia to a Slovenia-born woman is

0.813686
0.961876

= 0.845936,

while that of a baby born in Slovenia to a Rest of Yogoslavia-born

woman is

0.994966
1.174812

= 0.846915



-53-

The difference is explained by the difference in mean
ages at childbearing in the stable population and the stationary
population.

Equation (4.2) expresses births in one generation as a
function of the number of births in the previous generation. It
denotes the number of daughters by which a woman is replaced in
the stable population, or, alterﬁatively, the present value of
the daughters replacing a woman, the mortality and migration be-
navior of which is given by the life takle. The regional dis-
tribution of births is consistent with the given fertility, mortality
and migration schedules and with the growth rate or rate of discount
r. Since these schedules differ from one region to another while
r is unique, a birth in a less fertile region contributes less to
the sustainment of the overall r than a birth in a highly fertile
area. The value of a birth for sustaining r depends on the capacity
of the O-year old to produce new lives. This capacity is measured

by the reproductive value.

1
The vector {Y(O)} denotes the reproductive value of a
baby or a 0-year old girl by region. If the reproductive value of
a O-year cld in region i is vi(O), then the value of the discounted

number of offsprings must also be vi(O), i.e.

or
_ ~r(x+2.5)
vi(O) = ge vi(O) Fi(x) iLi(x) +
-r (x+2.5)
Ye \)j(O) Fj(x) iLj<x) . (4.5)

X
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Equation (4.5) indicates an equivalent formulation: the present
worth of the reproductive value of the offspring must equal to the
reproductive value of the 0O-year old. 1If vi(O) represents the value
(cost) of the life invested in an individual, then he must pay off
the value of this investment. Since v, (0) # vj(O), Z i‘Pj(r) # 1,
which means that the discounted number of offsPringJof an individual
does not have to be exactly one.

Consider the Slovenia - Rest of Yugoslavia example. The matrix
¥(r) is given in Table 9. The left eigenvector is

F.oooooo
vy} = , (4.6)

|1.818116

and equation (4.3) becomes

0.813686 0.008942
[1.000000 1.818116]1 = [1.000000 1.818116]
0.102414 0.994966

Assuming the reproductive value of a 0O-year o0ld in Slovenia to be
unity, then the reproductive value of the baby in the Rest of
Yugoslavia is 1.818. Any norming may be used since the eigenvector
is fixed up to a scalar. Throughout this paper, the regional repro-
ductive values are scaled such that v1(0) = 1.

Note that the discounted number of daughters of a Slovenia-
born girl is 0.916100, i.e. less than unity. Therefore, she does
not replace herself by one child (discounted). The value of the

offspring, however, is equal to her reproductive value at birth:

v1(0) = 1.000 = 1.000 4 0.814 + 1.818 * 0.102
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4.2 The Computation of the Spatial Reproductive Value

The above interpretation of (4.3) suggésts asking what
is the produc=zive capacity of a girl aged x. The answer is the
expected number of subsequent children discounted back to age x,
and weighted for the region of birth. The vector of reproductive

values of x-year o0ld women, differentiated by region of residence,

1s:
{y(x)}'= {y(O)}'f e—r(a—x) T(a) %(a) da [%(x)]_1
X
= {Y(O)}' n(x), say. (4.7)
The matrix
Ty (x) nyq (%)
n(x) =
L | .
(n12(x) n22(x) (4.8)

represents the expected total number of female offspring per woman
at age x, discounted back to age x. The element nij(x) gives the
discounted number of daughters to be born in region j to a woman
now x years of age and a resident of region..i. There are two
approaches to svaluate (4.2) and (4.7) nuamerically. The first

approach evaluates the reproductive values at exact age x:

] ] 6_5 - - —_
)} = )} T [eTTaT257X) mayn(a) 11017 (4.9)
- - a=x ~ e -
= {y(O)}' §x , say. (4.10)

Both §x and{y(x)} refer to exact age x. The values of §X for
Slovenia - Rest of Yugoslavia are given in Table 22. For example,
the discounted number of female descendants of a woman living in
Slovenia and 10 years old is 1.002. A total of 0.9168 is expected
to be born in Slovenia and 0.0852 in the Rest of Yugoslavia. On the
cther nand, a woman of the same age in the Rest of Yugoslavia has an

expected discounted number of daughters of 1.1984. Hecause ©f the low
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Table 22. results for people at exact age X
JU R0 0606 06 0 3636 30 3 36 36 3 3 K K ¥
 E XXX IXISI I ARSI ISR
discounted number of offspring per person
00 I3 0 0606 36 2360 00 U000 30 36 0E 0 30 30 36 36 36 36 3 JE 0 36 336 3 9 36 0 0 N
region of residence slovenia
region of birth of offspring
total slovenia r.yugos.

0 0.916100 0.813686 0.102414
5 0.971974 0.877292 0.094682
10 1.002009 0.916767 0.085242
15 1.032697 0.953190 0.079507
20 0.981935 0.929147 0.052788
25 0.652048 0.630543 0.021506
30 0.351120 0.344533 0,006587
35 0.153903 0.152558 0.,001344
40 0.042952 0.04271C 0.000242
45 0.00L4836 0.004807 0.000028
50 0.001423 0.001417 0.,000006
55 0.000000 0.000000 0,.,000000
60 0.000000 0.000000 0.000000
65 0.000000 0.000000 0,000000
70 0,000000 0.000000 0,000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 0.000000

region of residence r.yugos.

region of birth of offspring
total slovenia r.yugos.
0 1.003908 0.008942 0.994966
5 1.158391 0.009091 1.149300
10 1.198425 0.008654 1.189771
15 1.238313 0.008204 1.230109
20 1.148223 0.005266 1.142957
25 0.743626 0.001747 0.741879
30 0.394u23 0.000555 0.393869
35 0.184441 0.000131 0.184310

40 0.072078 0.000023 0.072054
45 0.013779 0.000002 0.013777
50 0.003460 0.000000 0.003460
55 0.000000 0.000000 0.000000
60 0.000000 0.000000 0,000000
65 0.000000 0.000000 0.000000
70 0.000000 0.000000 0,000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 0.000000
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migration level out of the Rest of Yugoslavia and the relatively
inw fertility in Slovenia, only an average of 0.0087 daughters
will be born in Slovenia to these women.

The re»nroductive values by age, -v(x)!} are represented in

Table 23. ror instance, the reproductive value of 10-year old
cirls 1is
tv (100} = {v(0)} n,, , or
0.916767 0.008654
[1.071747 2.171796] = [1.000000 1.818166]

0.085242 1.189771

Note that Ho is identical to the characteristic matrix Y(r).
The second approach computes the average reproductive value

for each age group x to x + 4. Denote this by {SVX}, then

' ' B=5 - -
(V) = O 31 e M@ L)
a=x
+ e Ty a5y L(ars) ) [L(x) 1]
' B8=5 _
= (v} 2] Ma) + e " Ma+5)S(a)]

: Lo Y :
et (a ¥ a) (L)1) (-1
- {Y(O)}' N, say. (4.12)

The matrix §x gives the discounted number of offspring per
person in age group X to x + 4, and not the number per person

at exact age x (Table 24). It has been shown by Willekens
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(1977, p. 14) that gx may be expressed in terms of 5§x+5:

5T 5 (x) (4.13)

~

5 5 -
g =3 @(x) + [5 M(x+5) + SNx+5] e

~ ~

The associated average reproductive values by age group are

listed in Table 25.

Table 23. spatial reprocductive value per person
I 2 XS X2 XXX EETEESEEX R RS ERSER SRS S X &3

slovenia r.yugos.
0 1.,000000 1.818116
5 1.049436 2,0908651
10 1.071747 2.171796
15 1.097742 2,2L4684
20 1.025122 2.0c3294
25 0.669643 1.,350569
30 0.356509 0.716653
35 C.155003 0.335227
40 0.,043150 0.131027
45 0.004859 0.025051
50 0.001427 0.006291
55 0.000000 0.000000
60 0,000000 (©.,000000
65 0,000000 0.000000
70 0.000000 0.,000000
75 0.000000 0.,000000
80 0.000000 0.,000000
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Table 24. results for people in age group x
EARLERER KRR R KRR AR RN RR AR AR R RN
EXRNEREREERERE XL RN R R AR RN R RN R RN RR
discounted nurber of offspring per person
REEREEEERFRAERARE R NR R R RN AR ERR AR R RR KRR X
region cf res.dence slovenia
region of birth of offspring
total slovenia r.,yugos,

o) 0,943847 0.844677 2.099170
5 0.886830 0.896793 2,090100
13 1.017244 0.934792 2,082452
15 1.007583 0.94181A 2.065767
20 0.819229 0.785372 1©,033857
25 0.503857 0.492104 3,011753
30 0.254235 0.251223 0.003013
55 0.099454 0.095305 0,000549
LD 0.02u4254 0.02L192 0,000062
L5 0.003166 0,003156 0.,000010
5 0.000730 0,000720 0.000000
£ 0.0C0000 0.,000000 0,000000
0 ¢.000000 0.000000 0,000000
£5 0,000000 0.006000 0,00000C0
70 0,000000 0.00C000 0,000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 ©,000000

region of residence r.yugos.

region of birth of offspring
total slovenia r,.,yugos.
9] 1.076651 0.009032 1.007619
b} 1.176234 0,008880 1.169355
10 1.218204 0.008436 1.209768
15 1.1942067 0.,006720 1.187547
20 0.949871 0.003167 0.946704
25 0.572510 0.000972 0.571537
30 0.291552 0.000260 0.291292
35  0.129433 0.000047 0.,129386
40 0.043597 0.000004 0.043593
45 0.008752 0.000001 0.008751
50 0.001785 0.000C00 0.001785
55 ¢.000000 0.000000 0.000000
60 0,000000 0.00000C 0.000000
65 0.000000 0.000C00 ©.000000
70 6.000000 0.000C00 0.000000
TF 0.C000CO 0.000C00 0.000000
e 0.000000 0.000000 0,000000
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Table 25. spatial reproductive value per person
S X E2X2XX22X22X2223233 222222252 X2 R 2]

slovenia r.yugos.

0 1.024979 1.950086

5 1.060603 2.134602

10 1.084699 2.207934
15 1.061388 2.165818
20 0.846928 1.724385
25 0.513472 1.040094
30 0.256700 0.529862
35 0.099904 0.235286
40 0.024305 0.,079261
4s 0.003175 0.015911
50 0.000730 0.003245
55 0.000000 0.000000
60 0.000000 0.000000
65 0.000000 0.000000
70 0.000000 0.000000
75 0.000000 0.000000
80 0.000000 0.00C000
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The discounted number of offspring and the reproductive value
in (4.12) and (4.13) are expressed per person in age group X to x + 4
of the life table population. To obtair. an estimate of the discounted
aumber of offrpring and the reproductive value of the total observed
pcpulation, we multiply Ny and {SYX} by the observed population

discsoibution and sum over all age groups:

ZES
NK = N K(x) (4.14)
~ X=05~X ~
&N
(v} = (90} N K(x) = {v(0)) NK (4.15)

where K(x) is the diagonal matrix containing the regional populations
aged x to x + 4.

The value of NK is given in Table 26a. Under the 19671 regime
of fertility, mortality and migration, the total discounted number
of female offspring of Yugoslavia is 5,528,628. Of them, 382,695
or 6.92 % will be born in Slovenia. However, the female residents
cf Slovenia will account for only 379,094 or 6.68% of the total
discounted number of births. Of the ultimate discounted 382,695
female children born in Slovenia, 29,934 can be attributed to
wemen now residing in the Rest of Yugoslavia. On the other hand,
cf the discounted 379,094 daughters born to the female population
of Slovenia, 26,333 will be born in the Rest of Yugoslavia, and
352,761 in Slovenia.

The reproductive value of the total female population by
place of residence is obtained by (4.15), i.e. by weighting the
discounted number of offspring for the region of birth. If we
attach to a birth in Slovenia the reproductive value of unity,
then a birth in the Rest of Yugoslavia has a reproductive value

of 1.818. Adopting this scaling, the total reproductive value
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Table 26a. total discounted number of offspring
ERERERRERRERE RN R R RN RN RN NN NN RN

of observed population in 100,000,
ERMNER RN R R R R RN RN RN RN NRRRRNES
total slovenia r.yugos.

slovenia 3.826951 3.527613 0.299338
r.yugos, 51.459335 0.263329 51.196007

total 3.790943 51.4953U6

Table 26b. reproductive value of the total
BB 060 06 36 2696 06 06 06 36 3 06 030 36 36 0606 06 06 6 3 N N M X

population in 100,000,
Y Yti1122223232312222 ]

slovenia 4,006376
r'«YUugos. 93.379601

total 97.385979
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by region of residence is:

po—

352,761 29,934 400,638

[1.000000 1.818116] =

26,333 5,119,601 9,337,960

— — — e

The total reproductive value for the whole of Yugoslavia is (Table 26b):
vV = 400,638 + 9,337,960 = 9,738,598 .
Note that the unit in which V is measured is the reproductive value

of a birth or a 0O-year o0ld in Slovenia. The choice of the unit is

arbitrary, since its only function is that of a "numeraire".

5. FURTHER STAELE POPULATION ANALYSIS

In sections 2 and 3 of this paper, we performed some intro-
ductory analyses of fertility and migration-characteristics of

stationary populations. In this section, stable population anal-
ysis is advanced by means of the notion of spatial reproductive

value, developed in the previous section.
If age-specific birth, death and migration rates remain fixed,
then a population exposeéd to these rates ultimately will evolve into

a stable population whose principal characteristics are: unchanging

regional age compositions and regional shares; constant regional an-

nual rates of birth, death, and migration; and a fixed multiregional

annual rate of growth that also is the annual rate of population

growth in each and every region (Rogers and Willekens, 1976c, p. 12).
The constant growth rate implies that births and population increase

at the same rate and follow an exponential growth path. This trajectory
may be expressed in terms of observed population characteristics.

This is the topic of the first part of this section. The second

part focuses 6n the calculation of the intrinsic rates of birth,

death, out- and inmigration.
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5.1 The Ultimate Trajectory of Births and Population

When a multiregional population system has reached stability
(steady-state equilibrium), its births grow exponentially and their
regional distribution remains constant. The ultimate birth trajectory
is (Willekens, 1977, p.29)8:

A%

1My = et (04} (5.1)
vy} elQl

where r is the stable growth rate, V is the total reproductive value
of the whole population system,;{y(O)}'and {91}'are respectivel¥ the
left and right eigenvectors of g(r), associated with the dominant
eigenvalue, and k is the matrix of mean ages of childbearing

in the stable pogulation, defined in (2.30):

1

c = R 1T 0)1” (5.2)

' v .
The expression {v{(0)} K{Q1} is a normalizing factor. Writing

= v}k {9}, (5.3)

yields the simple expression for the ultimate birth trajectory:

(t), _ rt v
"' = e 7 = {9t (5.4
If {91} is chosen such that its elements sum up to unity, then the
ultimate total number of births is proportional to the total repro-
ductive value. The total number of births is then allocated to the

different regions according to {Q,}.

8 The superscript of {Q°} is dropped for convenience
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Substituting V in (5.4) and rewriting shows that the stable
number of births in each region {g(t)} also is a linear combi-
nation of the discounted number of offspring by region of birth
(for details, see Willekens, 1977, pp. 32-33). The stable
equivalent of births is:

0y =101 =Y o1 . (5.5)
Recall our numerical illustration. The matrix of mean ages of
childbearing is given in Table 11, Since the growth rate r is
0.006099, the normalizing factor, (5.3), is 1054.266 (Table 28).
The total reproductive value V has been computed to be 9,738,598;
hence the stable equivalent of births is by (5.5):

(o} = 9,738,598 1.000000
X 1054.266 20.823662
9,237
= . (5.6)
192,355

The total number of births is 201,592. Of this number of babies,
4.58% will be born in Slovenia and 95.42% in the Rest of Yugo-

slaviag.

9Compare this with the observed number of births (205,010)
and its regional distribution: 6.90% in Slovenia vs.
93.10% in the Rest of Yugoslavia.
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The stable equivalent population in each age group
X to x + 4 is easily obtained by the formula (1.5):

T (X+2-5) vy (o) . (1.5)

{k(x)} =

The stable equivalent of the total population is:

{v} =] {kx)} = [} eTTX+2.5) 11 o). (5.7
~ x X b -
Defining
) e-r(x+2.5) L(x) = e(r)(x) (5.8)

~

X

as the matrix of discounted life expectancies at birth, equation

(5.7) becomes
vt = e o) 1o} . (5.9)

The numerical values of the stable equivalent population are
given in Table 27. Note that those values are very close to
the ones given by Willekens and Rogers (1976, p. 52),
which were computed by projecting the observed population1o.
Equations (1.5) and (5.7) demonstrate: that for popu-
lation analysis it is more convenient to express the relative
age composition of the population in unit births instead of in
fractions or percentages of the total population. The values
of

e—r(x+2.5) L (x)

~

are given in Table 1c.

0,,. . . .
Minor deviations are due to rouanding error.
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Table 27. stable equivalent of total population
EREEREEREERRERERRRRERRRRE KRR AR AR RK 4 %
totel slovenia r.yugos.

0 Qu16s5L, 45036, 895568,
5 862431, 43286, 816045,
10 834174, y2248, 791926.
15 806UES. 41802, 764661,
20 778260, hz2121. 736138.
25 749753, 41955, 707788,
30 721359. 41049, 680310.
35 693192, 39990. 653202.
49 66u29cC, 38839, 625432,
45 633666, 37448, 596221,
50 599231, 35742, 563489,
55 558765, 33875, 524890,
60 507986. 31559, yreL27,
65 4y1715, 28056, 413649,
70 356051, 22843, 333208,
5 257354, 16436, 240917,
80 159177. 9514, 149663,
85 151501, 5796. 145705,
total 1071702¢, 597736, 10119240,

10
15
20
25
30

40
45
50
55
60
65
70
75
80
85

percentage distribution

0.0878€5
0.0280473
0.077836
0.075251
0.072619
0,069959
0.067310
0.064681
0.0€1985
0.059127
0.055914
0,05213%8
0.CUT74HQD
0.041216
0.033223
0.024014
0.014853
0.014136

slovenisa

0.075422
0.072577
0.070074
G,0699%28
0.070462
0.070201
0.0€68669
0.066398
0.065004
0.062544
0.059791
0.05€4567
0.052793
0.04€350
0.03821%
0.,027495
0.015416
0.009,96

0.088600
0.080939
0.078259
0.075565
0.0727U46
0,069945
0.067229
0.064550
0.061806
0.058920
0.055685
0.051871
0.047081
0.040877
0.032928
0.023808
0.014790
0.014399
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5.2 Stable Equivalents and Intrinsic Rates

The fertility, mortality and migration characteristics of
a stable population may be described by a small number of parameters,
namely the intrinsic rates. (Rogers, 1975a, pp. 109 -.115). The
intrinsic rates are directly related to the stable equivalents of
births, deaths, and migrants. Therefore, we treat both statistics
simultaneocusly.

Applying the fixed age-specific schedules of fertility,
mortality and migration to the stable equivalent of the population
gives the stable equivalent of births, deaths and migrants. The
stable equivalent of births has already been computed. Applying
the fertility schedule to the population distribution of (1.5)

and summing over all age groups yield of course the characteristic
equation:

~

{Q} = ] F(x) {K(x)}
X

-r(x+2.5)

]

[} F(x) e L(x)] {9} = ¥{Q}
X

The intrinsic birth rate of region i is the ratio between Q and
the stable equivalent population Y which may be written as
(Rogers, 1975a, p. 115):

Q Qi

b = ¥, J o (H2.5) ;
j

i jLi(x) Q.

% J

1

[ o T (XZ.5) 795 L. (x)

i
b 3 Qy J

The vector of intrinsic birth rates is:

{b} = Y {0y , (5.10)
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where Y is the diagonal matrix Of stable equivalents of total

populations, i.e.

y {1} = (¥}

The vector {b} also may be expressed as

~

where {C(x)} denotes the age composition of the population as

fractions of the total, i.e.

1

cx)}t =y {xkx} . (5.

The proportion of the regional population, which is aged

Xx to x + 4, also may be written as follows:

(cex)} = 971 b eTTX*2:5) iy (o) (5

~ ~ ~ =

. -1 . -
since by (5.10) Y 1s equal to Q 1b, where both @ and b are

~

diagonal matrices. Defining C(x) as (Rogers, 197ga, p. 115):
C(x) = b e—r(x+2.5) L () . _ (5.
gives
et =o' cw {Q} (5.

b} = ] F(x) {cx)} , (5.
X

11)

12)

.13)

14)

15)



M(x) =

_70_

To compute the stable equivalents of deaths, outmigrants
and inmigrants, we must reconsider the age-specific death and
migration rates (11 The deaths and outmigrants in age group
x to x + 4 in a life table population aregiven by (Rogers and
Ledent, 1976, p. 289).

2(x) - &(x + 5) = M(x) L(x), (5.16)

~

where £(x) represents the distributidn of the life table popu-
i;tion at exact age x by place of birth and place of resi-
dence,
L(x) is given in (1.17) and represents the distribution of the
life table population aged x to X + 4 by place of birth and
place of residence, and

M(x) is the matrix

~

—
M, (x) + § -
[ 18 3#1 M1j(x)] M21(x) ...... - Mn] (x)
- M, (x) Mo (x) + 7 Mo.(x} « .« . . .. - M, (x)
.12 ‘ [ 26 " 52 23 ] n2
- M, (x) - M, (x) ... ... M.
1 2p (%) [”ns"" + j;n nJ(x)]
(5.17)

(11) The authors are grateful to Jacgues Ledent for pointing out

the argument, which is analagous to the one proposed by
Keyfitz (1968, pp. 19-20).
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with Miﬁ(x) and Mij(x) the age-specific life table death rate

and migration rate, respectively.

Equation (5.16) 1is the discret: approximation of the continuous

relation
5
2(x) - 2(x + 5) = [ p(x + t)L(x + t)dt, (5.18)
2 Z 0 - "
where p(x) is a matrix of the format M(x)- Its elements are the

age-specific forces of mortality “iﬁ(x) and of migration uij(x),

i.e.

B(x) = - ge [A2(0 ) [2(x)]

Equation (5.18) represents the decrementsby death and outmigra-
tion in a stationary population. To derive the decrements in

a population growing at rate r, we write

5
%(r)(x) - Q(r)(x + 5) = f p(x + t) Q(r)(x + t)dt,
x - %
with £(F) (x) = “T¥g(x). Hence
(r) (r) > —-r(x + t)
LTIx) = 2 x v 5) = [ u(x 4+ t) e L(x + t)dt,
X z

5
=] T g px + b . (5.19)
0



Integration by parts yields

]

D G - 1P ok sy = e TR - e T Pk 4 s)

~

(r)(

-r L X)
The age-specific death and outmigration rates in the stable

population are given by the matrix

M ) = 0P - 2 kw51 e

~ -~ ~

-1

—r(x+ 2.5)L(X)] -rI

_ e—r(x + 5)

[e” %2 (x) 2(x + 5)] e

which after substitution yields

(1 - e P(x)] [I + P(x)]'-rI

i) (xy = J% e
~ ~ ~ (5.20)

~

For the last age group z, the rates are:

(r)(z)]_1—rI

~

w2y =22y

~

= ez'sr%(Z)[g(Z)]_1-rI

~

= e "T"M(z) - rI . (5.21)
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(r)(

The outmigration rates M.’ (x) are contained in the off-

1]
(r)(x). The death rates Mig)(x) are equal

diagonal elements of M
to the diagonal.elements minus the outmigration rates, i.e. plus
the off-diagonal elements in the same column.

To facilitate futher analysis, define the diagonal matrix 6§ét%X)Of
regional death rates, and the diagonal matrix OIil(r)(x) of total

regional outmigration rates, i.e.

o, (1) _ (r)
My (x) =) Myy© (x). (5.22)
j#i

Let OOM(r)(x) be the matrix of outmigration rates,i.e.

S
(r) (r)
0 M (X) ween. Mo (x)
21
0o, (r)
M =
~ (r) (r)
M12 0 ... an (x) (5.23)
(r) (r)
My M2n ..... 0

Once consistent age-specific deatl and migration rates are
derived, we may proceed with the computation of the stable equiva-
lents of deaths and out- and inmigrants and of the associated

intrinsic rates. The stable equivalent of deaths is:

0y = 1m0 fkix))

- X

= [J Gg(r)(x) gTT(x + 2'5)§(x)]{9} (5.24)
X



The intrinsic death rates follow immediately:

{d} = g‘1 {p} (5.25)

or
v _ v & .(x)
{fdy} =) ™™ (x) {C(x)} . (5.26)

The stable equivalent of the outmigrants from region i to
region j is:
= ] i ) k(%) (5.27)

oi i
J % J

where Mé§)(x) is the age-specific migration rate and K, (x) is the
stable population of region i aged x to x + 4. In general, we may

write the origin destination flow of stable equivalent migrations

as

0 = 7M™ (x) k(x) (5.28)
X

where OOM(r)(x) is defined in (5.23) anrd K(x) is a diagonal matrix

of stable regional populations of agesx to x + 4. The outmigration

rates are simply:

=1

o=0Y
- (5.29)
or o =7 °M" (x) cw (5.30)
X

where C(x) = K(x) Y , i.e. g(x){l} = {Q(X)}

The stable equivalent of the total number of outmigrants is:

o' = {1}' o (5.31)

~
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and the total outmigration rates are:

1

{o}' = {1}' o= {1}' 0O y = {0}'Y (5.32)
An equivalent expression for (5.31) 1is:
forr = § 111°°uT) (x) k(x)
L " K
=7 O ) k), ' (5.33)
X

where {OM(r)(x)} is the vector of total outmigration rates, de-

fined in (5.22).
The stable equivalent of the total number of inmigrants by

region is:

{r} = o{1} . (5.34)

The inmigration rates are:

(i} = ¥y (1)

~

=Y o {1} . (5.35)

The matrix h = ¥—1 O contains inmigration rates by region of

origin and region os destination. An element hij denotes the

migrants from region i to j as a fraction of the population in j.
There exists a unique relationship between inmigration rates

and outmigration rates. Since by (5.29)

0= oY,

we have

i=Y oY, ‘ (5.36)

and the total inmigration rates

(i} =1t = Yoy | (5.37)
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The stable equivalentsof births, deaths and outmigrants and
inmigrants are given in Table 28, together with the intrinsic
rates. Note that the intrinsic ratesobey the following relation-
ship:

r=b; -d; -o; +i;. (5.38)

Equation (5.38) provides an independent check of the results.
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6. SPATIAL ZERO POPULATION GROWTH

The demographic system we have considered thus far is one
that is characterized by constant fertility, mortality and mi-
gration schedules. The ultimate population evolving under these
conditions is a stable populétion, with the following features:
fixed age and regional structure, unchanging regional birth,
death and migration rates, and a unique and constant growth rate.

The growing public concern about rapid population increase
has generated a vast literature on the social and economic im-
pacts of high fertility and has focused attention on fertility
decline as a means for relieving socio-economic problems. An imme-
diate drop of fertility to replacement level would not stop
population growth however. 1In a growing population, children
outnumber parents. Consequently, the number of potential par-
ents in the next generation will be larger than at present.
This built-in tendency to continued growth causes the number of
people to increase for some time before the population becomes

stationary (stable, but with zero« growth). The ratio by which

the ultimate stationary population exceeds a current population
is the momertum of that population. The momentum of a popula-
tion undistiuzbed by migration has been studied recently by
Keyfitz (1971).

Althouch population growth is an important concern, the
question where people choose to live in the future presents
issues and problems that are potentially as serious as those
posed by the number of children they choose to have. A drcp
in fertility, for example, not only causes the population to
continue to grow for a while, but, together with the built-in
migration forces, also affects the regional distribution of
this population. The spatial impact of fertility reduction has
been studied by Rogers and Willekens (1976a, 1976b).

The spatial momentum of zero population growth may be com-
puted numerically and, if the initial population is stable,
analytically. In the first section, the numerical approach

is discussed. The analytical approach is examined in the follow-

ing section.



6.1. The Numerical Approach

The numerical approach to spatial zero population growth
(ZPG) analysis is to substitute fertility schedules representing
fertility at replacement level for obsarved schedules. All
the computations for population projection and stable population
analysis are done over, and the results are compared with the
results obtained using the original fertility schedules.

Many aiternative fertility reduction schemes are possible.
Some age groups may have a proportionally greater decline than
others, due to differences in birth control practiced, or to
shifting of the marriage and divorce functions. Or the decline
may be age-independent, i.e. the proportional decline of the
age-specific fertility rate is the same at all ages. XKeyfitz
(1971) considers a fertility drop that is age-independent. Most
demographers have followed this practice and it is also adooted
in this paper.

Regional differences in fertility decline are introduced
through two alternative schemes:

Alternative 1: the cohort replacement alternative: in

every region, fertility of each female cohort is reduced to bare
replacement level, i.e. to a level of one daughter (net) per
woman born there.

Alternative 2: the proportional reduction alternative:

each regional fertility schedule is reduced by the same pro-
portion at all ages.
To derive mathematical expressions for both alternatives,

recall (2.6), which may be written as:

X

{0,} = R(0)(Q} = [z F (x) J’:(x)]{91} , (6.1)

where {91} is the vector of births and {92} the vector of their

offspring, i.e. births in the next generation.

Equation (6.1) expresses the births in one generation as a func-
tion of the births in the previous generation. A multiregional

population system that is growing exhibits a net reproduction
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matrix R(g) with a dominant characteristic root A1[R(O)] that
is greater than unity. The total number of offspring per woman

born in a certain region is given by the column totals of R(0),

i.e.:
R(0) = 2 .R. (0) . (2.9)
J

If fertility is reduced according to the cohort replacement

alternative, then

R(0) = 1 for all i ;

or, in matrix form,
R(0)” {1} = {1} . (6.2)

This means that every woman would have a net reproduction rate
of unity. The problem is now to determine by how much the

observed age-specific fertility rates must be altered for each
woman to have a net reproduction rate of unity. Let Y; be the

required fertility adjustment factor for region i, i.e.:

:\3(0) = YR(O) ’ (6.3)

where y 1s a diagonal matrix of regional fertility adjustment

~

factors. Substituting (6.3) into (6.2) gives

R(0) “y{1} = {1} ,

~

whence



Therefore, the cohort replacement alternative yields the replace-

ment fertility rates ﬁ(x):
F(x) = yF(x) , (6.5)

where F(x) .s the diagonal matrix of obsserved regional fertility
rates ;f age group X to x + 4, and vy is the diagonal matrix with
the elements of {X} in the diagonalj

Recall our numerical illustration: the two-region system
of Slovenia and the rest of Yugoslavia. The matrix of fertility
adjustment factors is given in Table 29. Since originally the
women of both regions had a net reproduction rate greater than
unity, the fertility adjustment factors are less than one, causing
a fertility drop in both regions. In Slovenia, the fertility rates
drop to 93.24% of their original values, while in the rest of
Yugoslavia they decline to a level of B84.27%. The difference is
caused by differences in the initial fertility levels. The new
fertility rates %(x) are also given in Table 29. Note that the
gross rates of reproduction drop in the same proportion as the
age-specific fertility rates.

With these new rates, fertility analysis is performed as
before (see sections 2, 4 and 5). The results are listed in
Tables 30 to 40. A comparison of these results with Tables
3 to 10 reveals the impact of the fertility drop to replace-

ment level.
In the proportional reduction alternative, the age-specific

fertility rates of each region are reduced in the same proportion.
The fertility adjustment factor is identical for each region and

is equal to

The matrix of fertility adjustment factors is given in Table 41,

together with the new fertility rates ?(x)
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Table 29. zero population growth alternative 1
Y 221X 2222222222222 T2 223X2T2 22"
U NN NN NN KN NE T E XTI XR)
matrix of fertility adjustment factors
total slovenia r.yugos.
sloveniza 0.932430 0.932430 0.000000
r.yugos. 0.842718 0.000000C 0.842718
total 0.932430  0.842718
fertility analysils
EREEREFERRREEREE RN
observed rates
age slovenia r.yugos.
0 0.000000 0.000000
5 0.000000 0.000600
10 0.000066 0.000056
15 0.014786 0.022297
20 0.065878 0.074141
25 0.058946 0.062580
30 0.038326 0.037324
35 0.021317 0.019831
40 0.007270 0.010156
45 0.000662 0.001813
50 0.000272 0.000602
55 0.000000 0.000000
60 0.000000 0.000000
65 0.000000 0.000000
70 0.000000 0.000000
75 0.000000 0.0000600
80 0.000000 0.000000
85 0.00000C 0.000C00
grr 1.037617 1.143994
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Table 30, 1ntegrals of generalized net maternity function
initial region of cohort slovenia
age slovenia r.yugos.
0 0.000000 0.000000
5 0.000000 0.000000
10 0.000311 0.000008
15 0.068147 0.004741
20 0.293593 0.025894
25 0.253648 0.030305
30 0.160491 0.021556
35 0.087570 0.012460
Lo 0.029431 0.006582
45 0.002634 0.001182
50 0.001057 0.000389
55 0.000000 0.000000
60 0.000000 0.000000
65 2.000000 0.000000
70 3.000000 0.000000
75 2.000000 0.000000
80 7.000000 0.000000
85 7.000000 0.000000
total 0.896882 0.103118
initial region of cohort r.yugos.
age slovenia r.yugos.
0 0.000000 0.000000
5 0.000000 0.000000
10 0.000001 0.000251
15 0.000303 0.098391
20 0.002449 0.324229
25 0.003028 0.270867
30 0.002265 0.159912
35 0.001365 0.084050
40 0.0004G0 0.042476
) (.000046 0.007450
50 0.000019 0.002409
55 (.000000 0.000000
60 ¢.000000 C.000000
65 ¢.000000 0.000000
7 {.000000 0.000000
75 C.000000 0.00C0C0
80 €.000000 0.000000
85 £.000000 0.000000
total C.C03965 0.990035




Table 31.

3lovenia
r.yugos.

total

slovenia
r.yugos.

total

slovenia

r.yugos.

total

-84-

total

0.9068u7
1.093153

1 moment

total

25.001335
30.126825

2 moment

total

725.025208
879.830750

slovenia

0.896882
0.103118

1.000000

slovenia

24.708868
3.023245

27.732113

slovenia

716.050171

moments of integral function

T R T R T T T T

r.yugos.

0.0099565
0.990035

1.000000

r.yugos.

0.292468
27.103580

27.396048

r.yugos.

8.975063

93.4C1039 786.429687

809.451233 795.40u4724



Table 32.
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spatial fertility expectancies

ARKEREREEXEERREEEEXEXEEERXREXERX XX

slovenia
r.yugos.

total

elgenvalue

eigenvector
- right
- left

slovenia
r.yugos.

total

reproduction rate

total

0.906847
1.093153

1.000000

slovenia

0.896882
0.103118

1.000000

1.000000
1.000000

r.yugos.

0.009965
0.990C35

1.000000

10.348231
1.000000

reproduction allocations

total

0.906847
1.093153

slovenia

0.896882
0.103118

1.000000

r.yugos.

0.009965
0.990035

1.000000
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Table 33. matrices of mean ages and variances

P o i e R T

¥%¥ glternative 1 %%
KRB ENNREERRREREE RN

means
totali slovenia r.yugos.
siovenia 28.4499617 27.549738 29.350182
r.yugos. 28.347355 29,318325 27.376385
total 28.434032 28.363283
variances
slovenia r.yugos,
slovenia 39.389099 39.,246460
r.yugos. 46.204895 44,878845
k% glternative 2 *¥
232332312323 123223
means
total slovenia r.yugos.
slovenia 27.565796 27.547653 0.018143
r.yugos. 27.597666 0.223531 27.374134
total 27.771185 27.392277
variances
total slovenia r.yugos.
slovenia 39.415859 39.,381409 0.034452
r.yugos. 45.417957 0.548938 44,869019
total 39.9320347 44.903469
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Table 34. The_spatial_reproductive_value:
results for people at exact age x
ERRREWRERERRERRRLRRRERERREREENNER
****5&**w************************
discounted number of offspring per person
EREREE R R AL R AR ERE L R R R AR R R R RRR RN RRE R R R
region of residence slovenia
region of birth of offspring
total slovenia r.yugos.

0 1.000000 0.896882 0.103118
5 1.030565 0.937944 0.092650
10 1.031792 0.950707 0.081085
15 1.032309 0.958813 0.073492
20 0.958979 0.911241 0.047738
25 0.631086 0.611872 0.019214
30 0.337589 0.331761 0.005828
35 0.146983 0.145803 0.001180
40 0.040820 0.040610 0.000210
45 0.004615 0.004591 0.000025
50 0.001346 0.001342 0.000005
55 0.000000 0.000000 ©.000000
60 0.000000 0.000000 0.000000
65 0.000000 0.000000 0.000000
70 0.000000 0.000000 0.000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 0.000000

region of residence r.yugos.

region of birth of offspring
total slovenia r.yugos.
0 1.000000 0.00996% 0.990035
5 1.119092 0.00984~ 1.1G69251
10 1.122916 0.009097 1.113819
15 1.125393 0.008375 1.117018
20 1.018806 0.005255 1.013553
25 0.653396 0.001723 0.651673
30 0.344486 0.000541 0.343945
35 0.160095 0.000127 0.159968
40 0.062111 0.200022 0.062089
45 0.011878 0.00000z 0.011876
50 0.002961 0.00000C 0.002960
55 0.000000 0.00000C 0.000000
60 0.000000 0.20000C 0.000000
65 0.000000 0.00000C €.000000
70 0.000000 0.000000 0.000000
75 0.000000C 0.000000 90.000000C
80 0.000000 0.200000 0.000000




Table 35.

10
15
20
25
30

40
45
50
55
60
65
70
75
80
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slovenia

1.000000
1.030595
1.031792
1.032310
0.958979
0.631086
0.337589
0.146983
0.040820
0.004615
0.001346
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

spatial reproductive value per person
7233233223322 22322332232

r.yugos.

1.000000
1.119093
1.122917
1.125394
1.018807
0.653396
0.344486
0.160095
0.062112
0.011878
0.002961
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000



-89-

Table 36. results for people in age group x
HAREEREERERREERR RN RRNRER R RE R
B0 00632 6 006060 U I I U I KNI NN
discounted number of offspring per person
Yy I I I I3 3222222222222 22
region of residence siovenia
region of birth of offspring
total slovenia r.yugos.
0 1.015376 0.916952 0.098424
5 1.031201 0.944281 0.086921
10 1.032055 0.954744 0.077311
15 0.995478 0.935348 0.060130
20 0.795003 0.764489 0.030514
25 0.484480 0.473984 0.010495
30 0.242553 0.239886 0.002667
35 0.094082 0.093599 0.000483
40 0.022787 0.022732 <£.000055
45 0.002992 0.002983 1.000009
53 0.000681 0.000581 2.000000
55 0.000000 0.000000 0.000000
60 0.000000 0.00C000 ©0.000000
65 0.000000 0.00C000 0.000000
70 0.000000 0.000000 0.000000
75 0.000000 0.000000, 0.000000
80 0.000000 0.000000 0.000000
region of residence r.yugos.
region of birth of offspring
total slovenia r.yugos.
0 1.056170 0.009920 1.046250
5 1.121000 0.009472 1.111528
10 1.124153 0.008738 1.115415
15 1.072242 0.006781 1.065462
20 0.836701 0.003148 (¢.833553
25 0.499562 0.000958 (€.498603
30 0.252691 0.000254 0.252438
35 0.111355 0.000045 0.111309
40 0.037178 0.000004 0.037174
45 0.007463 0.000001 0.007463
50 0.001504 0.000000 0.001504
55 0.000000 0.000000 0.000000
69 0.000000 0.000000 0.000000
65 0.000000 0.000000 0©.000000
70 0.000000 0.000000 0.000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 0.000000
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Table 37. spatial reproductive value per person
HRREREEEERERREERREERRERRRR RN RREN R RN

slovenia r.yugos.
0 1.015376 1.056171
5 1.031201 1.121001
10 1.032055 1.124153
15 0.995478 1.072243
20 0.795003 0.836702
25 0.484480 0.490562
30 0.242553 0.252691
35 0.094082 0.111355
40 0.022787 0.037178
45 0.002992 0.007463
50 0.000681 0.001504
55 0.000000 0.00C000
60 0.000000 0.000C000
65 0.000000 0.00C000
70 0.000000 0.000000
75 0.000000 0.00C000
80 0.000000 0.000000



~91-

Table 38. toctal discounted number of offspring
KA R RN AR AR RN RN R H R AR RN R RN RRREY

of observed population in 100,000.
ERRERERRRRRRRERERRR AR AR R AR R R RRRR AR

total slovenia r.yugos.

slovenia 3.899955 3.585212 0.314742
r.yugos. 47.410378 0.250228 47.160149
total 3.835440 47.,47L892

reproductive value of the total population in 100,000.
R 2R R R R Y R R R N N Y S R R i I

slovenia - 3.835440
r.yugos.' 2 U47.474907

total 51.310349

" TZThe small deviation from the total discounted number
of offspring of the observed population is due to
rounding error.




Table 39. stable equivalent of total population
EREEERRREEAEREE A ER RN RRERRRRERRNRERRRER
total slovenia r.yugos.

0 888828, 81159. 807670.

5 840853. 79659, 761194,
10 838527. 79376. 759152.
15 835824. 79476. 756348,
20 831644, 79814. 751830.
25 826109. 79703. 746406,
30 819573. 79119. 740U455.
35 812088. 78653. 733436.
4o 802469. 78237. 724233.
b5 789281, T77366. 711914,
50 769609. T5847. 693762.
55 740058. 73708. 66£351.
60 694006. 70341. 623664,
65 622513. buru2, 558371.
70 517445, 53632. 463813,
75 385494, 39683. 345811.
80 245110. 23585, 221525.
85 237110. 14741, 222369.
total 12496541, 1208239. 11283302.

percentage distribution

total slovenia r.yugos.

0 0.071126 0.067177 0.071549

5 0.067287 0.065929 0.067432

10 0.067101 0.065695 0.067251
15 0.066884 0.065778 0.067003
20 0.066550 0.066058 0.066603
25 0.066107 0.065967 0.066122
30 0.065584 0.065483 0.065595
35 0.064985 0,065097 0.064973
4o 0.064215 0.064753 0.064158
L5 0.063160 0.064032 0.063067
50 0.061586 0.062775 0.061459
55 0.059221 0.061004 0.059030
60 0.055536 0,05821& 0.055249
65 0.049815 0.053087 0.049465
70 0.041407 0.044388 0.041088
75 0.030848 0.032844 0,030634
80 0.019614 0.,01952C 0.079624
85 0.018974 0.012200 0.019699
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This reduction scheme results in a different stationary
population. A baby girl born in Sloveria is replaced by only
0.918 daughters on the average, while a girl born in the Rest
of Yugoslavia replaces herself with 1.C04 daughters. Further

results of this replacement alternative are given in Tables
471 to 52.
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Table 41. zero population growth alternative 2

EEERREBRRREXXRRRRRNENS RERREREXRENEN

S 3X3 X 222333222132, EEERERREXRERH

matrix of fertility adjustment factors

total slovenia r.yugos,
slovenia 0.84689Y 0.846894 0.000000
r.yugos. 0.846894 0.000000 0.846894
total 0.84689Y 0.846894

fertility analysis
EREXRRERRRRENERRER

observed rates

- - o -
pegie i e e g o

age slovenia r.yugos.,
0 - 0.000000 0.000000
5 0.000000 0.000000
10 0.000060 0.000057
15 0.013429 0.022407
20 0.059835 0.074508
25 0.053539 0.062890
30 0.034810 0.037509
35 0.019362 0.019929
40 0.006603 0.010206
45 0.000601 0.001822
50 0.000247 0.000605
55 0.000000 0.000000
60 0.000000 0.000000
65 0.000000 0.000000
70 0.000000 0.000000
75 0.000000 0.000000
80 0.000000 0.000000
85 0.000000 0.000000
grr 0.942432 1.149663




Table 42.

age

10
15
20
25
30
35
40
45
50
55
60
65
70
75

85

total
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integrals of generalized net maternity function

initial region of cohort

slovenia

slovenia
0.000000
0.000000
0.000282
0.061896
0.266661
0.230380
0.145769
0.079537
0.026731
0.002392
0.000960
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.814607

initial

r.yugos.
0.000000
0.000000
0.000008
0.004765
0.026022
0.030455
0.021663
0.012522
0.006615
0.001188
0.000391
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.103629

region of cohort

r.yugos.

slovenia
0.000000
0.000000
0.000001
0.000275
0.002224
0.002750
0.002057
0.001240
0.000445
0.000042
0.000017
0.C00000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.009051

r.yugos.
0.000000
0.000000
0.000252
0.098879
0.325835
0.272209
0.160704
0.084467
0.042686
0.007487
0.002421
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.994941



-97-

Table 43. moments of integral function
0 moment
total slovenia r.yugos.
slovenia 0.823658 0.814607 0.009051
r.yugos. 1.098570 0.103629 0.994941
total 0.918236 1.003992
1 moment
total slovenia r.yugos.
slovenia 22.707848 22,442211 0.265638
r.yugos. 30.276110 3.038226 27.237883
total 25.480438 27.503521
2 moment
total slovenia r.yugos.
slovenia 658.515381 650,3636U47 8.151740
r.yugos. 884,.190491 93.863853 790.326660
total TUH, 227478 T798.478394
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Table 44. spatial fertility expectancies
ERRRRRERAERERERR R AR RN RER R AN
net reproduction rate
total slovenia r.vyugos.
slovenia 0.823658 0.314607 0.009051
r.yugos. 1.098570 0.103629 0.994941
total 0.918236 1.003992
eigenvalue 1.000000
eigenvector
- right 1.000000 20.483936
- left 1.000000 1.788998
net reproduction allocations
total slovenia r.yugos.
slovenia 0.896158 0.887143 0.009015
r.yugos. 1.103842 0.112857 0.990985
total 1.000000 1.000000
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Table 45. matrices of mean ages and variances

¥% alternative 1 ##%
Y I nmm

means
total stovenia r.yugos,
slovenia 28.449965 27.549742 29.350185
r.yugos. 28.347355 29,318327 27.376381
total 28.434034 28.363283
variances
slovenia r.yugos.,
slovenia 39.388916 39.246338
r.yugos. 46,204712 U44.879028
**% alternative 2 k%
3 X XYY ZL)
means
totat slovenia r.yugos.
slovenia 27.564054 27.547657 0.016397
r.yugos. 27.621460 0.247328 27.374132
total 27.794985 27.390530
variances
total slovenia r.yugos.
slovenia 39.412422 39.381287 0.031137
r.yugos. 45.476391 0.607310 44.869080
total 39.988598 u44,900215
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Table 46. The_Spatial Reproductive_Value
results for neople at exact age x
B0 DR 060 06006 A NN N KR
000003002 360 0066 32 06 336 36 0 06 06 36 3 X 0
discounted number of offspring per person
ERERMARRUERRRRER R R EREERRAFRRRTRARRNRR N *
region of residence slovenia
region of birth of offspring
total slovenia r.yugos.
0 0.918236 0.814607 0.103629
5 0.945012 0.851902 0.093110
10 0.944981 0.863494 0.081487
15 0.944717 0.870861 0.073856
20 0.875623 0.827649 0.047974
25 0.575051 0.555742 0.019309
30 0.307184 0.301327 0.005857
35 0.133614 0.132428 0.001186
40 0.037096 0.036884 0.000211
45 0.004194 0.004170 0.000025
50 0.001223 0.001219 0.000005
55 0.000000 0.000000 0.000000
60 0.000000 0.,000000 0.000000
65 0.000000 0.000000 0.,000000
70 0.000000 0.000000 0.000000
75 0.000000 0.000000 0.000000
80 0.000000 0.000000 0.000000
region of residence r.yugos,
region of birth of offspring
total slovenia r.yugos.
0 1.003992 0.0¢9051 0.994941
5 1.123686 0.008938 1.114748
10 1.127601 0.008262 1.119339
15 1.130160 0.007607 1.122553
20 1.023347 0.004771 1.018576
25 0.656467 0.001565 0.654902
30 0.348140 0.0C0491 0.345649
35 0.160876 0.000115 0.160761
40 0.062417 0.000020 0.062397
45 0.011937 0.000002 0.011935
50 0.002975 0.000000 0.002975
55 0.000000 ¢.000000 0,000000
60 30.000000 0.000000 0.000000
65 0.000000 0.000000 0.000000
70 0.000000 0.0C0000 0.000000
75 0.000000 0.000000 0.000000
80 0.000000 ¢.0C0000 0.000000



Table 47.

10
15
20
25
30
35
4o
Le
50
55
60

5
70
7%
80
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slovenia

1.00000C
1.018475
1.009274
1.002989
0.913474
0.590286
0.311805
0.134549
0.037262
0.004214
0.001227
0.000000
0.000000C
0.000000C
0.000000C
0.000000C
0.000000

spatial reproducfive value per person
U0 NN N NN NN AN NN NN R NERRR

r.yugos.

1.738998
2.003219
2.010757
2.015852
1.827001
1.173183
0.618857
0.287715
0.111648
0.021353
0.005323
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
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Table 48. rcsults for people in age group X

B3 0 300 0 36 3 3 3 3 36 3 3 3 B I I 0 N K I I I KB kKK R XK
IEXZEZZZZXEEE SRR RS SRS E R R R RN

discounted number of offspring per person
FRERRERRRRRRER R R R R R RGN R R AR AR RNR NN

region of residence slovenila

- — e e e e = e W - G R WA W e

region of birth of offspring

total slovenia r.yugos.
0 0.931747 0.832836 0,098912
5 0.945009 0.857657 0.087352
10 0.944855 0.867161 0.C77694
15 0.906972 0.849544 0©,.C60428
20 0.725024 0.684359 0,030665
25 0.441051 0.430504 0,C10547
30 0.220561 0.217880 0.02681
35 0.085498 0.085013 0.C00485
L0 0.020702 0.020647 0.000055
u5 0.002718 0.002709 0,C00009
50 0.000618 0.000618 0.,£00000
55 0.000000 0.000000 0.C0000CO0
60 0.000000 0.000000 0.C00000
65 0.000000 0.000000 ©0©.C0O0000
70 0.000000 0.000000 0.C00000
75 0.000000 0.000000 0.C00000
80 0.000000 0.000000 0.000000

region of residence r.yugos.

region of birth of offspring
total slovenlia r.yugos.
0 1.060445 0.009010 1.051435
5 1.125639 0.008603 1.117036
10 1.128878 0.007937 1.120942
15 1.076900 0.006159 1,0707471
20 0.340543 0.002860 0.837683
25 0.501945 0.000870 0.501074
30 0,25391¢9 0.000230 0.253688
35 0.111902 0.000041 0.111861
40 0.037362 0.000004 0,037359
45 0.007500 0.000001 0.007500
50 0.001512 0.000000 0.001512
55 0.000000 0.000000 ©.000000
60 0.000000 0.00000C 0.000000
65 0.000000 0.000000 ©0.000000
70 0.000000 ¢.000000 0.000000
75 0.000000 0.000000 0.030000
80 0.000000 0.000000 0,030000



Table 49.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
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slovenia

1.009788
1.013929
1.006155
0.957649
0.749219
0,449373
0.222676
0.085881
0.020745
0.002725
0.000618
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

spatial reproductive value per person
332232 I3 2233222222232 222322 2)

r.yugos.

1.890025
2.006978
2.013299
1.921713
1.501474
0.897291
0.45L078
0.20G160
0.066833
0.01=417
0.002704
0.00C000
0.00C000
0.00C000
0.00C000
0.000000
0.00C000
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Table 50. total discounted number of
X 23 322332 23223222321

offspring of observed population in 100,000,
2 XS Z2EXEEEERZEZEZXSRZERSRZ RS SRR SR RS SRR R X

total slovenia r.yugos.

slovenia 3.542193 3.256324 0.285870
r.yugos. 47,645302 0.251468 47.393837

total 3.507792 47.679707

reproductive value of the total pcpulation in 100,000,
******************************************************

slovenia 3.706200
r.yugos. 85.073341

total 88.779541
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Table 51. stable equivalent of total population
EEEXEXXERXEXXAXXXE XX XXX XXX R XXX RXEX XXX XK
total slovenia r.yugos.

0 8770Uu5, L2646, 834399,
5 828160. 42294, 785866.
10 825832, 42450, 782382,
15 823123. 43278, 779845,
20 818936, yuq1p, 774024,
25 813373. 46093, 767281,
30 ROH8CE. 4Aaus2, 760344,
35 794313. 46651, 752662,
4o 789710. be725. 742984,
45 776636, ypu17, 730219,
50 757174, 45670, 711504,
55 727909 . yye617. 683292.
60 682258, L2847, 6QYUTT.
65 6£11628. 39279. 572350.
70 508282. 32956, 47532¢.
75 378761. 2445, 354316,
80 241512, 14587, 226925,
85 236926, 9160. 227766,
total 12303383, TO1468, 11601895,

percentare distribution

total slovenia r.yugos.

0 0.071285 0.060794 0.071919

5 0.067312 0.060292 0.067736

10 0.067122 0.060514 0.067522
15 0.066902 0.061694 0.067217
20 0.066562 0.064024 0.068715
25 0.066110 0.065707 0.066134
30 0.065576 0.066233 0.063536
35 0.064967 0.066503 0.064874
40 0.064186 0.066609 0.064040
45 0.063124 0.06616G 0.062940
50 0.061542 0.0€65105 0.061327
55 0.059163 0.063604 0.053895
60 0.055453 0.061080 0.055113
65 0.049712 0.055993 0.049332
70 0.041312 0.046GQ80 0.043970
75 0.030785 0,034848 0.030539
80 0.013630 0.020794 0.019559
85 0.019257 0.013058 0.019632
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6.2 The Analytical Approach

If the initial population is stable, the momentum of spatial
Zzero population growth may be expressed as a simple analytical
formula. The ultimate number of stationary equivalent births is

by (5.1):

1 [
(50011 40,1 o

ot = {0(x) 1 {k(x) }dx {94} (5.1)
where the caret indentifies a stationary population, and the

total reproductive value V is

~ w ~ '
vV = J {vix)} {k(x)} dx ,
o - o

with {k(x)} being the vector defining regional distribution of
people at exact age x. If the distribution {E(X)} is stable,

then by (1.6)

(k(x)} = e 2(x) (0}, (6.8)
where {Q; represents the regional distribution of births before the
drop in fertility. Substituting {k(x)} in (5.1) into (6.8)  and
reworking yields (Rogers and Willekens, 1976b, p. 22):

1

= [0 yIR(0) - ¥(r)] {Q}] {04} , (6.9)

PR,

I3 O]
—
Il

V.o ) ~ -1 - .
where p= {0(0)} ® {91}, with K =p =y R(1) R (0) v ! being the

matrix of mean a;es of childbéarlng i; the stationary population
(after decline in fertility). The matrices B(O) and f(ro and
the vector oi stable equivalent of births refer to the stable
population before the drop in fertility. The matrix of fertility

adjustment factors is v.
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It can be shown that equation (6.9) is equivalent to

(@) = LR RO - ¥ {0} (6.10)

The stationary births are therefore a linear combination of the
stable births, before the drop in fertility. The conversion
matrix is S°. The numerical evaluation is given in Table 53.

The ultimate stationary population is

w =

and the total reproductive value is

w N -
J l(x)dgl {Q} = e(0) {0} (6.11)
0 - = € %

V= {v(0)} - yIR(O0) - ¥(@)] {Q} . (6.12)

1 >

Let Y pe the diagonal matrix of the total observed popu-

lation, then

L
—~
! =
—
]

w —
[ f e rxﬁ(x)dx] {0}
0 o ~

= e 0y {0}, (6.13)

where e(r)(O) has been labeled the matrix of discounted life

expectancies. Recalling the characteristic equation, (6.13)

also may be written as
(v = ey v (o, (6.14) ;

and therefore

o} = v e (17" {ys = b (¥} (6.15)
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The spatial momentum of zero population growth is

vy

~

-1

[{9(0)} vy [R(0) - ¥(r)] {0}] ¥ ' e(0) {c:21} (6.16)

pur o< X

= o7 19003y [R(0) - ¥(r)] {b}] e(0) {Q;} , (6.17)

where {b} is the vector of regional intrinsic birth rates before

the drop in fertility. Applying (6.10) the momentum becomes

-1 .~ 1 -1

v™! {y} = e(0)z R(1)

~ ~

[R(0) - Y(r)]{é} . ' (6.18)
Introducing (6.15) into (6.16) gives still another expression for
the momentum

-1

vy = L [09(0) yIR(0) - ¥(x)] b {1}] e(0){0,} . (6.19)

1

ur
The analytical approach is illustrated in Table 53. It is

assumed that the initial population coincides with the stable

equivalent population of Slovenia and the Rest of Yugoslavia.

Hence the regional births are contained in the vector

9,237 7!

|

{9} = ’
|_192,355J

and the population by age-group and region are given in Table 27.
Table 53 reveals that, given a population of 597,786 in Slovenia
and 10,119,240 in the Rest of Yugoslavia, an immediate drop of
fertility to replacement level would result in an ultimate popu-
lation increase of 15.74% in Slovenia and of 14.66% in the Rest
of Yugoslavia. This momentum is a conscequence of the growth
potential in the initial age and regional distribution of the

>
population

13 Note that the stationary population distribution in
unit births is given in Table 1 b.
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Table 53. spatial momentum of zero population growth
I XX EXEEEIEEEZEEEEEEEREEEE RS R R X R RS R R SR K B3

I EXAEEXEEEEE SRS EEREEESESES RS SRR R RSS2

matrix converting stable

total slovenia

slovenia 0.91678&9 0.91684Y
r.yugos., c.916212 -0.000574
total 0.916270

stable and stationary equ

births
stable stationary

slovenia 9237. gL59,
r.yugos. 192355. 176343,

total 2015692, 184802,

to stationary births

r.Yugos.,

-0,000054
0.916786

0.916732

ivalent

population
stable stationary

597786. 691891,
10119240. 11603140,

10717026, 12295031,

population
momentum

1.1574
1.1466

1.1472
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7. PROGRAM DESCRIPTION

The concept underlying the programs is thatof a modular
system. It consists of a set of subroutines each of which per-
forms a specific task, such as matrix inversion, calculating
the dominant eigenvalue and associated eigenvectors, comput-
ing the integral functions and their moments, and so on.

The main program is kept very short. It coordinates the com-
putations through CALL statements and transmits information
from one subroutine to another through labeled COMMON state-
ments. No major computations are performed in the main pro-
gram.

The subroutines consist of the fraquently used general pur-

pose subroutines and special purpose subroutines:

1. General purpose subroutines:

MULTIP: matrix multiplication
INVERT: matrix inversion

EIGEN: computation of dominant eigenvalue and
associated right and left eigenvectors.

ii. Special purpose subroutines:
READ2: reads in the data.
AGEDIS: generates the population distribution by

age and region:
- observed population
- life table population
- stable population.

STABCH: computes the integral functions, i.e. the
(weighted) generalized maternity and
mobility functions, and their zero-th,
first and second moments. In addition, it
calculates the matrices of mean ages at
childbearing and mobility and the matrices
of the variances of the ages at childbearing,
and mobility.

ZERO: replaces the observed regional fertility
schedules with fertility schedules at re-
placement level. Two alternative fertility

reduction schemes are possible.
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RVALUE: computes the discounted number of off-
spring and computes the spatial repro-
ductive values by age and region.

RINTR: computes the stable equivalents of births,
deaths, outmigrants and inmigrants, and
the intrinsic rates.

MOMENT : computes the spatial momentum of zero popula-
tion growth.

The purpose of separating each major task into subroutines
is to keep the whole structure of the programs very clear and to
enable the user to change parts of the programs according to
his needs. Clarity and flexibility are major objectives which
we tried to keep in mind while writing the programs. Computa-
tional efficiency was of secondary importance. In a rapidly
growing field such as multiregional demographic analysis,
computer programs must be flexible and easy to adapt to new
theoretical or methodological developments. The computer
programs published here are not final fixed products; they
are working tools to produce useful numerical demographic
results. The user is urged to adapt them to fit his own needs
in order to get the most out of them.

The relationships between the varicus subroutines is 1illus-
trated in Figure 1. Two rather separate blocks can be disting-
uished. One deals with the integral functions and the derived
statistics such as the means and variance of the age distribu-
tions. The numerical approach of ZPG analysis also belongs in
this block. The second block focuses on the theory and applications
of the spatial reproductive value. It contains further stable

population analysis and the analytical approach to the ZPG study.

7.1. The General Purpose Subroutines
a. MULTIP:
SUBROUTINE MULTIP (N,K,L)
Task: multiplication of two matrices Al and B.
C = a1 *3B
Paragmeters:
N: number of rows of A1
K: number of columns ;f A1 (and consequently, number
of rows of g) i

L: number of columns of @.
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Input: -parameters in the CALL-statement.

-matrices A1 and B in a labeled COMMON14:
COMMON /CMUL/ AT(4,4), B(4,4), C(4,4)

Output: the result of the matrix multiplication is
stored in the N x L matrix C.

Printing: none.

b. INVERT:
SUBROUTINE INVERT (CC,N)

Task: inversion of the matrix cC

Parameters:N=rank of CC.

Input: the parameEer N and the matrix CC are transmit-
ted through the CALL statement. The subroutine
assumes that QC is nonsingular, and that all the
diagonal elements are nonzero.

Output: the original matrix CC is replaced by the in-
verted matrix. i

Printing: none.

c. EIGEN
SUBROUTINE EIGEN (N,NP, NEIG)

Task: calculation of the dominant eigenvalue of the
matrix EE and of the associated right and left
eigenvectors. EIGEN may also be used to compute
row and column totals and to print a matrix

Parameters:N: dimension of the matrix.

NEIG: parameter related to the computation.
NEIG = 1: the complete computation procedure
is verformed: row and column totals,
dominant eicenvalue and associated

eigenvectors.

I
o
.

only the row and column sums are
computed and printed. By using this
option, EIGEN may be used to print

NEIG

a matrix.

gIn the programs, the dimensions are specified for maximum
4 regions. To create more regions the dimension and common
statements have to be changed. Other than that the programs can
handle systems of up to 10 regions.



Input:

Output:

Printing:

Algorithm:

2
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NP: parameter related to printing.

NP = 1: EIGEN prints the original matrix,
its row and column sums. The domi-
nant eigenvalue and its right and
left eigenvector are printed if
NEIG = 1. The row totals denote
the sum of the row elements, weighted
by the radices (i.e. RADIX(I)).

NP = 0: nothing is printed

NP = 2: the row and column totals are
averages, not totals. This option
is only used for the matrix of mean
ages, Alternative 1.

-parameters in CALL statement.

~the matrix CE in labeled COMMON:

COMMON /CEIGEN/ CE(4,4), ROOT, VECT(4), VECTL(4)

the dominant eigenvalue ROOT, the right eigenvector
VECT (I) and the left eigenvector VECTL(I) are stored
in labeled COMMON.

according to the specification of the parameter NP.

Let the original matrix be A:

r .
a11 v L I an1
a12 A2 )
41n N :Zaﬁn

The dominant eigenvalue of A is obtained by the
power method (for details see Rogers 1971, Chapter 7):

(n+1)
211
_W’
11

A(n)

(n)

where the superscript denotes the iteration and ag

is the first element of the matrix A", aAs n gets

A(n)

large, converges to the true eigenvalue. The

iteration terminates when
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o (1) 4 (n)

e o | 22 o212 |,
a(n+1) a(n)
11 11

with € = 0.000001.

The right eigenvector {g} associated with X is proportional
to any column of Qn for n large. 1In the program, {g} is taken
to be the first column of én,-—scaled such that £1 = 1. The
scaling selected is arbitrary, since an eigenvector is fixed up
to a scalar. For convenience, we have retained the scaling
£1 = 1, i.e. the first element of {§} is unity.

The left eigenvector is the solution to the system

: 1
{v} [g - x;J = {0}

As before, we take v1 to be unity. Therefore

ro1' T T oY
1 a11—k Boq weees a 0
v
2 245 255 ) a 0
quJ a45 a2n... ann—kd Lo_
and
- ' - =t T —1_1
vyl a1 [B227? 2n2
vn an1 i a2n ....... ann_k_

7.2 The Special Purpose Subroutines

a. READ2
SUBROUTINE READ2 (NA,NR,NY,NGRO,NSTADC,ZLAMDK)

Task: reads in the data. The input data required by the pro-
grams treated in this paper are produced by the life
table program and the population projection program
listed in Willekens and Rogers (1976) and contained
in the two files:
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OUTLIF (life table output)
OUTPROJ (projection output).

These files must be defined in a control card. The following
convention is used: the channel (IBM) or unit number (CDC)
of OUTLIF is 7, and that of OUTPROJ is 8.

Parameters: NA: number of age groups

Input:

Output:

NR: number of regions
NY: age group interval (usually five years)
NGRO: zero population growth (ZPG) option:
NGRO = 0: no ZPG analysis
NGRO

NSTADC: selection of discrete or continuous

1: ZPG analysis

analysis of population growth.
NSTADC
NSTADC = 2: continuous analysis.
(NSTADC has been set equal to 2).

ZLAMDK : dominant eigenvalue of the multiregional

1: discrete analysis

growth operator G (generalized Leslie
matrix). ZLAMDK is computed by PROJECT
(Willekens and Rogers, 1976).

files OUTLIF and OUTPROJ, created by the programs for
life table computation and population projection.

the data are stored in labeled COMMON for easy trans-
mittance from one subroutine to another. The variable

names are explained in Apvendix 1.

b. AGEDIS

Task:

SUBROUTINE AGEDIS (NA,NY,ZFNY,NR,NSTADC,ZLAMDK)

computation and printing of the three types of population
distribution: observed population, life table population,

and stable population.

Parameters: NA,NY,NR,NSTADC,ZLAMDK: see above

ZFNY: age group interval as a real variable, i.e.

ZFNY = FLOAT (NY).
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Input: the input data consist of the distribution of the
observed and life table population. The data are
read in by READ2 and are contained in the following
arrays: |
- POP(X,I): observed population in age group X and

region I.

- L(X,I,J): the life table population of age group
X, who are born in region I and residing
in region J. The life table population is
expressed in unit radices.

~ CLLT(X,I): the life table population of age group X,
born in region I.

Output: this subroutine produced the tables of Section 1 of the
paper. Note that the life table and stable populations
are expressed per unit born in each region.

Algorithm: the observed and life table populatiomnsare printed

as read in. The stable population is computed by

(1.3b) :
(r)
L (x) = EX(x) L(x),
where
EX(X) - e_r(X+NY*O-5) . (7.1)
C. STABCH
SUBROUTINE STABCH (NA,NY,ZFNY,NR,NSTADC,NOPMOB,
NEIG)

Task: STABCH computes and prints the integral functions (general-
ized maternity and mobility function and the weighted
functions), and their moments. From this information, it
derives the matricesof mean ages at childbearing and
mobility and the variances of the ages at childbearing and

mobility.

Parameters: NA,NY,ZFNY,NR,NSTADC, NEIG: see above
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NOPMOB: parameter indicating the type of povoula-

tion analysed.

NOPMOB = 1: 1life table population
NOPMOB = 2: ZPG population
NOPMOB = 3: stable population

Input: transmitted by labeled COMMON. This subroutine 1is
called four times by the main program. Each time,
there is a different population distribution
- fertility schedule combination:

1. Life table population combined with observed
fertility schedule (NOPMOB = 1)

2. Life table population combined with a fertility
schedule -at replacement level (two alternatives)
(NOPMOB = 2)

3. Stable population combined with observed ferti-
lity schedule (NOPMOB = 3).

Output: tables of sections 2,3 and 6.1 of this paper.

Algorithm: The integral functions are computed by (2.4),(2.19),

(3.5) and (3.11). In the program, it reducesg to

a single expression:
PATFUN(X,J,I) = EX(X)*L(X,I,J)*ZGRAL(X,J),

where EX(X) 1s the weighting factor:
EX(X) = 1 in the life table and ZPG population,
and is equal to (7.1) in the stable population,
L(X,I,J,) is the number of people in region J
aged X to X+NY, who are born in region I,
ZGRAL (X,J) contains the age and region-specific
rates applied to the population distribution
to give the integral function. In the case of
the maternity function,

ZGRAL (X,J) = RATF(X,J), i.e. the regional
age-specific fertility rates. 1In the mobility
analysis,

ZGRAL (X,J) = RATOT(X,J), i.e. the regional

age-specific total outmigration rates.




d. ZERO
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The p-th moment of the integral function is

given by
ZMOM (J, 1) = J Z*PATFUN(X,J,I),
where Z = [ (X-1)*NY+NY*0.5]1" .

The zero-th moment of the generalized net maternity
function, i.e. the net reproduction rate matrix is
saved in the array ZNRR(I,J) for later use (ZPG-ana-

lysis).

SUBROUTINE ZERO (NA,NR,NZERO)

Task: ZERO replaces the observed regional fertility schedules

with fertility schedules at replacement level. The

new fertility rates are computed according to two alter-

native fertility reduction schemes described in section 6.

Parameters:

NA,NR: see above.
NZERO: denotes the alternative fertility reduction

scheme.

NZERO = 1: the cohort-replacement alternative.

NZERO = 2: the proportional reduction alter-
native.

Input: transmitted by labeled COMMON.

Output: - diagonal matrix of fertility adjustment factors. The

diagonal elements are stored in the vector VI(I).

- new fertility rates at replacement level: RATF(X,I).

Algorithm:

e. RVALUE

see section 6.

SUBROUTINE RVALUE (NA,NY,ZFNY,NR,NSTADC,R,ZVT)

Task: computation and printing of the discounted number of

offspring and the reproductive values by age and region.

Parameters:

Input: labeled COMMON

NA,NY,ZFNY,NR,NSTADC: see above.

R: the ultimate growth rate of the population
under consideration:
R = 0 in the ZPG population;
R = [2n ZLAMCK]/NY in the stable population.
ZVT: total reproductive value of whole

system (all regions).
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Output: tables of section 4 of this paper.

Algorithm: see Section 4.
Note that RVALUE calls the subroutine PROBSCH to
compute the number of people at exact age X
(equation #.9). This subroutine has already been
published (Willekens and Rogers, 1976 , p. 119).

f. RINTR _
SUBROUTINE RINTR (NA,NY,ZFNY,NR,NSTADC,ZLAMDA,R,ZVT)
Task: it computes and prints the stable equivalents and the
intrinsic rates.
Parameters: NA,NY,ZFNY,NR,NSTADC,R,ZVT: see above.
ZLAMDA: the ultimate growth ratio of the popula-
tion under consideration.
ZLAMDA = 1 in the life table and ZPG popu-
lation analysis,

ZLAMDA = 2LAMDK in the stable population

analysis.

Input: labeled COMMON

Output: tables of Section 5 of this paper. The stable equiva-
lents of births and total population are saved for
later use and stored in the arrays QQ(I) and YY(I)
respectively. The stable equivalent population by

age and region is contained in POPST(X,I).

Algorithm: see Section 5.

g. MOMENT

SUBROUTINE MOMENT (NA,NY,ZFNY,NR,R)

Task: spatial zPG - analysis following the analvtical approach.

Parameters: NA,NY,ZFNY,NR,R: see above.

Input: labeled COMMON.
It is assumed that the initial population is stable and
that the births are given by the vector QQ(I).

Output: tables of Section 6.2 of this paper.

Algorithm: see Section 6.2.
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7.3. The Main Program

The main program is kept very short. Its function is to
coordinate the calculations. It therefore consists merely of

CALL-statements. The zero-population-growth analysis is an

option:
NGRO = 0 no ZPG analysis (only life table and stable
population analysis)
NGRO = 1 ZPG analysis included.

NGRO = 2 no life.table and ZPG analysis (only stable
population analysis).

7.4. The Input Data

The data required by the programs are read in by READZ.
All are created by the 1life table program and the population
projection program described in Willekens and Rogers (1976).
They are contained in two files. The first,OUTLIF, 1is created
by the life table program and contains the parameters, the age-
specific rates, the observed and the life table population
distribution, and the survivorship proportions. This file is
read in using unit number (channel) 7. The second file,
OUTPROJ, is created by the population projection program. It
contains the first row of the generalized LESLIE matrix, the
population distribution at stability and the dominant eigen-

value of the generalized LESLIE matrix. OUTPROJ is read in

through unit number 8.
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APPENDIX 1

Glossary of mathematical symbols and FORTRAN names of demographic

variables.

Page in FORTRAN
Symbol Rogers Name Description
(1975)
éubscripts
X age grour (1,2,3,...)
I region of residence
(or birth)
J region of destination (in
case of migration)
Observations
K. (x) 82 POP (X, I) population by age and re-
* gion
BIRTH (X,I) births by age and region
Di(x) 82 DEATH (X, 1) deaths " " " "
K. . (x) 82 OMIG(X,J,I) migrants from I to J by age
+J and region
Qi(O) 73 RADIX (I) radix of region I
NAGE (X) first age of age group X

REG(I)

name of Reagion I
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Computed rates and total population

MiG(x) 82 RATD (X, I) age-specific death rates
for region I
Fi(x) RATF (X, 1) age-specific fertility
rates for region I
Mij(x) 83 RATM(X,J,I) age-svecific migration
rates from I to J
RATOT (X, I) age-specific total out-
migration rates of I
RATDT (X) age-specific death rates
for whole system
RATFT (X) age-specific fertility
rates for whole system
RATMT (X) age-specific migration
rates for whole system
POPC (X) age distribution of popu-
lation for total system
Life Table
q; (x) 60 0(X,I) probability of dying in I
ij(x) 60 P(X,J,I) probability of being in J
at age X + h, while in T
at X
PMIGT (X,TI) probkability of being in
another region at age X + h,
while in I at X
iOLj(x) 61 L(X,I,J) number of years lived in
J between ages X and X + h
by an individual born in I
CLLT (X, I) number of years lived be-
tween ages X and X + h by
an individual born in I
CLLTOT (X) average number of years

lived between ages X and
X + h per unit radix



Slj (x)

79
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su(x,I,J)

SSU(X,I)

provortion of veople aged

X to X + h in region I,
surviving to be in region
J and X + h to X + 2h years
old h vears later

proportion of peovle aged X
to X + h in region I, sur-
viving to be X + h to X + 2h

years old h years later

Population Projection

60

su, (X,I1I,J)

BR(X,J,1I)

PP1(J,1I)

POPR (X, I)

POPPR(I)

POPPRT

see life table

average number of babies
born during the unit time
interval and alive in
region J at end of that
interval, per X to (X + h)
vear old residents of
region I at beginning of
that interval

probability that an indi-
vidual born in I survives
to be in J h years later
(at beginning of next
interval)

projected population in
age group X in region I

total projected popula-
tion in region I

total projected popula-
tion 1in whole system

Integral function analysis

PATFUN (X,J,I) value of the integral

ZMOM (P, J,I)

function for I-born people
living in region J and X
to X + 4 years old

P-th moment of the inte-
gral function




NRR or B(O) 106
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ZNRR(J, I)

RONRR

VRNRR (1)

VLNRR (I)

EX (X)

ZGRAL (X,J)

AGEM(J,I)

zero-th moment of the gen-
eralized net maternity
function

dominant eigenvalue of R (p)

right eigenvector of R(0),
associated with RONRR”™

left eigenvector of R(0),
associated with RONRR

welghting factor for generali-
zed net maternity and mobility
functions

EX(X) = 1 for stationary popu-
lations
- *

EX(X) = e r(x+N¥ 0'S)for stable
porulations

the age- and region-specific
rates entering the integral
function

matrix of mean ages in stable
population (Alternative 2).

Spatial reproductive value analysis

Pir)

{o]} 93
tv(o)}

to} 105
1Y} 112
{K(x)}

PSI(J,I)

'ROOTPSI

VRPSI (J)

VLPSI (I)

QQ (I)

YY (I)

POPST (X, I)

zero-th moment of the weighted
generalized net maternity
function

(r)

1|

dominant eigenvalue of

right eigenvector of yl(r),
associated with ROOTPSI

left eigenvector of y(r),
assocliated with ROOTPSI

stable equivalent of regional
births

stable equivalent of the
regional total population

stable equivalent of the popu-
lation by age and region
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V(X,J,I) discounted number of offspring

n

~X in region J per person resi-
ding in region I at age X,
respectively in age group X to
X + 4

Momentum of spatial zero
population growth

g(o) T4 EO(J,I) matrix of life expectancies
at birth

R(0) 106 RO(J,I) NRR - matrix

R(1) 106 R1(J,I) first moment of the general-
ized net maternity function

{Q} OQZP (I) regional allocation of births

~ in ZPG-population

{y} YYZP (I) regional allocation of the

total population in ZPG-pop-
ulation
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Appendix 2

Listing of Computer Programs
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ATN PROGRAM

MAIN PROGRAM FOR STATIONARY AND STABLE POPULATION ANALYSIS (MAINSTAB,FTN)

24

30

DIMENSION RATFZE(18,4),HU(18)

COMMON /CSU/ SU(18,4,4),85U(18,4)

COMMON /CGROW/ BR(18,4,4),PPY(8,4),POPR(18,4),POPPR(4),PDOPPRT
COMMON /CL/ L(18,4,4),CLLTc18,4),CLLTYOT(18)

COMMON /CRAD/ RADIX(4),RADTIXT

COMMON /CRATE/ RATD(18,4),RATM(18,4,4),RATF(18,4)
COMMON /CRATET/ RATOT(18,4)

COMMON /CREG/ REG(4)

COMMON /C1/ POP(18,4),BIRTH(18,4),DEATH(18,4),0M]IG(18,4,4)
COMMON /C4/ NAGE(18)

COMMON /CMAT/ PATFUN(18,4,4)

COMMON /CRATS/ BRATE(4),DRATE(4),0RATE(4),DIRATE(4)
COMMON /CQUE/ QUE(4),0ULT,SHA(Y)

COMMON /CTOTRAT/ POPC(18),RATDT(18),RATFT(18),RATMT(18)
COMMON /rETGEN/ CE(4,4),R00T,VECT(4),VECTL(4)

COMMON /. ~RR/ INRR(4,4),VRNRR(4),VLNRR(4),RONRR
COMMON ,sCPSI/ PSIC(4,4),VRPSI(4),VLPSI(4),ROPSI

COMMON /CEX/ EX(18)

DOUBLE PRECISION REG

INTFGER X, XX

REAL L

CALL READ2 (NA,NR,NY,NGRO,NSTANC,Z| AMDK)

NSTADCs?

IFNY3FLOAT(NY)

DO 7 x={,NA

NAGE {(X)aNYx(X={)

CALL AGEDIS (NA,/NY,ZFNY,NR,NSTADC,ZLAMDK)

DO 44 X={,NA

HUCX)BEX (X)

IF (NGRO,EQ,2) GO TO 105

PRINT 29

FORMAT ({Ht,1X)

PRINT 23

FORMAT (1QX,41(1HR) /10X, 81 (1H®) /710X, 3Hx %,35X,3H* =)
PRINT 43

FORMAT (1@X,3H» *,1X,33MANALYSYS OF LIFE TABLE POPULATION,
11%,3H4% x)

PRINT 25

FORMAT (10X, 3H» %,35%,3Hn #/10X,41 (1H*) /10X, 41 (1H®) /)
DO 47 Xmi,NA

EX(x)=1,

ZLAMDABY,

Rep,

NEIG=D

CALL STABCH (NA,NY,2ZFNY,NR,2,1,NE1G)

IF (NGRO,.,ER,Q) GO TO 105

PRINT 22

PRINT 23

PRINT 24

FORMAT (10X,3Ha w,1X,33HANALYSIS OF STATIONARY POPULATION,
11X, % He #)

PRINT 25

DO 32 Iey,NR

0Q 22 Xs1,NA

RATFZE(x,I)aRATF(X,])

NNZERQ=?

DO 33 NZEROs{,NNZERO

CALL ZERN (NA,NR,NZERQ)

CALL STABCH (NA,NY,Z2FNY,NR,2,2,NEIG)




LR
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495

46

1n4

520
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CALL RVALUE (NA,NY,ZFMY,NR,NSTADC,R,2VT)
CALL RINTR (NA,NY,2FNY,NR,NSTADC,ZLAMDA,R,ZVT)
DO 31 131,MR
DO 31 Xsi,NA
RATF (x,1)Y=RATFZE(X,1)
CONTINUE
CONTINUE
PRINT P2
PRINT 23
PRINT 49
FORMAT (10X ,3Mw% »,3%x,29HANALYSTS OF STABLE POPULATION,3X,
13Mx x)
PRINT 2%
00 46 xmi,NA
EX(X)sHU(X)
ReALOG(ZIAMDK) /ZFNY
CALL STABCH (NA,NY,2ZFNY,MR,NSTADC,3,NEIG)
CALL RVALUE (NA,NY,ZFNY , NR,NSTADC,R,2VT)
CALL RINTR (NA,NY,ZFNY,NR,NSTADC,ZLAMDK,R,ZVT)
CALL MOMENT (NA,NY,ZFNY,NR,R)
CONTINUE
IF (IRUNT, EHQ,1) IRUNE2
CONTINUE
CONTINUE
STOP
END
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READ?2

SUBRQUTINE READ2 (MA,NR,NY NGKO,NSTADC,ZLAMDK)
COMMON /CSuU/ SU(18,4,4),55u(18,4)
COMMON /CGLROW/ BR(16,4,4),PP1(4,4),POPR(18,4),POPPR(4),PUOPPKRT
COMMON /CL/ L (18,4,4),CLLT(18,4),CLLTOT(18)
COMMON /CRAD/ RADIX(4),RADTXY
LOMMON /CRATE/ RATD(18,4),RATM(18,4,4),RATF(18,4)
COMMON /CRATET/ RATOT(18,4)
COMMON /CREG/ REG(4)
COMMON /C1/ POP(18,4),RIRTH(18,4),DEATH(18,4),0MIG(18,4,4)
COMMON /CTOTRAT/ POPC(18),RATOY(1R),RATFT(1A),RATMT (138)
POUBLE PRECISION REG
INTEGER X, XX
REAL L
10PTG=1
170 CONTINUE
READ (7,2m) NA,NR,NY,NZB,NZD,NZ0,IRUNT,JOPTG,NGRO,KA,KC,LY,
INPARY ,NPAR? ,NPAR3,NPAK4,INTT ,NPARS,NPARG,NPART7 ,NPARS
2@ FORMAT (1612,514)
NSTADC2NPARP
IF (NA,EQ,M) STOP
READ (7,22) (REG(J),J=1,NR)
22 FURMAY (948)
READ (7,2%) RADIXT, (RADIX(J),Jsi,NR)
23 FORMAT (18F8,2)
b0 S@ Y=z, ,NR
READ (7,P4) (PPYI(J,I),Jd=2),nK)
N0 5P x=1,NA
READ (7,24) (SU(X,T1,J),J0=1,NR)
READ (7,24) (L(X,I,d),J=1,NR)
24  FORMAT (9F8,6)
S0 CONTINUE
DO 51 Tsf,NR
READ (7,25) (POP(X,1),X=z1,NA)
25 FORMAT (BF1Q,0n/8F102,n/2F10,@)
READ (7,26) (RATF(X,1),X=],NA)
b FORMAT (10FB,6/8F8,.6)
READ (7,26) (RATD(X,I),Xx=z1 ,Na)
READ (7,26) (RATOT(X,I),X31,NA)
DO S4 Jsy,NR
S4 READ (7,26) (RATM(X,J,1),X=],NA)
READ (7,24) (CLLT(X,I),Xx=1,NA)
51 CONTINUYE
READ (7,26) (RATDT(Xx),X31,NA)
READ (7,26) (RATFT(X),Xx{,NA)
READ (7,26) (RATMT(X),Xs],NA)
READ (7,24) (CLLTOT(X),Xx3]1,NA)
DO 99 Te},NR
DO 59 J=2i1,NR
59 READ (8,26) (BR(X,J,I),X=1,NA)
D0 52 Ist,NR
52 READ (8,25) (POPR(X,I),x={,NA)
READ (8,25) (POPPR(J),Jmi,NK),POPPRT
READ (8,55) ZLAMDK
SS  FORMAT (E14,7)
RETURN
END
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MULTIP

SURROUTINE MULTIP (N,K,L)
COMMON /CMUL/ Al (4,4),B(4,4),C(4,4)
0Q 3 Isf,N
DO 3 J=1,L
c(1,Jren,
00 3 JJ‘loK
C(1,d)sC(T,J)+AL (Y, JJ)wB(J,J0)
3 CONTINUE
RETURN
END

INVERT

SUBROUTINE INVERT (CC,NK)
DIMENSTON PIVOT(4)},CC(4,4)
DO 606 Izl ,NR
PIVOT(IY=CC(I, 1)
cc(ll!"!.ﬂ '
D0 647 J=i,NR
CC(I,J)sCC(I,J)/PIVOT(I)
627 CONTINUE
IF (NR,EQ,Y1) GO YO 10
DO e@8 K=y ,NR
IF (K,EQ,1) GO TD 608
HeCC(K,1)
CCtx,11=0,
DD 689 Lsi,NR
CC(K,LYsCC(K,L)=CC(1,L)nH
609 CONTINUE
628 CONTINUE
606 CONTINUE
12 CONTINUE
RETURN
END



EIGEN

c

2l

23

22

24

2%
26

82e@
62

64

92

91

é
7
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SUBROUTINE EIGEN (NR,NP,NE1G)
DIMENSION ZMOMY(4),CC(4,4) ,HULG)
COMMON /CMUL/ A3(4,4),B(4,4),C(4,4)
COMMON /CRAD/ RADIX(4),RADIXY
COMMON /CREG/ REG(4)
COMMON /CEIGEN/ CE(4,4),RO0T(4),VECT(4),VECTL(4)
DOUBLE PRECISION REG
IF (NEIG,EQ,0) GO YO 820
DO 21 I=g,NR
00 21 Jzi,NR
AL (J,IVBCEC(CJS,])
B(J,1)eCE(J,I)
CONTINUE
CALL MULTIP (NR,NR,NR)
24310000,
CONTINUE
15824
250 (1, 1)
DO 22 Imsy,NR
DO 22 Js{,NR
Cy,1)=CtJ,1)72
AL(J,1VeC(J, 1)
8(J,INsCJ, I
CALL MULTIP (NR,NR,NR)
2480 (2,1)/7C(1,1)
I13224wZ8
TOLEIG=D, 0000201
T2e=eTOLEIG
IF ((23,.7,72),0R,(23,6T7,TOLEIG)) GO TO 23
DO 24 =i ,NR
DO 24 Jsy,NR
AL(J,1)=C(J,I)
B¢J,I)aCE(J,I)
CALL MULTIP (NR,NR,NR)
ROOT(1)eC(L,1)/7A1(1,1)
DO 25 J=y,NR
VECT(J)SC(J,1)/C(1,1)
CONTINUE
IF (NP.EG,R) GO TO 30
CONTINUE
PRINY 62, (REG(J),Jsy,NR)
PORMAT (/17X,SNYOTAL,1@(3X,A8))
PRINT 64
FORMAY (1X)
DO S 131,NR
2270780,
DO 90 Jei,NR
ZZTOT=ZZT0TCE(I,JY*RADIX(J) /RADIX(])
IF (NP,EQ,2) ZITOT=Z2TOT/FLOAT(NR)
PRINY 91, REG(I),22Y0T,(CE(¢1,J),Jsi,NR)
FORMAT (1X,A8,2X,11F11,6)
DO &6 J=§ ,NR
IMDMT (J) =0,
DO 8 Isi,NR
IMOMT CJYBZMOMTY (J)+CE(TI,J)
IF (NP,EQ,2) ZMOMTY (J)sIMOMTY(J)/FLOAT(NR)
CONTINUE
PRINT 7, (IMOMY(J),Js1,NR)
FORMAT (/4X,SHTOTAL,13X,11F11,6)

LEFY EIGENVECYOR




11

1e

13

93
94
95
96

92
3a
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PRINT 64
1F (NEIG,EN,P) GO TO 3¢
NR{=NRw{

no 11 I'lnNRI

DO 11 J=y,NRY

Itele]

JisJei

IF (I,EQ,J) CCcI,J)aCE(JE,T1)=ROQT (L)
IF (T NE,J) CCEY,JYSCE(JY, 1Y)
CONTINUE

CALL INVERT (CC,NRY)

00 12 Is1,NRY

ISESE X

B(I,$)meCEC(],1)

DO 12 Ju{,NR}

AL (I,J)=CC(],J)

CALL MULTIP (NRI,NR1,1)

VECTL (1))=Y,

DO 13 Izt{,NR1

T1sls+t

VECTL(I1)=C(T,1)

No 92 Y34,

PRINT 93, ROOT(I)

FORMAT (1Xx,1OHEIGENVALUE,F11,6)
PRINT 94

FORMAT (ix,11HEIGENVECTOR)
PRINT 95, (VECT(J),Jsi,NR)
FORMAT (5X,7H= RIGHT ,11X,12F11,6)
PRINT 96, (VECTL(J),J =1 ,NR)
FORMAT (5x,7He LEFT,11¥,10F11,6)
CONTINUE

CONTINUE

RETURN

END
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AGEDIS

SUBROUTINE AGEDIS (NA,NY,ZFNY,NR,NSTADC,ZLAMDK)
DIMENSION HULP({4),HU1(4)
COMMON /CL/ L(18,4,8),CLLT(18,4),CLLTOT(18)
COMMON /CREG/ REG(4)
COMMON /C1/ POP(18,4),BIRTH(18,4),NEATH(18,4),UMIG(1R,4,4)
CUMMON /C4/ NAGE(18)
COMMON /CEX/ EX{18)
NDOUBLE PRECISION REG
INTEGER X
REAL I
RIALOG(Z2LAMDK) Z/ZFNY
00 3 x=1,NA
TF (NSTADC,EN,1) GO T0 4
23(FLUAT(X) 21 Y*2FNY4ZFNY®(1,.5
18=7*R
EX(x)=FxP(2)
GO 10 3%

I IxexaeNy
13«FLOAT(X)
EX(X)=ZL AMDK % %2

5 CONTINUE
PRINT S

5 FORMAT ((1H1,9X,41HPAOPULATINN UISTRIBUTION BY AGE AND REGION/
110,41 (1Hx) /)
PRINT &

b FURMAT (/10X,d43HORSERVED POPULATION (BY PLACE OF RESIDENCE)/
110y ,43(1H=))
PRINT 7, (REG(J),J=1,NR)

7 FORMAT (/6%,10(3X,A8))
PRINT k4

64 FORMAT (1x)
DA 25 J=y ,NF
HULP(J)rzsn,
DO 25 x=1,MNA

25 HULP(JYsHULP(J)+PUP(X,J)
DO &8 x=1,NA

8 PRINT 9, NAGF (X),(POP(X,J),J=1,NR)

9 FORMAT (1x,13,2%,10F11,2)
PRINT 1S, (HULP(J),Js),NR)

15 FURMAT (/1X,SHTOTAL,10F11,n)
PRINT 1@

12 FURMAT (t1H1,9x,21HLIFE TABLE POPULATION/IEX, 21(1Ha))
DO 19 Jeg ,NR
PRINT 11, REG(I)

11 FORMAT (//1AX,24HINITIAL REGION OF COHORT,2X,AH/
110X ,34(1He) /)
PR]NT 14, (REG(J),J=1,NR)

14 FORMAT (12X,SHTUTAL,10(3X,48))
PRINT 64
DO y12 Xmj,NA

ie PRINT 13' NAGE(x)'CLLT[x'I" (L(X,IuJ).Jll,NR)

13 FORMAT (1x,15,2X,11F11,.6)
DO 16 J=y1,NR
HULP(J) =0,
DO 16 X=31,NA

16 HULP(J)eHULP (J) L (X,1,J)
ZR=p,
DO 17 Jay,NR

17 ZHeZH+HULP(J)
PRINT 18, 2H, (HULP(J),Jel,NR)
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FORMAT (/1X,5HTOTAL,11F11,4)
CUNTTHUE
PRINT 20, K .
FORMAT (1H1,9%,834STASLE PRPULATINN
12H Y /1¢x,45(1He))
N 21 Tey,NK
PRINT 11, REG(I)
PRINT 14, (REG(I), Iz ,NR)
PRINT &4
IHeR,
DO P4 J=y,NR
HULP (J) =9,
DU 2P X=zi,NA
ZEEXUX)%CLL T (X, 1)
NG 23 J=1,NR
HUS (JYSEX (XY xL (X, ],J)
HULP(J)Yz i PIJY+HUL (J)
PRINT 13, MAGE (X),7, (HUL(J) 051 ,NK)
Na 26 J=1,NR
IHs JHeHULP (1)
PRINT 18, ZH,{MULPI)),J=1,NR)
COMTTNUE
RETIHIRN
EnND

(GRDW T re

RaTE

=,F‘1M.h,



9
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STABCH

64

121
36

37

687
686

684
685
688

129

iePd

lee

SUBROUTINE STARCH (NA,NY,/ZFNY,NR,NSTANDC,NOPMOB,NEIR)
DIMENSTON Z2MOMT (4)
DIMENSTON HULP(4,4) ,HULP2(4,4),CC(4,4),26RR(4),IMOM(3,4,4)
NIMENSTON HULP4(4)
DIMENSTON HULPS(4),.GRAL(18,4) ,
COMMON /CL/ L(18,4,4),CLLT(18,4),CLLTOY(18)
COMMON /CMUL/ AL(4,4),B(4,4),C04,4)
COMMON /CRAD/ RADIX(4),RADIXT
COMMON /CRATE/ RATN(18,4),RATM(18,4,4) ,RATF(18,4)
COMMON JCRATET/ RATOT(18,4)
COMMON /CREG/ REG(4)
COMMON /C4/ NAGE(18)
COMMON /CMAT/ PATFUNC1B,d,4)
COMMON /CTOTRAT/ POPC(18),RATOT (1B),RATFT(1R),RATMT (18)
COMMON /CEIGEN/ CE(4,4),RO0T,VECT (W), VECTL (4)
COMMOMN /ONRR/ INRR(4,4),VRNRR(4),VLNRR(4),RONRR
COMMON /CPS1/ PSTI(U,48),VRPSL(4),VLPST(4),ROPS]
COMMON /CAGEM/ AGEM(4,4)
COMMON /CEX/ EX(18)
DNWARLE PRECISION REG
INTEGER x
REAL L
FORMAT (1)
DO S8A@ INTEGR={,?2
IF ((INTEGR,EQ,2) ,aND, (NOPMNB EQ,2)) GO TUO 480
DO 121 I=1,NR
DOy 121 x=1,NA
IF (INTEGR,EQ,2) ZGRAL(X,Ij=RATOT(X,I)
IF (CINTFGR,EQ,1) ANN,  (NSTAUC,EN,2)) ZGRAL(X,I)SRATF(X,I)
CONTINUF
IF (INTEGR,EQ,1) PRINT 36
FORMAT (1H?,9% ,18HFERTILITY aNALYSIS/ZIOAX,18 (1))
TF (INTEGKR,EQ,2) PRINT 37
FORMAT (1H1,9%,18HMIGRATION ANALYSIS/1@X,18(1H%))

PRINT RATES

PRINT §
FORMAY (//17X,14HOBSERVED RATES/10X,14(1H3))

PRINT 7, (REG(J),Je1,NR)

FORMAT (/1x,3HAGE,2X,1R(3x%,48))

PRINT 6a

00O 687 x=1,NA

PRINT &BR&, NAGE(X), (ZGRAL (x,J),Js1,NR)

FORMAT (1x,1%,2%,10F11,6)

DO 684 Jey, MR

IGRR(J) =0,

DO 6BY4 x=1,MNA

ZGRR(J)EZGRR(JI+ZGRAL (X, J) xZFNY

IF (INTEGR,EQ,1) PRINT 6RS, (ZGRR(J),Jx1,NR)

FORMAT (/1X,3HGRR,2X,10F11,6)

IF (INTEGR,EQ,2) PRINT 688, (LZGRR(J),J31,NR)

FORMAT (/1X,3HGMR,2X,10F11,6)

IF (CINTFGR,EQ,1),AND, (NOPMUB,LE,2)) PRINT {20

FORMAT (1K1,9%,47HINTEGRALS OF GENERALIZED NET MATERNITY FUNCTTION/
110X ,47(1H=))

IF (CINTFGR,EQ,1),AND, (NDPMUBL,EQR,3)) PRINT {24

FORMAT (1M1,9%,38MINTEGRALS OF WEIGHTED GENERALIZEN NET ,
1 1BNMATERNITY FUNCTION/18X,56(1M2))

TF ((INTEGR,EQ,2) ,AND, (NOPMUR,LE,2)) PRINT 122

FORMAT (1H1,9%,dbHINTEGRALS OF GENERALIZED NET MOBILITY FUNCTION/
110%,46(1Hz))
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1F ((INTFGR,FEQ,2) (AND, (NOPMOB,,EQ,3)) PRINT 123
123 FORMAT (1H1,9x%x,3BHINTEGRALS DOF WEIGHTED GENERALIZED NEY ,
{17THMOBILITY FUNCTION/Z1@X,55(1HE]))
DO 2 I=1,MNR
DO 2 Jsi  NR
DD 2 xsi,NA
2 PATFUN(X,J,I)=EX(X)*7GRAL (X, J)»L(X,1,J)
DO 114 Jei,NR
DO 112 J=1,NR
112 HULP(J,1)30,
00 3 TI=y,NR
PRINT 4, REG(I)
4 FORMAT (//10X,24HINITIAL REGTUN NF COHWORT,2X, A8/
110X, 34 (1H=Y /)
PRINT 7, (REG(J),J®1,NR)
DD 8 xs&i,NA
D0 1¢9 J=1,NR
109 HULP(J,T)sHULP(J,1)+PATFUNEX,Jd, 1)
8 PRINT 9, MAGE(X),(PATFUN(X,J,1),J%1,NR)
9 FORMAT (1Xx,13,2%x,11F11,8)
PHINT 108, (HULP(J,1),Js1,NR)
178 FORMAT (/1X%,SHTOTAL,10F11,6)
3 CONTINUE
C COMPUTEF MOMEMTS OF INTEGRAL FUNCTION
PRINT 33
33 FORMAT (1H1,9X,28HMOMENTS OF INTEFGRAL FUNCTION/12X,28(1H=))
NMOMENS 2
MMOMSNMOME N+
NO 13 IMOMSY,NMOM
INBETMOM=
DO 12 =1 ,NR
PO 12 Jzi,NR
ZMOM(IMOM, ], 1) =0,
NGO 12 X=1,NA
1=,
IF (INB,FO,0) GO 70 12
1F (NSTANC,EQ.,2) Ze(FLOAT (X} =1l JwxZFNY+ZFNY*B,5
237 axINB
1F (NSYANC,EQ,1) ZsFLODAT(X)
12 IMOMOIMOM, T, 1)aZMOM(IHMOM, J, [Y+Z2PATFUN(X,J, 1)
PRINT 61, INSB
61 FORMAT (//9X,12,1X,6HMOMENT/9X,9(1H=))
DO 9P I=y,NR
DO 92 Jz1,NR
99  CE(J,IYszZMaMIMOM, ], 1)
Cal.L EIGEM({NR,1,NEIG)
15 CONTINUE

PRINT {67
167 FORMAT (1H1,9X%,3SHMATRICES UF MEAN AGES AND VARIANCES/i0VXx,35(1HE))
PRINT 125
125 FORMAT (//1%)
IK={

PRINT 723, 1K
723 FORMAT (3%, 2Mux, 1X, 1 IHALTERNATIVE, 12, 1X,2Hex/3X,19(1Hn))
PRINT 67
67 FORMAT (/9%,SHMEANS/9X,5(1H=))
PO 19 Tei,NR
D0 19 Jsy,NR
19 CE(J,I)s2MOM(2,J,1)/72ZM0M(1,J, )
CALL EIGFN[NR,2,NEIG)
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PRINT 68

FORMAT (//9X,9HVARTANCES/9%,9(1H=))

FORMAT (11X,10(3X,A8))

FORMAT (1x,A8,2X,10F11,8)

PRINT 62, (REG(J),Jm1,NR)

PRINT 64

DO 21 T=y,NR

DO 21 Jzi,NR

HULP (J,1)22MaM(3,J, 1) 7ZM0omM L, J, 1) =CE(J, 1) *CE(J, 1)

D0 22 1=y ,NR

PRINT &3, REG(I), (HULP(I,J),J81,NR)

PRINT 125

PRINT &4

Ikag

PRINT 723, Ik

PRINT &7

DO 14 Tag,nNR

D0 14 J=y,NR

COCI,I)=22M0M (1,0, 1)

CAlLLL INVERY (CC,NR)

DO 17 T=1,NR

ND 17 Js1,NR

AY (J,1y=ZMDM(2,0,1)

B(J,D)=CC(J, I

CatLL MULTIP (NR,NR,NR)

DO 91 Tsy,NR

DO 91 J=1,NR

TF (INTEGR,ER,1) AGEM(J,1)=C(J,I)

CE(J, 1= (J, 1)

CALL EILEN (NR,1,NEIG)

PRINT &8

DO 93 =) ,NR

DO 9% =1 ,NR

AT (S, )=ZMOM(3,d,1)

R(J,1)=2CC(J, 1)

CALL MULTIP (NR,NR,NR)

NO 94 T=y,NR

DO 94 J=t,NR

HULP(Jd,1)=C(I,1)

AL (J,1)=CE(J,1)

B(J,1)sCE(J,T)

CALL MULTIP (NR,NR,NR)

NO 99 T=x1,NR

DG 95 Ja3),NR

CECd, YsHuLP(Jd,1)=C(J, 1)

CALL ETIGEN (NR,1,d)

1F (INTEGR,EA,1) GO TO 579
PRINT 777

FORMAT (1H1,9%X,30HSPATIAL MIGKATION EXPECTANCIES/10X,30(1Hx%)/)

DO 77y Is1,NR

DO 771 J=i,NR

CE(Jd,1)=0,

DO 771 x=1,NA

CE(I,I)=CECI, IY+EX (X)L (X,1,J)
PRINT 772

FORMAY (//10X,20HEXPECTATIANS OF LIFE/1AX,20(1H=)/)
CALL EIGEN (NR,1,1)

PRINT 774

FORMAT (//10X,16HMIGRATION LEVELS/1@X,16(1H=)/)

DO 775 T=1,NR
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1=9,

DO 770 J=1,NR

227+CE(J, 1)

DD 775 J=1,NR

CE(J,1)=CEC),1)/2

CALL EIGEN (NR,1,Q)

COGNT TNUE

IF (INTEGR,EQ,2) PRINT 777

IF (INTEGR,EQ,1) PRINT 882

FURMAT (1H1,9x%,3@HSPATIAL FERTILITY EXPECTANCTIES/10X,30(1H*)/)
If (INTEGR.ER.2) PRINT 886

FORMAT (//10X,20HNET MIGRAPRNOUCTION RATE /10X,24(1H=)/)
IF (INTEGR,EQ,1) PRINT 887

FURMAT (//10%X,21HNFT REPRONUCTION RATE/Z12X,21(1H=)/)
DD AR8 Tsi1,NR

DO AB8 J=1,NR

CE(I,D)e7MOM(L,J,1)

CALL EIGEN (NR,1,1)

1F (INTEGR,NE,1) GO TO 41

IF (NQPMOK NEL1) GO TO 43

RUNRRaRDOT

DO 42 Tei,NR

VRNRR(I)=VFCT(T)

VLNKR (I)=VECTL (1)

DO 4?2 J=y,NR

INRR(J,1)=CE(J, )

GO TO 4y

ROPSIaRANT

DO 44 J=a1,MR

VRPST (I)=zvECT (Y1)

VLPSICI)sVECTL (D)

D0 44 Jst,NR

PSI(J,1)sCE(J, 1)

CUNTINUE

PRINT 64

TF (INTEGR,EQ,2) PRINT 891

FURMAT (//710X%,31HNET MIGRAPROUUCTION ALLOCATIOMS/10X,31(1H=)/)
IF (INTEGR,EB,.)1) PRINT B92

FORMAT (//10X,28HNET REPRUDUCTION ALLOCATIONS/1UX,28(1H=)/)
NQ 889 1s31,NR

l=0,

nn a89n Jei,NR

232+CE(J, 1)

DO 889 J=zi1,NR

CE(J,1)=CEC(J,1Y/2

CALL EIGFN (NR,1,d)

IF (INTEGR,EQ,1) GO T 799

=0,

DO 79% x=1,NA

ZRZCLLYNT (X)) %RATMT (X)

IF (NOPMOB,EQ,1) PRINT 794,12

FORMAY (//710%X,13HGLOBAL NMR = ,F14,6,5%,14d4H(WILBEK [NDEX) )
GO TO0 796

CONTINLUE

=0,

DO 798 x=1{,NA

Ze2+CLLYOT (X)#ARATFT(X)

IF (NOPMDR,EQ,1) PRINT 797, 2

FORMAY (///1@%,13HGLOBAL NRKR = FlL4,6)

CONTINUE

CONTINUFE
RETURN
END
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ZERO

SUBROUTINE ZERO (NA,NR,NZEKD)
DIMENSINON VI(4),CC(4,4),RULP(a)
COMMON /CGROW/ BR(18,4,4),PP1(4,4),POPR(1B,4),POPPR(4),POPPRT
COMMON /CRAD/ RADIX(4),RADIXT
COMMON /CRATE/ RATD(18,4),RATM(18,48,4),RATF(18,4)
COMMON JCRATET, RATOT(18,4)
COMMON /CREG/ REG(4Q)
COMMON /C4/7 NMAGE(18)
CoMMON /CETGEN/ CEf4,4),RUNT(4),VECT(4),VECTL(4)
COMMON /CNRR/ 2ZNRR(4,4) ,VRNKR(4),VLNRR (4),RONKR
LOLBLE PRECISINN REG
REAL L
INTEGER X
64 FORMAT (1x)
TF (NZFROLNE,1) PRINT 20
29  FLUORMAT (JH1,1X)
NYRNAGE (2)=NAGE (1)
ZFNYEFILNDAT(NY)
FRINT 3Im, NZERD
3P FURMAT (1H®, 10X, P2H2ZERD POPULATION GROWTH,SX, 11HALTFRNATTVE
1oT2/711X, 220 M%), SX, 13 (1Hn) /11X,22(1H*),5%,13(1H*)/)
IF (NZEROD,NFE,1) GO TD 41
PRINT 34
31 FORMAY (10X ,42HTYRANSPOSE OF NET REPRODUCTION MATRIX R(@)* /
110%X,44(1H=))
DO 32 Tzi,NR
NO 32 Jzi,NR
CCCdy1Y=7ZNRR(I, )
32 CECJ TI)=27NRR(I,N
CALL EIGEN (NrR,S5,@)
PRINT 64
PRINT 64
PRINT 84
34 FORMAT (1AX,17HINVERSE UF R(QA)’® /710X, 17 (1He=))
CALL INVEKT (CC,NR)
DO 33 I=1,NR
PO 33 J=1,NR
33 CE(J,1N=00(d,1)
CaLL EJGFEN (NR,S,2)
41 CONTINUE
PRINT ba
PRINT 64
PRINT 35
33 FURMAT (10X,39HMATRIX OF FERTILITY ADJUSTMENTY FACTORS /
1108X,39(1Ha=))
PO 38 1=1,NR
vi(I)=n,
IF (NZERO,EQ,2) VI(I)al,/RONRR
IF (NZFRNO _NE 1) 6O TO 38
DO 39 J=21,NR
39 vi(l)=vIi(1)+CC(l,.1)
I8 CONTINUE
DO 36 Izt ,NR
DO 36 J=1,NR
CE(d,I)=m,
36 IF (I.,EQR,J) CECJ,D)=VI(I)
CalLl EIGEN (NR,5,?)
DO 49 T=t,NR
DD 4@ X=1,NA
42 RATF(X,])=zRATF (X,1)xVI(I)
PRINT (&0
164 FORMAT ((H{,1X)
RE TURM
END
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PROBSCH

———

SUBROUTINE PROBSCH (NA,NY,NR)
DIMENSION RM(4,4),0C(4,4)
COMMON /CRATE/ RATD(1B8,4),RATM(18,4,4),RATF(18,4)
COMMON /CPO/ G(18,4),P(18,4,4),PMIGT(18,4)
COMMON /CMUL/ AL(4,4),B(4,4),C(4,4)
INTEGER X
COMPUTE RM(X)
NAAZNAw]
217=FLDAT(NYY /2,
DO 19Q xm1,NAA
IF (NR,ER,1) 60 TO Sp
DD &5 Iszy,NR
Z3RATDIX, )
DO 4 Jsi,NR
IF (1.,EQ,J) GO TO 4
Z27+RATM(X,J,1)
4 CONTINUE
RM(T,1)a(~1,)%7
DO & J=1,NR
1F (J,EQ,1Y GO TO 6
RM(J,I1)sRaTM(X,t, 1)
CONTINUE
CONTINUE
DO 7 I=z1,NR
0o v Jsy MR
1F (1,EQ.,J) CC(I,118t,=2224RM(J,1)
T IF (I NEWJY CCCJ,113=2ZZ%RM(J,]I)
CALL INVERT (CC,NR)
PO 8 Ist,MR
DO 8 Js),NR
AY(J,T¥aCCCI, )
IF (JL,EQ.1) B(J,1)8y ,+2Z2ZxRM(J, 1)
B IF (JWNE.I) B(J,I)=2ZZ%*RM(J,1)
CALL MULTIP (NR,NR,NR)
NDO 9 Jst,NR
00 9 J=i,NR
9 P(Xx,J,1)=C(J,1)
GO 70 1p@
5@ DO SY Xs31,NAA
51 P(X,1,1)=2() ,»Z72Z%RATO(X, 1))/ (L1, +272«RATD(X,1))
100 CONTINLE
00 12 Is1,NR
00 1@ Juy,NR
12 P(NA,J),1)=20,
DO 12 X=1,NA
D0 12 I=1,NR
PMIGT(X,1):=0,
DO 11 Jm1,NR
IF (1,EQ,J) GO 7O 11
PMIGY (X, I)sPMIGT (X, I)+P(X,J,1)
11 CONTINUE
B(X,1)31,=P(X,],1)=PMIGT(X,I)
12 CONTINUE
RETLRN
END

[V Be
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RVALUE

SUBROUTINE RVALUE (NA,NY,ZFNY,NR,NSTADC,R,2ZVT)
NIMENSION V(18,4,4)
DIMENSION CC(4,4)
COMMON /CSUl/ SUl18,4,4),550(18,4)
COMMON /CL/ L (18,4,4),CLLT¢18,4),CLLTOT(18)
COMMDN sCMUL/ AL (4,4),B(4,4),CC4,4)
COMMON /CRATE/ RATD(18,4),RATM(18,4,4),RATF(1&,4)
COMMON /CREG/ REG(4Y)
COMMON /C1/ POP(18,4),BIRTH(18,4),DEATH(18,4),0MIG(18,4,4)
COMMON /C4/7 NAGE(18)
COMMON /CEIGEN/ CE(4,d),ROANT (4),VECT(4),VECTL(4)
COMMON /CPST/ PSI(4,4),VRPSI(4),VILPSI(4),ROPSI
COMMON /CEX/ EX(18B)
COMMON /CPG/ Q(18,4),P(18,4,4),PMIGT(18,4)
NDONBLE PRECISION REG
INTEGER X,X1,XX
REAL L
NAAENA=]
64 FORMAT (1Xx)
TR  FORMAY (1M1,1X)
DO 251 1°531=2)1,2
1F (1251,.FN,1) PRINT 250
5@  FORMATY ({1H1,1X,32HTHE SPATIAL REPRODUCTIVE VALUE 3,1X,
133HRESIILTS FOR PEDPLE AT EXACT AGE X /2X,30(iHM%),3X,
133 (3 HAY /2%, 30 (1H2),3X,33(1H%))
IF (I251,.,kQ,2) PRINT 258 .
258 FORMAT (1H{,34X,33HRESULTS FOK PENPLE IN AGE GROUP X /
135X, 33(1H*)/38%X,33(1Hx))
PRINT 54
51 FORMAT (//12X,43HDISCOUNTEN NUMBER OF OFFSPRING PER PERSUON,
1/710%,41 (1Hx) /)
IF (1254,E0,P) GO TO 257
CALL PRODBSCH (NA,NY,NR)
78w 7FNY®RM ,5%R
Z7sEXP(2)
L1287FNYRQ, 594722
DO 252 Ys31,NR
D0 252 J=i,NR
2% V(NA,J,I)=RATF(NA,J)x222
DD 255 xX={,NAA
XXSNAwX
Xlzx+y
DO 254 Ja1,NR
DO 254 J=1,NR
IF (I,EQ.J) AL (S, T)822ZwRATF (XX,J)+Z2x22Zxv(X1,J,1)
IF (I.NE,J) AL(J,1)322%22% V(X1,J,I)
es4  B(J,1)sP(xX,J,I)
CALL MULTIP (NR,NR,NR)
DO 2S5 I=1,NR
Na 255 J=i,NR
IF (T.EQ,J) VXX, J,IV2ZZZ*RATF (XX,J)+C(J,1)
IF (T NELJ)Y VIXX,J,1)eC(J, 1)
255 CONTINUE
DU 268 I=),NR
00 268 J=i,NR
68 v(1,J,1)sPS81(J,1)
GO TO 73¢
257 CONYINUE
Ne S3 1s4,NR
0D 53 Js1,NR
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53 V(NA,J,1)2RATF(NA,J)%xZFNYxp,5
s=e7FNY&R
27=EXP ()
no 52 x=z1,NAA
XXeNAw)X
X1zXX+1
DO %4 I=1,NR
DO "4 Jsi ,NR
IF (1.EQ.J) AL(J,1)=22ZFNYXQD HaRATF (X1,J)+Vv{X1,J,]1)
IF (I1,NE.I) Al(Jlljgv(xliJ'I)
54 B(J,T):SU(XX,I,J)*ZZ
CALL MULTIP (NR,NR,NR)
NO 55 I=z1,NR
N0 385 Js{,NR
TF (1,ERJ) V(XX,J,I)S2ZFNY0,SxRATF (XX,J)+C(J,1)
88  IF (I NE,J) vI(XX,J,1)3C(J,1)
52 CONTINUE
730 CONTINUE
DO 58 I=1,NR
PRINT Sk, REG(])
36 FORMAT (//710X,19HREGION OF KHESIDENCE,2X,A8/10X,29(1tKHe)/)
PRINT S7, (REG(J),J=1,NR)
57 FORMAT (19X,28HREGION OF BIRTH OF QOFFSPRING/
110X ,5SHTOTAL,2X,10(2X,4A8))
PRINT 64
D0 S8 Xx1,NAA
=0,
o 62 Js1,MR
6@ Z23Z2+4V(X,J,1)
%8 PRINT 89, NAGE(X),Z2,(V(X,Jd,1),Jei,NR)
59 FURMAT (1x,]13,1%,F1Q.6,2%,10F1Q,6)
PRINT 61
b1  FORMAT (1H1,10X%x,37HSPATIAL REPRODUCTIVE VALUE PER PERSON /
111X, 37 (JH*) /)
PRINT &5, (REG(J),J=z1,NR)
65  FORMAT (15X%,13(2X,AR))
PRINT &4
N0 62 Xz1,NAA
D0 63 Jz1,NR
AL (), J)sVLPST(J)
DO &3 I=z1,NR
6% B{J,Dav(ix,J,I)
CALL MULTIP (1,NR,NR)
IF (1251 ,NE,1) GO TN 264
IF (Xx,NE,.1) GO T0O 264
PO 263 J=21,NR
263 C(1,0)=viPSI(J)
264 CONTINUF
PRINY 66, NAGE(X),(C(1,J),J=y,NR)
66 FORMAT (1x,13,1%,10X,11Ft1@, b)
62 CONTINUF
251 CONTINUE
PRINT 71
71 FORMAT (1H1,36HTOTAL DISCOUNTED NUMBER OF OFFSPRING ,
1234 OF ORSERVED POPULATION ,12H IN 100,000, /2X,7T9(1Hx)/)
DO 72 I=1,NR
DO 72 J=1,NR
CEtJ,1)=z0,
D0 72 X=t,NAA
Te CE(J,I)=CE(J,1)+v(X,J,1)«POP(X,1)2,00001
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CALL ETGEN (NR,1,0)

PRINT 265

FORMAT (//1X,UdRP2HREPRODUCTIVE VALUE OF THE TOTAL POPULATION
112H IN 1002,0008,/71X,58(1H%) /)
DD ¢68 J=),NR
AL(1,J)sVLPST(J)

DO 268 I=i,NR

B(J,1)=sCE(J, 1)

CaLl MULTIP (1,NR,NR)

DD 261 131,NR

PRINT 262, REG(I),C(1, 1)
FORMAT (1X,A8,2X,Ft1,86)
Ivi=Q,

DO 92 T=1,NR

IVIsZVT+C (1, 1)

PRINT 93, 2VT

FORMAT (/4%X,5HTOTAL,2X,F11,86)
IVT3ZVT*12Q02A,

RETURN

END
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RINTR

SUBROUTINE RINTR (NA,NY,ZFNY,NR,NSTADC,ZLAMDA,R,ZVT)
NIMENSTION DISV(1R,4),HULP(5,8),HZ(18),HM(4,4)
DIMENSTION CC(4,4)
DIMENSION RATO(18,4)
COMMON /CL/ L (18,4,4),CLLT(18,4),CLLTOT(18)
COMMON /CMUL/ AL(4,4),B(4,4),0(04,4)
COMMON /CRATE/ RATN(18,4),RATM(18,4,4),RATF(18,4)
COMMON /CREG/ REG(4)
COMMON /C4/ NAGE(18)
COMMON /CEIGEN/ CE(4,4),R0O0Y(4),VECT(4),VECTL(4)
COMMON /CPS1/ PS1(4,4),VRPSI(4),VLPSI(4),ROPS]
COMMON /CAGEM/ AGEM(4,4)
COMMON /CEX/ EX(18)
COMMON /CQR/ RAQ(4),POPST(18,4),YY(4)
COMMON /CPQ/ Q{18,4),P(18,4,4),PMIGT(18,4)
NOURLE PRECISION REG
INTEGER X, X1 ,XX
REAL |
NAAESNA]
C COMPLTE NOKMALIZING FACTOR
DO 85 I={,NR
B(I,1)sVRRPSI(])
DO 8% J=]l,NR
CALL MULTIP (NR,NR,1)
INORMap
NO 86 I=z1,NR
86 INORMaZNORM+C (1,1)aVLPSTI(I)
VKNORMEBZVT/2ZNORM
C STABLE EQUIVALENTS OF BIRTHS
DD 94 =i ,NR
GR(1)=VRPSI(I)«VKNORM
94 CONTINUE
64  FORMAT (1x)
PRINT Qg
96 FORMAT (1H1,10X,37THSTABLE EQUIVALENT OF TQOTAL POPULATION/
111%,37T(1H*Y /)
nn 121 x=1,MA
DO 121 J=1,NR
HULP(J,1)=28,
DO 120 131,NR
120 HULP(J,1)aHULP(J, 1)+l (X, 1,J)a0(CI)
121 POPST(X,J)sEX(X)«HULP(J,1)
YT=@,
NO 122 I=1,NK
Yy(ll=a,
DO 134 y={,N2A
134 YY(I)=YY(I)#POPST(X,])
A2 YT=YT+vYyY (D)
PRINT 133, (REG(J),J=1,NR)
133 FORMAT (11X,5HTOTAL,10(2X,A8))
PRINT 64
DO 125 x=i,NA
HZ(X)=Q,
DO 1%2 J=1,NR
132 HZ(X)sHZ(X)+POPST(X,J)
123 PRINT 124, NAGE(X),HZ(X), (POPST(X,J),J=1,NR)
{24 FORMAT (1x,13,2X,11F{@,0)
PRINT 125, YT, (YY(J),Ju1,NR)
125 FORMAT (/1X,SHTYDTAL,11F12,8)

Pein
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PRINT 34
FORMAT (//10%,23HPERCENTAGE DISTRIBUTION /10X,23(1H=))
PRINT 133, (REG(J),J=z1,NR)
PRINT &4
NO 126 X=z1,NA
HZ(X)ZHZ(X)/YT
DO 127 Jsz1,NR
DISVIX,J)YsPOPST(X,J)/YY(J)
PRINT 135, NAGE (X),MZ(X),(nISV(X,J),Js1,NR)
FORMAT (1x,13,2X,11F1B.6)
DO 43 1=y,NR
HULP(I,1)=RQ(1)
CONTINUE
PRINT 139
FORMAT (1H{,12X,38HSTABLE EWIVALENTS AND INTRINSIC RATES/
111X,38(1H%Y/)
PRINT 49
FORMAT (1HA,18X,10X,6HBIRTHS,21X,6HDEATHS, 18X, 12HCUTMIGRATION,
116X, 11HINMIGRATION/)
PRINT {15
FORMAT (13xX,4(3X,6%X,6HNUMBER,8X,4HRATE)/)
DO 25 X=1,NAA
DO 21 I=1,NR
PO 21 J=1,NR
IF (1,EQ.J) CC(J,1)aP(X,J,1)+1,
IF (T.NE,J) CCCJ,IdsP(X,J,71)
CALL INVERT (CC,NR)
120 ,5%x7FNY
Z1z72%*R
7w ZFNY %R
78sEXP(2)
193EXP (2131772
DO 22 I=1,NR
N0 22 J=1,NR
B8cJ,1)=CC(J, 1)
IF (1,EQ,J) AL (J,T)=1,~P(X,J,1)x28
TF (I,NE,J) AL(J,1)seP(X,],])Z8
CALL MULTIP (NR,NR,NR)
DD 23 I=1,NR
DO 23 J=1,NR
IF (1,EQ.J) HWM(J,1)=829%xC(J,1)=R
TE (T.NE,J) HM(J,1)=29%xC(J, 1)
DO 25 1I=1,NR
17z0,
DO 24 J=s1,NR
IF (1,EQ,J) GO TD 24
Z7377+HM(I,]1)
CONT INUE
RATD (X, I)=HM(I,I)+27
DO 25 J=1,NR
RATM(X,J,1)eaMM (], I)
CONTINLIE
DO 27 laf,NR
DO 26 J=1,NR
RATM(NA,J,1)=0,
RATD(NA,T)SEXP(Z1)*RATD(NA,I)=R
D0 11y Y=1,NR
DO 118 J=2,8
HULP(I,J)=9,
NO t11 x=1,NA




117

——
—
— 0

]

113

177

114

130

178

179

-148-

RATO(Xx,1)=20,

NO 117 J=t,NR

IF (1,EQ,J) GD Q0 117
RATO(X,I)SRATO(X,I)+RATM(X,J, 1)

CONTINLIE

HULP (I, 3)sHULP(1,3)+POPSY (X, I)*RATD(X, )
HULP (I ,S)sHULP(],5)+POPST(x,1)%RATQO(X,1I)
DO 119 J={,NR

IF (T.,kE0,J) GO TO 119

HULP (1,7)esHULP (I, TY+POPST (X, J)*RATM(X,I,J)
CONTINUF :

CONTINUE

NR1sNR+

0D P2 J31,8

HULP(NRY,J)=00,

DD 113 Imyi,NR

DO 113 Jsy,4

JK=Ju2=

JJs K+

HULP (T ,J.0)sHULP (T, JJK)ZYY (1)

HULP (NR1, JKYSHLLP (NRY ,JK)Y+HULP (I, JK)
CONTINUF

DO 177 I=2{,NR .

PRINT 114, REG(I), (HULP(I,J),J=1,8)

FORMAT (5X,AB,4(3X,F12,0,F12,6))

no 130 Jsy1,4d

JJa a2

HULP(NR1Y, JJ)=HULP(NRY,JJ=1y/YT

PRINY 116, (HULP(NR{,.J},J=1,8)

FORMAT (/8X,SHYOTAL,4(3X,F12,0,F12.86))
PRINT 178, R '
FORMAT (//10X,18HSTARLE GRpWTH RATE,dX,F1R,6)
PRINY 179, INQORM

FORMAT (/10X,18HNORMALIZING FACTOR,2X,Fi2.4)
RETURN

END



~149-

MOMENT

90

11

10

SUBROUTINE MOMENT (NA,NY,ZFNY,NR,R)
DIMENSTION RD(4,d),R1(4,4),HU(4,4),0Q0ZP(4),EQ(4,4),YYZP(4)
DIMENSION CC(4,4)
COMMON /CL/ L (18,4,4),CLLT(18,4),CLLTOT(18)
COMMON sCMUL/ AY(4,4),B(4,4),0(00,4)
COMMON /CRATE/ RATD(18,4),RATM(18,4,4),RATF(18,4)
COMMON /CREG/ REG(4)
COMMON /C4/7 MAGF (18)
COMMON /CPSI/ PSI(4,4),VRPSI(4),VLPSI(4),RO0TPS]
COMMON /CETIGEN/ CE(4,4),R00T(4),VECT(4),VECTL(4)
COMMON /C3GQ/ QO(4),PO0PST(18,4),YY(4)
DUBLE PRECISION REG
INTEGER X
REAL L
PRINT S@
FORMAT (tH1,10X,42HSPATIAL MOMENTUM OF ZERO POPULATION GROWTH/
111X,d42(1Hx) 711X ,42(1H")/)
DO 3 Izt ,NR
nao 3 Js1,NR
EQ¢J, )=,
RO(I, 1=,
RI(J,1)=00,
00 3 X=1,NA
EU{J,I]‘EO(J;I)"’L(”,I;J’
122MAGE (X)
Z1sFLOAT(1Z)+ZFNY=%2,S
2aRATF (X, )L (X,1,))
ROCJ,T)zRO(I,IV+2Z
R1CJ,II2R1(T,1)+71n7
0O 4 I=1,NR
N 4 J=1,NR
HU(J,1)3RQ(J,1)=PSI(J,])
CCel,Dary1(J, 1
CALL INVERT (CC,NR)
DO S I=1,NR
no 5 Jei,NR
ALfJ,1¥sCCC, 1) !
R{J,1)eHu(J, 1)
CALL MULTIP (NR,NR,NR)
DO 6 Is1,NR
B(I,1)=QRQ(1)
DO & Jei,NR
At(r,Jyscc1, ) /R
CALL MULTIP (NR,NR,1)
PO 7 I=1,NK
ARZP(I)=C(T7,1)
PRINT 11
FORMAT (//10X,4SHMATRIX CONVEKTING STABLE TO STATIONARY RBIRTHS/
110X, 45 (1H=))
DU 19 I=1,NR
RO 10 Jzq ,NR
CE(J'I)=A1(J01)
CALL EIGEN (NR,1,d)
DO B8 I=y,NR
B(1,1)=0QZ2P(I])
N0 8 Js={,NR
Al(J,1)sE0 (), 1)
CAaLL MULTIP (NR,NR,{)
DO 9 I=1,NR
YYZP(IV)=C(1,1)
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PRINT 12
FORMAT (//10%,32HSTABLE AND STATIONARY EQUIVALENT/
118%,32(1H=))
PRINT 13

FORMAT (/21X,6HBIRTHS, 16X, 10HPOPULATION,O9X,12RPOPULATION)
PRINT 14

FORMAT (/13X,2(SX,6HSTABLE,1X,10HSTATIONARY,2X),3X,8HMOMENTUM)
PRINT 64

FORMAT (1X)
DO 15 Isi,NR
IF (YY(I) NE,Q,) ZsYYZP(I)/YY(I)
PRINT 1e, REG(Y),00(1),Q02ZpP(1),YY(1),YYZP(1),2
FORMAT (3X,AB,EX,Z(EFIl,@p?x)pFll.“)
DO 17 T=a1,NR
HU(I,1)=0Q,

RU(1,1)sHUCE, 1) +00 (1)
HUC2,1)8KRU(2,1)+0QZP(I)
HU(3,1)8RU(3,1)+YY (])
HUC4, 1Y erUCd,1)+YYZP (1)
I3HU(4,1)/7H(3,1)
PRINY 19, (HU(I,1),1=%1.,4),72
FORMAT (/s6X,SHTOTAL,2X,2(2F11,@,2X),F11,4)
RETURN

END
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