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PREFACE 

Finding optimal solutions to models is a central tool of 
the Systems and Decision Sciences Area, and many optimization 
problems in economic, management, technological systems, etc. 
can be reduced to dynamic linear problems. There are many 
different approaches and methods for tackling dynamic linear 
programming problems which use decomposition, penalty functions, 
augmented Lagrangian nested decomposition, generalized gradient, 
etc. methods. The simplex-method is by all means the basis 
method for solution of linear programming problems. However, 
the extension of the simplex method for the dynamic case has yet 
to be made. 

This paper presents a finite-step algorithm which seems to 
be the natural and straightforward extension of the simplex- 
method to the dynamic case. The paper contains only a theore- 
tical description and evaluation of the algorithm. Theoretical 
reasonings show that this algorithm may serve as a base for 
develcping effective computer codes for the solution of dynamic 
LP problems (just as the simplex-method was for the solution of 
static LP problems). However, the final judgment of the algo- 
rithms' effiency can be made only after a definite period of 
its use in practice. 





ABSTRACT 

In this paper a finite-step method for solving dynamic 
linear programming (DLP) problems is described. 

Many optimization problems in economic, management, tech- 
nology, etc. are formulated as DLP problems, because now it 
becomes difficult to make a decision without taking into account 
the possible consequences of such a decision for a certain time 
period. 

As DLP problems are large-scale by nature, the standard 
"static" LP methods become ineffective for the dynamic case and 
the development of methods specially oriented to DLP problems 
is needed. 

The method suggested is a natural and straightforward 
extension of one of the most effective static LP methods--the 
simplex method--for DLP. A new concept--a set of local bases-- 
(for each time step) is introduced, thus enabling considerable 
reduction of the requirements to computer core memory and CPU 
time. 

In the proposed method the system of T local m x m  bases 
is introduced and the basic simplex procedures (selection of 
vectors to be removed from and to be introduced into the basis, 
pricing procedure, transformation of bases) as applied to this 
system of T local bases are described. Evaluation of possi- 
bilities of the method and its connection with compact inverse 
LP method are discussed. 
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The Dynamic Simplex-Method 

INTRODUCTION 

Methods of linear programming (LP) are now well studied 

and have an extensive field of applications [1,2,3]. Dynamic 

linear programming (DLP) is a new development of LP methods for 

planning and control of complex systems. 

Many optimization problems in economic, management, techno- 

logical systems can be reduced to DLP problems (see, for example, 

[I-61). However, the development of DLP methods and its appli- 

cations are restrained by lack of universal DLP computer codes. 

Therefore many DLP problems are now being solved by reducing 

them to static ones and using for their solution the standard 

LP codes (see, for examples, [4,6]). 

As DLP problems are principally large-scale, this "static" 

approach is limited in its possibilities,and development of 

algorithms specially oriented to dynamic LP problems is needed. 

In recent years, methods for DLP have been developed which 

make-it possible to take into account the specific features of 

dynamic problems [7,9].* But extension of the most effective 

LP finite-step method--the simplex method--for the dynamic case 

has yet to be made. 

The dynamic simplex method was suggested, in [10,11]. This 

approach uses essentially the dynamic specific of DLP problems. 

The main concept of the static simplex method--the basis--is 

replaced by the set of local bases, introduced for the whole 

planning period. It allows'a significant saving in the amount 

of computation and computer core and permits development of a 

set of finite-step DLP methods (primal, dual and primal-dual 

dynamic simplex methods) which are direct extensions of the 

corresponding static finite-step methods. 

* See also references in [31. 



In this paper, detailed description of the dynamic simplex 

method is given and connection with the method of compact 

inverse is discussed. 

1. STATEMENT OF THE PROBLEM 

Consider the DLP problem in the following canonical form. 

Problem 1.1 Find a control 

u = {u(o) ,.. . ,u(T-1) 1 

and a trajectory 

x = {x(O),...,x(T)} , 

satisfying the state equations 

with initial condition 

and constraints 

u(t) - > 0 

which maximize the performance index 

Here the vector x(t) = {xl (t), ... .xn(t)} defines the state of 

the system at stage t in the state space X, which is assumed 

to be the n-dimension euclidean space; the vector u(t) = 

{U~(~),...,U~(~)}EE~ (r-dimension euclidean space) specifies 
0 the controlling action at stage t; vectors a(T), x , f(t) and the 

matrices A(t) , B(t) , G (t) , D (t) , are respectively of dimensions 
(n x 1). (n x 1) I .(m % I), and (n vln), (n x r) , .-(..m x n) , (m x r) , and 
are assumed to be given. 



In vector products the right vector is a column, the left 

vector is a row; thus, ab is the inner product of vectors a and 

b; aA is the product of a row-vector a on a matrix A; Aa is 

the product of a matrix A on a column-vector a. 

The choice of a canonical form for the problem is to some 

extent arbitravy, various modifications and particular cases 

of Problem 1 being possible (i.e. integers n, m and r may 

depend on the number of stage t; constraints on the state and 

control variables can be separate; state equations include time 

lags of state and/or control variables; the performance index 

depends on the whole sequences {u(t)) and/or {x(t)), etc. [3tJ2I* 

However, these variants of Problem 1 can either be reduced to 

this problem [12,13] or the results stated below may be used 

directly for their solution. 

Along with the primary Problem 1.1, skatement of the dual 

problem will be necessary. 

Introducing the Lagrange multipliers X (t) E Ern (t = T-1 , 
..., 1,O) and p(t) E En (t=T ,..., 0) for constraints (1.3) and 
( 1 1 ) , ( 1 .2) respectively. From (Table 1 ) one can obtain the 

following dual DLP problem [I21 . 

Problem 1.2 Find a dual control 

= A T -  1 , .  (0)) 

and a dual (conjugate) trajectory 

P = {p(T),---,p(O)} , 

satisfying the costate (conjugate) equations 

with boundary condition 



and constraints 

which minimize the performance index 

D e f i n i t i o n  I .  1  A f e a s i b l e  c o n t r o l  of the DLP Problem 1.1 

is a vector sequence u =  {u(O), ..., u(T-1)) which satisfies with 
some trajectory x={x(O), ..., x(T)) conditions (1.1) to (1.4). 

An o p t i m a l  c o n t r o l  of Problem 1.1 is a feasible control u*, 

which maximizes (1 -5). 

F e a s i b l e  d u a l  c o n t r o l s  X and o p t i m a l  dua l  c o n t r o l  X* to 

the dual Problem 1.2 are defined in a similar way. 

The sets of all feasible controls u and X of Problems 1.1 

and 2.1 will be denoted by $2 and A. 

Theorem I .  1  ( D u a l i t y  Theorem [I211 I f  one  o f  t h e  dua l  

Problems 1 . 1  and 1.2 has  a n  o p t i m a l  c o n t r o l ,  t h e n  t h e  o t h e r  has  

an  o p t i m a l  c o n t r o l  a s  w e l l  and t h e  v a l u e s  o f  t h e  per formance  

i n d e x e s  o f  t h e  pr imary  and d u a l  Problems 1.1 and 1.2  a r e  e q u a l :  

I f  t h e  per fo rmance  i n d e x  o f  e i t h e r  Problem 1 .1  o r  1 .2  i s  

unbounded ( f o r  Problem 1.1  from above and f o r  Problem 1.2  from 

b e l o w ) ,  t h e n  t h e  o t h e r  problem has  no f e a s i b l e  c o n t r o l .  



2. AUXILIARY PROBLEM 

rT Let U = E  ; u = {u(O), ..., u(T-~))EU be the control 
space of Problem 1.1. In the control space U Problem 1.1 can 

be rewritten as follows. 

One can obtain from the state equations (1.1 ) that [ 131 : 

where 

I is the identity matrix. 

By substituting (2.1) into (1.3) and taking into account 

(1.2), we obtain the constraints on controls u, given in 

explicit form (Table 2) : 

Here 

W(t,.r) = G(t)Y(t,.r + I)B(T) (t > T) 

The matrices W (t, T) are of dimension (m x r) and vectors 

h(t) are of dimension (mx 1). 



The performance index (1.5) will be rewritten, respectively, 

in the form 

where 

Here vectors q(t) are satisfied to the state equation of the 

form 

with 

Denoting the constraint matrix of (2.2) by W (dimension 

is mT xrT), we can reformulate Problem 1.1 in the following 

equivalent form (see also Table 2) : 

Problem 2.1 Find a control u = {u (0) , . . . ,u (T-1) 1 ,  satisfying 
the constraints 

which maximizes the performance index 

J, (u) = CU . (2.7) 

T Here h = h 0  h T - 1  ; q = [q(O),. . .,q(~-l)lT; 
1CI 

c = [c (0) , . . . , c (T-1 ) lT; T denotes transposition; J1 differs 

from J1 on the constant number q(0)x0. 



I t  i s  e v i d e n t  t h a t  t h e  sets o f  o p t i m a l  c o n t r o l s  f o r  

Problems 1 .1  and 2.1 a r e  t h e  same. 

Problem 2.1 h a s  b l o c k - t r i a n g u l a r  c o n s t r a i n t  m a t r i x  ( 2 . 2 )  

and h a s  been s t u d i e d  i n  many works (see [ I ] ) .  However, s t a t e -  

ment o f  t h e  problem c o n s t r a i n t s  i n  t h e  form ( 2 . 2 )  d o e s  n o t  

a l l o w  u s e  o f  t h e  dynamic n a t u r e  o f  t h e  problem i n  f u l l  measure .  

More n a t u r a l ,  and  t h e r e f o r e  more e f f e c t i v e ,  would b e  d i r e c t  u s e  

o f  t h e  s p e c i f i c  c h a r a c t e r  o f  Problem 1.1 as a n  o p t i m a l  c o n t r o l  

problem. 

B e f o r e  c o n s i d e r i n g  t h i s  approach  t h e  g e n e r a l  scheme o f  t h e  

s i m p l e x  method as a p p l i e d  t o  Problem 2.1 w i l l  b e  d e s c r i b e d .  

I f  t h e  s t r u c t u r e  o f  t h e  m a t r i x  W i s  n o t  t a k e n  i n t o  a c c o u n t ,  

Problem 2.1 i s  a n  o r d i n a r y  LP problem i n  c a n o n i c a l  form.  

L e t  u  b e  a f e a s i b l e  c o n t r o l ;  w e  s h a l l  d e f i n e  t h e  i n d e x  

sets 

The u n i o n s  o f  t h e s e  sets o v e r  a l l  t = 0 , 1 ,  ..., T-1 w i l l  b e  

d e n o t e d  by 

Denote a l s o  t h e  columns o f  m a t r i x  W by wi ( t )  (i = 1 , .  . . , r ;  
t = 0 , 1 ,  ..., T-1):  w i ( t )  EE". I n  t h a t  case t h e  c o n s t r a i n t s  ( 2 . 6 )  

c a n  b e  r e w r i t t e n  a s  



D e f i n i t i o n  2 . 1  A b a s i c  f eas ibZe  c o n t r o l  of Problem 1 . 1  

is a feasible control u, for which vectors wi(t), (i,t) E ~ ( u ) ,  
are linearly independent. 

A nondegenerate  b a s i c  f e a s i b l e  c o n t r o l  is a basic feasible 

control u, for which vectors wi (t) , (it t) E I (u) , constitute a 
basis in E ~ ~ .  

Evidently the basic control is an extreme point of poly- 

hedral set Q .  

D e f i n i t i o n  2 . 2  The b a s i s  o f  b a s i c  c o n t r o l  u is a system 

of mT linear independent vectors wi(t), which contains all 

vectors wi (t) , i (t) E: I (u) . 

Denote by IB(u) the set of indices corresponding to the 

basic vectors wi(t); IN(u) is the set of indices corresponding 

to the remaining vectors wi(t) of matrix W. 

In general, IB(u) 2 I(u). If u is a nondegenerate basic 

control, then 

Let 



and m(t) is the number of basic components of a basic control 

u at step t. Evidently, 

We shall now consider the simplex-procedure of finding 

the optimal control u* in terms of Problem 2.1. 

As usual, without any loss in generality we assume that 

Problem 2.1 (1.1) is feasible and that any basic feasible 

control is nondegenerate. 

In accordance with definitions 2.1 and 2.2 any basic 

feasible control may be represented as 

u = {uB,uN), with ug 2 0, UN = 0 

Let 

0 0 
uO = tu;,ol , u B = tui(t)l , (i,t) E I~(uO) 

be a given feasible control with associated set linearly 

independent vectors wi (t) , (i , t.) E IB (uO ) . Then 

C 0 
Wi (T)ui (T) = h , 

(i,~) cIB(uO 

where all U~(T) > 0. 

Denote by WB the matrix with columns wi (t) , (i,t) E IB(uO) 
(basic matrix). 

Then (2.9) can be written in the form 

By Definition 2.2 WB is a nonsingular matrix, therefore 




























































































































