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PREFACE

Finding optimal solutions to models is a central tool of
the Systems and Decision Sciences Area, and many optimization
problems in economic, management, technological systems, etc.
can be reduced to dynamic linear problems. There are many
different approaches and methods for tackling dynamic linear
programming problems which use decomposition, penalty functions,
augmented Lagrangian nested decomposition, generalized gradient,
etc. methods. The simplex-method is by all means the basis
method for solution of linear programming problems. However,
the extension of the simplex method for the dynamic case has yet
to be made.

This paper presents a finite-step algorithm which seems to
be the natural and straightforward extension of the simplex-
method to the dynamic case. The paper contains only a theore~
tical description and evaluation of the algorithm. Theoretical
reasonings show that this algorithm may serve as a base for
develcping effective computer codes for the solution of dynamic
LP problems (just as the simplex-method was for the solution of
static LP problems). However, the final judgment of the algo-
Fithms' effiency can be made only after a definite period of
its use in practice.
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ABSTRACT

In this paper a finite-step method for solving dynamic
linear programming (DLP) problems is described.

Many optimization problems in economic, management, tech-
nology, etc. are formulated as DLP problems, because now it
becomes difficult to make a decision without taking into account
the possible consequences of such a decision for a certain time
period.

As DLP problems are large-scale by nature, the standard
"static" LP methods become ineffective for the dynamic case and
the development of methods specially oriented to DLP problems
is needed.

The method suggested is a natural and straightforward
extension of one of the most effective static LP methods--the
simplex method--for DLP. A new concept--a set of local bases--
(for each time step) is introduced, thus enabling considerable
reduction of the requirements to computer core memory and CPU
time.

In the proposed method the system of T local m xm bases
is introduced and the basic simplex procedures (selection of
vectors to be removed from and to be introduced into the basis,
pricing procedure, transformation of bases) as applied to this
system of T local bases are described. Evaluation of possi-
bilities of the method and its connection with compact inverse
LP method are discussed.
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The Dynamic Simplex-Method

INTRODUCTION

Methods of linear programming (LP) are now well studied
and have an extensive field of applications [1,2,3]. Dynamic
linear programming (DLP) is a new development of LP methods for

planning and control of complex systems.

Many optimization problems in economic, management, techno-
logical systems can be reduced to DLP problems (see, for example,
[1-6]). However, the development of DLP methods and its appli-
cations are restrained by lack of universal DLP computer codes.
Therefore many DLP problems are now being solved by reducing
them to static ones and using for their solution the standard

LP codes (see, for examples, [4,6]).

As DLP problems are principally large-scale, this "static"
approach is limited in its possibilities, and development of
algorithms specially oriented to dynamic LP problems is needed.

In recent years, methods for DLP have been developed which
make ‘it possible to take into account the specific features of
dynamic problems [7,9].* But extension of the most effective
LP finite-step method--the simplex method--for the dynamic case

has yet to be made.

The dynamic simplex method was suggested in {[{10,11]. This
approach uses essentially the dynamic specific of DLP problems.
The main concept of the static simplex method--the basis--is
replaced by the set of local bases, introduced for the whole
planning period. It allows a significant saving in the amount
of computation and computer core and permits development of a
set of finite~-step DLP methods (primal, dual and primal-dual
dynamic simplex methods) which are direct extensions of the

corresponding static finite-step methods.

* See also references in [3].




In this paper, detailed description of the dynamic simplex
method is given and connection with the method of compact

inverse is discussed.

1. STATEMENT OF THE PROBLEM

Consider the DLP problem in the following canonical form.

Problem 1.1 Find a control

u = {u(0),...,u(T-1)1}
and a trajectory

x = {x(0),...,x(T)} ,
satisfying the state equations

x(t+1) = A(t)x(t) + B(t)u(t) {(1.1)
(t =0,1,...,T-1)

with initial condition

x(0) = x° (1.2)
and constraints

G(t)x(t) + D(t)u(t) = f£(t) (1.3)

u(t) > 0 (1.4)

which maximize the performance index

J1(u) = a(T)x(T) . (1.5)

Here the vector x(t)=={x1(t),...,xn(t)} defines the state of

the system at stage t in the state space X, which is assumed

to be the n-dimension euclidean space; the vector u(t) =
{u1(t),...,ur(t)}eEr (r-dimension euclidean space) specifies

the controlling action at stage t; vectors a(T), xo, f(t) and the
matrices A(t), B(t), G(t), D(t), are respectively of dimensions
(nx1), (nx1), (mx1), and (nxn), (nxr), (mxn), (mxr), and

are assumed to be given.



In vector products the right vector is a column, the left
vector is a row; thus, ab is the inner product of vectors a and
b; aA is the product of a row-vector a on a matrix A; Aa is

the product of a matrix A on a column-vector a.

The choice of a canonical form for the problem is to some
extent arbitrary, various modifications and particular cases
of Problem 1 being possible (i.e. integers n, m and r may
depend on the number of stage t; constraints on the state and
control variables can be separate; state equations include time

lags of state and/or control variables; the performance index

depends on the whole sequences {u(t)} and/or {x(t)}, etc. [3,12].

However, these variants of Problem 1 can either be reduced to
this problem [12,13] or the results stated below may be used

directly for their solution.

Along with the primary Problem 1.1, statement of the dual

problem will be necessary.

Introducing the Lagrange multipliers A(t) e jou (t = 7-1,
«-.,1,0) and p(t) ¢ o (t=T,...,0) for constraints (1.3) and
(1.1), (1.2) respectively. From (Table 1) one can obtaih the
following dual DLP problem [12].

Problem 1.2 Find a dual control

A= {X(T-1),..., (0)}
and a dual (conjugate) trajectory

p = {p(T),...,p(0)} ,
satisfying the costate (conjugate) equations

p(t) = p(t+1)A(t) - A(t)G(t) (1.6)
(t = T7-1,...,1,0)

with boundary condition

p(T) = a(T) (1.7)



and constraints

p(t+1)B(t) = A(t)D(t) < 0 (1.8)
(t = T- 1,...,1,0)
which minimize the performance index
T=1
o

J,(0) = p(0)x + ] ME)f(t) . (1.9)
t=0

Definition 1.1 A feasible control of the DLP Problem 1.1

is a vector sequence u={u(0),...,u(T-1)} which satisfies with

some trajectory x={x(0),...,x(T)} conditions>(1.1) to (1.4).

An optimal control of Problem 1.1 is a feasible control u¥,

which maximizes (1.5).

Feasible dual controls X and optimal dual control A¥ to

the dual Problem 1.2 are defined in a similar way.

The sets of all feasible controls u and A of Problems 1.1
and 2.1 will be denoted by 2 and A.

Theorem 1.1 (Duality Theorem [12]) If one of the dual
Problems 1.1 and 1.2 has an optimal control, then the other has
an optimal control as well and the values of the performance
indexes of the primary and dual Problems 1.1 and 1.2 are equal:

J1(u*) = JZ(X*) . \

If the performance index of either Problem 1.1 or 1.2 1is
unbounded (for Problem 1.1 from above and for Problem 1.2 from

below), then the other problem has no feasible control.



2. AUXILIARY PROBLEM

Let U=E"Y; u = {u(0),...,u(T-1)} eU be the control

space of Problem 1.1. 1In the control space U Problem 1.1 can

be rewritten as follows.

One can obtain from the state equations (1.1) that [13]:

t-1
x(t) = ¥(t,0)x(0) + ) V¥Y(t,t+1)B(1)u(1) (2.1)
' T=0
where
Y(t,1) = A(t-1)...A(1) (0 <1 <t), ,
Y(t,t) = 1 ,

I is the identity matrix.

By substituting (2.1) into (1.3) and taking into account
(1.2), we obtain the constraints on controls u, given in

explicit form (Table 2):

W(0,0)u(0)
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(2.2)

W(T-1,0)u(0) + ... + W(T-1,t)u(t) + ... +

+ W(T=1,T-1)u(T-1) = h(T-1)
Here
Wit, 1) = G(t)¥(t,T+1)B(T) (t > 1)
W(t,t) = D(t)
h(t) = £(t) - G(t)¥(t,0)x°

The matrices W(t,t) are of dimension (m xr) and vectors

h(t) are of dimension (mx 1),




The performance index (1.5) will be rewritten, respectively,

in the form

T-1

I w = ] at+NBE)Iult) + q(0)x’ (2.3)
t=0
or
-1 0
Ji(w) = ) c(t)ult) + q0)x
£=0
where
cT(t) = q(t+1)B(t) (t = 0,...,T=1)  (2.4)

Here vectors q(t) are satisfied to the state equation of the

form
gq(t) = q(t+1)A(t) (t = T-1,...,0) (2.5)
q(T) = a(T)

with
g(t) = a(T)¥Y(T,t) .

Denoting the constraint matrix of (2.2) by W (dimension
is mT xxrT), we can reformulate Problem 1.1 in the following

equivalent form (see also Table 2):

Problem 2.1 Find a control u = {u(0),...,u(T-1)}, satisfying

the constraints

Wua = h
(2.6)
u > 0
which maximizes the performance index
31(u) = cu . (2.7)

Here h = [h(0),...,h(T-1)1T; q = [q(0),...,q(T-1)1T;
c = [c(O),...,c(T—1)]T; T denotes transposition; J1 differs

from J1 on the constant number g(0)x°.



It is evident that the sets of optimal controls for

Problems 1.1 and 2.1 are the same.

Problem 2.1 has block-triangular constraint matrix (2.2)
and has been studied in many works (see [1]). However, state-
ment of the problem constraints in the form (2.2) does not
allow use of the dynamic nature of the problem in full measure.
More natural, and therefore more effective, would be direct use
of the specific character of Problem 1.1 as an optimal control
problem.

Before considering this approach the general scheme of the

simplex method as applied to Problem 2.1 will be described.

If the structure of the matrix W is not taken into account,

Problem 2.1 is an ordinary LP problem in canonical form.

Let u be a feasible control; we shall define the index

sets
I(u(t)) = {iluj0) > 0o, i=1,...,r}
Ifu(t)) = Lijlu(0) = 0, i=1,...,r}
The unions of these sets over all t = 0,1,...,T-1 will be
denoted by
I(u) = U I(u(t)) ; I(u) = U I(u(t))
t t
Denote also the columns of matrix W by wi(t) (i=1,...,r;

t=20,1,...,7-1); wi(t) e EMT, 1In that case the constraints (2.6)
can be rewritten as




T™1 r
tZO .21 wilt)u;(£) = h uj (k) > 0
= 1=

Definition 2.1 A basic feasible control of Problem 1.1

is a feasible control u, for which vectors wji(t), (i,t) €I(u),

are linearly independent.

A nondegenerate basic feasible control is a basic feasible
control u, for which vectors wijl(t), (i,t) eI(u), constitute a
basis in EMT.

Evidently the basic control is an extreme point of poly-
hedral set Q.

Definition 2.2 The basis of basic control U is a system

of mT linear independent vectors wj (t), which contains all

vectors wj (t), i(t) € I(u).

Denote by Ig(u) the set of indices corresponding to the
basic vectors wj(t); Iyg(u) is the set of indices corresponding

to the remaining vectors wj (t) of matrix W.

In general, Ig(u) D I(u). If u is a nondegenerate basic

control, then

Ig(w) = I .
Let
ug = {uy(t)|(i,t) exg(u)}
(2.8)
uy = {uj()|(i,t) eIy}



and m(t) is the number of basic components of a basic control
u at step t. Evidently,
T-1

) m(t) = mT
t=0

We shall now consider the simplex-procedure of finding

the optimal control u* in terms of Problem 2.1.

As usual, without any loss in generality we assume that
Problem 2.1 (1.1) is feasible and that any basic feasible

control is nondegenerate.

In accordance with definitions 2.1 and 2.2 any basic

feasible control may be represented as

o
|

{ug,uy}, with ug > 0, uy =0

Let

u® = {ug,0} ,  ul={ul(®)}, (i,8) eIg(u®)

be a given feasible control with associated set linearly

independent vectors wj (t), (i,t) eIB(uO). Then

wi(tug (1) = h , (2.9)
(i,7)eIg(u®)

where all uj (1) > o.

Denote by Wp the matrix with columns wj (t), (i,t) e Ig(u®)
(basic matrix).

Then (2.9) can be written in the form

By Definition 2.2 Wgp is a nonsingular matrix, therefore

ug = Wg'h . (2.10)
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Define also the number Zgs associated with the basic

control u® = {ug,O}:

z, = ) c. (tu; (1), (2.11)
(i,7)eIg(u’) 1 1

Or, in vector form,

where cg = {cij(1)}, (i,T1) eIB(uo) .

Here cj (1) are the cost coefficients of the objective
function (2.7) and defined in (2.4), 2z, is the corresponding

value of the objective function for the given control u?.

Since the set of vectors wj(t), (i,t) € Ig(u’), which
constitutes the basic matrix Wg, is linearly independent, we
can express any column vector of the matrix W in terms of

vectors {wj(t)}, (i,t) eIg(u®).

Let wj(t1) be an arbitrary column vector of W (j = 1,...,r;
= 0,1,-.-,T-1), then

w.(t,) = Y V..t ,T)w, (1) (2.12)
3 (i,T)elg(u®) 3 17772

(3 =1,...,r; t1 =0,1,...,T-1).
Or, in matrix form,
wj(t1) = Wij(t1) ’ (2.12a)

where Vj (t1) = {Vij (t1lT)}r (i,7) EIB(UO)I' (3 =1,...,xr;

ty = 0,1,...,T-1) are coefficients vectors of dimension mT and
defined from

1

vj(t1) = W

B wj(t1) . (2.13)
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Using the coefficients {vij(t1,r)}, one can define numbers

z.(t,) = ) v..{t,,1)c, (1) (2.14)
3 (i,merg(u®) 1001

where Ci(T) are calculated from (2.4), or in the matrix form:

zj(t1) = Vj(t1)cB
Thus, numbers cj(t) and zj(t) can be defined from
n
. (t = t+1)b, . (t
ej(8) = L a (s Dby
(2.15)
| ) ) '
z.(t) = g, (t+1)b, . (t)v,.(t,T)
J (i,T)EIB(u°) k=1 k ki 1]
(3 =1,000,r; t =0,1,...,T-1) ,
or, in the matrix form:
cj(t) = q(t-+1)bj(t) (2.15a)
T=1
zj(t) = Zq(T+1)BB(T)Vj(t'T)

=0

Here bkj(t) are elements of the matrix B(t), bj(t) are its
columns; the matrix Bg(T) is generated by the basic columns

bi(T),(i,r)eIB(u°) of the matrix B(Tt).

The following assertions are true (see, for example, [1,14]).'

Theorem 2.1 If for any basic feastible control u® = {u,0}

the conditions

zj(t) - cj(t) > 0

hold for all j=1,...,r and t=0,1,...,T=1, then u® is an

optimal control.

If for any fixed (j,t) the condition

zj(t) - cj(t) < 0
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holds, then a set of feasible controls can be constructed, such

that

e = 7 0
J1(u) > z, = J1(u )
for any control u of the feasible control set Q, where the upper

bound of 31(u) 18 eilther finite or infinite.

Here 51(u) and z, are defined by (2.7) and (2.11) respec-
tively.

Thus the direct implementation of the simplex method to
Problem 1.1 (2.1) gives the following procedure. It is assumed
that an initial basic feasible control and, associated with it,
numbers vij(t,T), cj(t), zj(t) (i,7) eIB(u), j=1,...,r,
t=0,1,...,T-1 (initial tableau) has been constructed:

1. The testings of the zj(t)-—cj(t), (3j=1,...,; £t=0,...,T-1)
elements to determine whether an optimal control has been found,
that is, whether zj(t)-cj(t) > 0 for all j and t.

If zj(t)-cj(t) < 0 for some (j,t) and all vij(t,r)
associated with the pair (j,t) are non-positive, then the
Problem 1.1 {(2.1) has no solution, that is, the function 31(u)
is unbounded above on the feasible control set Q.

If zj(t)-cj(t) < 0 for some pair (j,t) eIN(u), and for
each such pair (j,t) at least one vij(t,r) > 0, then a new
basic control is chosen. For that one should proceed to new

steps.

2. The selection of the vector to be introduced into the
basis, that is selection of the vector with minimal wvalue of
zj(t)-cj(t).

Let the pair of indices associated with this vector be

(3rtq) -

3. The selection of the vector to be eliminated from the basis.
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4. The transition from the o0ld basic feasible control to
the new one. The new basic feasible control u(1) ={ué1),0}

is defined by

ui(1)(T) = (1) = By (g1, (1,7) e Ig(u®)
(1) -
ui(1)(T) - 0 (i,7) # (3,tq); (1,71) e Ig(®)

where the value 60 is calculated from

. t
6 = min _um o we(t2) (2.16)

Vij“H,T)>O Vij(t1iT) sz(t1lt2)
(i,71) EIB(u°)

For the nondegenerate case the minimum in (2.16) achieves

for a single pair (Z,tz). For the degenerate case the minimum
achieves for several pairs (i,t) and it is necessary to use
special rule for choice (i,T) in order to avoid zigzagging of
the algorithm [1,14].

In any case after a finite number of steps the process
terminates, as either an optimal control will be found or

insolubility of the problem will be established.

In practice the numbers zj(t) are usually computed from

z.(t) = ) w.. (E)A, (1) (2.17)
(i,1) eIgu®) *J *

where A = {Ai(T), (i,71) EIB(u°)} are simplex multipliers for

the basis WB associated with the basic feasible control u?®:

_ -1
A= cBWB . (2.18)
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The general scheme considered above is in practice
ineffective for solution of Problem 1.1 (2.1) because of the
too-large dimension of the matrix W. Further, the input data
are usually given in the form of Problem 1.1 rather than in
the form of Problem 2.1. Therefore the simplex procedure

directly designed for solution of Problem 1.1 will be described.

3. EQUIVALENT PROBLEM

The matrices D(t) (t=0,...,T-1) of constraints (1.3) will
be assumed to have the rank m. This preposition, as in the

static case, is not limiting [1,14].

Let us denote
£(0) = £(0) - G(0O)x(0) .
Then constraints (1.3) can be rewritten as

D(0)u(0) = £(0) . (3.1)

In accordance with the preposition we can choose m linear
independent column-vectors di(O) of the matrix D(0) and generate
the matrix DO(O) from these columns. The matrix from the rest
of the columns will be denoted by D1(0). Thus

D(0) = [Dy(0); Dy(0)] .

As determinant |D0(0)| # 0, the constraints (3.1) can be

rewritten in the form
_ -1 A _ a1
uo(O) = DO (0)£(0) D0 (0)D1(0)u1(0) ’ (3.2)

where components of the vector uO(O) e E" correspond to the

r-m

matrix DO(O) and components of the vector u1(0) €eE correspond

to the matrix D1(0).
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To representation of the matrix

D(0) = [Dy(0); D,(0)]

corresponds the representation of the matrix

B(0) = [By(0); B,(0)]
Therefore |

x(1) = A(0)x(0) + By(0)uy(0) + By (0)uy(0) . (3.3)
Substituting (3.2) into (3.3), we obtain

x(1) = x*(1) + B (0)u,(0) (3.4)
where

B'(0) = B,(0) - By(0)D' (0)D,(0)

x¥(1) = A(0)x(0) + By(0)u(0) ,

ut(0) = Dby’ (0)2(0)

Considering the constraints (1.2) of Problem 1.1 at the
next step and inserting the value x(1) defined by (3.4) into
(1.2), we obtain the constraints at the next step in the

following form:

G(1)x* (1) + G(1)B1(0)u1(0) + D(1)u(1) £(1)  (3.5)

Denote

B (1) [c(el(); b1 , (3.6)

a1 = [u (0, a(nmi® (3.7)

E(1) = £(1) - c(1)x*(1) . (3.8)

Now (3.5) is rewritten as
p(ha(m = &M , (3.9)
where the matrix D(1) is of dimension (m x (2r-m)), and vectors

(1) e g2r-M; £(1) e EMm are defined from (3.6) to (3.8).

As the structure of constraints (3.9) is identical to

(3.1), then the construction for the zero step t =0 can be
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repeated for the next step, that is for (3.9).

As a result, we obtain at a step t, 0<t <T-1, the following

relations.
Let
p(tya(t) = f(¢t) (3.10)
where
B(t) = IG(t)B'(t-1); D(t)] (3.11)
agt) = I8, (-1 w1’ (3.12)
£(t) = £(t) - G(E)x*(t) . (3.13)

In (3.11) to (3.13) the matrix B1(t-1) and vectors
61(t-1),x*(t) are defined from recurrent relations, which will

be defined below, at the transfer from step t to step t+ 1.

By construction, the matrix D(t) includes m linearly

independent columns ai(t).

Definition 3.1 The set of m linearly independent columns
ai(t) of the matrix D(t) is called the local basis at the step t
(t=0,1,...,T-1).

The matrix formed from these columns will be denoted by
ﬁo(t); the matrix formed from the remaining columns -- by 61(t).

Thus, (3.10) can be rewritten as

ﬁo<t)ﬁo<t> + bG8 = Et) (3.14)
A ) . (3.14)
Be) = [By(t), Do)
Hence
~ a1 P _ a-1 ~ ~
uo(t) = DO (t) £ (t) D0 (t)D1(t)u1(t) . (3.15)
Or

ﬁo(t) ﬁg(t) - o(tyu, (&), (3.16)
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where
Gge) = BylwEw (3.17)
o(t) = Byl()b,(e) . (3.18)
Let
x(t) = x*(t) + B (£-Di (k-1 (3.19)

where x*(t) and B1(t-1) will be defined later.
By substituting (3.19) into state equation (1.1), we obtain

x(t+1) = A(t)x*(t) + B(t)u(t) , (3.20)
where

B (t) [A(t)B (£ -1); B(E)] . (3.21)

the vector G(t) is defined by (3.12).

Considering the representation

B(t)

By(t): Bi(e)1 (3.22)
G(e) = 8,00 4,617 (3.23)

and substituting (3.16) into (3.19), we obtain again (cf.
(3.19)): |

x(E+1) = x*(£+1) + B1(t)ﬁ1(t) , (3.24)
where

x*¥*(E+1) = A(t)x*(t) + ﬁo(t)ﬁa(t) , (3.25)

Bl(t)y = B, (1) - By(t)e(e) . (3.26)

Initial conditions for (3.24), (3.25), (3.10) are

x*(0) = x(0)
B(0) = B(0) (3.27)
D(0) = D(O)
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The specific of representation (3.23), (3.24), (3.10) is
a recurrent determination of control G(t), that is, using

(3.12), we obtain

Ge) = [y e-n,um)1t =
= f,(t-2),u (e~ ,u®)1T = ... (3.28)
= L (0),up 1 (1), ee, g (1), 0euy (6= 1) ,u(e)]”

where the vector ut_i(i) is formed from those components of the
control u which are recomputed from a step i to the step t by
virtue of the procedure which was described above. The relations
(3.28) show that the vector u(t) may include components ui(T)

from preceding steps 1 =t-1,...,1,0.

Consider now the last step

F(T-1) (3.29)

DO(T—1)uO(T-1) + D1 (T—1)u1(T—1)

where ﬁO(T-1) is a nonsingular matrix.

Let

g, (-1 = o . (3.30)
Then from (3.29):

Go(r-1) = ﬁg"'(T-nE(T-n . (3.31)

Determining the value of the vector ﬁ(T—1)==[ﬁO(T-1),
G1(T—1)]T from (3.30), (3.31), one can determine the values of
feasible control {u(t)} for a given set of local bases {Do(t)}
(t=0,1,...,T-1).

This procedure will be called Procedure 1 (Table 3).

Procedure 1 reduces the original Problem 1.1 to an

equivalent Problem 3.1.
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Problem 3.1 (Equivalent Problem) Find a control u = {u(t)},

for which

uTﬁom-1m (T-1) -+ max

uy(t) = up(t) - e(v)u,(t) > 0
ey = B3 (£) [£(£) = G(E)x*(£)]
x*(t=1) = A(t)x*(t) + By(t)ud(t)
a(e) = [a,(t-1,u(t)] = mownﬁﬂul
D(t) = [D,(t):Dy(t)]

B(t) = [By(t);B ()]

o(t) = By (£)B, (&)

Gr-1 = G (t-1 ; G (°-1 = 0
D(r-1) = Dy(r-1 ; Dy(r-1) = 0
B(T-1) = By(r-1) ; By(T-1) = 0
t=20,1 ..., T-1

Procedure 1 gives the values of both vectors u(t) and
vectors {ﬁ (t), (t)} (t=0,1,...,T-1).

The set of all indices (i,t) associated with the components
of vectors ﬁo(t) will be denoted by I,(u); the supplement of
Io(u) to the total set of indices {(i,t)| i=1,...,r; t=0,1,
«..,T-1} will be denoted by io(u). One can easily see that the
total number of indices of Io(u) is equal to mT and that the
total number of indices Io(u) is equal to (r-m)T.
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Theorem 3.1 Let a control u be computed from Procedure 1

for a given set of local bases {Do(t)} with boundary conditions
do(r-1) = B lr-nE@-1
a(r-1) = 0

and let
ui(t) > 0 for all (i,t) € Io(u) .

Then u 18 a basic feasible control and

u, = {ui(t)l (i,£) eIy(u)}
we = {u ()] (i,8) eI ()} .
Proof Let W be the matrix which is generated by the

colunmns wi(t) of the constraint matrix W, associated with

A

variables uo(t), that is,

W = || wye) || (i,t) eIy(u) .

By construction, W, is a square matrix of dimension mT xmT.

0

For proof of the theorem we shall need the following

assertion.

Lemma_3.1 The matrix W, 18 nonsingﬁlar 1f and only if

the matrices ﬁo(t) (t=0,1,...,T-1) are nonsingular.

Proof: Sufficiency The procedure of computing {ﬁo(t)}

described above is a block modification of the Gauss method [15]
where pivot blocks are matrices ﬁo(t). The Gauss algorithm
transforms the matrix WO to an upper-block triangular matrix
with ﬁo(t) on its diagonal:
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DO(O)x 0 . 0
0 D0(1)x . . 0
W = A
0 0 Do(t)x 0
0 . D -
L . DO(T 1) |

The Gauss algorithm does not change the rank of the

original matrix [15]. In fact, the relation
']wol) = ‘IDO(O)I .« . |Dy(T=1)] (3.32)

holds, where ‘lwl‘ is the absolute value of the determinant of
a matrix W. The relation (3.32) implies that, if matrices

ﬁo(t) (t=0,1,...,T-1) are nonsingular, then the matrix WO is

also nonsingular.

Necéssity Suppose that k iterations of the Gauss algorithm

have been done and W;< is a matrix obtained after k iterations:

By (0)x ) ) 0
0 B, (1)x ) 0
k _
Wy = .. ) .. D. (k-=1)x
0
~
L 0 0 e e e e e e e e e e e WO |

Here ﬁg< is a submatrix, generated by elements of Wgc which are
outside of pivot rows and columns of previous iterations. 1In
this case the relation (3.32) should be replaced by

By (0) |

A ~ k
|D (k-1) ' IWO |

‘|w

o|‘ - 0
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The first block-row of WS is [D(k);0]. Suppose that the

matrix D(k) cannot generate any nonsingular square submatrix
éo(k) of dimension m. This implies that'thf]fows of the matrix
D(k) are linearly dependent and the matrix W, is singular with
|WX|=0. Then it follows, from (3.32), that |Wy| = 0, which

contradicts the assumption of the lemma.

ol

Thus, if the matrix WO is nonsingular then at each step
of the Gauss algorithm a nonsingular matrix ﬁo(k) can be con-

structed. This completes the proof of the lemma.

The proof of the theorem now follows directly. By defini-
tion, matrices ﬁo(t) (¢t=0,...,T-1) are nonsingular, which
implies that the matrix W, is also nonsingular and vectors

wi(t), (i,t) eIO(u), are linear independent.

It follows from Procedure 1 that
u; (t) = 0 for all (i,t) eio(u) .

As ui(t) > 0 for all (i,t) eIO(u), then in accordance with
Definition 2.1 u is a basic feasible control. This completes

the proof of the theorem.

Thus Procedure 1 provides the possibility in principle
of computing a basic feasible control, operating only with the
set of local bases {ﬁo(t)}.

It follows from the constructions of the previous section
that a basic feasible control u=={uB;uN} is a solution of the

set of linear equations

W,u = h (3.33)

with

The proof of Theorem 3.1 shows that implementation of the
Gauss algorithm to solution of the set of equations (3.33)

permits operation not with the inverse Wy of dimension mT X mT
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but with T inverses ﬁ_;(t) of dimension m X m.

Hence the computing possibilities enlarge in qualitative
degree. Thus Procedure 1 is basic to this approach. However,

as will be seen further, it is not used in this precise form.

4. CONTROL VARIATION

Let
u = {uB; uN}
be a basic feasible control of Problem 1.1 with a basic matrix

(basis) WB.

In accordance with Theorem 3.1 the basis WB is equivalent
to the set of local bases {Qn§t)}. Therefore our problem is
to develop the simplex operations for solution of Problem 1.1
relative to the set of local bases {Qn§t)}. (This operation
has been described in Section 2 in connection with the "global"

basis WB.)

For a given basic feasible control u, let us fix the pair
of indices (j,t1) (3 =1,...,x; t1==0,1,...,T-1) such that the
corresponding column dj(t1) of the matrix D(t1) is not in the

basis, that 1is,

(j,t1) eI (u) .

N

We first consider the procedure for selection of the column
dj(t1) to be introduced into the basis, that is, into the set
of local bases {D

0B
constraints (1.3) at step t can be written as

(t)}. In accordance with Section 3, the

ﬁOB(t)GOB(t) + ﬁ1B(t)ﬁ1B(t) = f(t) (4.1)
where

[Byp(t): Dip(0)] = DBp(e)

[uOB(t); u1B(t)] = uB(t) ;

ug () > 0
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Here the subscript B denotes submatrices and/or vectors

associated with a given basis Wy + {BOB(t)}.

Let a vector G;B(t1) e E" define representation of the

vector d.(t1) in terms of column-vectors of the matrix DOB(t1),

that is,
A A* —-
As ﬁOB(t1) is a nondegenerate matrix, one can obtain from
(4.2)

VOB(t1) = DOB(t1)dj(t1) . (4.3)

Taking into account (4.2) and (4.3), we can rewrite (4.1)

as

Dos(t1)[u03(t1)"GVBB(t1)} *

+ D1B(t1)u1B(t1) + Gdj(t1) = f(t1) (4.4)

where 6 is a real number.
It is evident that the equality (4.4) is true for any value
of the parameter 9.

It follows from (4.4) that a new control Ge(t1) is intro-

duced at step t1:

~0 _ ~0 ) .~ T
u (tq) = [uOB(t1), uiplt): uN(t1):| ’
whére
8% (t.) = G (t.) - e%*_(t.)
0B 't1 o 't1 0B 't1
% (k) = 4, () (4.5)
18 %1 15 %1 -

A T
ug(t1) = [0, -.., 08, ..., 01% .
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By substituting the control ﬁe(t1) in state equation (3.20),

we obtain

(e 41 = AlE)x*(e) + B0 ()
Or
x4 1) = x(ty 4 1) - yk (k4 1) (4.6)
where
x(tg+1) = xk(tg+1) + Bo(e )b, o(E)
y¥(eg+1) = Bop(e)E (e - bi(Ey) (4.7)
B(t,) = [A(t1>B;(t1-1>; B(t1)] ;

bj(t1) is the j-th column of the matrix B(t1).

Substituting (4.6) into constraints (1.3), we see that
they will be true if

Dy(ty + DA (£, +1) = 8G(t, + Ny*(t +1) = Bt +1). (4.8)

Let us express the vector -G(t1'+1)y*(t1-+1) in terms of
column vectors of the matrix BoB(t1+ 1):

DOB(t1+1)V3B(t1+1) = —G(t1+1)y*(t1+1) ' (4.9)
where

~ A—‘]
* - —
VOB(t1+1) DOB(t1+1)G(t1+1)y*(t1+1) . (4.10)

Considering (4.9),(4.10), the equality (4.8) can be
rewritten as

DOB(t1-+1)[u0B(t1-+1) - evgB(t1-+1)} +
+ Dypglty+ Dup (e +1) + 0G(t + Ny* (e +1) = £(t, +1)

where

[DOB(t1-+1);D1B(t1-+1)} = DB(t1-+1) .
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We see that the introduction of the compensating term into
the equality (4.8) is equivalent to the introduction of a new

control ﬁe(t1-+1) at step t1-+1:

~0 _ ~0 . 26 . 28 .
u (t1 +1) = [uOB(t1 +1); u1B(t1 +1); uN(t1 +1)] H
where

,\e _ A _ /\*

uOB(t1-+1) = uOB(t1-+1) GVOB(t1-F1)

~0 _ A

u1B(t1-+1) = u1B(t1-+1) (4.11)
~0 _

uN(t1-+1) = 0 .

Thus the variation of the control (4.5) at step t1, where
vector QSB(t1) is defined by (4.3), induces a variation of control

(4.11) at the next steps 1 = t1-+1, t1-+2, ce., T=2 with

A%

orL () = -Brlme(ny* () . (4.12)

Vectors y* (1) are satisfied to the following difference

equation:

y*(T+1) = A(r)y*(1) + ﬁOB(T)GgB(T) (4.13)

where vectors GaB(T) (t=tq+1,...,T-1) are defined from (4.12)

and vector GgB(t1) is defined from (4.3).

Now we consider the last step:
DB(T—1)[uB(T—1) - SVB(T-1)] -

- BG(T - 1)y*(T-1) = f£(T-1) . (4.14)

As u=={uB,O} is a basic feasible control, then by virtue

of Theorem 3.1 the matrix ﬁB(T-1) is nonsingular and

DB(T-1) = DOB(T-1) .
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Therefore (4.14) yields that

Vp(T-1) = ¥ (r-1) = —135;(T-1)G(T—1)y*(T—1) (4.15)

By definition, the structure of vector GB(T-1) is similar

to the structure of vector GB(T-—1). Hence, define a vector:
Vg(T-1) = [V1B(T—2),VB(T—1)] (4.16)

where vector vB(T-1) is associated with the variation of vector

uB(T-1), vector v (T - 2) is associated with the variation of

" 1B
vector u1B(T-2):

~0 _ A A
u1B(T-2) = u1B(T-2) - 6v1B(T-2) .

To satisfy the constraints at step T -2 the additional
term —Bﬁ1B(T-—2)v1B(T-2) must be compensated by the additional
variation VOB(T-2) of control uOB(T-Z):

Qg5 (T-2) = G (T-2) - Q[GSB(T—2) - G;B(T—2)i| ,
where
Wl r-2) = B lr-2)D, (T-2)%, . (T-2) =
0B 0B 1B 1B
= 0 (T=-2)V g (T=-2) .
Let
Vop(T-2) = i (T-2) -‘GéB(T-z) .

As in the case of (3.12) and (3.23), we can write

EVOB(T'-z)’V1B(T'-2)} =

= [{\71B(T—3),{\/B(T—2)} ) (4.17)

GB(T-z)
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By induction we find that in order to satisfy the constraints

(1.2) for all 6 and t=0,1,...,T-1, we must define

Dp(T = 1) [Ug(T-1) - 8V (T=1)] - 8G(T~Ny*(T~-1) =

~

= £(T-1)
if T =T-1 ;
Bog (1) [gg (1) - 8(¥4 (1) - ¥ (1)1 +
+# B (D h,5(0) =89, (D] = 6G(Dy* (1) = E(1)  (4.18)
if g+l <1 <T-2 ;
Bog (t1) gy (ty) = 8% (£) = G0 (£))] +
+ By (e [8,5(60) -0V, L (£)] + 0d (ty) = £(t,)  (4.19)
if T =t
Bog (1) g (1) + B9 (1)1 +
+ D (DI, (1) - 80, (D] = E(1)  (4.20)

if 0< T < t,~1

1

The vectors v*_ (1) must satisfy the following relations:

0B

A /\—1 A
* — = - — — — = —-—
VOB(T 1) DOB(T 1)G(T -1)y*(T-1) VB(T 1)
if 1t =T-1 :
A /\—1
* = - *
VOB(T) DOB(T)G(T)y (1)
if t1-+1 <T<T-2 ;
A - /\—1
* =
VOB(t1) DOB(t1)dj(t1)
if 1t =t

1
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The vectors GaB(T) satisfy the relations (0 < 1T < T=-2):

~1

_ A—1 A A
Vop (™) = DyplT)DyplT)V,

B(T) = @B(T)V1B(T) (4.21)

A

(t) of control a

Thus the wvariation VoB OB(T) (t =0,1,...,
T-1) is defined by:
VOB(T'-1) = VﬁB(T"1) ;
A A A1 R
VOB(T) = vaB(T) - VOB(T) , 1if tﬂ_iT_iT—Z (4.22)
¢ (1) = =% (1), if o<t<t
Voe (T = Vog(T) » 1 <ttty

Using (4.16), (4.17) we can hence define the values of
vectors {vB(T)} associated with the variation of control
{uB(T)}. Thus, if a new column wj(t1) associated with a column
dj(t1) is introduced into the basis WB’ then the variation of
a basic feasible control {uB,uN} in the origin control space U
is defined by

[(u, (1) - ev (1) , if (i,7) eIg(u)
e , if (i,71) =(j,t,)
Wiy o= 't (4.23)
i
0, if (i,1) € Ix(u) ,
{ (iIT)¢(jlt1) .
The upper row in (#4.23) can also be rewritten as
W (1) = Qya(1) - 8%, (1) | (4.24)
0B 0B 0B : °

Let us summarize the results.
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The variation of a basic feasible control u is defined by
relations (4.23); the sequence of vectors v(t) is computed from

the following procedure (Table 4).

First the sequence of vectors GaB(T) (T==t1,t1+1,...,T—1)
is defined by recurrent equations (4.13), (4.12) with initial

conditions (4.3).

The sequence of vectors GéB(T) (tr=T7-2,...,1,0) is computed

from recurrent relations
vB(T) = [V1B(T-1,VB(T)} '

G0 = [ogp(m, Fyp0]

with boundary condition (4.15), where vectors GOB(T) are defined
by (4.22) and (4.21).

We shall refer to the determining of the variation {ue(T)}
of a feasible control {u(t)} as Procedure 2. Procedure 2 is

represented schematically in Figure 1 and Table 4.

Thus,

~8 ~

Ugg = Ugg = OV

0B

~0 A A . .
and sequences Uygr Ypg and Vop 2re associated with sequences

{Ge(T)}, {a(t)} and {¥(1)} respectively.

The variation {GG(T)} of the basic feasible control {u(t)}
is satisfied to the constraints (1.1) to (1.3) of Problem 1.1

by definition.

As {u(t)} is a feasible control, then the constraints (1.4)
will also be satisfied for sufficiently small 8 >0. Hence the
control {ﬁe(T)} is feasible if 0<6 <0
defined by relations (cf. (2.6)):

0' The value of 60 is
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a.. (1) a,., (t,)
6. = min 91 - 0% "2 (4.25)

O din Q,, (t,)
Goi(T) >0

where uoi(T), Voi(T) are the i-th components of vectors uOB(T),

VOB(T).

The equality (4.25) follows from (1.4) and (4.24); minimum
in (4.25) achieves at single pair (Q,tz) in the nondegenerate

case.

Let us now define the variation of trajectory {x(t)}.
Considering (3.23), (4.6), (4.16), (4.18) to (4.20), we find
that the variation of trajectory

(1) = x(1) - 8y (1) (t =1,...,T)

will be defined by

y (T) y*(T)

(4.26)
y* (T +1) +‘BB1(T)€I1B(T) T=T-2,...,1,0

y(T+1)

where the vectors

n
(o)

v¥ (1)
if 0_§T_it1 ’

and

y*(T+1) A(T)y* (1) + ﬁOB(r)GgB(r)

if £,41 < T <T-1
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5. OBJECTIVE FUNCTION VARIATION

The special feasible variation of a basic feasible control
has been built up in the previous section. Now we determine
the corresponding variation of the performance index (objective

function) (1.5) under this variation of control.
Let
dj(t1) ' (J.t1) € IN(u)
be a column vector to be introduced to the basis WB’

In accordance with (4.26),

3, %) = amx(m - ea(m)y*(T) .
Denote the variation of the objective function by
- By _ 9 -
Aj(t1) = A (a7) =J,(7) -J,(u) = a(T)y*(T) , (5.1)

where indices (j,t1) show that the variation has been caused by
introduction of the column dj(t1),(j,t1) eIN(u) to the basis.
By substituting y*(T) from
* = - ¥ (] ~ B - 1) v*k -
y* (T) A(T-1)y*(T-1) + BOB(T 1)v0B(T 1)

into (5.1), we obtain

As(tg) = a(mA(T - 1y*(T-1) +

+ a(T)ﬁOB(T-1)35B<T-1) . (5.2)

Considering (4.16), (3.20) and (2.3), rewrite (5.2) as

1 ~
+ q(T = 1)Bo(T - 2) v, (T -2) +
+ q(T)BB(T-—1)vB(T-1) ’ (5.3)
where BB(T-—1) is the matrix generated by basis columns of the

matrix B(T -1), variation VB(T-1) is associated with basic

components of the vector uB(T'-1).
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By substituting
- = - - B - 2) % -
y* (T - 1) A(T - 2)y*(T - 2) + By (T =2)V§ (T 2)

into (5.3) and again using (2.3), we obtain

Aj(t1) = g(T=-2)y*(T-2) +
+ q(T=1Byg(T -2)¥8,(T-2) +
+ q(T = 1)BL(T - 2) ¥, (T - 2) +

+ q(T)BB(T-1)VB(T-1) . (5.4)

Considering (3.26) and (4.21), (4.22), we can express
Aj(t1) in the form
Aj(t1) = g(T-2)y*(T-2) +
+ g(T - 1)BOB(T—2)VOB(T -2) +

+ q(T-1)1§1B(T—2)G1B(t -2) +

1 \
+ q(T)BB(T-1)vB(T-1)
Hence and from (3.21) it follows that
Aj(t1) = Q(T-z)y*(T"z) +
+qm-1me-2WBW—2)+

+ q(T)BB(T-—1)VB(T-1)

Eventually by induction we obtain for all (j,t1) eIN(u):

T-1
Aj(t1) = Tzoq(r-l-ﬂBB(T)vB(T) - q(t1-+1)bj(t1) (5.5)
One can see that vectors VB(T) (t=0,1,...,7-1) are a
solution of the equations system (2.12). The solution is

obtained by means of the compact inverse matrix Procedure 2,
which is analogous to Procedure 1 of basic feasible control

computation (see Tables 3 and 4).
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In this procedure we used notations (cf. (2.12),(2.13) and

notations of section 4):
vij(t1,r) = viB(r) ' (],t1) EIN(u)
where

vog(t) = vi(n) o, (i1 eIz .

Thus formulas (5.5) and (2.15a) coincide and we can write

Aj (t']) = zj (t1) - Cj (t1) =
-1
= Tzoq(r+1)BB(r)vB(r) - qlty+ Dby(ty)  (5.6)

Using the dual Problem 1.2, we can now obtain another form
for the definition of the objective function variation Aj(t1).

This form corresponds to (2.17) and is more convenient in

practice.

By substituting the expression GBB(T-—1) from (4.12) at

T=T-1 into (5.2), one can obtain

b5t = alMA(T-Ny*(T-1) -
- a(T)ﬁOB(T—1)66;(T—1)G(T—1)y*(T—1)
(5.7)
Define a vector A(T - 1) as
_ 5 51
A(T - 1) = a(T)BOB(T-1)DOB(T-1) . (5.8)
Then
Aj(t1) = p(T-1)y*(T-1) ’ (5.9)

where the vector p(T - 1) is computed from dual state equation

(1.6) with boundary condition (1.7) at t=T-1, that is,

p(T=-1) = a(T)A(T-1) - A(T-1)G(T-1) .
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By induction we obtain

z,(t) = A(k)dy(Ey) | (5.10)
cj(t)) = Pty +1)by (k) (5.11)
Aj(t1) = zj(t1) - oy (ty) (5.12)
(3.t eIgla)
where
AE) = p(t+1)ﬁ0B(t)56113(t) (5.13)

and the variables A(t),p(t+1) are satisfied to the dual state

equation (1.6) with boundary condition (1.7).

Theorem 5.1 Vectors {A(t)} computed from (5.13), (1.6)
and (1.7) are the simplex-multipliers for the bastis Wg-

Proof It is sufficient to show, in accordance with the
definition of simplex-multipliers [1,2,12,14], that vectors
A(t) are satisfied to the dual constraints (1.8) as equalities
for basic indices; that is,

p(t-+1)bj(t) - l(t)dj(t) = 0 , (3,t) SIB(u) .
For this, let us consider the constraints (1.8) of the

dual Problem 2.1 relative to the current basis WB of the primal
Problem 1.1. They can be written at t=0 as

A(O)DB(O) = p(1)BB(0) . (5.14)

As a nonsingular matrix ﬁOB(O) can be generated by columns

of the matrix DB(O), then (5.14) can be rewritten as

A (0)B, 5 (0) p(1)Byp(0) (5.15)
x(0)61B(0) = p(1)1§1B(0) ) (5.16)

We use here the constructions of section 3.
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From (5.15), (5.16) we obtain

p(15[BOB(0)60;(0)61B(0) - ﬁOB(O)] = 0 (5.17)
or, in accordance with (3.25),
p(1)BL(0) = 0 . (5.18)

Using the state equations (1.6), the condition (5.18) can be

rewritten as

p(2)A(1)B;(O) - A(1)G(1)B;(O) = 0 . (5.19)

Hence and from (1.8) we obtain, for the next step,

A (1)

A l\_1
P(2)Byp(1)Dga(0) . (5.20)
By induction,

AE) = pe+ DB ()BTl (e) (5.21)

holds for all t=1,2,...,T-1, where matrices ﬁOB(t) and Baé(t)

are defined in section 3. This completes the proof.

Define Procedure 3 by formulas (5.13), (1.6), (1.7).
Procedure 3 allows computation of the values of simplex multi-

pliers {A(t)} for the current basis W, (Table 5).

B

Both Procedure 1 for finding a primal basic feasible
control and Procedure 3 for finding the corresponding dual
control (simplex multipliers) {A(t)} are based on the generalized
Gauss algorithm. It should be noted that for computing both
the values of vectors {A(t),p(t+1)} and the values of vectors
{u(t),x(t)}, one can use the same matrices ﬁa;(t), 61B(t),
Byg (t) B;(t).
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6. TRANSFORMATION OF THE BASIS

The procedure of computing the values
AL (t = z.(t) - c.(t
J( ) J( ) J( )

for vectors dj(t), (3,t) eIN(u), which are not in the basis
allows us, in accordance with (4#.24), to define the vector to
be introduced into the basis and the vector to be removed from

the basis.

Let a column vector
be introduced into the basis, and a column vector

dyg (£3)

be removed from the basis.

Here d (t ) is the j-th nonbasic column of the matrix
D(t ) and d (t ) is the 2-th column of the matrix D (t ),

OitwtziTL

Replacing the vector d (t ) by the vector d (t2)
implies the transformation of the old system of local bases

{60B(t)} into a new system of local bases {D (t)}

As in the case of the static simplex-method, this procedure
is one of the crucial ones which essentially defines the

efficiency of the algorithm.

In the revised simplex-method the inverse basis matrix is
transformed by multiplying on an elementary matrix. The advan-
tage in generating the inverse for each basis by means of
elementary matrices is that only a minimal amount of information

need be stored.

In the dynamic simplex-method we operate with the system

of inverses {Bag(t) (t=0,1,...,T-1)} of local bases. Hence
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the efficiency of the dynamic simplex-method will be directly

defined by the scheme of transformation of inverses {ﬁa;(t)}.

The difficulty of building such a transformation is
determined by the fact that, first, the transformation of a
local basis at step t changes the subsequent local bases
ﬁOB(T) (t=t+1,...,T-1) and, second, the vector aoz(tz), which
should be removed from the basis, may belong to the local

basis DOB(tZ) at another step t2, t2 # t1.

The theorem given below defines the sufficient condition
when the replacement of a basis column in a local basis BOB(t)

does not change the other local bases.

Theorem 6.1 The replacement of the i-th column in a
local basts ﬁOB(t) does not change the other local bases, if
the i-th row of matrices

Y
ogp(t) = DOB(t)D1B(t) (6.1)
vanishes.

Proof When we replace the i-th column in the matrix

A

DOB(t), then in accordance with (6.1), the transformation of
the matrix ¢g(t) will be similar to the transformation of the
inverse Baé(t),‘that is, the i-th pivot row of the matrix is

added to the other row with some coefficients [1,14].

Therefore, if the i-th row of the matrix ¢B(t) is equal
to zero, the matrix ®B(t) will not change. In accordance with
(3.26) the matrix B;(t) does not change either. Considering
(3.11),(3:20) at T =t+1, we find that all subsequent local bases
(t=t+1,t+2,...,T-1) also do not change.

Consequence_6.1 If an element ¢ij(t) of the matricx
®B(t) 1s equal to zero, then the replacement of the i-th column
in the local basis D,,(t) does not change the j—th column in

1 0B
the matrix BB(t).
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Now we describe some auxiliary operations.

Let us consider the relation (4.1) and replace the 2%2-th

column of the matrix ﬁOB(t) by a column of the matrix ﬁ1B(t).

It is known from the simplex-method algorithm that existence
of a nonzero pivot element in the %2-th row of the matrix @B(t)

is sufficient for the matrix ﬁOB(t) to be nonsingular [1,14].

Let

bgq(t) # O

and the g-th component of the vector ﬁ1B(t) be the g-th compo-
nent of the vector GOB(t-F1).

When the 2-th column of the matrix ﬁOB(t) and the g-th
column of the matrix ﬁ1B(t) interchange, the inverse ﬁg;(t) is
transformed by multiplying from the left on the elementary
matrix. The elementary matrix has dimension mxm and differs
from the identity matrix by the %-th column with components
[1,14]:

biq(t) . .
ng = - ¢2q(t) i=1,...,m (i # 2) ;
- 1
i bpq(B)

The replacement of columns in matrices ﬁOB(t) and ﬁ1B(t) is
carried out in a similar way. The matrix BB(t) is transformed
as follows [16]:

1 T 1
[Bg(£)]1™ = BL(t)E (6.2)

q 14
where Eq is the square elementary row matrix, which differs
from the identity matrix by the g-th row with components

g,(8) = =~ i#q s
i Faq (B)

£ (t) = - 1 __

1 ¢Zq(t) ! i=q .
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The order of the matrix Eq equals the number of columns
of the matrix B;(t).

. . . ~=1
Define now the transformation of the inverses DOB(T)
(t=t+1,...,T=-1). Taking into account the structure of the
matrices BB(t-+1) and ﬁB(t-+1), we can write (with accuracy up

to the interchanging of columns):

A 1 _
Dp(t+1) = But+nBBw+1);DBw+1ﬂ =
= [Byg(t+ 1) Dygle+ 1] (6.3)
and
A _ 1 . _
Bg(t+1) = [A(t+1)Bg(t+1); By(t+1)] =

(E+1), Big(e+ 1] . (6.4)

|
| summ |
o>
o
lve)

Considering (6.2) to (6.4), we obtain

Dog(t+1) Dyg(t+1) Dyg(t+1) D p(t+1) M_ N
= (6.5)

~

BOB(t+1) B1B(t+1) BOB(t+1) B1B(t+1) 0 E

Here ﬁé(t+1), ﬁé(t+1) are the matrices corresponding to a
new basis; Mq is the elementary row matrix of dimension m xm;
the matrix Nq consists of zeros except in the g-th row;»Aits
dimension equals m Xk, where k is the number of columns D1B(t+1);

E is the identity matrix of dimension k x k.

The right matrix in (6.5) is built up as follows: the
matrix Eq is enlarged up to dimension (m+k) X (mxk) in such a
way that in the added part the main diagonal contains units and
all the rest added elements are zero; then the elements of the
g-th row are interchanged in accordance with the interchange of
columns of the matrix ﬁB(t+1) when it generates the matrices
DOB(t+1) and D1B(t+1)'
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It is shown in [16] that if the transformation (6.5) is

taking place, the following relations hold:

~- 1 I P
(Dog(t+N1" = M_Dp(e+1)
Bop(E+1) = Boglt+ DM (6.6)
. -1 -1
o (t+1 = M N_ + M o_(t+1
p(E+1) g Ng M ep (e )

The matrix Bé(t+1) doesn't change, therefore all the subsequent

local bases do not change either.

This procedure we shall call the interchange of the 2-th
column of the matriz BOB(t) with the gq-th column of the matricx
DOB(t).

Now let us consider the interchange of the 2-th column of
the matrix D
t*¥ > t+1.

OB(t) with some column of the matrix ﬁOB(t*),

In the 2 row of the matrix ®B(t), let the first non2zero
element ¢2q(t) correspond toAthe basic variable, which is re-
computed to the local basis DOB(t*), and all elements ¢2i(t)
which correspond to the variable are recomputed to local bases
ﬁOB(T), t <1 <t*, equal to zero. Now we partition the matrices
@B(t) and B1B(t) into two parts:

!

o, = [@1(t); e, ()]

B

1B (B, (£); Byp()]

Let the columns corresponding to the variables which are

recomputed into the local bases b t < T < t¥, enter the

matrix ®1(t) (ﬁ11(t)), and the rest columns enter the matrix

Then in accordance with (7.2) and Consequence 7.1, the

matrix B}(t) does not change at the interchange of the 2-th
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column of the matrix BOB(t) with the g-th column of the matrix
D g(t). The matrix B;(t), which is defined from

1 _ 1 R
is transformed in accordance with the formula
B )1 = B M(o)E
2 - 2 k !

where k is the number of the column of the matrix @2(t) which
contains the element ¢2 (t). The order of matrix E_k is equal

to the number of columns of matrix B (t).

Let the k-th column of matrix @2(t) correspond to the k-th

component of vector GOB(t*).

In accordance with the partitioning of the matrix B;(t)

and (6.3), (6.4), the columns of matrices
G(t+1)By(t) and A(t+1)B)(t)
do not enter the matrices
D B(t+1) and BOB(t-+1)
. Therefore the matrices BOB(£-+1), ﬁOB(t-+1) do not change.

Let us partition the matrices @B(t-+1), B;(t-+1) and

B B(t+1) into two submatrices

cI>B(t+1) = [<I>1(t+1);<1>2(t+1)] :

1 1 1.
BB(t-+1) ,[B1(t-+1); B2(t-+1)] H

1 _ iz A
Bip(t+1) = B (t+1); B,(t+1)]

The columns of the matrix @B(t-+1), which correspond to the
same basic elements as the columns of the matrix @2(t), enter
the matrix @2(t-+1).
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In accordance with the partitioning, the matrices ¢1(t-+1)

and B t +1) do not change with interchange of the columns.

11(

The matrices ¢2(t-+1) and §12(t-k1) are transformed by

formulas
1
¢2(t-h1) = <I>2(t+1)Ek '
[a 3K | A . (6-7)
qz(t+1) = B12(t+1)Ek . ;
As
A1 _ A _ A
Bz(t-+1) = B12(t-+1) BOB(t-+1)¢2(t4-1)
then, taking into account (6.7), we obtain
Blie+1|' = Bl(t+DE (6.8)
2 2 k ° .

Similar reasoning is valid up to the step t*. Thus, the
interchange of the g-th column of the matrix ﬁOB(T) with the
k-th column of the matrix DOB(t*) causes changes neither in the
local bases D (T) nor 1n the matrices BOB(T) (tT=t+1,...,t*¥=1);
the matrices ¢ (t) and B (t) are transformed by formulas (6.7),
(6.8) if t+1 =1 (T-—t+1 t+2 ,...,t*%=1).

At step t* part of the columns of the matrix G(t*)B (t*-1)
enters the matrix DOB(t ). Therefore the transformation of the

matrices at this step reduces to the case considered above (see
(6.5),(6.6)).

This procedure.we shall call the interchange of the L-th
column of the matrizx BOB(t) with the k-th column of the matrix
D B(t*), where t¥* > t+1.

The procedures of interchangement of columns of the
matrices ﬁOB(t) and BOB(t*) (t* > t+1) allow us to describe the
transformation procedure of the old local bases {ﬁOB(t)} into
new ones {ﬁéB(t)}.

When a vector aog(tz) is replaced by a vector dj(t1), two
cases are possible.
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In this case the 2-th row of the matrix QB(t) contains a

nonzero pivot element.

In fact, the number of the variable to be introduced into

the basis is defined by the relation (4.25). Hence the 2-th
component of the vector GOB(tz) is not zero.
From (4.21), (4.22) we find that
VOB(tZ) = = @B(tz)v1B(t2) if t, < t,

Therefore the 2%-th row of the matrix @B(tz) contains at

least one nonzero element.

Let the pivot element correspond to the j-th component of

vector uOB(t2-+T).

Replace the 2-th element of the matrix ﬁOB(tz) by the j-th
element of the matrix ﬁOB(t2-+T). This interchange does not

change the basic solution. Therefore, if t,+ 71 < t1, the above

2
reasonings are true and we can proceed with the interchanges.

In result we obtain the following case.

Proceeding with these subsequent interchanges, we remove
the vector to be eliminated into such a local basis ﬁOB(tB)'

t, >t

3 17 which satisfies the conditién of Theorem 6.1.

If such t3 < T - 1 does not exist, then we replace the

column to be removed into the last local basis D (T-1).

0B

In turn the column to be removed can be replaced in the

local basis DOB(t3).

Let the vector to be removed be the 2-th column of the
matrix BOB(tB)' Before introducing the vector dj(t1) into the

basis it is necessary to recompute it at the step ty.
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In result we obtain

Vip(t) = 65;(t1)dj(t1)' ,
y¥(tg+1) = = bi(t)) + Bog(t) V85 (t)
S0 = - Bolma(myrn) (6.9)
y*(T+1) = A(T)y*(1) + By (1) v, (1)
T = t1+1,t1+2, ...,t3 .

In these formulas the new local bases {66B(t)} obtained

in the result of the above interchahges have been introduced.

The above-considered interchange of the column to be
introduced is possible as the %-th (pivot) element of the
vector GﬁB(t3) is not equal to zero.

In fact, in accordance with (4.25) the 2-th element of
the vector GaB(t3) is not zero. Transformation formulas (6.9)
coincide with the formulas (5.3), (5.7), (5.12), (5.13).

In accordance with (4.21), (4.22),

A

VOB(t

- A* _ ~

3) VOB(t3) ¢B(t3)v1B(t3) .

But, as the 2~-th row of the matrix @B(t3) vanishes,
Vop(E3) = V() # 0 .

Thus a new set of local bases is obtained.
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7. CONNECTION WITH THE METHOD OF COMPACT INVERSE

The method considered above has another interpretation

connected with the factorized representation of the inverse.

We need the following assertion.

Theorem 7.1 [15] Let a nonsingular square matrix F be

partitioned into blocks

m n

P P
H P m
F o= | eereeesieereenms ,

Q

R}n
where H s a nonsingular matrigz.

Then F is represented in the form-

m n
e, P s
_ S0 | mie i
F o= Fey = e frveesee R ’
Q § C 0 g In }n
where ‘
C=R—QH-1P, lc| # o, ¢=H'1p,

I, and I are the identity matrices of appropriate dimensions.

Theorem 8.1 is not stated in [15] in explicit form, but

directly follows from results given in [15].

The structure of constraints of Problems 1.1 implies the

following structure of its basis matrix:
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B Dy (0) .
BB(O) -1
G(1) DB(1)
A(1) BB(1) -1

(7.1)

-I
G(T-1) DL (T-1)
A(T-1) By(r-1) -I |

where I is the identity matrix of dimension n xn, DB(t) and
By (t) are submatrices, consisting of basic columns of the

constraints matrices (1.1) and (1.3).

As the rows of Dg(0) are linearly independent, one can
choose m linearly independent columns in the matrix DB(O).

These columns generate the matrix ﬁOB(O).

By column interchange we can transform the matrix DB(O)
and obtain

DB(O) = [DOB(O); D1B(O)J ’

where ﬁ1B(0) is the submatrix, consisting of the columns of

the matrix DB(O) which are not in the matrix ﬁOB(O).

The column interchange of the matrix BB(O) is fulfilled

in a similar way:

In accordance with Theorem 7.1, one can show that the

matrix B is expressed as

B = By, (7.2)

where U0 is the upper triangular matrix of dimension coinciding

with the dimension of the matrix B:
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In the matrix U0 the dimension and location of the matrix
_ A—1 PaY
@B(O) = DOB(O)D1B(O)

coincide with the dimension and location of the matrix ﬁ1B(0)
in B, the matrix EO is obtained from the matrix B through
replacement [ﬁOB;O] by [BOB(O);O] and §1B(O) by

1, A A
BB(O) = B1B(0) BOB(O)QB(O)'

In the matrix EO we interchange the submatrix -E and the
submatrix B;(O); then we interchange the submatrices G(1) and
A(1) in the matrix ﬁo and the submatrix ®;(0) in the matrix U,

respectively.

By analogy with (7.2), we can write that

By = ByVg

where V., is the low triangular matrix of the matrix EO dimension:

0

. 1
—BB(O)
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where
5 ) ]
0B
ébB(O) -I
G() G(BL(0) DL(1)
A() AMBLO) By(1) -I
B, = , G(2) Dg(2)

L
i~
»

A2) By(2)

' G(T-1)Dg (7-1)

A(T—1)BB(T—1) -I

The dimension and location of the matrix —B;(O) in V0
" coincide with the dimension and location of the matrix B;(O)

in ﬁo. The matrix §1 is obtained from 50 through interchange

of submatrices

[—I:B;(O)] and  [-T:0] ,
[G(1]:O:DB(1)] and [G(1):G(1)B;(O):DB(1)] ’
(A(1):0:B,(1)]  and [A(1):A(1)B;(O):BB(1)] i

In accordance with Theorem 8.1, a matrix, obtained by
cutting out the rows coinciding with the rows of submatrices
6OB(O) and ﬁOB(O)and by cutting out the columns coinciding
with the columns of submatrices DOB(O) and G(1), is nonsingular.

Consequently the rows of the matrix
1 .
[G(1)BB(O).DB(1)]

are linearly independent, and by column interchange this matrix

can reduce to the form

1 _ A A
[G(1)Bg(0):D5(1)] = [Dyy(1):D,o (D]

1B
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where the matrix 603(1) is nonsingular and the matrix 61B(1) is
generated by columns [G(1)B;(O):D (1)1, which are not in the

matrix DOB(1).

The matrices

1 A "
[A(1)B,(0) :By (1)] [Byp (1) :By5(1)]

and ¢;(0) in matrix U,, as well as the matrix —Bg1(0) in the

matrix V,, are partitioned similarly.

0

Proceeding in a similar way, we obtain

B = B¥,_,Upn 5 -ov-- VoUg: = BU (7.3)
where
F Y —
Dyg (0)
BOB(O) - A
G(1) ?03(1)
A(1) B,.(1) -T
B* = OB .

6T Byp(T-1)
] - Am-DBr-n -1

The matrix ﬁOB(t) may include the columns of the matrix
DB(t) and some columns of the matrix DB(T) (t=0,1,...,t-1)
which are recomputed at the step t in the factorization process.

Evidently the matrices ﬁOB(t) (t=0,1,...,T-1) are obtained
in such a way as to coincide with the local bases, which were

defined in sections 3, 4.

Taking into account the interchange of basis columns in
the factorization process, we can write the basic variables as

fug,x} = {9,5(0),x(1), 0 (1), ..., 0y  (T-1),x(T-1} ,

where vector GOB(t) corresponds to matrix D._(t) (¢t=0,1,...,T-1).

0B
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Thus the matrices Ut and Vt (t=0,1,...,T=-2) are

1 0
1
. t+1 j T—1
. 0...<I>0 (t)...0...(I>i(t)...()...<1>t (t)...0
— . 0
Ut = ]
0 .
1
1
L 1
and
- . _
1 .
gt _nJ _oI-1
. 0... B0 (t)...0... Bi(t)...O... Bt (t)...0
. 0
v =
t 0 .
T
1
b 1—




At each simplex iteration it is necessary to solve three

systems of linear equations:
(1) determination of a basis solution;

(2) computation of coefficients {v,y}, which
express vector
_ T T T
Yj(t1) = (OI'°"0Idj(t1)lbj(t1)lol"'lo)
to be introduced into the basis;

(3) determination of the simplex-multipliers.

Now we describe briefly these procedures for factorized represen-

tation of the basis.

(1) Vector X = (uB,x) is determined from the solution of the

system
B = * = * =
BX = B*UX B¥Vp_ .- UpX b , (7.4)
where b is the constraint vector of Problem 1.1.
Denote

X* = UX ,

then the determination of the vector X reduces to subsequent
solution of two systems of linear equations in forward and back-

ward transformations:
B*X* = b ’ (7.5)

Ux = X* . (7.6)

The solution of (7.5) is determined by recurrent formulas:

Gro(t) = 65;0;) £(t) - G(E)x*(t)) (£=0,...,T=1) ,
x*(t+1) = A(t)x*(t) + ﬁOB(t)ﬁBB(t) (t=0,...,T=1) (7.7)
x¥(0) = x(0) .

The system (7.6), considering (7.3), can be written as

-1 -1
= *
X Uy .- Vo X+ .
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It is easy to see that the matrices Ut1 and V;1

obtained from the matrices Uy and V_ by simply changing the

signs of the elements which are above the main diagonal.

are

Therefore the solution of the system (7.6) reduces to the

recurrent formulas:

X(T) = X*(T) ’
u(T-1) = u*(T-1) ,
tg‘l T§1 3
x(t) = x*(t) + [B: (t):0]lu,_.(F) ,
iZg0 j=t 1 0B (7.8)
(t=T-1,...,1)
S T T
unnp(t) = ux,(t) - [0 (t) :0lupss (F)
0B O 120 jober 3 0B

(t=T-2,...,0)

Here the nqtations [Bi(t):O] and [@i(t):O] denote that the
matrices Bi(t) and ¢i(t) are supplemented zeros if necessary

for correctness of multiplying.

(2) The coefficients
Yi(t) = (Ygg(0),y(1), ..., y(T))

which express the vector Yj(t1) by the basis are computed from
the solution of the system

BYj(t1) = Yj(t1)

At direct run we can find vector (v*,y*):

VEp(t) = 0
y*(e+1) = 0, (£=0,...,t-1)
Bl = Dplepd ()
yH(e ) = Bog (e VEL(E) - bi(t) (7.9)
VEL(E) = —65;(t)G(t)y*(t) ,

y*(t+1) = A(t)y*(t) + ﬁOB(t)GgB(t) Lo(E=tgHt, L, )
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At reverse run we can find vector (v,y):;

y(T) = y*(T) ,
VOB(T—1) = VBB(T—1) ’ ’
t-=1 T-1 . A
y(8) = y*(t) + ] ] [BI(£):019,5(3)
1=0 j=t (7.10)
(t=7-1,...,1) ’
R E TE‘I :l
To(t) = $x_(t) - [64 (t):01V,., () ,
0B 0B i20 j=t+1 i OB

(t=T7-2,...,0)

(3) Determination of the simplex-multipliers {1 (0),p(1),...,

A(T-1),p(T)} is carried out in a similar way by formulas

p(T) = a(T) ,

_ A A=1 — Mo
A(t) = p(t-+1)BOB(t)D0B(t), (t=T-1,...,0) , (7.11)
p(t) = p(t+1)A(t) - A (B)G(L), (t=T-1,...,1) .

One can see that the formulas (7.7) to (7.10) are the
explicit expression of Procedure 1 (sections 3,4) for determin-
ation of basic variables and coefficients, expressing a column
not in the basis by the basis columns. The formulas (7.11) for
determination of simplex-multipliers coincide with the formulas

of Procedure 3 (section 5).

Thus the method of solution of Problem 1.1 which has been
described in sections 3 to 6 is a realization of factorized

representation of the inverse as applied to DLP problems.

We now describe the general procedure of the dynamic

simplex-method.



8. GENERAL PROCEDURE OF DYNAMIC SIMPLEX-METHOD

Let at some iteration there be known:

{ﬁag(t)} - the inverses of local bases;
{uOB(t)} - the basic feasible cdntrol;
{x(t)} - the corresponding trajectory;
{x(t),p(t)} - the dual variables (simplex-multipliers).

As in the ordinary static simplex-method, one can introduce
artificial variables at zero iteration. In that case the zero

iteration local bases are the identity matrices.

In accordance with Sections 3 to 7 the general procedure

of the dynamic simplex method comprises the following stages:

1. Choose some pair of indices (j,t1), for which

zj(t1) - cj(t1)

= >\(t1)dj(t1) - p(t1+1)bj(t1) < Q, (j,t1) £ IN(u) .

Usually a pair (j,t1) with maximal absolute value of

zj(t1) -cj(t1) is selected.

If all

Zj(t) - Cj (t) 2 o, (Jlt) > IN(u) [

then we have an optimal solution of the problem.

2. Dpefine sequences of vectors v*¥ and y* (forward transform-
ation:

A* _
VOB(t) 0
g¥(t+1) = 0
(t = 0,1,.0u,t, = 1)
A* _ /\_1
Vop(tq) = Doglty)dylty)

* - A Sk
y (£, +1) = Byg (B4) Vodty) - bj(t1)
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o - _a-=1 *

VOB(t) = DOB(t)G(t)Y (t)

* _ ) E
y¥(t+1) = A(t)y*(t) + BOB(t)VOB(t)
(t = t,+1,...,T-1)

1
3.

Yj(t1)

Define coefficients

(v,y)

(backward transformation):

y (T)

VOB(T -1)

y (t)

(t

4. Find the

basis:

index t2

min

If all Goi(t) <0, then

5.

ui(T) -

T-2,...

voi(t)>0

yv* (T)
~ %
VOB(T-1)
T-1 t-1

o)

j=t i=0

% . n .
g* (£) + [Bi(t).o]VOB(J)

1)

* T§1
¥ .,(t) -
0B j=t+1

t
)

3 Ala .
' [@i(t).O}VOB(J)
i=0

T-2,T7-3,...,1,0)

of the column to be removed from the

~

Ugy ()

Vog (E2)

(t)
(t)

Ugj (t
Voi

the solution is unbounded.

Compute the new basic feasible control {u'(t)}:

8

0 (1)

V.

iB (i,1) ¢ IB(u)

(i,7) = (3,t)

(i,7) e Ig(u), (i,1) #(3,t)
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6. Transform the local bases:

a) set t=t2;

b) if tz't1, then go to stage e);
c)- choose the nonzero element in the pivot row of the

matrix ¢B(t). (The index of the pivot row equals the index
of the column to be removed from the local basis ﬁOB(t).)

d) 1let the pivot element of the matrix @B(t) correspond
to the component of the basic control, which was recomputed
into the local basis at step t+ 1. Then:

- interchange the positions between local bases

DOB(t) and DOB(t-+T)

- set t-> t+1
- go to stage b) ;
e) if t = T-1, then go to stage f£;

f) replace the column to be removed by the column to
be introduced into ﬁOB(t).

7. Compute the dual variables

p(T) = a(T)
A(t) = p(t+1)]§0B(t)ﬁ8]13(t) (E=T=1,...,1,0)
p(t) = p(t+1A(E) - A(£)G(t) (£=T=1,...,1).

Go to stage 1.

It should be noted that only the general scheme of the
algorithm is given here. The concrete realization of the
algorithm depends on the specific of a problem, type of computer,
ways of selecting the column to be introduced into basis, etc.

It should also be noted that for realization of the algorithm
it is sufficient to operate only with matrices

A1 A 1
DOB(t); (DB(t)l BOB(t)’ BB(t)I G(t), A(t)

(t=0,1,».-,T-1)
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9. DEGENERACY

It was assumed above that all basic feasible controls were

nondegenerate.

This assumption was necessary in order to guarantee that
for each successive set of local feasible bases the associated
value of the objective function is larger than those that
precede it. Hence we will reach the optimal solution in a

finite number of possible sets of local feasible bases.

For the degeneracy case there is the possibility of
computing 60 at step 4 of section 8, for which 60 = 0. Therefore
the choice of a vector to be removed from and a vector to be
introduced into the set of local bases will give a new basic
feasible control with the value of the objective function being
equal to the preceding one. Thus cycling of the procedure is

possible.

Therefore a special rule for selecting the column to be
removed should be elaborated to overcome cycling in the case

of degenéracy.

For that we can use the method of overcoming degeneracy

of the revised simplex-method [1,14].

We can use this method for the dynamic simplex-method as
well if the columns of the inverse 5_1 (see (7.1)) can be

computed.

The j-th column yj of the inverse B 1 is a solution of the

system of equations:
By. = e. , (9.1)

where ey is the unit vector of dimension (m+n)T with the j-th

component equal to one.

The system (9.1) can be solved by using the factorized
representation of the basis matrix, which is similar to the

solution of system (7.4).
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10. EVALUATION OF THE ALGORITHM

In this section we give some theoretical evaluation of

the dynamic simplex-method.

As was noted in section 8, for realization of the algorithm

it is sufficient to operate only with the matrices 65;(t);

~

1
op(t), Byg(t), Bg(t), G(t), A(t) (t=0,1,...,T-1).

Theorem 10.1 The number of columns of matrices @B(t) and

B;(t) does not exceed n.

Proof Let 2t steps of the factorization process be

carried out.
Then the formula (7.3) can be rewritten as

B = B V.U

2¢6-1 Ve-1 Yg—q = - - VpoUp -

On the main diagonal of the matrix 52 there is the

t-1
submatrix

~

DOB(t) D1B(t)

Bog(t)  Byg(t)

The columns of the submatrix F are linearly independent,
as the matrix Bor-1 is nonsingular. Consequently the number
of columns of matrices'ﬁ1B(t) and ﬁ1B(t) cannot be larger

than n. Hence one can obtain the statement of the theorem.

The matrices 66;(t), ﬁOB(t), G(t), A(t) have dimensions

(mxm), (nxm), (mxn), (nxn) respectively.

Hence the algorithm operates only with the set of T

matrices, each containing no more than m or n columns.

At the same time the straightforward application of the
simplex-method to Problem 1.1 (in the space of @,x)) leads to

the necessity of operating with the basis matrix of dimension
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(mMm+n)T x (m+n)T or of dimension mT xmT, if the state variables

are excluded beforehand.

Thus in some respects the dynamic simplex-method realizes
a decomposition of the problem that allows a substantial saving

in the number of arithmetical operations and in the core memory.

As was mentioned above, the DLP Problem 1.1 can be con-
sidered as some "large" static LP problem and thus the revised

simplex-method can be used for its solution.

Let us compare the effectiveness of the dynamic simplex-

method and the revised simplex-method as applied to Problem 1.1.

It is known that at each iteration the revised simplex-
method requires of the order of k2 multiplications for trans-
formation of the inverse, where k is the number of rows of the
basic matrix. Hence the total number of multiplications for
transformation of the basis is of order (m-+n)2T2. To compute
the coefficients which express the column to be introduced into
a basis in terms of columns of the current basis, the revised

simplex-method requires some (m +n) 2T multiplications.

Now we shall evaluate the number of multiplications for
the dynamic simplex-method. It was shown that at one interchange
the local bases are transformed by multiplication on the
elementary column or row matrix. The interchange of columns
between two neighbouring local bases ﬁOB(t) and BOB(t-+1)
requires no more than 3(m+n) 2 multiplications. (The matrices
Dya(t), Byg(t), ey (), BL(t), Dyi(t+1), Byy(t+1), o (t+1)
are transformed.) In the worst case, when the column to be
removed from the basis is transformed from the local bases
BOB(O) into the local basis BOB(T-1), one needs T inter-
changes. We assume that the average number of interchanges
is T/2. Thus the dynamic simplex-method requires approximately
1.5(m+n)2T multiplications for transformation of local bases

for one iteration.
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Computation of the coefficients expressing vector to be
introduced into a basis requires about (m-+n)2T multiplications.
It is important that only part of local bases are transformed
at each iteration. In addition local bases can be represented
in factorized form, thus enabling use of the effective procedures
of static LP [1,14].

Solution of Problem 1.1 by the revised simplex-method
requires storage of the inverse of dimension (m+n)T x (m+n)T.
The dynamic simplex-method requires storage of only T matrices
of dimension mxm (66;(t), §0B(t)) and T - 1 matrices of dimension
mxn (¢5(t)) and nxn (Bg(t)).

Thus comparing the estimates for the static and dynamic
algorithms for solution of Problem 1.1, one can see that the
volume of computation and the core memory increases linearly
with T for the dynamic algorithm and by quadratic law for the

static algorithm.

CONCLUSION

The general scheme and basic theoretical properties of the
dynamic simplex-method specially developed for solution of

dynamic linear programs is described and discussed.

Theoretical reasonings show that this algorithm may serve
as a base for developing effective computer codes for the
solution of DLP problems. However the final judgment of the
efficiency of the algorithm can be made only after definite

period of its exploitation in practice.

It should also be very interesting to compare (both from
the theoretical and the computational point of view) the approach
given in this paper with the finite-step DLP algorithm based on
the Dantzig-Wolfe decomposition principle [18] and other methods
of solving DLP problems [7,8,9,16].
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a(T-1) = [0 L(r-1)2(1-1); 0]
w‘

4(T-1) =[Gl(T—2); u(T-1)]

P 3, (1-2)
8, (T-2) =ﬁ(')1(T—2)%(T—2) - o(T-2)3 (1-2)
lﬁO(T—z) '

a(r) = [0, (e-1)5 w(o]’

G, (e-1) =ﬁ;1(t—1)%(t—1) - 8(t-1)8, (t-1)

u(T—lz 20

u(t) = d
——

lﬁo(t—l)
6(1) = [uy (©); ()T p— 2D 20
ul(O)
45(0) =D () (0) - 8(0)u; (0)
N
| u(0) = [u,(0),u, (1" u(0) >0
Table 3. Procedure of basic feasible control computation

for a given set of local bases {Do(t)}
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~ _ /\* _ = _
VB(T 1) = VOB(T 1) VOB(T 1) .
v_(T-1)
B
5 (T-1) = [V, (T-2); v.(T-1)1T
VB 1B > 'B
le(T—Z)
Al _ _ A _
VOB(T—Z) = <I>B(T 2)V1B(T 2)
ok (1-2)
(0]})
\ 4
3 (1-2) = V& (1-2) - VL (T-2)
OB 0B (0]})
4
~ ~ ~ T ~
vB(T-Z) = [voB(T-Z), le(T-Z)] vbB(T-Z)
VB(T—Z)
Table 4. Procedure of the computation of the basic feasible

control variation.



-67~

p(T) = a(T)

~ ~—1
A(T-1) = p(T)B ), (T-1)D 5 (T-1)

p(T-1)

p(TYA(T-1) - A(T-1)G(T-1)

A

i

p(t+2)A(t+1l) ~ A(t+l)G(t+1)

p(t+l)

M) = p(erDB (0B (0)

v ‘—f”"””,’/””/’

p(t) = p(e+1)A(t) - A(£)G(t)

Table 5. Procedure of the simplex-multipliers computation.
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